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Abstract—In this paper, we propose a robust 2D tomographic
reconstruction algorithm for classes of piecewise constant images
whose edges are defined by curves with finite rate innovation
(FRI). The curve is known to satisfy an annihilation relation
associated with the derivative of the image. Given limited
numbers of noisy projections and inaccurately known angles,
unlike conventional methods that are directly reconstructing
images from projections, we first recover the curve exploiting
the frequency domain annihilation relation. Once the curve is
retrieved, we leverage the spatial domain interpretation of the
annihilation relation, and formulate the image reconstruction as a
regularized optimization problem. To enhance the reconstruction
quality, we further refine the angles given the reconstructed image
and iterate the process. Experiments show that by doing so,
we can robustly reconstruct the 2D image even from limited
numbers of severely corrupted projections and highly inaccurate
projection angles.

Index Terms—2D tomographic reconstruction, annihilable
curve, finite rate of innovation, angle refinement

I. INTRODUCTION

The problem of reconstructing an unknown 2D or 3D struc-
ture from a set of tomographic projections has gained huge
prominence as it applies to multitude of imaging problems.
Examples of such include medical imaging [1], [2], cryogenic
electron microscopy (cryo-EM) [3]–[5] and industrial radiog-
raphy [6], to name a few. It is often assumed that the projection
angles are known in advance. Yet there are instances when
these angles are only known approximately. Take computed
tomography (CT) as an example, the projection angles are
supposed to be known a-priori through the acquisition process.
However, due to unknown patient motion and measurement
uncertainty, the angles are only approximately known [7].
The projections are normally heavily corrupted by noise,
which again results in inaccurate angle estimation [8], [9].
In this paper, we focus on 2D tomographic reconstruction
problem under the above mentioned settings and assume a
limited numbers of noisy projections and inaccurately known
projection angles.

The tomographic inversion problem with known angles is
typically treated as a linear inverse problem. Conventional
methods such as filtered back projection (FBP) and direct
Fourier methods [10], [11] make use of central slice theorem.
They work adequately when the projections are relatively clean
and exact knowledge of the projection angles is available.
Other methods formulate a regularized optimization problem
to reconstruct the image by imposing prior knowledge of
the image [12]–[17], such as smoothness or sparsity. Yet the

performance is limited by the number of available projections.
In both known and unknown angle tomographic reconstruc-
tion, angle refinement based on projection matching is widely
applied to enchance the reconstruction performance [1], [17].

We notice that one intrinsic limitation of applying the
central slice theorem to the tomographic reconstruction prob-
lem is that the 1D Fourier measurements fill the 2D plane
radially which results in high concentration of low frequency
measurements and sparse high frequency measurements. This
intrinsic limitation makes most reconstruction algorithms data
demanding. In this paper, we consider piecewise constant
images defined by curves with finite rate of innovation [18].
Instead of directly reconstructing the image from projections,
we first retrieve the image curves using a robust FRI recon-
struction algorithm [19]. The image is then recovered based on
using the spatial domain annihilation relation for a regularized
optimization problem. Finally, to enhance the performance, we
introduce a method to refine the projection angles based on
the previously reconstructed 2D image.

The rest of the paper is organized as follows: we provide the
problem formulation in Sect. II and explain our reconstruction
method in Sect. III. Then, we validate the proposed method
with experiments done with synthetic data in Sect. IV. We
conclude the paper in Sect. V.

II. PROBLEM DESCRIPTION

A. FRI Curve and Image Model

We consider a specific class of curves C defined by the zero-
level set of a bandlimited periodic trigonometric polynomial
µ(x, y) [18]:

C = {x ∈ [0, τx], y ∈ [0, τy] :

K0∑
k=−K0

L0∑
l=−L0

ck,le
j 2πkx

τx
+j 2πly

τy

︸ ︷︷ ︸
µ(x,y)

= 0},

(1)
where K0, L0 ∈ Z+, and ck,l ∈ C are coefficients of the
complex exponentials. We define the degree of polynomial
µ(x, y) to be the size of the smallest rectangle that contains
the frequency support of µ, and it equals the rate of innovation
of the curve C: deg(µ) = ρ(C) = (2K0 + 1, 2L0 + 1).
Moreover, we enforce the polynomial to be real-valued so that
µ(x, y) = 0 has always curves as solutions, as shown in Fig.
1 (a), which is equivalent to saying that the coefficients are
Hermitian symmetric ck,l = c∗−k,−l.



