
1

Entropy Based Adaptive Flow Aggregation
Yan Hu, Dah-Ming Chiu,Fellow, IEEE,and John C. S. Lui,Senior Member, IEEE

Abstract—Internet traffic flow measurement is vitally impor-
tant for network management, accounting and performance
studies. Cisco’s NetFlow is a widely deployed flow measurement
solution that uses a configurable static sampling rate to control
processor and memory usage on the router and the amount of
reporting flow records generated. But during flooding attacks the
memory and network bandwidth consumed by flow records can
increase beyond what is available. Currently available counter-
measures have their own problems: (1) reject new flows when
the cache is full - some legitimate new flows will not be counted;
(2) export not-terminated flows to make room for new ones -
this will exhaust the export bandwidth; (3) adapt the sampling
rate to traffic rate - this will reduce the overall accuracy of
accounting, including legitimate flows. In this paper, we propose
an entropy based adaptive flow aggregation algorithm. Relying
on information-theoretic techniques, the algorithm efficiently
identifies the clusters of attack flows in real time and aggregates
those large number of short attack flows into a few metaflows.
Compared to currently available solutions, our solution not only
alleviates the problem in memory and export bandwidth, but also
significantly improves the accuracy of legitimate flows. Finally,
we evaluate our system using both synthetic trace file and real
trace files from the Internet.

Index Terms—Traffic measurement, Network monitoring, Data
summarization, Information theory.

I. Introduction

T RAFFIC measurement and monitoring are crucial to
operating IP networks, because network administrators

need to have a good understanding of how their networks
are used and misused. Some existing systems operating on
relative low traffic links can perform complex security analysis
to reveal malicious activities [1], [2], or simply capture packet
(header) traces to be analyzed offline. SNMP counters [3]
are a simpler solution more widely deployed on the high-
speed links, but they only report the total amount of traffic
transmitted on the measured link. Flow-level measurement,
such as done in the Cisco’s NetFlow [4], offers a good
compromise between scalability and complexity since it can
offer detail information about the traffic crossing the network.

The ever increasing speeds of transmission links and high
volume of traffic present great challenges for flow measure-
ment. The first challenge is at the point of measurement. For
high-speed interfaces, the processor and the flow memory of
the router cannot keep up with the high packet rate. Another
problem is that the volume of complete measurements of all
traffic requires too many resources, both in the bandwidth

Manuscript received June 9, 2006; revised April 6, 2007, and December 13,
2007; approved by IEEE/ACM Transactions on Networking Editor Matthew
Roughan.

Yan Hu and Dah-Ming Chiu are with the Department of Information Engi-
neering, the Chinese University of Hong Kong (email: yhu4@ie.cuhk.edu.hk,
dmchiu@ie.cuhk.edu.hk).

John C. S. Lui is with the Department of Computer Science & Engineering,
the Chinese University of Hong Kong (email: cslui@cse.cuhk.edu.hk).

required to transmit the flow records to the collector, and
the resources needed to store and process the records at the
collector.

These scalability issues motivate using some form of data
reduction. A standard solution is to perform packet sampling.
In Cisco’s sampled NetFlow, the router forms flow reports
from a sampled substream of all packets passing through it.
The problem is that the sampling rate of Cisco NetFlow is
usually set manually by network operators according to the
normal traffic volume in their network. When there is an
anomaly in the network, such as DoS attacks, worm spread,
aggressive port scans and flash crowds, which generates a large
number of small flows, the surge in the number of small flows
may overwhelm the router memory and the export bandwidth
to the collector.

Current countermeasures to the above problem include: 1)
Reject new flows when the cache is full. In this case, legitimate
new flows will not be accounted for and the operator will
lose the flow data; 2) When the cache is full, export the flow
records more aggressively for those non-terminated flows so as
to make room for new ones. The implication of this action is
that the export bandwidth demand will be very high and may
run into trouble at the collector or the way to the collector; 3)
Estan et al. in [5] propose a method of adapting the sampling
rate to traffic. This algorithm guarantees a stable flow cache
and export bandwidth even under severe DoS attacks. But
under DoS attacks the sampling rate will decrease to a very
low level, which results in poor overall accuracy in per flow
counting including legitimate flows.

Our solution is to implementadaptive flow aggregation
when the router is running low on memory resource. Note that
attacks usually have some common patterns: DoS attacks often
have the same destination IP address, while worm spreads have
the same source IP address. If we dynamically aggregate the
large number of such small flows into a few flows, then we
can alleviate the problem of memory shortage under attacks.
Compared to other countermeasures, our method has several
advantages:
• We do not need to decrease the sampling rate drastically

under attacks, neither would we reject new legitimate
flows because the cache is full. So we significantly
improve the accuracy of legitimate flows.

• Without aggressively exporting the records of non-
terminated flows so as to make room for new ones, we
avoid overwhelming the collector.

• Using the flow aggregation results, we can provide net-
work administrators some useful information to detect
DoS attacks and worm spreads.

Therefore, the objective of our system is to identify and
aggregate the abnormal flows while keeping legitimate flows
unaffected when the router is running low on memory under

2

abnormal conditions.In more detail, it can be stated as: 1)
Identify traffic clusters that contain packets of abnormal traffic,
and retain as many key attributes as possible when merging the
flows in these clusters to metaflows. 2) Pick out the normal
flows mixed with abnormal traffic in the identified clusters.
3) Obtain as high accuracy as possible when estimating flow
statistics of any aggregates of the traffic.

In this paper, we propose an entropy based adaptive flow
aggregation algorithm, which meets these requirements satis-
factorily. Based on the concept of entropy from information
theory, we keep track of different traffic clusters and use an
index, APP (Aggregation Priority Parameter), to indicate each
cluster’s priority for aggregation. An efficient algorithm is used
to identify those clusters as well as pick out some large normal
flows belonging to the identified clusters.

The rest of the paper is organized as follows. We describe
background and related work in Section II. In Section III, we
provide the definition of thecluster as well as the properties
of those clusters that we choose to do flow aggregation. We
describe the data structure we use in Section IV. After that,
we present the entropy based flow aggregation algorithm in
Section V and provide some analysis in Section VI. Experi-
mental evaluation based on the proposed method is presented
in Section VII. Conclusion is given in Section VIII.

II. Background and Related work

A. NetFlow

NetFlow [4], first implemented in Cisco routers, is the
most widely used flow measurement solution today. Flows
are defined by seven keys: source and destination IP address,
protocol, source and destination port, type of service and input
interface. Routers running NetFlow maintain a “flow cache”
to keep active flows passing through it. When a packet arrives
at the router, the router determines if this packet belongs to
an active flow in the cache. If yes, relevant fields (number
of packets, number of bytes, timestamp of the last packet,
etc) of this flow are updated. If not, the router inserts a new
flow record into the flow cache. The router will terminate a
flow in its cache if any one of these criteria are met: 1) the
interpacket time within the flow exceeds theinactive timer(15
sec is the default); 2) this flow record had creation time before
the currentactive timer(30 min is the default); 3) observation
of TCP flags (FIN or RST); 4) the flow cache is full. For those
terminated flows, their records will be exported using UDP to
collectors for future analysis.

For high-speed interfaces, Cisco introduced sampled Net-
Flow [6]. To the problem of NetFlow generating too much
data, Cisco’s solution is to implement router-based flow aggre-
gation [7]. Different aggregation schemes summarize NetFlow
data on the router before the data is exported to the collector,
resulting in lower bandwidth requirement. The IETF working
group IPFIX (Internet Protocol Flow Information eXport) also
recommends aggregating similar flows into one metaflow [8].
Compared to these predefined aggregation schemes, our goal is
to dynamically find flows which form a cluster and aggregate
these flows in real time.

B. Related work

Recently, a number of studies have investigated flow mea-
surement. Estan et al. in [9] present algorithms that automat-
ically identify large flows. In [10], Choi et al. use adaptive
sampling to guarantee that the variance introduced by the
variability of packet sizes does not exceed a pre-defined limit.
The problem of estimating flow distributions using packet
sampling has been studied in [11] and [12]. There are some
flow analysis and visualization tools, such as Flowscan ([13])
and CoralReef ([14]).

To deal with traffic surges that exhaust the resources during
abnormal situations, Estan et al. proposeadaptive NetFlow
([5]) which adapts the sampling rate to traffic. They divide
the NetFlow operation into measurement bins. They do not
terminate flow records during the bin, but terminate all active
flow records at the end of the bin. They use a maximum
sampling rate at the beginning of each bin, which is determined
by the router’s CPU capability. During the measurement bin,
they dynamically decrease the sampling rate until it is low
enough for the flow records to fit into memory.

Traffic characterization and summary have also being stud-
ied in a number of works. Estan et al. [15] describe a method
of traffic characterization that automatically groups traffic into
minimal clusters of conspicuous resource consumption. In-
stead of using individual flows or other predefined aggregates,
they dynamically define multi-dimensional traffic clusters, so
that any meaningful aggregate of individual flows is a traffic
cluster. The difference with ours is that their objective is to
present a good traffic report to the network manager, and their
system can be considered as apost-processingsystem instead
of a real-time one. In [16], Keys et al. present a system that
computes multiple summaries of IP traffic in real time, to
produce several kinds of hog (sources or destinations that send
or receive many packets, bytes or flows) reports. This system
only provides traffic summaries, but does not keep any original
flow information as Cisco NetFlow does.

