Entropy Based Adaptive Flow Aggregation

Yan Hu, Dah-Ming Chiufellow, IEEE,and John C. S. LuiSenior Member, IEEE

Abstract—Internet traffic flow measurement is vitally impor- required to transmit the flow records to the collector, and
tant for network management, accounting and performance the resources needed to store and process the records at the
studies. Cisco’s NetFlow is a widely deployed flow measurement collector.

solution that uses a configurable static sampling rate to control e . .
processor and memory usage on the router and the amount of These scalability issues motivate using some form of data

reporting flow records generated. But during flooding attacks the reduction. A standard solution is to perform packet sampling.
memory and network bandwidth consumed by flow records can In Cisco’s sampled NetFlow, the router forms flow reports
increase beyond what is available. Currently available counter- from a sampled substream of all packets passing through it.
tmheasurﬁs 'hafle their OV‘I’” Ft’.mb'temS: (1ﬂ) rejeCF””e"i’ t‘;'OWS Wth%“ The problem is that the sampling rate of Cisco NetFlow is
(2()3 gigoft 'iogter;?rgfeg %'k')Tvg ?Onfnvgkg v:’lsovr\:’ll fgf ne%vcgﬂgse "' usually set manually by netvyork operators according _to the
this will exhaust the export bandwidth; (3) adapt the sampling normal traffic volume in their network. When there is an
rate to traffic rate - this will reduce the overall accuracy of anomaly in the network, such as DoS attacks, worm spread,
accounting, including legitimate flows. In this paper, we propose aggressive port scans and flash crowds, which generates a large
an entropy based adaptive flow aggregation algorithm. Relying nymper of small flows, the surge in the number of small flows

on information-theoretic techniques, the algorithm efficiently .
identifies the clusters of attack flows in real time and aggregates may overwhelm the router memory and the export bandwidth

those large number of short attack flows into a few metaflows. t0 the collector. .
Compared to currently available solutions, our solution not only Current countermeasures to the above problem include: 1)

alleviates the problem in memory and export bandwidth, but also - Reject new flows when the cache is full. In this case, legitimate
S'Qn'f'c"i‘”“y improves the QCCUE‘CB(] of Ieﬁltl_mate f'o‘;‘_’ls- F"Qa"y’| new flows will not be accounted for and the operator will
we evaluate our system using both synthetic trace file and rea . ;
trace files from the Internet. lose the flow data; 2) _When the cache is fuII,_ export the flow
_ o records more aggressively for those non-terminated flows so as
'”dex.Ter.ms_Trfaﬁ'c ”?easijireme“t' Network monitoring, Data 15 make room for new ones. The implication of this action is
summarization, Information theory. that the export bandwidth demand will be very high and may
run into trouble at the collector or the way to the collector; 3)
[. Introduction Estan et al. in [5] propose a method of adapting the sampling

RAFFIC measurement and monitoring are crucial ttate to traffic. This algorithm guarantees a stable flow cache
operating IP networks, because network administratc?®d export bandwidth even under severe DoS attacks. But
need to have a good understanding of how their networkgder DoS attacks the sampling rate will decrease to a very
are used and misused. Some existing systems operating!@ level, which results in poor overall accuracy in per flow
relative low traffic links can perform complex security analysigounting including legitimate flows.
to reveal malicious activities [1], [2], or simply capture packet Our solution is to implemenadaptive flow aggregation

(header) traces to be analyzed offline. SNMP counters [8h€n the router is running low on memory resource. Note that
are a simpler solution more widely deployed on the higrittacks usually have some common patterns: DoS attacks often

speed links, but they only report the total amount of traffidave the same destination IP address, while worm spreads have

transmitted on the measured link. Flow-level measuremeHte same source IP address. If we dynamically aggregate the
such as done in the Cisco’s NetFlow [4], offers a goo@rge number of such small flows into a few flows, then we
compromise between scalability and complexity since it c&@n alleviate the problem of memory shortage under attacks.
offer detail information about the traffic crossing the networtcompared to other countermeasures, our method has several
The ever increasing speeds of transmission links and higfvantages:
volume of traffic present great challenges for flow measure-+ We do not need to decrease the sampling rate drastically
ment. The first challenge is at the point of measurement. For under attacks, neither would we reject new legitimate
high-speed interfaces, the processor and the flow memory of flows because the cache is full. So we significantly
the router cannot keep up with the high packet rate. Another improve the accuracy of legitimate flows.
problem is that the volume of complete measurements of alle Without aggressively exporting the records of non-
traffic requires too many resources, both in the bandwidth terminated flows so as to make room for new ones, we
avoid overwhelming the collector.
Manuscript received June 9, 2006; revised April 6, 2007, and December 13,4 Using the flow aggregation results, we can provide net-