It has been proven [18] that for this class of curves defined
in Eq. (1), there exists a continuous domain piecewise constant
image I(x, y), such that the Fourier transform of the Wirtinger
derivative of the image Î ′(ωx, ωy) is annihilated by convolving
it with a filter made of the coefficients ck,l of the bandlimited
trigonometric polynomial, as shown in Fig. 1. (d). Specifically,
we define the image model I(x, y) as follows:

I(x, y) = 1UC
(x, y), ∀(x, y) ∈ [0, τx]× [0, τy], (2)

where UC ⊂ [0, τx]×[0, τy] is a region with boundaries defined
by the curve C as shown in Fig. 1 (b). Here UC = {(x, y) :
µ(x, y) ≥ 0}, and 1UC

denotes the plane indicator function:

1UC
=

{
1, for (x, y) ∈ UC ,

0, otherwise.

The Wirtinger derivative of the image I ′(x, y) =
∂xI(x, y) + j∂yI(x, y) behaves like Dirac δ along the curve
C. Therefore, since µ(x, y) is zero on the curve C, we have
that:

µ(x, y)I ′(x, y) = 0. (3)

This is shown in Fig. 1 (c). In frequency domain, the annihi-
lation property is a convolution between the coefficients ck,l
and the uniform discrete Fourier measurements of the image
Î ′(ωx, ωy):

K0∑
k=−K0

L0∑
l=−L0

ck,lÎ
′(ωx −

2πk

τx
, ωy −

2πl

τy
) = 0. (4)

B. Projection acquisition

We consider a set of N tomographic projections {gi(t)}Ni=1

of the 2D image taken at angles {θi}Ni=1:

gi(t) =

∫ τy

0

∫ τx

0

I(x, y)δ(x cos θi + y sin θi − t)dxdy,

where δ(·) is the Dirac distribution. We consider the chal-
lenging setting where the projections g̃i(t) are corrupted with
strong noise and the initial angles {θ̃i}Ni=1 deviate from the
true values:

θ̃i = θi + βi,

g̃i(t) = gi(t) + ϵi(t),

where ϵi(t) is additive Gaussian white noise with zero mean
and variance σ2

ϵ , and {βi}Ni=1 are zero mean uniformly dis-
tributed random variable in [−ϵθ, ϵθ] rad.

III. RECONSTRUCTION METHOD

A. Curve recovery from inaccurate non-uniform Fourier mea-
surements

Central slice theorem states that the Fourier transform of
the 1D projection at angle θi is equal to the Fourier transform
of its corresponding 2D image sliced through the origin in the
parallel direction to the projection line:

F1D{gi(t)}(ω) = F2D{I(x, y)}(ω cos θi, ω sin θi).

(a) The curve C is the zero level
set of the trigonometric polyno-
mial µ(x, y).

(b) Piecewise constant image
I(x, y) defined by curve C.

(c) Spatial domain interpretation of the annihilation relation.

(d) Frequency domain interpretation of the annihilation relation.

Fig. 1: Signal model.

Therefore, given noisy projections and inaccurately known
projection angles, we can obtain a set of Fourier measurements
{Î(ω cos θ̃i, ω sin θ̃i)}Ni=1. We stack all these measurements
in a vector denoted with a. Clearly, these measurements are
non-uniformly taken in the frequency plane. The conventional
reconstruction approach in the field of finite rate of innovation
is to look for a discrete filter such that its convolution with
the uniform Fourier samples of the image is zero, as stated in
Eq. (4). Therefore, the question is whether we can recover the
curve coefficients c : {ck,l} robustly from these non-uniform
noisy Fourier measurements a.

The reconstruction problem can be reformulated as an ap-
proximation problem by fitting an FRI model that is consistent
with the measurements. The FRI curve model requires the
annihilation constraint to be satisfied. At the same time, after
reconstructing the FRI signal, if we re-synthesize the measure-
ments, they have to be consistent with the given measurements.
We adopt a constrained approximation formulation to this
problem as proposed in [19]:

find b, c ∈ C
subject to (R(c) ⊙ s)b = 0,

∥a − Gb∥22 ≤ σ2
ϵ ,

where
• a is the vector of non uniform Fourier measurements

obtained form the projections;
• b is the vector of discrete uniform Fourier measurements

that satisfies the annihilation constraint;



Fig. 2: Overall scheme for the proposed method.