Information-theoretic concepts and approaches have been
used to examine a wide variety of networking issues such
as traffic matrix estimation [17] and intrusion detection [18].
Xu et al. in [19] use data mining and information-theoretic
techniques to build behavior profiles of Internet backbone
traffic. In [20], Gu et al. develop a method to detect network
anomalies by comparing the current network traffic against a
baseline distribution. The baseline distribution is estimated by
maximum entropy estimation. Liu et al. in [21] develop an
information-theoretic framework to examine the difference in
information content when measurements are made at either the
flow level or the byte count level, and determine the benefits
of compressing traces captured at a single monitoring point.

III. Cluster

A. Defining clusters

Our mechanism intends to protect NetFlow from over-
whelming the memory and the export bandwidth due to rapid
increases in traffic from one or more traffic aggregates which
we call clusters. The first issue we have to address is how
many distinct fields are used in constructing traffic clusters?

3

We choose five fields typically used to define a flow: source
IP address, destination IP address, protocol, source port, and
destination port. For simplicity, we regard these five fields as
four keys:{srcIP, dstIP, srcPort (plus protocol), dstPort (plus
protocol)}, because port numbers are meaningful only when
combined with protocol type. For example, we use “dstPort
= 80,TCP” to represent “dstPort = 80 and protocol = TCP”.
Individual flows are defined by unique values for each of these
four keys, while clusters are defined by unique values forsome
of these key values. In other words, values for these keys can
be a single value, or all possible value (we use * to denote
this). For example, a cluster with values{srcIP = *, dstIP =
210.0.0.3, srcPort = *, dstPort = 80,TCP} represents all web
traffic to the server with IP address 210.0.0.3.

The justification for choosing these four keys to define
clusters is that these four keys are consistent with commonly
used keys to define a flow. Additionally, this definition is
sufficient for the existing NetFlow data applications such as
network planning and application monitoring. Among these
four keys, the port numbers and the IP addresses have different
sensitivity for the aggregation process. The reason is as
follows. First, almost all DoS attacks, worm spread, port scan,
and flash crowds have either a common srcIP or dstIP, but
not always have a fixed port number. Second, some network
applications with a well-known port number such as web
traffic with port 80 are always big clusters in the network,
but we have no reason to aggregate them to a single flow
because they are normal traffic and we aim to maintain more
detailed information about these for accounting purposes.

Clusters are flows with the same value in some combinations
of these four keys. We illustrate this using some examples.
In a Smurf attack [22], the attacker sends a forged ICMP
packet to a broadcast address and all receivers respond with
a reply to the spoofed IP address (the victim). The cluster for
this type of traffic can be represented by ICMP packets to
the same dstIP (the victim). In the spreading of the MS-SQL
server worm [23], the infected machine will craft and send
packets (usually using the same srcPort) to randomly chosen
IP addresses on port 1434/UDP. A cluster for this type of
worm packets will have the same srcIP (the infected computer)
plus the same dstPort (1434/UDP) and the same srcPort. One
can find packets of DoS attacks often have a common dstIP
(sometimes with a common dstPort); Packets of worm spreads
often have the same srcIP (sometimes with a common dstPort);
Packets of port scans usually have a common dstIP (sometimes
with a common srcIP). Besides these flooding attacks, another
network behavior which may cause NetFlow to run out of
memory is flash crowds. While its purpose is quite different
from DoS attacks, from the network operator’s perspective,
these two cases are quite similar. Similar to the DoS attack,
a cluster can be defined for packets with the same dstIP (and
maybe with the same dstPort).

Based on the above analysis, we regard srcIP and dstIP
as more important than the other two keys. So for defining
clusters we only consider combinations which at least contain
the same srcIP or dstIP. In other words, we would not consider
a cluster which only has the same srcPort, and/or the same
dstPort. Among the 16 arbitrary combinations of four keys,

combinations examples
srcIP most worms
dstIP smurf attack ([22])
srcIP + dstIP most portscans
srcIP + srcPort response from syn flooding victim;

response from flash crowds web server
srcIP + dstPort W32/Blaster worm ([24])
dstIP + srcPort N/A
dstIP + dstPort syn flooding attacks ([25]);

WWW flash crowds
srcIP + dstIP + srcPort response from non-IP-spoofing syn flooding
srcIP + dstIP + dstPort non-IP-spoofing syn flooding attacks
srcIP + srcPort + dstPort MS-SQL server worm ([23])
dstIP + srcPort + dstPort DNS flash crowds

TABLE I
The combinations of four keys and some examples.

we would not consider a) clusters with no key, b) clusters with
all four keys, and we also ignore the cases like c) clusters that
only have srcPort, d) clusters that only have dstPort, and e)
clusters that only have srcPort plus dstPort. Finally, we get
11 combinations. These combinations and their corresponding
examples are shown in Table I.

B. Properties of desired clusters

After describing what constitutesclusters, we discuss some
properties of the desired clusters, which are related to the
objectives of our flow aggregation algorithm. In this section,
we discuss these objectives in detail, and thus derive the
properties of the clusters that we choose. We use the concept
of entropy to express these properties and propose our entropy
based flow aggregation algorithm.

1) Identify clusters containing abnormal traffic: We
intend to protect NetFlow from overrunning resources under
abnormal traffic. So the first objective is to identify clusters
containing those abnormal traffic. Anomaly detection is an
interesting topic for its own sake. We are not trying to
construct a system to detect anomalies, but protect NetFlow
under anomalies by aggregating flows most likely containing
those abnormal traffic. We have described in Section III-A
that we focus on clusters of 11 kinds of combinations. Other
properties of the clusters that contain abnormal traffic include:
first, the number of flows in the clusters is usually large enough
to be a problem; second, the size of the flows (the number of
packets or bytes) is often much smaller than normal flows;
third, some keys other than the fixed value, such as srcIP
in DoS attack traffic, dstIP in worm spreading traffic and
dstPort in port scan traffic, are often randomly or uniformly
distributed. The first objective of flow aggregation is to identify
clusters with these properties.

2) Retain as many key attributes as possible:When
we perform flow aggregation, if we merge all flows in the
big cluster with a fixed srcIP/dstIP into one metaflow, we
only retain one of the key attributes (the fixed srcIP/dstIP)
for these flows, and no longer keep track of the other three
key attributes. Merging flows will cause accuracy loss in flow
measurement for those key attributes that are not retained. If
we can find a smaller and more specific cluster in this big
cluster, we can retain more key attributes. For example, in

4

���������
	���
��
�����
��� ���������������	��! "�#��$��

�%�'& �

�(��������	���)*�#��$��
�+� ���

, �#-/.0��������1��	���20�
�(34�
�5� ���

�1�76�8�9 � ��3�:<; & ;>=<;@?
A ���#8�9 � ��3 & ;B�<;>�<; $
A �1��9C-4��� � ��DE34D

�1�F6�8
9 � ��3�:<; & ;B=<;G?
A ���H9C-4��� �'& �

�1�F6�8
9 � ��3�:<; & ;B=<;G?
A ���H9C-4��� � ��DE34D

�7�76�8
9 � ��3�:<; & ;B=<;G?

Fig. 1. An example of clusters.N is the number of flows in each cluster.

Fig. 1, cluster A is a big cluster with a fixed srcIP, while
cluster B is a smaller and more specific cluster which contains
worm spreading traffic from this host. If we choose cluster B
(worm spreading traffic) instead of cluster A (total traffic) to
do aggregation, we keep track of not only the srcIP but also the
dstPort. We define level 1 (L1) cluster as the biggest cluster
which has either the same srcIP or dstIP, such as cluster A,
define level 2 (L2) clusters as the clusters which have fixed
values in two dimensions, such as cluster B and E, and define
level 3 (L3) clusters as the clusters which have fixed values
in three dimensions such as cluster D. The higher the level
of the clusters chosen for aggregation, the smaller the loss in
accuracy.

3) Pick out the larger flows: If there are several big flows
(in terms of bytes or packets) in the identified cluster, we
would pick them out. The first reason is that the size of attack
flows is often much smaller than that of normal flows, so
the big flows in the identified cluster may be normal flows.
Secondly, as stated in [26], the omission or inclusion of a
bigger flow can have a large effect on estimated total traffic. So
we would pick out the big flows from the identified cluster and
let them retain all the four key attributes. Because some flows
or higher level clusters are picked out, the concept of cluster
is extended to the remaining flows in the original cluster. For
example, in Fig. 1, large flow C andL3 cluster D are picked
out from L2 cluster B, the remaining flows in cluster B can
also be considered as a clusterF := B − C −D.

4) Maintain high accuracy for most aggregates: Net-
work operators are often uninterested in a single flow, but
interested in the aggregates of some flows. For instance, they
would like to know how much web traffic is on their link,
or which hosts generate the most traffic. These aggregates
or clusters often have some significant attributes such as the
top applications (port) or hosts (IP). One method to maintain
high accuracy for the aggregates that network operators are
interested in is to avoid aggregating large flows, as mentioned
above. From another point of view, in the clusters that are
aggregated, no flow should be significant or stand out from
the rest, all flows are nearly indistinguishable.

IV. Data structure

First we take fprobe [27] as an example to illustrate the data
structure in ordinary NetFlow process. Fprobe is a libpcap-
based tool that collects network traffic data and emits it as
NetFlow flow records towards the specified collector. The

data structure used to store active flows in this software is
a hash table, in which flows are indexed by hash values of
their flow ID. The number of flows is often larger than the
length of the hash table (in fprobe, there are two choices
for the length, 256 and 65536), so two or more flows can
be computed to the same hash value. A linked list is used
to store flows of this kind of hash collisions. As we have
mentioned in Section III-A, we assume flows are defined in
terms of four keys, srcIP, dstIP, srcPort, and dstPort. When
a packet arrives, the system first computes a hash value
HA on its flow ID (the four keys) using a hash function,
HA = Hash(srcIP, dstIP, srcPort, dstPort). Then the
system finds outHA in the hash table and looks at every
flow in the list with HA, to determine which flow this packet
belongs to, or creates a new flow entry if the packet does not
belong to any existing flow.

