THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH1010 UNIVERSITY MATHEMATICS 2023-2024 Term 1 Suggested Solutions of WeBWorK Coursework 4

If you find any errors or typos, please email us at math1010@math.cuhk.edu.hk

Problem 1.

Let

$$f(x) = \begin{cases} -3x, & x < 7, \\ 1, & x = 7, \\ 3x, & x > 7. \end{cases}$$

$$\lim_{x \to 7^{-}} f(x) = -21;$$

$$\lim_{x \to 7^+} f(x) = 21;$$

$$\lim_{x \to 7} f(x) = \text{DNE};$$

$$f(7)=1.$$

Is f continuous at x = 7? NO!

Solution:

$$\lim_{x \to 7^{-}} f(x) = \lim_{x \to 7^{-}} -3x = -21;$$

$$\lim_{x \to 7^+} f(x) = \lim_{x \to 7^+} 3x = 21;$$

Since
$$\lim_{x\to 7^-} f(x) \neq \lim_{x\to 7^+} f(x)$$
, we get $\lim_{x\to 7} f(x) = \text{DNE}$;

$$f(7) = 1.$$

f is not continuous at x = 7 since the limit of f at 7 does not exist.

Problem 2.

Let f(x) = |x - 8|. Evaluate the following limits.

$$\lim_{x \to 8^{-}} \frac{f(x) - f(8)}{x - 8} = -1;$$

$$\lim_{x \to 8^+} \frac{f(x) - f(8)}{x - 8} = 1;$$

Thus the function f(x) is not differentiable at 8.

² Solution:

$$\lim_{x \to 8^{-}} \frac{f(x) - f(8)}{x - 8} = \lim_{x \to 8^{-}} \frac{(8 - x) - (8 - 8)}{x - 8} = -1;$$

$$\lim_{x \to 8^{+}} \frac{f(x) - f(8)}{x - 8} = \lim_{x \to 8^{+}} \frac{(x - 8) - (8 - 8)}{x - 8} = 1;$$

Since $\lim_{x\to 8^-} \frac{f(x)-f(8)}{x-8} \neq \lim_{x\to 8^+} \frac{f(x)-f(8)}{x-8}$, we know that f(x) is not differentiable at 8.

Problem 3.

Find f'(x) and f'(0), where:

$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & x \neq 0\\ 0 & x = 0 \end{cases}$$

(a) Find the derivative of f(x) for x not equal 0.

$$f'(x) = 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x}) ;$$

(b) Find the derivative of f(x) for x equal 0.

$$f'(0) = 0.$$

Solution:

(a) For
$$x \neq 0$$
, $f'(x) = (x^2)' \sin(\frac{1}{x}) + x^2 (\sin(\frac{1}{x}))' = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$;

(b) For
$$x = 0, f'(x) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{x - 0} = \lim_{x \to 0} x \sin(\frac{1}{x}) = 0$$
 by the Squeeze Theorem.

Problem 4.

Let

$$f(x) = \begin{cases} -9x^2 + 5x & \text{for } x < 0, \\ 5x^2 - 3 & \text{for } x \ge 0. \end{cases}$$

According to the definition of the derivative, to compute f'(0), we need to compute the left-hand limit

$$\lim_{h\to 0^-} \frac{(-9h^2+5h+3)}{h}, \text{ which is } -\infty,$$

and the right-hand limit

$$\lim_{h\to 0^+} 5h$$
, which is 0.

${\bf Solution}:$

The left-hand limit:
$$Lf'(0) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h - 0} = \frac{-9h^2 + 5h - (-3)}{h}$$

The right-hand limit:
$$Rf'(0) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h - 0} = \frac{5h^2 - 3 - (-3)}{h} = \frac{5h^2}{h}$$

Since $\lim_{h\to 0^-} \frac{f(h)-f(0)}{h-0} \neq \lim_{h\to 0^+} \frac{f(h)-f(0)}{h-0}$, we know that f(x) is not differentiable at 0.

Problem 5.

Evaluate the following limits. If needed, enter 'INF' for ∞ and '-INF' for $-\infty$.