• c is the curve coefficients that annihilates b, R(·) is the
Toeplitz structured convolution matrix;

• s is the frequency scaling factor ( 2πkτx
+ j 2πl

τy
) associ-

ated with the annihilation relation, and ⊙ denotes the
Hadamard product;

• G denotes the linear mapping between the measurements
a and the uniform measurements b (uniform interpola-
tion). In our case, it represents a 2D sinc kernel, because
our image is support limited.

The constrained approximation can be solved using an iter-
ative scheme proposed in [19]. Note that if the annihilation
matrix R(c) ⊙ s is built with the correct filter support, i.e.
deg(µ) = ρ(C), the null space (a.k.a annihilating subspace) is
one-dimensional, from which coefficients c can be retrieved
using the annihilation relation. In cases when the correct filter
support is unknown and the given measurements are very
noisy, we can assume a filter support strictly larger than the
correct one, i.e. deg(µ) > ρ(C). In this case, the annihilating
subspace will have dimension larger than 1. In this work,
we leverage this redundancy to retrieve several polynomials
µn(x, y). Each µn can be written in the form µn = ηnµ,
where ηn is another trigonometric polynomial. Therefore, the
desired curve is the common zeros of the set of polynomials
µn and can be retrieved as the sum of squares (SoS):

µ̄(x, y) =

√√√√ N∑
n=1

|µn(x, y)|2. (5)

B. Image recovery based on spatial formulation of the anni-
hilation constraint

Once the polynomial µ̄(x, y) is retrieved, we can estimate
the image based on the spatial domain interpretation of the
annihilation relation as stated in Eq. (3). The objective function
we want to minimize is:

Algorithm 1 Primal-dual algorithm

Require: step size τ1, τ2 > 0, λ1, λ2

1: k = 0, pick I0 and a feasible v0

2: for k ≤ K do
3: vk+1 = P∥v∥≤1(v

k + τ1WIk)
4: h = Ik − τ2WTvk+1 + τ2λ1AT b
5: Ik+1 = h/(1 + τ2λ1ATA+ τ2λ2∆

T∆)
6: end for

min
I
∥µ̄⊙ I ′∥1,1 + λ1∥AI − b∥22 + λ2∥∆I∥22,

where I is the reconstructed image, I ′ is approximated using
finite differences and the first term imposes the annihilation
constraint. A and ∆ are the DFT operator and discrete
Laplacian operator, and they are used to impose data con-
sistency and image smoothness. The above weighted total
variation minimization problem can be re-written in a min-
max formulation:

min
I

max
∥v∥≤1

Φ(I,v) := (WI)Tv + λ1∥AI − b∥22 + λ2∥∆I∥22,

whereW is a linear operator that computes the weighted finite
differences. The min-max problem can then be solved through
iterative primal-dual approach [20]. In kth iteration, at the
dual step we apply one step of gradient descent to update
the auxiliary variable vk with Ik fixed, while at the primal
step, we update Ik with vk+1 fixed. The updating steps are
summarized in Algorithm 1.

Algorithm 2 Angle updating algorithm

Require: τ0 > 0, γ ∈ (0, 1), δ,θ0 = θ̃, g̃, k = 0, K
1: for k ≤ K do
2: τ ← τ0, flag ← 1, ζ ← θk

3: while flag do
4: ζtmp

i = ζi − τ∇J (ζi)
5: update θk+1

i if (J (ζtmp
i ) ≤ J (ζi))

6: exclude updated angles from ζ
7: flag ← 0 if len(ζ == 0)
8: τ = τ ∗ γ
9: end while

10: end for

C. Angle refinement based on the reconstructed image

Given the first estimation of the image, we then refine the
projection angles based on the previously reconstructed image.
This can be done using approximate gradient descent method.
Specifically, we set the measured projections g̃ : {g̃i(t)}Ni=1

as reference, and use g(γ) : {gγi
(t)}Ni=1 to represent re-

synthesized projections from the reconstructed image at angles
γ : {γi}Ni=1. We define the cost function at angles γi as
J (γi) = ∥g̃i − g(γi)∥22. The approximate gradient at angles
γi is defined as ∇J (γi) = J (γi+δ)−J (γi)

δ , where δ is a small
enough angle. In each iteration, we operate by updating the



(a) Original image (b) JAR recovered
image

(c) FBP recovered
image

(d) Ours with initial
angles (0.927/0.858)

(e) Our final recovered
image (0.946/0.927)

(f) Recovered curve

Fig. 3: Visual comparison of reconstructed images by our proposed method, JAR method and FBP method. Compared to the
original image, the SSIM and IoU of our reconstructed image are 0.946 and 0.927 respectively (40 projection angles with
ϵθ = 0.5 rad, projection SNR = 5dB).