We need a new data structure for our flow aggregation,
which is a tradeoff. If we use a simple data structure like a hash
table with linked list as mentioned above, it will be inefficient
to aggregate flows in a cluster, which needs to traverse every
node in the hash table. We need to put flows which are more
likely to be aggregated later closer. On the other hand, if we
use a complicated data structure like the multi-dimensional
tree in [15], it will use excessive memory, and bring too much
overhead to normal flow operations like flow look up.

� ������������	�
�����	���
 �

�

���	�

�

���	�

�

�

�����
���

�����������
���� �	��� � � �

� ���������
���� � � � � �

����������� �
�� � ��� �
 � !

����������� ���"� � ��� �
 � �

� ��������� �
�� � � � � � �� ���#�����
�� ��� � � � � �

$

%&'

()*

+ ,

-/. 0
- .21

Fig. 2. The data structure for adaptive flow aggregation: a two-dimensional
hash table. Node A, B, ... X, Y are flows. Flow A’s srcIP is 137.8.6.5 and its
dstIP is 120.0.0.1. Flow S’s srcIP is 202.75.1.7 and its dstIP is 120.0.0.1.

Our data structure is as shown in Fig. 2. The data structure is
a two-dimensional hash table. One dimension of the hash table
is HAs, the hash value based on a flow’s srcIP (the left table of
hash number from 0 to 65535). The other dimension isHAd,
the hash value based on a flow’s dstIP (the top table of hash
number from 0 to 65535).HAs of a packet is computed based
only on its srcIP, instead of its flow ID of the four keys, that
is, HAs = Hash(srcIP). Similarly, HAd = Hash(dstIP).

Take srcIP as an example, packets with the same srcIP will
definitely be mapped to the sameHAs, on the other hand,
packets with different srcIPs may be mapped to the sameHAs

because of hash collision. EachHAs node has a linked list,
which consists of all srcIPs mapped to thisHAs. For instance,
srcIPs of 137.8.6.5, 202.75.1.7 and 210.70.1.4 are all mapped
to HAs = 115. In addition, every srcIP node has a linked list,
which consists of all flows with this srcIP. The dstIP dimension
of the hash table has a similar structure. EachHAd node has
a linked list, which consists of all dstIPs mapped to thisHAd.

5

We only consider clusters containing a fixed srcIP or dstIP, so
we compute the hash value based on these two fields. In the
srcIP/dstIP list, we put flow ID nodes sorted by dstIP/srcIP.
This data structure makes it easier to find flows in one cluster.

In the data structure, every IP node has a counter to indicate
the number of flow nodes with this IP address. With this
counter, we can easily get atop list for the IP addresses
with the largest flow numbers. Entries in the top list have
a flow counter and a pointer pointing to the corresponding
IP address node. Now the problem is that the top list is only
for srcIP/dstIP, not for all combinations. The flow aggregation
algorithm is to identify the desired clusters from theseL1
clusters in the top list.

V. Entropy based flow aggregation algorithm

In this section, we describe our entropy based flow aggre-
gation algorithm. We first illustrate a simple flow aggregation
algorithm in Section V-A. Then we introduce the concept of
entropy to the problem of flow measurement in Section V-B
and define a parameter namedAPP in Section V-C. The
detailed description of the entropy based flow aggregation
algorithm is given in Section V-D. Finally, we discuss flow
aggregation and export in Section V-E.

A. A simple flow aggregation algorithm

Before describing our entropy based flow aggregation algo-
rithm, we first illustrate a simple flow aggregation algorithm,
which was proposed and described in [28]. We definemmax

as the memory usage that triggers aggregation andmdes as the
desired memory usage after aggregation. When the memory
usage reachesmmax, the system will identify some clusters
and merge all flows in one cluster to one metaflow, thus reduce
the memory usage tomdes. It looks at everyL1 cluster in
the top list to find out if there is one or moreL2 or L3
clusters inside thisL1 cluster (e.g.L2 cluster B/E andL3
cluster D insideL1 cluster A in Fig. 1). A thresholdr defines
the minimum size (the number of flows in a cluster) of these
identified L2 and L3 clusters. Among all identified clusters,
the higher level ones have the higher priority to do aggregation.
Among all clusters in the same level, the bigger ones have
the higher priority. We choose these identified clusters one
by one from high priority to low priority to do aggregation,
until the memory usage is reduced tomdes. This simple flow
aggregation algorithm can only meet some of the requirements
discussed in Section III-B, such as keeping as many key
attributes as possible. More details of this algorithm can be
found in [28]. In the rest part of this section, we will introduce
the entropy based flow aggregation algorithm, which meets all
the objectives discussed in Section III-B.

B. Entropy

Entropy is a measurement of uncertainty of a random
variable. Consider a random variableX that may takeNX

discrete values. Suppose we randomly observeX for m
times, then the empirical probability distribution onX is
p(xi) = mi/m, xi ∈ X, wheremi is the number of times

we observeX taking the valuexi. The empirical entropy of
X is then defined by Equation 1.

H(X) = −
∑

xi∈X

p(xi) log p(xi) (1)

It is clear that0 ≤ H(X) ≤ Hmax(X) = log min{NX ,m}.
The above are standard results from [29]. We define the
normalized entropy aŝH(X) = H(X)

Hmax(X) . If Ĥ(X) = 0,
then all observations ofX are the same, i.e.,p(xi) = 1
for some xi ∈ X. If Ĥ(X) = 1, then the observations
have the highest degree of uncertainty or randomness, i.e.,
p(xi) = 1/min{Nx,m} for each observedxi.

Now we introduce the concept of entropy to our problem
of flow measurement. We first define several variables about
the properties of flows in a given cluster:

• X: a random variable that denotes one of the four
dimensions (srcIP, dstIP, srcPort and dstPort)

• A = {x1, ..., xn}: the set of distinct values inX (e.g.,
srcIP) that the observed flows take

• N : the total number of flows in the cluster
• Ni: the number of flows that take the valuexi

• pf (xi) = Ni/N : the empirical probability distribution of
X (in terms of flows)

• Hf (xi): the empirical entropy ofX (in terms of flows)
• Ĥf (xi): the normalized entropy ofX (in terms of flows)
• B: the total number of bytes in the cluster
• Bi: the number of bytes that take the valuexi

• pB(xi) = Bi/B: the empirical probability distribution of
X (in terms of bytes)

• HB(xi): the empirical entropy ofX (in terms of bytes)
• ĤB(xi): the normalized entropy ofX (in terms of bytes)

In the first part of our algorithm, we only look at the
flow distribution in the given cluster. We usepf (xi) as the
probability distribution ofX and Hf (xi) as the entropy of
X. In the second part, we differentiate between big flows and
small flows. We usepB(xi) as the probability distribution of
X andHB(xi) as the entropy ofX.

Consider the example in Fig. 1, 100 flows form aL1
cluster with a fixed srcIP. Then the entropy of dimension
SrcIP is Ĥf (X) = 0 because all 100 observed flows have
the same srcIP. Assume all flows have different srcPort, then
its entropy with respect to number of flows iŝHf (X) = 1.
As to the dimension of dstPort, there are two significant
values with the probability distribution ofpf (1434) = 0.8
and pf (80) = 0.1. Assume the other 10 flows have different
and unique dstPort, then the entropy of dimension dstPort
is Ĥf (X) ≈ 0.2. From this example one can conclude that
entropies of these four dimensions are good indicators of their
degree of uncertainty or randomness. It tells us if there are
some significant values that stand out from others or all values
are randomly distributed.

C. APP

We call those dimensions that have more than one value
(e.g. the dstIP and srcPort of cluster B)random dimensions,
and those dimensions which have one fixed value (e.g. the
srcIP and dstPort of cluster B)fixed dimensions. When we

6

merge all flows in a cluster into one metaflow, we only retain
the fixed dimensions, and no longer keep track of the random
dimensions. Among all clusters in Fig. 1, intuitively, we should
choose cluster B to do aggregation because it meets most of
the aggregation objectives. Firstly, cluster B contains enough
flows compared with cluster D and E. Secondly, the degree
of randomness of its random dimensions is large compared
with cluster A. Thirdly, cluster B contains one more dimension
(dstPort) than cluster A.

We use the Aggregation Priority Parameter (APP) to char-
acterize these properties of cluster B. For the four dimensions
of a cluster, assumingR = {all the random dimensions} and
F = Rc = {all the fixed dimensions}, then APP is defined
by Equation 2.

APPf = Min{Hf (Xi)|Xi ∈ R} (2)

The larger theAPP of a cluster, the higher priority this
cluster would be given to be aggregated. TheAPP is a direct
indicator of those clusters we want to aggregate because high
APP means that the number of flows in the cluster is large,
and that the entropy with respect to the individual random
dimensions is large, and hence there are no individually
significant flows with respect to these dimensions. Note that
we useHf (Xi) rather than the normalized entropŷHf (Xi)
because we should choose the cluster that has enough flows.