2007; IEEE/ACM T i Networking Editor Matth e . _
R%?Jg’h‘;ﬂ?roved by IEEE/ACM Transactions on Networking Editor Matthew ;4" administrators some useful information to detect

Yan Hu and Dah-Ming Chiu are with the Department of Information Engi- ~ DOS attacks and worm spreads.
neering, the Chinese University of Hong Kong (email: yhu4@ie.cuhk.edu.hk, Therefore, the Objective of our system is to identify and
dmchiu@ie.cuhk.edu.hk).

John C. S. Lui is with the Department of Computer Science & Engineering,ggreQate the abnormal flows while keeping legitimate flows
the Chinese University of Hong Kong (email: cslui@cse.cuhk.edu.hk). unaffected when the router is running low on memory under

abnormal conditionsin more detail, it can be stated as: 1B. Related work

Identify traffic clusters that contain packets of abnormal traffic, Recently, a number of studies have investigated flow mea-
and retain as many key attributes as possible when merging §igement. Estan et al. in [9] present algorithms that automat-
flows in these clusters to metaflows. 2) Pick out the norm@la”y identify large flows. In [10], Choi et al. use adaptive
flows mixed with abnormal traffic in the identified clusterssarm:,"ng to guarantee that the variance introduced by the
3) Obtain as high accuracy as possible when estimating flQWriapility of packet sizes does not exceed a pre-defined limit.
statistics of any aggregates of the traffic. The problem of estimating flow distributions using packet
In this paper, we propose an entropy based adaptive flegmpling has been studied in [11] and [12]. There are some
aggregation algorithm, which meets these requirements saffgy analysis and visualization tools, such as Flowscan ([13])
factorily. Based on the concept of entropy from informatiognd CoralReef ([14]).
theory, we keep track of different traffic clusters and use anTg deal with traffic surges that exhaust the resources during
index, APP (Aggregation Priority Parameter), to indicate eaghnormal situations, Estan et al. propasgaptive NetFlow
cluster's priority for aggregation. An efficient algorithm is use@{s]) which adapts the sampling rate to traffic. They divide
to identify those clusters as well as pick out some large normgk NetFlow operation into measurement bins. They do not
flows belonging to the identified clusters. terminate flow records during the bin, but terminate all active
The rest of the paper is organized as follows. We descrilew records at the end of the bin. They use a maximum
background and related work in Section II. In Section Ill, wgampling rate at the beginning of each bin, which is determined
provide the definition of thelusteras well as the propertiespy the router's CPU capability. During the measurement bin,
of those clusters that we choose to do flow aggregation. Wy dynamically decrease the sampling rate until it is low
describe the data structure we use in Section IV. After thalnough for the flow records to fit into memory.
we present the entropy based flow aggregation algorithm inTraffic characterization and summary have also being stud-
Section V and provide some analysis in Section VI. Expelied in a number of works. Estan et al. [15] describe a method
mental evaluation based on the proposed method is preser§egtaffic characterization that automatically groups traffic into
in Section VII. Conclusion is given in Section VIII. minimal clusters of conspicuous resource consumption. In-
stead of using individual flows or other predefined aggregates,
they dynamically define multi-dimensional traffic clusters, so
that any meaningful aggregate of individual flows is a traffic
A. NetFlow cluster. The difference with ours is that their objective is to
. present a good traffic report to the network manager, and their
NetFlow [4], first implemented in Cisco routers, is th&ystem can be considered apast-processingystem instead
most widely used flow measurement solution today. Flowg 5 real-time one. In [16], Keys et al. present a system that
are defined by seven keys: source and destination IP addreggy, tes multiple summaries of IP traffic in real time, to
protocol, source and destination port, type of service and inpih, e several kinds of hog (sources or destinations that send
interface. Routers running NetFlow maintain a “flow cach€y, receive many packets, bytes or flows) reports. This system
to keep active flows passing through it. When a packet armivggyy provides traffic summaries, but does not keep any original
at the router, the router determines if this packet belongs 48, information as Cisco NetFlow does.
an active flow in the cache. If yes, relevant fields (number | ¢ormation-theoretic concepts and approaches have been