(a) Original image (b) JAR recovered
image

(c) FBP recovered
image

(d) Ours with initial
angles (0.908/0.868)

(e) Our final recovered
image (0.935/0.918)

(f) Recovered curve

Fig. 4: Visual comparison of reconstructed images by our proposed method, JAR method and FBP method. Compared to the
original image, the SSIM and IoU of our reconstructed image are 0.935 and 0.918 respectively (40 projection angles with
ϵθ = 0.5 rad, projection SNR = 5dB).

(a) Original image (b) JAR recovered
image

(c) FBP recovered
image

(d) Ours with initial
angles (0.924/0.922)

(e) Our final recovered
image (0.940/0.934)

(f) Recovered curve

Fig. 5: Visual comparison of reconstructed images by our proposed method, JAR method and FBP method. Compared to the
original image, the SSIM and IoU of our reconstructed image are 0.940 and 0.934 respectively (40 projection angles with
ϵθ = 0.5 rad, projection SNR = 5dB).

angles in the direction of the approximate gradient that reduce
the cost function, and the angle step is gradually reduced until
all the angles get updated once. We summarize the algorithm
in Algorithm 2.

D. Scheme Overview

Based on the above process, the overall scheme is depicted
in Fig. 2, which is consist of 1) Curve recovery given noisy
projections and inaccurate initial angles using Eq. (5), 2) curve
aware image recovery and 3) angle refinement based on the
estimated 2D image.

IV. EXPERIMENTAL RESULT

In order to estimate the performance of our proposed
method, we consider curves with ρ(C) = (7, 7). Projections

are taken at 40 angles and corrupted by noise so that the SNR
of each projection is on average SNR = 5dB, as shown in
Fig. 2. We assume the known angles deviate from the true
values with βi ∼ U(−0.5, 0.5) rad. For Algorithm. 1, the
choice of the regularization weights λ1 and λ2 balances the
trade-off between encouraging piecewise smoothness of the
image and preserving sharp edges. We set λ1 = 5× 102 and
λ2 = 0.5 for the following experiments.1. We use SSIM and
IoU (Intersection over Union) to measure the reconstruction
performance. For comparison, we also show the reconstruction
results for filtered backprojection (FBP) method and the joint

1From our experiments, the choice of the tunable weights is not critical.
A faithful reconstruction can be achieved with λ1 ∈ [10−1, 104] and λ2 ∈
[10−3, 101] (if the image range is [0,1]).



angular refinement (JAR) method proposed by Zehni et. al
[17], as shown from Fig. 3 to Fig. 5. It is clear that due to the
correct choice of the image model, the estimated polynomial
is able to successfully yield the correct curve even with limited
number of noisy projections and inaccurate initial angles.
Apart from the robust FRI reconstruction algorithm, essential
to the successful recovery of the curve is that we exploit
the whole annihilating subspace, which makes the algorithm
more robust under noisy scenarios. To be more specific, in the
experiment we set ρ = (9, 9). The FBP method fails due to
heavy noise, while the JAR method can still recover the object
despite blurring effect, due to model mismatch and lack of
projections.

V. CONCLUSIONS

In this work, we have proposed a robust algorithm for 2D
tomographic reconstruction problem for 2D images defined
by curves with finite rate of innovation. Unlike conventional
methods that directly estimate the 2D objects, we instead
leverage the frequency domain annihilation relation and re-
trieve the curve coefficients from noisy projections. Then the
image is reconstructed based on a weighted total variation
formulation of the spatial domain annihilation relation. Given
the reconstructed image, we further refine the reconstruction
by refining the estimation of the angles of the projections. The
experiments have shown that after iterating this process twice,
we get satisfactory reconstruction result even from severely
noise corrupted projections and incorrect projection angles.
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