What is the relationship between these two properties,
degree of uncertainty and the number of flows in the cluster?
Suppose there is aLk cluster with a smallerLk+1 cluster
inside it. The number of flows in theLk (Lk+1) cluster
is Nk (Nk+1), respectively. Assume everything is randomly
distributed except there is a smallerLk+1 cluster inside the
big Lk cluster. Then theAPP values of theLk+1 and theLk

clusters are,

APPf (k + 1) = log Nk+1

APPf (k) = −Nk+1
Nk

log Nk+1
Nk

− Nk−Nk+1
Nk

log 1
Nk

(3)

We would choose theLk+1 cluster if APPf (k + 1) >
APPf (k). Given aNk, we can get a thresholdθ from Equation
3. If Nk+1/Nk > θ, then APPf (k + 1) > APPf (k). For
example, whenNk = 1000, θ = 0.25. Hence the smaller
cluster would be chosen if the size ratioNk+1/Nk > 0.25. In
other words, when the size of the smaller cluster reaches 0.25
of the bigger cluster, it is too significant to be ignored. The
thresholdθ decreases as the value ofNk increases. In Fig. 1,
the size ratio of cluster B and cluster A is 0.8, so it is too
significant to be ignored.

As we have mentioned in Section III-B, if there are several
big flows in the identified cluster, we would pick them out.
To do this, we further defineAPP (in terms of bytes) as:

APPB = Min{HB(Xi)|Xi ∈ R} (4)

High APPB means there will be no flow much larger than
other flows in the identified cluster. Now we assume all flows
in cluster B have the same size except flow C, whose size is 10
times of that of other flows. Cluster D has 10 flows with the
same dstIP. ThenAPPB(B) = 5.73. If we pick out flow C and
cluster D, theAPP of clusterF := B−C−D is APPB(F) =
6.11. Among all clusters in Fig. 1, cluster F has the highest

APPB . Under this condition, we would choose cluster F to
do aggregation. So what the flow aggregation algorithm should
do is to find out cluster F among all sub-clusters of cluster A.

D. Algorithm description

As mentioned in Section IV, we maintain a top list for the
IP addresses with the largest flow numbers. From the top list,
now we have several bigL1 clusters with fixed srcIP or dstIP.
The entropy based flow aggregation algorithm is to find out
every L1 cluster’s sub-clusters that have the largestAPP ,
just as finding out sub-cluster F inL1 cluster A. We call them
desired sub-clusters. These desired sub-clusters could not be
subordinate to or overlap with each other. Among them, the
sub-cluster whoseAPP is the largest will be chosen. However,
if several sub-clusters do not contain or overlap with each other
(we call themdistinct clusters) and have similarAPP , they
would all be identified.

���

�������
	���
��

�����

��������	���
��
� ����	��
�������

��� �

��������	���
��
� ���!�"	#�$�&%

�'�)(

�������
	���
��
���*�+	,�����$�)-

���*����	��#
��
�.��� � ����	,�"�������

� ���
��	������

���/����	��#
��
�.� � � ���0	,���&�1���

� ���
�
	����32

��� �

��������	���
��
� ����	��
�����)2

���/����	��#
��
�.� � � ���0	,���&�1���

�*���+	,���&���4%

� ����	����
� ���
��	

�����5	����

� ���0��	 �����+	,���

Fig. 3. An example of the procedure for finding out desired sub-clusters.

1) First Step: find out the sub-clusters with the highest
APPf : The first part of this algorithm iteratively computes
APPf for each level of clusters and finds out those sub-
clusters with the highestAPPf , just as finding out cluster
B in Fig. 1. Fig. 3 illustrates an example of this procedure.
The procedure starts from aL1 clusterC1 with a fixed srcIP,
whose three random dimensions are sorted by their entropy
in ascending order, dstPort, dstIP and srcPort. The reason for
this reordering is that the lower the entropy of one dimension,
the higher the possibility that there is a big sub-cluster in this
dimension. For example, in Fig. 1, dimension dstPort has a
big sub-cluster B. Looking at dimension dstPort given srcIP =
a1, we find out allL2 clusters such asC21 and C22 whose
flow numbers are greater than a thresholdfr. If any one of
theseL2 clusters has a largerAPPf than its parent clusterC1,
this L2 cluster will replace clusterC1 to become one of the
candidates of the desired clusters. We also zoom in on theL3
sub-clusters of eachL2 cluster. TakeC21 as an example, it has
two random dimensions sorted by entropy. We find out those
L3 clusters such asC31, C32 andC33, whose flow numbers
are greater thanfr, and computeAPPf of these clusters. If
any one of theseL3 clusters has a largerAPPf than its parent
and theL1 cluster, it will replace them to become one of the
candidates. After examining all the sub-clusters in the three
random dimensions, we get a list of candidates for the desired
sub-clusters, which are distinct clusters with similarAPPf .

7

The complexity of this procedure largely depends on the
thresholdfr. The higher this threshold, the less sub-clusters
we need to examine. To dynamically adjustfr, we maintain
an APPmax which represents the current maximumAPPf

value of all clusters that we have examined. We have noted
that the maximumAPPf of a cluster equals tolog N , where
N is the number of flows in this cluster. We can setfr =
2APPmax and only examine those sub-clusters whose number
of flows greater thanfr, because only these sub-clusters have
the possibility to haveAPPf values larger thanAPPmax. To
finally find out several distinct clusters with similarAPPf ,
we can setfr = k ∗ 2APPmax , where0 < k < 1.

Algorithm 1 finding out sub-clusters

Input : ClusterC(D), whereD = {srcIP} or {dstIP}
Output : sub-clusters of highAPP : CList
FindSubCluster (C){
1. computeC.APPf

2. initialize CList, APPmax, fr

3. R = T\D, whereT = {srcIP, dstIP, srcPort, dstPort}
4. sortR to R = {ri|H(r0) < H(r1) < H(r2), 0 ≤ i ≤ 2}
5. for i = 0 to 2
6. L2 = {Sk|Sk(D ∪ {ri}), Sk.N > fr}
7. for everySk in L2
8. computeSk.APPf

9. UpdateAPPmax, fr

10. G = R\{ri}
11. sortG to G = {gj |H(g0) < H(g1), 0 ≤ j ≤ 1}
12. for j = 0 to 1
13. F = D ∪ {ri} ∪ {gj}
14. L3[j] = {SSl|SSl(F), SSl.N > fr}
15. for everySSl in L3[j]
16. computeSSl.APPf

17. UpdateAPPmax, fr

18. end for
19. end for
20. list[i].append (MaxAPP (Sk, L3[0], L3[1]))
21. end for
22. CList = MaxAPPDistinctCluster (CList, list[i])
23. end for
24. for everyCP in CList
25. GetMaxEntropySubset (CP)
26. end for
27. reorganize (CList)
}

Algorithm 1 represents the algorithm for finding out desired
sub-clusters from the originalL1 cluster. The input to the
function is anL1 cluster C with fixed dimensionD. The
output of the function isCList, a list of sub-clusters with the
largestAPP . Line 1 to 23 of the function describe the first
step of the algorithm. Line 1 to 4 are the initialization steps
including setting the initial value ofAPPmax to C.APPf ,
computing correspondingfr, settingCList to C, and sorting
R by entropy in ascending order, whereR is the three random
dimensions ofC. As shown in line 5 to 23, we examine the
three random dimensions one by one to get a list of candidates

with the highestAPPf . First, in line 6, allL2 sub-clustersSk

are put intoL2. TheseSk have fixed dimensionsD ∪ {ri}
and have flow numbers greater thanfr. The two random
dimensions ofSk are represented byG. In line 7 to 21, every
Sk is zoomed in on itsL3 sub-clustersL3[j], which have
three fixed dimensions represented byF . In line 20, theL2
sub-clusterSk, or one or severalL3 sub-clusters fromL3[0],
or from L3[1] are chosen and appended tolist[i], depending
on which one has the highestAPPf . In line 22, sub-clusters
in list[i] are appended toCList as long as they are distinct
clusters and have similarAPPf with the highest one.

2) Second Step: pick out big flows from the candidates:
Till now we do not differentiate between big and small flows.
The second step is to pick out big flows from these candidates,
such that the remaining subset has the highestAPPB , e.g.,
clusterF in Fig. 1. We call it themaximum entropy subset.
After we extract the maximum entropy subset from each
candidate, they will have the newAPPB , which are different
from the originalAPPf . At last, we reorganize the list by
removing those sub-clusters whose newAPPB are not at the
same level with the sub-cluster having the highestAPPB . This
part is shown in line 24 to 27 of Algorithm 1.

Algorithm 2 finding out the maximum entropy subset

Input : cluster C with random dimensions rd
Output : maximum entropy subsets of cluster C
GetMaxEntropySubset(C, rd) {
1. d = MinEntropy(C,rd)
2. sort C to{Si|Si(d), Bi−1 < Bi, 1 ≤ i ≤ Xd}
3. E = 0; Hk = 0; k = 0; R = 0
4. for i = 1 to Xd

5. Pi = Bi/
∑Xd

j=1 Bj

6. R = R + Pi

7. E = E − PilogPi

8. H ′ = E/R + logR
9. if (H ′ > Hk) Hk = H ′; k = i
10. endfor
11. returnk, Hk

}

We use Algorithm 2 to find the maximum entropy subset
of a cluster C. First we computeHB for every random
dimension ofC, and setd to the dimension with the minimum
entropy (line 1). After that, all flows inC are sorted to
{Si|Si(d), Bi−1 < Bi, 1 ≤ i ≤ Xd} (line 2). Xd is the
number of different values in dimensiond. Si is the set of
flows which have the same value in dimensiond. Let Bi be
the total number of bytes of all flows inSi, and theseSi are
sorted in ascending order ofBi.