of packets, number of bytes, timestamp of the last packgkeq 1o examine a wide variety of networking issues such

etc) of this flow are updated. If not, the router inserts a NeY& yraffic matrix estimation [17] and intrusion detection [18].

flow record into the flow cache. The router will terminate &, ot 1. in [19] use data mining and information-theoretic
ﬂOW In Its cqche ”,c any one of these criteria are .met: 1) tht%chniques to build behavior profiles of Internet backbone
interpacket time within the flow exceeds timactive imer(15 ya¢ic n [20], Gu et al. develop a method to detect network
sec is the default); 2) this flow record had creation time befog, o 5jies by comparing the current network traffic against a
the currentactive timer(30 min is the default); 3) observationyyase|ing distribution. The baseline distribution is estimated by
of TCP flags (FIN or RST); 4) the flow cache is full. For thos?naximum entropy estimation. Liu et al. in [21] develop an

terminated flows, their records will be exported using UDP it mation-theoretic framework to examine the difference in
collectors for future analysis. information content when measurements are made at either the
For high-speed interfaces, Cisco introduced sampled Ny, |evel or the byte count level, and determine the benefits

Flow [6]. To the problem of NetFlow generating too muchyt compressing traces captured at a single monitoring point.
data, Cisco’s solution is to implement router-based flow aggre-

gation [7]. Different aggregation schemes summarize NetFlow i
data on the router before the data is exported to the collector,

resulting in lower bandwidth requirement. The IETF workind®: Defining clusters
group IPFIX (Internet Protocol Flow Information eXport) also Our mechanism intends to protect NetFlow from over-
recommends aggregating similar flows into one metaflow [8jhelming the memory and the export bandwidth due to rapid
Compared to these predefined aggregation schemes, our gomideeases in traffic from one or more traffic aggregates which
to dynamically find flows which form a cluster and aggregatee call clusters The first issue we have to address is how
these flows in real time. many distinct fields are used in constructing traffic clusters?

Il. Background and Related work

. Cluster

We choose five fields typically used to define a flow: sourge-ompinatons examples

A ~srclP most worms
IP address, destination IP address, protocol, source port, angip smurf attack ([22])
destination port. For simplicity, we regard these five fields a§rC:E + dst:f most PortSfcanS tooding vict
. Src + srcPort response from syn flooding victim;
four keys: {srclP, dstIP, srcPort (plus protocql), dstPort (plus response from flash crowds web server
protocol)}, because port numbers are meaningful only whensrcip + dstPort W32/Blaster worm ([24])
combined with protocol type. For example, we use “dstPgrtdstlP + srcPort N/A _
, dstIP + dstPort syn flooding attacks ([25]);

= 80,TCP” to represent “dstPort = 80 and protocol = TCP WWW flash crowds
Individual flows are defined by unique values for each of thesercip + dstiP + srcPort | response from non-IP-spoofing syn floodimng
four keys, while clusters are defined by unigue valuesfone SFC:E + dS“F'f + dS(;POF[t &og—é%ipooﬁng syn ﬂo(?zd?i,?)g attacks
C + srcPort + dstPor - server worm

of thesg key values. In other V_/ords, values for these keys cl {P + sroPort + dstPort DNS flash crowds
be a single value, or all possible value (we use * to denote TABLE |
thIS). For example, a cluster with ValuésrCIP =¥, dstlP = The combinations of four keys and some examples.
210.0.0.3, srcPort = *, dstPort = 80, TERepresents all web
traffic to the server with IP address 210.0.0.3.