(a)
$$\lim_{x \to \infty} \frac{\sqrt{9 + 2x^2}}{3 + 11x} = \frac{\sqrt{2}}{11}$$
.

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{9+2x^2}}{3+11x} = -\frac{\sqrt{2}}{11}$$
.

Solution:

(a)
$$\lim_{x \to \infty} \frac{\sqrt{9+2x^2}}{3+11x} = \lim_{x \to \infty} \frac{\sqrt{\frac{9}{x^2}+2}}{\frac{3}{x}+11} = \frac{\sqrt{2}}{11}.$$

(b)
$$\lim_{x \to -\infty} \frac{\sqrt{9+2x^2}}{3+11x} = \lim_{x \to -\infty} \frac{\sqrt{\frac{9}{x^2}+2}}{-\frac{3}{x}-11} = -\frac{\sqrt{2}}{11}.$$

Problem 6.

Find a and b so that the function

$$f(x) = \begin{cases} 2x^3 - 4x^2 + 6, & x < -2, \\ ax + b, & x \ge -2 \end{cases}$$

is both continuous and differentiable.

$$a = 40$$

$$b = 54$$

Solution:

To make f(x) continuous, we must have $\lim_{x\to -2^-} f(x) = \lim_{x\to -2^+} f(x)$.

Hence,
$$2 \cdot (-2)^3 - 4 \cdot (-2)^2 + 6 = -2a + b$$
, i.e. $-26 = -2a + b$.

⁴ And we also have f(-2) = -26 = -2a + b.

To make f(x) differentiable, we must have Lf'(-2) = Rf'(-2), i.e.

$$\lim_{x \to -2^{-}} \frac{f(x) - f(-2)}{x - (-2)} = \lim_{x \to -2^{+}} \frac{f(x) - f(-2)}{x - (-2)},$$

that is

$$\lim_{x \to -2^{-}} \frac{(2x^3 - 4x^2 + 6) - (-26)}{x - (-2)} = \lim_{x \to -2^{+}} \frac{(ax + b) - (-2a + b)}{x - (-2)},$$

which is reduced to

$$\lim_{x \to -2^{-}} \frac{(x+2)(2x^{2} - 8x + 16)}{x+2} = \lim_{x \to -2^{+}} a.$$

Hence $a = 2(-2)^2 - 8(-2) + 16 = 40$, and b = 2a - 26 = 54.

Remark: Lf'(-2) can also be calculated using

$$\lim_{x \to -2^{-}} \frac{f(x) - f(-2)}{x - (-2)} = \lim_{x \to -2^{-}} (2x^{3} - 4x^{2} + 6)' = \lim_{x \to -2^{-}} 3 \cdot 2x^{2} - 2 \cdot 4x.$$

Problem 7.

Suppose f'(x) exists for all x in (a, b).

Mark all true items with a check. There may be more than one correct answer.

A. f(x) is continuous on (a, b).

Comment: This is true. The continuity of f(x) can be deduced from the fact that f'(x) exists for all x in (a,b).

B. f(x) is continuous at x = a.

Comment: This is not always be true. Since (a,b) is an open interval, and f'(x) is defined locally in this interval, we can't know the value of f(x) at the endpoint x = a.

C. f(x) is defined for all x in (a, b).

Comment: This is true.

D. f'(x) is differential on (a, b).

Comment: This is false. Maybe f'(x) is not continuous.

Problem 8.

If f'(a) exists, then $\lim_{x\to a} f(x)$:

A. must exist, but there is not enough information to determine its value.

B. is equal to f(a).

Comment: This is correct. Since f(x) is continuous at x = a.

- C. is equal to f'(a).
- D. might not exist.
- E. does not exist.

Solution:

- A is incorrect. Since f'(a) exists, then we deduce that f(x) is continuous at x = a, hence $\lim_{x \to a} f(x)$ is equal to f(a).
- B is correct. Since f'(a) exists, then we deduce that f(x) is continuous at x = a, hence $\lim_{x \to a} f(x)$ is equal to f(a).
 - C is incorrect. The reason is as same as before.
 - D is incorrect. The reason is as same as before.
 - E is incorrect. The reason is as same as before.