The entropy of dimensiond of cluster C is HB =
−∑Xd

i=1 PilogPi, wherePi = Bi/
∑Xd

i=1 Bi. We want to pick
out some biggest{Si, k + 1 ≤ i ≤ Xd} and let the remaining
{Si, 1 ≤ i ≤ k} be the maximum entropy subset. Sometimes
the maximum entropy subset is generated by picking out the
smallestSi. We do not consider this condition because we only
need to pick out big flows. LetR =

∑k
i=1 Pi, then the entropy

of {Si, 1 ≤ i ≤ k} is Hk = −∑k
i=1(Pi/R)log(Pi/R) =

8

Ek/R + logR, whereEk = −∑k
i=1 PilogPi is the part that

the subsetk contributes toHB . Having this relationship, we
can find out the maximum entropy subset by going through
theseSi only once, as described in line 3 to 10. The output
arek andHk, that is to say, the maximum entropy subset is
{Si, 1 ≤ i ≤ k} and its entropy isHk.

E. Flow aggregation and export

After the algorithm identifies the desired sub-clusters, the
system merges all flows in one desired sub-cluster to one
metaflow. If there are several desired sub-clusters with similar
APP , we get one metaflow from each sub-cluster. If the
desired sub-cluster is like clusterF := B −C −D in Fig. 1,
then all flows except flow C that are in cluster B but not in
cluster D are merged to one metaflow, while flow C and the
flows in cluster D are not modified.

The metaflow keeps the values of fixed dimensions of the
cluster and set the values of random dimensions to *, denoting
all possible values. Other attributes of this metaflow are similar
to those defined in [8]: the packet/byte count is the sum of the
number of packets/bytes of all aggregated flows, the timestamp
of the first packet (create time of the metaflow) is the minimum
of this timestamp of all aggregated flows, and the timestamp of
the last packet (modify time of the metaflow) is the maximum
of this timestamp of all aggregated flows.

When a packet arrives, the system determines if this packet
belongs to an active flow. For a metaflow, only fields of an
exact value are compared with corresponding fields of the
packet. For example, if a metaflow is (srcIP = *, dstIP =
210.0.0.3, srcPort = *, dstPort = 80,TCP), then all following
packets of web traffic to the server with IP address of 210.0.0.3
will be regarded as belonging to this metaflow. The metaflow
will be terminated and exported as other normal flows when
the termination criteria are met, includinginactive timerand
active timer. Note that the criteria based on certain TCP flags
would not be used, because these flags indicate the termination
of only one flow but not the metaflow.

When new packets do not belong to any active flow but
belong to one metaflow, the number of packets and bytes of
this metaflow will be updated. So we can get accurate packet
and byte counts for the metaflow. The number of flows of
the metaflow cannot be counted directly because we must
distinguish between packets belonging to the old and the
new flows and increment the flow counter only if the flow
is new. We use the multi-resolution bitmap algorithm which
was proposed in [30] to estimate the number of flows. Before
merging flows in one cluster to a metaflow, the system creates a
multi-resolution bitmap, and maps all flow IDs in this cluster to
the bitmap. Whenever a new packet is determined to belong to
this metaflow, the system will map its corresponding flow ID to
the bitmap. We can get quite accurate result for the estimated
number of flows if we use a large enough bitmap. Because
there will not be too many identified clusters, the memory
requirement and the processing overhead are acceptable.

VI. Analysis

In this section, we analyze the algorithm proposed in this
paper (entropy based flow aggregation), and compare it with

other solutions including, 1) NetFlow without memory con-
straint (basic NetFlow), 2) NetFlow which rejects new flows
when the cache is full (rejecting NetFlow), 3) NetFlow which
exports more aggressively when the cache is full (exporting
NetFlow), 4) adaptive NetFlow(proposed in [5]) that adapts
the sampling rate to traffic, and 5) thesimple flow aggregation
algorithm proposed in [28]. We take the implementation of
fprobe as an example ofbasic NetFlow.

A. Resource requirement

First we analyze the resources required by the algorithms.
The key resource measures include the size of flow memory,
the size of export bandwidth, and CPU utilization.

1) Flow memory: Because of our modified data structure,
our algorithm uses a bit more memory thanbasic NetFlow.
AssumeSf is the size of a flow entry,Sip is the size of an IP
Node in Fig. 2. Considering the worst case, every flow entry
has different srcIP and dstIP, then our algorithm uses(Sf +
2∗Sip +4)/Sf times memory ofbasic NetFlow. 4 denotes we
use one more pointer in the flow entry.Sf is around 64 bytes,
Sip is around 10 bytes (two pointers and one counter). So our
data structure uses 1.4 times the memory ofbasic NetFlowin
the worst case.

Besides the memory used for storing active flows,entropy
based flow aggregationuses additional memory when it does
flow aggregation. The first one is the temporary memory used
in identifying the desired sub-clusters for eachL1 cluster.
Assume theL1 cluster hasN flows, the system uses a linked
list to store the information of all the flows that belong to this
cluster, which includes a pointer to this flow. Because we need
to sort all the flows in this cluster when we compute entropy,
we use this linked list to store the sorted flow information.
Assume the size of a node in this linked list isSfi, then the
total memory needed for each cluster isN ∗Sfi. This memory
will be freed after we identify the desired sub-clusters in this
cluster, so the peak memory isNmax ∗ Sfi, whereNmax is
the maximum flow number of all theL1 clusters.Sfi can be
8 bytes if each node in the linked list only stores a pointer to
the flow and a pointer to the next node. The second one is the
memory used in the bitmap algorithm for counting the flow
number in every metaflow, which isO(log(Nmeta)), where
Nmeta is the flow number in each metaflow. This part of
memory is not freed until this metaflow is terminated and
exported.

Adaptive NetFlowmay also use more memory thanbasic
NetFlow. The algorithm divides the NetFlow operation into
measurement bins. A fixed size of the measurement bin could
be a problem, because its optimal size depends on the traffic
mix. If the measurement bin is too large, it keeps many short
flows unnecessarily long in the memory cache, and uses more
memory than necessary. If the memory is bounded, then the
adaptive algorithm decreases the sampling rate lower than
necessary, and sacrifices the accuracy of all flows. On the other
hand, if the measurement bin is too small, it splits many long
flows to several flows, hence increases the export bandwidth
and burdens the collector. Onceadaptive NetFlowfixes the
size of the measurement bin, how much memory that it uses
more thanbasic NetFlowdepends on the traffic mix.

9

2) Export bandwidth: Besides memory, another main
resource constraint is export bandwidth. Our algorithm uses
either the same or less export bandwidth thanbasic NetFlow.
Its export bandwidth is the same asbasic NetFlowwhen the
system does not aggregate flows, and less thanbasic NetFlow
when it performs aggregation.Exporting NetFlowmay use
a very high export bandwidth, and may flood the collector.
In adaptive NetFlow, a router operator specifies the reported
number of flow recordsM desired for each measurement
bin, the algorithm guarantees this fixed export bandwidth by
decreasing the sampling rate.

3) CPU utilization: We first describe the overhead to
normal flow operations, that is, update the flow cache when
new packets come in and periodically check the flow cache
looking for expired flows. In extreme conditions, if a large part
of flows have the same srcIP or dstIP, then the corresponding
IP node list will be so long that it would slow down flow
lookup. Actually we can define a threshold, and when the
length of the IP node list reaches this threshold it triggers
aggregation. As mentioned in Section IV, we maintain a top
list for the IP addresses with the largest flow numbers. Another
overhead to normal flow operations is to maintain this top list.
Every time we create or delete a flow entry, we need to update
the top list. However, the maximum number of the top list is
not large (20 or even less is enough). In addition, We need
some extra processing to find out the desired sub-clusters for
everyL1 cluster. The complexity of this algorithm isO(N2),
whereN is the number of flows in theL1 cluster. The detailed
complexity analysis is given in Appendix A.

B. Accuracy

Various network anomalies all tend to generate excessive
number of flows, often exceeding the resource contraints of
traffic monitors. Most countermeasures need to give up some
accuracy in traffic capturing. For example, one countermeasure
is rejecting NetFlow that rejects all new flows when the
cache is full. Another countermeasure isadaptive NetFlow
that automatically chooses a lower sampling rate during a
DoS attack. While this measure degrades the system gracefully
during attack, it unfortunately affects the accuracy of all flows
collected. Sometimes the bottleneck is not the netflow (in the
router), but the flow export process, especially inexporting
NetFlow. Accuracy can be lost in two ways: (a) routers export
NetFlow records to the collector using UDP and flow records
are lost due to congestion; (b) the post-processing analysis
and visualization tools cannot keep up with this avalanche of
flows.

When comparing with those countermeasures that lose flows
during heavy load, the superiority of flow aggregation is
easily established. The comparison of flow aggregation against
adaptive Netflow, however, is hard to quantify. By lowering the
sampling rate,adaptive Netflowwill lower the accuracy of all
flows with equal probability; hence all kinds of aggregates (by
ports, IP addresses, etc.) also lose accuracy proportionally. On
the other hand, flow aggregation uses a lower resolution only
for some, but not all clusters, so loss of accuracy for different
aggregates is quite different. The loss of accuracy brought by

flow aggregation depends on how aggregation is performed
and whether the network operators care about the details lost
during aggregation. If the dimensions that we discard during
aggregation are included in the dimensions network operators
are interested, then there is loss of accuracy; otherwise, there
is effectively no loss of accuracy. For example, if we identify
and aggregate a cluster of fixed dstIP plus dstPort, then we still
get accurate results for protocol and application breakdowns,
and the destination host. However, if the network operators are
interested in the srcIP or srcPort of this traffic, they cannot get
the accurate statistics of these two dimensions. We compare
the accuracy ofentropy based flow aggregationwith other
solutions by experiments, described in Section VII.

C. Practical Considerations

Often the reason for abnormal traffic conditions is due to
security attacks and such attacks often have some common
patterns. So our algorithm can relieve the resource overload
by identifying these traffic clusters and aggregating these
large amounts of short flows into a few flows. Sometimes,
the overload may be caused by undifferentiated traffic not
dominated by any particular cluster, e.g., a shift in load caused
by link failure or routing change. In this situation, even if
we aggregated allL1 clusters, the memory which will be
freed may still not satisfy the requirement. In other words, our
solution cannot deal with this case. From this point of view,
our solution should be considered as a way to complement
other current solutions, rather than completely replace them.
If our algorithm fails to find appropriate clusters, we conclude
that the traffic is undifferentiated and take other actions such as
in rejecting NetFlow, exporting NetFlowor adaptive NetFlow.

Another problem is that the traffic from a busy web server
may be identified as the desired cluster by our algorithm. So if
there are links in the network that are dominated by particular
clusters in the normal case, network operators can use policy
to protect such clusters, resulting in the algorithm looking
for other clusters or performing aggregation only when they
exceed their policy defined limits. If there is a flash crowd to a
server, it will be very similar to a DoS attack from the point of
view of our system. Then the flows of this flash crowd will be
identified and aggregated when they exceed the limits defined
by network operators.

VII. Experimental evaluation

In this section, we evaluate different solutions by running
them on synthetic and real trace files. These solutions include
basic NetFlow, rejecting NetFlow, exporting NetFlow, adap-
tive NetFlow, simple flow aggregationandentropy based flow
aggregation. We first present our experimental setup, and then
give out evaluation results on different trace files.

A. Experimental setup

We first present our metrics and experimental datasets. For
a given cluster, assumenf , np, nB are the number of flows,
packets and bytes of this cluster. This given cluster can be any
traffic aggregate that network administrators are interested in,

10

t τ [l, h] [Ts, Te] Description
A 10s 1s [900, 1200] [0, 5400s]
B 10s 5s [180, 240] [0, 5400s]
C 10s 1s [180, 240] [0, 5400s]
D 10s 5s [36, 48] [0, 5400s]
E 0.1s 0.1s [2, 20] [2700s, 3700s] DoS attack
F 0.1s 0.1s [2, 20] [2000s, 4000s] worm spreading
G 10s 1s [180, 240] [0, 5400s] web traffic

TABLE II
Synthetic trace flow information.

e.g., all the traffic sent from a specific host.Basic NetFlow
can get accurate values of these numbers, while the estimated
values from other solutions will be different from the accurate
ones. Different solutions use different amounts of resources
and have different accuracy. We use the following metrics to
evaluate these solutions:
• memory usage - memory used at the observation point
• export bandwidth - number of flows exported during the

past 2 minutes
• relative error - average error for byte, packet, or flow

estimates

relerrj =

√√√√ 1
m

m∑

i=1

(
n̂i

j

nj
− 1)2, 1 ≤ i ≤ m, j = f, p, B (5)

Equation 5 is used to compute the relative error of a given
solution. We repeat the experiment form times, n̂i

f , n̂i
p, and

n̂i
b are the estimated value for the number of flows, packets

and bytes in theith experiment of this solution.
The data sets that we measure different solutions are:
• “Synthetic” - a synthetic trace file generated by CSIM
• “DarpaIDE” - the training data of the 1998 DARPA

Intrusion Detection Evaluation
• “CaidaOC48” - a 30 minute trace of the traffic on an

OC48 IP backbone link, provided by Caida

B. Resource evaluation on synthetic trace file

We use CSIM, a general purpose discrete-event simulator,
to generate a synthetic trace file. During the observation time
of 5400s, there are seven types (A, B, C, D, E, F, G) of
flows. Flows of each type arrive as a Poisson process, and the
inter flow time is exponentially distributed with meanti. In
every flow, the packet arrival is also Poisson, and inter packet
time is exponentially distributed with meanτi. The number
of packets for every type of flow is uniformly distributed in a
range[li, hi]. The characteristics of these seven types of flows
are shown in Table II. Flow E is a simulated DoS attack, all
flows of type E have the same dstIP and dstPort. It does not
last during the whole duration of 5400s, but starts at 2700s
and ends at 3700s. Flow F is a simulated worm spread, all
flows of type F have the same srcIP. It starts at 2000s, and
ends at 4000s. Flow A, B, C, D and G are simulated normal
traffic, they last during the whole duration.t, τ , l and h are
different for each type, so they have different characteristic,
long-lived or short-lived, dense or sparse. But compared with

flows E and F, theirt and τ are longer,l and h are larger.
Their IP address and port are randomly generated except that
all flows of type G are web traffic to the same dstIP.

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 104

systime (sec)

m
em

or
y

us
ag

e (
by

te
)

basic NetFlow
exporting NetFlow
adaptive NetFlow
flow aggregation

Fig. 4. Memory usage for different solutions on synthetic trace.

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

systime (sec)

ex
po

rt
ba

nd
w

id
th

basic NetFlow
exporting NetFlow
adaptive NetFlow
flow aggregation

Fig. 5. Export bandwidth for different solutions on synthetic trace.

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280
0

1

2

3

4

x 104

systime (sec)

adaptive NetFlow

m
em

or
y

us
ag

e

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280

0.02

0.05

0.1

0.2

0.5

1

sa
m

pl
in

g
ra

te

sampling rate

Fig. 6. Memory usage and sampling rate in several measurement bins of
adaptive Netflowon synthetic trace.

Fig. 4 shows the memory usage of different solutions. we
define mmax = 40000 bytes, and mdes = 30000 bytes.
When memory usage reachesmmax, different systems (except
basic NetFlow) perform different operations to reduce memory

11

usage tomdes, while basic NetFlow is assumed to have
unlimited memory. Fig. 5 shows the export bandwidth of these
solutions. We record export bandwidth every 2 minutes, which
is defined as the number of flows exported during the past 2
minutes. Forexporting NetFlow, before reachingmmax, its
memory usage and export bandwidth are the same as that of
basic NetFlow. After exceedingmmax, its memory usage is
bounded bymmax, but the export bandwidth is much higher
than that ofbasic NetFlow.

For adaptive NetFlow, we use the measurement bin of 1
minute. Before reachingmmax, memory usage ofadaptive
NetFlow is a little greater than that ofbasic NetFlow, due to
the unnecessarily long time thatadaptive NetFlowkeeps short
flows in the memory, as we mentioned in Section VI-A1. On
the other hand, export bandwidth ofadaptive NetFlowis also
greater than that ofbasic NetFlow. The reason is that many
flows we generated are much longer than the measurement
bin of 1 minute, so they are split into several flows. After
exceedingmmax, its memory usage is bounded bymmax and
the export bandwidth is stable. For more detail, its memory
usage and sampling rate in several measurement bins are
shown in Fig. 6. At the beginning of one measurement bin, the
sampling rate is equal to 1 (process every packet). When the
memory usage reachesmmax, adaptive NetFlowdecreases its
sampling rate. At the end of one measurement bin, all active
flows in the cache memory are exported and the sampling rate
is reset to 1. In this experiment, the sampling rate decreases
to a low value of around 1/30 (as shown in Fig. 6).

For entropy based flow aggregation, before reachingmmax,
its memory usage is larger than that ofbasic NetFlow, due to
the overhead caused by the new data structure, as we analyzed
in Section VI-A1. Its export bandwidth is the same as that of
basic NetFlow. At around 2000 sec, the memory usage exceeds
mmax. The algorithm identifies the cluster of the simulated
worm spread (with the same srcIP) and aggregates flows in
this cluster. Both the memory usage and export bandwidth are
much lower than those ofbasic NetFlow. At around 2700 sec,
the simulated DoS attack is generated, so the memory usage
exceedsmmax again, which triggers the second aggregation.
The third aggregation occurs at around 3800 sec. The reason
is that we use anactive timerof 30 minutes, so the metaflow
generated from aggregation at 2000 sec is terminated and
exported at 3800 sec. But because packets in this worm spread
have not stopped, many new generated flows make the memory
usage reachmmax again and trigger the third aggregation. At
the time when system performs aggregation (around 2000 sec,
2700 sec, 3800 sec), the peak memory usage is a little higher
thanmmax, which includes the additional temporary memory
used in identifying the desired sub-clusters.

C. Accuracy evaluation on “DarpaIDE” dataset

In this section, we will show results from experiments on
traces of actual traffic. The dataset we use is part of the training
data of the 1998 DARPA Intrusion Detection Evaluation [31],
which contained a wide variety of simulated intrusions. We
choose Wednesday data of week 1 as our experiment data,
because it contains DoS attacks such as Smurf. For brevity,

we omit the resource evaluation results, which are the same
as what we expect and similar to those of the “Synthetic”
dataset. To compare the accuracy ofadaptive NetFlowand
entropy based flow aggregation, we perform post-processing
on the flow records exported fromadaptive NetFlow, entropy
based flow aggregationandbasic NetFlow. We perform three
post-processing steps based on the applications used by most
analysis and visualization tools.