Problem 9.

Give the interval(s) on which the function is continuous.

$$h(k) = \sqrt{9-k} + \sqrt{k+7}$$

Solution:

$$[-7, 9]$$

Since the square root function is continuous on its domain, we just need to calculate the domain of this function. That is, $\begin{cases} 9-k \geq 0 \\ k+7 \geq 0 \end{cases}$ which implies $\begin{cases} k \leq 9 \\ k \geq -7 \end{cases}$.

Problem 10.

Shown below are six statements about functions. Match each statement to one of the functions shown below which BEST matches that statement.

- 1. $\lim_{x\to 8^+} f(x)$ and $\lim_{x\to 8^-} f(x)$ both exist and are finite, but they are not equal.
- 2. The graph of y = f(x) has vertical tangent line at (8, f(8)).

4. $\lim_{x\to 8^+} f(x)$ exists but $\lim_{x\to 8^-} f(x)$ doesn't.

 $5.\lim_{x\to 8} f(x) = \infty.$

6. $\lim_{x\to 8} f(x)$ exists but f is not continuous at 8.

$$A.f(x) = \frac{1}{x - 8}$$

$$B.f(x) = \begin{cases} \cos(\frac{1}{x - 8}) & x < 8 \\ 0 & x = 8 \\ 3x + 48 & x > 8 \end{cases}$$

$$C.f(x) = \begin{cases} 3x & x < 8 \\ 0 & x = 8 \\ 48 - 3x & x > 8 \end{cases}$$

$$D.f(x) = \sqrt[3]{x - 8}$$

E.
$$f(x)$$
 =
$$\begin{cases} 3x & x < 8 \\ 0 & x = 8 \\ 3x - 48 & x > 8 \end{cases}$$
F. $f(x)$ =
$$\frac{1}{(x - 8)^2}$$

Solution:

- For A, $\lim_{x\to 8^-} f(x) = -\infty$ and $\lim_{x\to 8^+} f(x) = +\infty$.
- For B, $\lim_{x\to 8^-} f(x)$ doesn't exist, $\lim_{x\to 8^+} f(x) = 72$, hence $\lim_{x\to 8^+} f(x)$ exists but $\lim_{x\to 8^-} f(x)$ doesn't.
- For C, $\lim_{x\to 8^-} f(x) = 24$, $\lim_{x\to 8^+} f(x) = 24$, hence $\lim_{x\to 8} f(x)$ exists but $f(8) = 0 \neq 24$, so f is not continuous at 8.
- For D, since the derivative of f(x) is $\frac{1}{3}(x-8)^{-\frac{2}{3}}$, and $f'(8) = \infty$, the graph of y = f(x) has vertical tangent line at (8, f(8)).
- For E, $\lim_{x\to 8^-} f(x) = 24$, $\lim_{x\to 8^+} f(x) = -24$, hence $\lim_{x\to 8^+} f(x)$ and $\lim_{x\to 8^-} f(x)$ both exist and are finite, but they are not equal.
 - For F, $\lim_{x\to 8^-} f(x) = \infty$, $\lim_{x\to 8^+} f(x) = \infty$, hence $\lim_{x\to 8} f(x) = \infty$.

Problem 11.

Why is the following function discontinuous at x = 0?

$$f(x) = \begin{cases} e^x & \text{if } x < 0\\ x^2 & \text{if } x \ge 0 \end{cases}$$

- (a) f(0) does not exist.
- (b) $\lim_{x\to 0} f(x)$ does not exist (or is infinite).
- (c) both (a) and (b).
- (d) f(0) and $\lim_{x\to 0} f(x)$ exist, but they are not equal.

${\bf Solution}:$

- (a) is incorrect. Since $f(0) = 0^2 = 0$;
- (b) is correct. The function is discontinuous at x=0 because $\lim_{x\to 0^+} f(x)=0^2=0$ is not equal to $\lim_{x\to 0^-} f(x)=e^0=1$.
 - (c) is incorrect.
 - \bullet (d) is incorrect. This is because $\lim_{x\to 0} f(x)$ does not exist .