The first post-processing step is protocol breakdown. For
these solutions, protocol breakdown counts the number of
bytes, packets and flows for TCP, UDP and ICMP. We repeat
each experiment for 5 times, and getrelerr using Equation 5.
Relerr results foradaptive NetFlowand entropy based flow
aggregation are shown in Table III. It may be unfair to
compare therelerr results for the number of flows directly,
because we use the bitmap algorithm to count the number
of flows of the identified clusters. We also give out the flow
error result without using the bitmap algorithm, as shown in
the “flow err” column. The flow error result using the bitmap
algorithm is shown in the “bitmap” column.

The second post-processing step is port breakdown, which
counts the number of bytes, packets and flows for different
ports. Foradaptive NetFlowandentropy based flow aggrega-
tion, we calculaterelerr for the top srcPort/dstPort sorted by
the number of bytes, packets and flows. For brevity, we only
showrelerr of the top 8 srcPorts sorted by the number of bytes
in Table IV, and omit the other fiverelerr tables. The third
post-processing step is to find the top hosts by bytes, packets
or flows of traffic generated/received.Relerr results of top 8
dstIP sorted by bytes are shown in Table V.

From theserelerr results, we conclude thatentropy based
flow aggregationprovides better accuracy for legitimate flows
thanadaptive NetFlow. As shown in these three tables,entropy
based flow aggregationachieves accurate results with zero byte
errors and packet errors. The reason is that flow aggregation
keeps the accurate byte and packet counts for metaflows. The
Smurf attack in this dataset generated large number of ICMP
flows, which causes the memory usage to reachmmax and
triggers flow aggregation. The TCP and UDP traffic is not
affected, so there is no error in the flow counts for TCP and
UDP in Table III and the flow counts for all the top srcPorts in
Table IV. On the other hand, we aggregate those ICMP flows
to the victim dstIP in the Smurf attack into one metaflow and
do not keep the flow counts, so the flow counts for ICMP and
the victim dstIP have high error rates of 66.04% and 57.60%
respectively. After using the bitmap algorithm, the flow count
results become much more accurate, as shown in the “bitmap”
columns.

D. Accuracy evaluation on “CaidaOC48” dataset

The “CaidaOC48” data set is a 30 minute trace from Aug
2002 of one direction of traffic on an OC48 link located in San
Jose, provided by Caida. The flow rate, packet rate, and byte
rate of this data set is 5k/s, 75k/s, and 396M/s respectively. We
artificially generate several DoS attacks and worm spreads and
mix it with “CaidaOC48”. The information of these attacks is
shown in Table VI. The time of traffic A being [120s, 180s]

12

adaptive NetFlow
protocol % byte err packet err flow err bitmap

TCP 85.2 0.21 0.28 15.18 NA
UDP 0.6 0.97 0.77 33.15 NA
ICMP 14.2 21.21 21.04 36.99 NA

entropy based flow aggregation
protocol % byte err packet err flow err bitmap

TCP 85.2 0 0 0 0
UDP 0.6 0 0 0 0
ICMP 14.2 0 0 66.04 0.99

TABLE III
Relative error (%) of protocol breakdown on “DarpaIDE” dataset.

adaptive NetFlow
srcPort % byte err pkt err flow err bitmap
80 , tcp 66.54 0.31 0.32 16.63 NA
20 , tcp 11.45 0.26 0.26 8.31 NA
25 , tcp 0.58 0.68 0.36 3.00 NA
53 , udp 0.52 1.73 1.26 26.68 NA
21 , tcp 0.075 1.29 0.40 21.31 NA
23 , tcp 0.072 2.05 1.27 16.19 NA

123 , udp 0.069 2.90 2.90 37.91 NA
11306 , tcp 0.019 0 0 0 NA

entropy based flow aggregation
srcPort % byte err pkt err flow err bitmap
80 , tcp 66.54 0 0 0 0
20 , tcp 11.45 0 0 0 0
25 , tcp 0.58 0 0 0 0
53 , udp 0.52 0 0 0 0
21 , tcp 0.075 0 0 0 0
23 , tcp 0.072 0 0 0 0

123 , udp 0.069 0 0 0 0
11306 , tcp 0.019 0 0 0 0

TABLE IV
Relative error (%) of port breakdown on “DarpaIDE” dataset.

adaptive NetFlow
dstIP % byte err pkt err flow err bitmap

172.16.114.50 14.66 21.17 19.68 29.74 NA
172.16.116.44 9.09 0.46 1.21 14.11 NA
172.16.114.169 8.16 0.44 0.99 12.24 NA
172.16.114.148 5.19 0.95 0.62 17.00 NA
172.16.113.84 5.03 0.97 1.23 9.08 NA
172.16.114.207 4.64 1.32 1.32 16.94 NA
172.16.112.194 4.44 1.31 1.32 15.62 NA
172.16.112.149 3.88 0.97 1.05 6.33 NA

entropy based flow aggregation
dstIP % byte err pkt err flow err bitmap

172.16.114.50 14.66 0 0 57.60 0.86
172.16.116.44 9.09 0 0 0 0
172.16.114.169 8.16 0 0 0 0
172.16.114.148 5.19 0 0 0 0
172.16.113.84 5.03 0 0 0 0
172.16.114.207 4.64 0 0 0 0
172.16.112.194 4.44 0 0 0 0
172.16.112.149 3.88 0 0 0 0

TABLE V
Relative error (%) of IP breakdown on “DarpaIDE” dataset.

means it starts at 120s and ends at 180s. SrcIP of traffic
A being “*.*.*.*” means its srcIP is a randomly chosen IP
address. Byte of traffic A being 40 means its packet size is
40 bytes per packet. SrcIP of traffic B being “3 hosts: a.b.c.d”
means there are three hosts that send the traffic, and dstIP of
traffic B being “a.b.*.*” means the first two parts of the dstIP
are equal to the srcIP.

As we have mentioned in Section I, for high-speed in-
terfaces, Cisco introduced sampled NetFlow. We do not use
sampling for the last two experiments because of their low
data rate (about 118 Kbytes/sec for the synthetic dataset and
4 Kbytes/sec for the “DarpaIDE” dataset). For this OC48 data
set, we set the packet sampling rate to 1/100. That is, we use a
basic sampling rate for all solutions includingbasic NetFlow.
In addtion, we only focus on the error caused by decreasing the
sampling rate or performing flow aggregation under memory
shortage and ignore the error caused by the packet sampling
under normal conditions. So we preprocess the trace file by
sampling it using a sampling rate of 1/100. After that we run
different solutions on the pre-sampled trace file.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

x 105

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

basic NetFlow
flow aggregation

Fig. 7. Memory usage forentropy based flow aggregationon “CaidaOC48”
dataset.

We setmmax = 900000 bytes and mdes = 850000 bytes
for all solutions. Foradaptive NetFlow, we use 20 sec as the
size of the measurement bin such that its export bandwidth is
similar with that ofentropy based flow aggregation. Forsimple
flow aggregation, we setr = 30, which means the minimum
size for the identified clusters is 30. Fig. 7 is the memory
usage ofentropy based flow aggregation. The increases in the
memory usage ofbasic NetFloware caused by all the DoS
attacks and worm spreads shown in Table VI except traffic F,
whose flow rate is too low to trigger flow aggregation.

Entropy based flow aggregationaccurately identifies all
the clusters of the DoS attacks and worm spreads except
traffic F. The metaflows resulted from theentropy based flow
aggregationpresent the network administrators some useful
information about these DoS attacks and worm spreads. For
example, for traffic B and C,entropy based flow aggregation
generates three metaflows, each one corresponds to one host
that sends out the worm traffic. Each metaflow gives out
the information including begin time, duration, srcIP, dstPort,
protocol, byte number, packet number and flow number of this

13

time simulated attack flow rate srcIP dstIP srcPort dstPort protocol byte
A [120s, 180s] DDoS 33k/s *.*.*.* 162.131.189.129 * 80 TCP 40
B [360s, 480s] Blaster worm 0.75k/s 3 hosts: a.b.c.d a.b.*.* 1000 - 1999 135 TCP 40
C [360s, 480s] Blaster worm 2.25k/s 3 hosts: a.b.c.d *.*.*.* 1000 - 1999 135 TCP 40
D [450s, 510s] DoS after Blaster 10k/s a.b.*.* 207.46.18.94 1000 - 1999 80 TCP 40
E [600s, 1200s] Slammer worm 5k/s 5 hosts: x.y.z.w *.*.*.* 3355 1434 UDP 376
F [1620s, 1800s] Welchia worm 0.5k/s 239.187.123.15 239.187.*.* ICMP 92

TABLE VI
Information of simulated DoS attacks and worm spreads.

worm spreading. DstIP and srcPort of the worm traffic are not
given by the metaflow because of flow aggregation, which are
randomly chosen by the worm.

In accuracy evaluation on the “DarpaIDE” dataset as shown
in Section VII-C, we only compare the accuracy ofadaptive
NetFlowandentropy based flow aggregation. Because the flow
rate is very low, there is very few other legitimate traffic when
the DoS attacks occur. Sosimple flow aggregationacts in
a similar way asentropy based flow aggregationdoes, and
rejecting NetFlowalso has a good result because most of the
packets that are thrown away are DoS attack packets. On the
other hand, the “CaidaOC48” dataset has a high byte/flow rate,
so we compare the accuracy of all the four solutions for the
“CaidaOC48” dataset.

Relerr results of some top dstIPs of these solutions are
shown in Table VII. The byte error and flow error ofrejecting
NetFlow are similar, because it just rejects new flows when
the flow cache is full and does nothing to the lost flow data.
On the other hand, the flow error ofadaptive NetFlowis much
greater than its byte error, becauseadaptive NetFlowdecreases
the sampling rate and compensates this by multiplying the
result by the sampling rate while cannot do corresponding
compensation to the flow numbers. Our two flow aggregation
solutions provide better accuracy than the other two solutions.
Forentropy based flow aggregation, only the victim of traffic A
has error in the flow count. However,simple flow aggregation
identifies otherL2 and L3 clusters with size greater thanr,
which results in the flow errors of some hosts.

VIII. Conclusion

NetFlow is the traffic measurement solution most widely
used by ISPs to determine the composition of the traffic
mix in their networks. However, NetFlow has the problem
of overrunning available memory for flow records during
abnormal situations. Currently available countermeasures have
their own problems. We propose an entropy based adaptive
flow aggregation algorithm. This mechanism, while certainly
not a panacea, provides relief from DoS attacks and other
security breaches. Additionally, it significantly improves the
accuracy of legitimate flows.

We choose five fields typically used to define a flow, and
use 11 combinations of these five fields to define clusters. To
efficiently implement the algorithm in real-time, we design a
new data structure called two-dimensional hash table. Based
on the concept of entropy from information theory, we use the
parameter ofAPP to indicate the priority of clusters to be
aggregated. The algorithm can efficiently identify the clusters

containing attack flows as well as pick out some large normal
flows belonging to the identified clusters. After identifying
these clusters, the system merges flows in the clusters to
metaflows, and updates information of the metaflows from new
incoming flows belonging to these clusters.

We analyze the resource requirements and accuracy of
our solution, and compare it with other current solutions.
Experimental evaluations on synthetic and actual trace files
confirm our analysis on resource requirements, and show that
our solution provides better accuracy for legitimate flows. The
measurements for bytes and packets are completely accurate,
and measurements for flows are nearly accurate using the
bitmap algorithm.

APPENDIX A
Complexity analysis of Algorithm 1

Assume there areN flows in an L1 cluster C, we give
out the complexity analysis of Algorithm 1. The computation
complexity depends on those operations that need to look at
part or all flows in clusterC, including the operations in line
1, line 8 and line 16. There are two steps to compute the
entropy of a random dimensiond of clusterC. First, sort the
flows by the value of dimensiond such that all flows with
the same value in dimensiond are put together. This step can
be regarded as an insertion sort with the frequency count of
N(N−1)/2. The second step is to compute the entropy, which
has the frequency count ofN . ClusterC has three random
dimensions, so the frequency count of the operation in line 1
is 3N(N − 1)/2 + 3N = 3(N2 + N)/2.

The operation in line 8 is to computeAPPf for all Sk in
L2, 1 ≤ k ≤ ns, wherens is the number ofSk in L2. Assume
the number of flows ofSk is Nk, then

∑ns

i=1 Nk ≤ N . Sk has
two random dimensions, so the frequency count of computing
its APPf is 2Nk(Nk − 1)/2 + 2Nk. The frequency count of
computing theAPPf of all Sk in L2 is

∑ns

k=1(2Nk(Nk −
1)/2 + 2Nk) =

∑ns

k=1 N2
k +

∑m
k=1 Nk ≤ N2 + N . So the

frequency count of line 8 is3N2+3N . Similarly, the frequency
count of line 16 is6N2 + 6N . From the above analysis, the
computation complexity of Algorithm 1 isO(N2).

REFERENCES

[1] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proceedings of USENIX LISA, 1999.

[2] V. Paxson, “BRO: A system for detecting network intruders in real-time,”
in 7th USENIX Security Symposium, 1998.

[3] K. McCloghrie and M. Rose, “Rfc 1213,” Mar. 1991.
[4] Http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.
[5] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better

netflow,” in Proc. SIGCOMM ’04, 2004.

14

% rejecting NetFlow adaptive NetFlow simple flow aggregation entropy based
dstIP of total byte Err. flow Err. byte Err. flow Err. byte Err. flow Err. byte Err. flow Err.

162.131.189.129 1.20 5.05 17.95 0.67 38.72 0 2.07 0 1.34
162.131.175.232 0.50 2.11 0.09 0.32 36.26 0 0.31 0 0

3.142.98.83 0.48 1.00 0.78 1.64 41.84 0 1.11 0 0
162.131.199.254 0.43 1.53 0.79 1.68 29.78 0 0 0 0
238.109.212.178 0.43 1.08 1.07 0.99 38.97 0 1.04 0 0
115.42.247.74 0.28 0.76 0.80 2.21 17.67 0 0 0 0
241.46.188.127 0.21 1.08 1.23 0.84 40.92 0 0.47 0 0
241.46.218.115 0.17 1.08 1.01 2.13 41.04 0 0 0 0
238.109.212.180 0.16 0.89 0.90 1.22 40.37 0 0 0 0
241.46.185.227 0.15 0.65 0.62 1.74 39.69 0 0.69 0 0

TABLE VII
Relative error (%) of dstIP breakdown on “CaidaOC48” dataset.

[6] Http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120limit/120s/120s11/12ssanf.htm.

[7] Http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120t/120t3/netflow.htm.

[8] IPFIX Aggregation, http://www.ietf.org/internet-drafts/draft-dressler-
ipfix-aggregation-02.txt.

[9] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” inProc. SIGCOMM ’02, 2002.

[10] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive random sampling for
load change detection,” inProc. SIGMETRICS ’02 (extended abstract),
2002.

[11] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” inProc. SIGCOMM ’03, 2003.

[12] N. Hohn and D. Veitch, “Inverting sampled traffic,” inProc. IMC ’03,
2003.

[13] D. Plonka, “Flowscan: A network traffic flow reporting and visualization
tool,” in Proceedings of USENIX LISA, 2000.

[14] D. Moore, K. Keys, R. Koga, E. Lagache, and kc Claffy, “Coralreef
software suite as a tool for system and network administrators,” in
Proceedings of USENIX LISA, 2001.

[15] C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,” inProc. SIGCOMM ’03,
2003.

[16] K. Keys, D. Moore, and C. Estan, “A robust system for accurate real-
time summaries of internet traffic,” inProc. SIGMETRICS ’05, 2005.

[17] Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An information-
theoretic approach to traffic matrix estimation,” inProc. SIGCOMM
’03, 2003.

[18] W. Lee and D. Xiang, “Information-theoretic measures for anomaly
detection,” inProc. IEEE Symposium on Security and Privacy, 2001.

[19] K. Xu, Z. L. Zhang, and S. Bhattacharyya, “Profiling internet backbone
traffic: Bahavior models and applications,” inProc. SIGCOMM ’05,
2005.

[20] Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network
traffic using maximum entropy estimation,” inProc. IMC ’05, 2005.

[21] Y. Liu, D. Towsley, and T. Ye, “An information-theoretic approach to
network monitoring and measurement,” inProc. IMC ’05, 2005.

[22] CERT Coordination Center. CERT Advisory CA-1998-01 Smurf
IP Denial-of-Service Attacks, http://www.cert.org/advisories/CA-1998-
01.html.

[23] CERT Coordination Center. CERT Advisory CA-2003-04 MS-SQL
Server Worm, http://www.cert.org/advisories/CA-2003-04.html.

[24] CERT Coordination Center. CERT Advisory CA-2003-20 W32/Blaster
worm, http://www.cert.org/advisories/CA-2003-20.html.

[25] CERT Coordination Center. CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks, http://www.cert.org/advisories/CA-
1996-21.html.

[26] N. Duffield, C. Lund, and M. Thorup, “Charging from sampled network
usage,” inProc. SIGCOMM Internet Measurement Workshop, 2001.

[27] Http://sourceforge.net/projects/fprobe.
[28] Y. Hu, D. M. Chiu, and J. Lui, “Adaptive flow aggregation - a new solu-

tion for robust flow monitoring under security attacks,” inProc. NOMS
’06, 2006.

[29] T. M. Cover and J. A. Thomas,Elements of Information Theory. N.
Y.: John Wiley & Sons, Inc., 1991.

[30] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” inProc. IMC ’03, 2003.

[31] Http://www.ll.mit.edu/IST/ideval/data/1998/training/.

Yan Hu received her B.E. degree in Electronic
Engineering from University of Science and Tech-
nology of China and M.E. degree in Communication
& Information System from Chinese Academy of
Sciences, P.R. China, in 2000 and 2003, respectively.
She is currently a PhD student in the Department of
Information Engineering at the Chinese University
of Hong Kong. Her research interests include traffic
measurement and analysis, network security.

Dah-Ming Chiu (SM’02 - F’08) received a first
degree from Imperial College, London, and a Ph.D
degree from Harvard University. He worked in Bell-
Labs, DEC and SUN before joining the Chinese
University of Hong Kong in 2002. He is currently
serving as the associate director of the university’s
Institute of Theoretical Computer Science and Com-
munications (ITCSC); and an associate editor of
IEEE/ACM Transactions on Networking (ToN). His
current research interests include network resource
allocation, routing, traffic measurement and analysis,

P2P networking, wireless networks and economic issues in network architec-
ture and operations.

John C. S. Lui (M’93 - SM’02) received his Ph.D.
in Computer Science from UCLA. Currently, he is
the chair of the Computer Science & Engineering
Department at CUHK. His research interests span
both in systems as well as in theory/mathematics
with the emphasis on the robustness, scalability, and
security issues on the Internet. John received various
departmental teaching awards and the CUHK Vice-
Chancellor’s Exemplary Teaching Award, as well as
the co-recipient of the Best Student Paper Awards
in the IFIP WG 7.3 Performance 2005 and the

IEEE/IFIP Network Operations and Management (NOMS) Conference. He is
an associate editor in IEEE ToN, TPDS, TC and the Performance Evaluation
Journal.