The justification for choosing these four keys to define

clusters is that these four keys are consistent with commoR}¢ would not consider a) clusters with no key, b) clusters with
used keys to define a flow. Additionally, this definition isa|| four keys, and we also ignore the cases like c) clusters that
sufficient for the existing NetFlow data applications such aly have srcPort, d) clusters that only have dstPort, and e)
network planning and application monitoring. Among thesgusters that only have srcPort plus dstPort. Finally, we get
four keys, the port numbers and the IP addresses have differepicombinations. These combinations and their corresponding
sensitivity for the aggregation process. The reason is @gamples are shown in Table I.
follows. First, almost all DoS attacks, worm spread, port scan,
and flash crowds have either a common srclP or dstIP, but
not always have a fixed port number. Second, some netwdtk
applications with a well-known port number such as web After describing what constitutedusters we discuss some
traffic with port 80 are always big clusters in the networkproperties of the desired clusters, which are related to the
but we have no reason to aggregate them to a single floljectives of our flow aggregation algorithm. In this section,
because they are normal traffic and we aim to maintain mome discuss these objectives in detail, and thus derive the
detailed information about these for accounting purposes. properties of the clusters that we choose. We use the concept
Clusters are flows with the same value in some combinatiopkentropy to express these properties and propose our entropy
of these four keys. We illustrate this using some exampldzased flow aggregation algorithm.
In a Smurf attack [22], the attacker sends a forged ICMP 1) Identify clusters containing abnormal traffic: We
packet to a broadcast address and all receivers respond witend to protect NetFlow from overrunning resources under
a reply to the spoofed IP address (the victim). The cluster fabnormal traffic. So the first objective is to identify clusters
this type of traffic can be represented by ICMP packets twntaining those abnormal traffic. Anomaly detection is an
the same dstIP (the victim). In the spreading of the MS-SQhteresting topic for its own sake. We are not trying to
server worm [23], the infected machine will craft and sendonstruct a system to detect anomalies, but protect NetFlow
packets (usually using the same srcPort) to randomly chosérder anomalies by aggregating flows most likely containing
IP addresses on port 1434/UDP. A cluster for this type @iiose abnormal traffic. We have described in Section IlI-A
worm packets will have the same srclP (the infected computéinpt we focus on clusters of 11 kinds of combinations. Other
plus the same dstPort (1434/UDP) and the same srcPort. @naperties of the clusters that contain abnormal traffic include:
can find packets of DoS attacks often have a common dsfit, the number of flows in the clusters is usually large enough
(sometimes with a common dstPort); Packets of worm spreddsbe a problem; second, the size of the flows (the number of
often have the same srclP (sometimes with a common dstPopgckets or bytes) is often much smaller than normal flows;
Packets of port scans usually have a common dstIP (sometirttésd, some keys other than the fixed value, such as srclIP
with a common srclIP). Besides these flooding attacks, anotlrerDoS attack traffic, dstlP in worm spreading traffic and
network behavior which may cause NetFlow to run out alstPort in port scan traffic, are often randomly or uniformly
memory is flash crowds. While its purpose is quite differemtistributed. The first objective of flow aggregation is to identify
from DoS attacks, from the network operator’'s perspectivelusters with these properties.
these two cases are quite similar. Similar to the DoS attack,2) Retain as many key attributes as possible:When
a cluster can be defined for packets with the same dstIP (ame perform flow aggregation, if we merge all flows in the
maybe with the same dstPort). big cluster with a fixed srclP/dstIP into one metaflow, we
Based on the above analysis, we regard srclP and dstifly retain one of the key attributes (the fixed srclP/dstIP)
as more important than the other two keys. So for definirfigr these flows, and no longer keep track of the other three
clusters we only consider combinations which at least contdiay attributes. Merging flows will cause accuracy loss in flow
the same srclP or dstlIP. In other words, we would not considaeasurement for those key attributes that are not retained. If
a cluster which only has the same srcPort, and/or the same can find a smaller and more specific cluster in this big
dstPort. Among the 16 arbitrary combinations of four keysgluster, we can retain more key attributes. For example, in

Properties of desired clusters

S'J’;i;lfﬁff srclP = 137.8.6.5 data structure used to store active flows in this software is
a hash table, in which flows are indexed by hash values of
their flow ID. The number of flows is often larger than the
length of the hash table (in fprobe, there are two choices
for the length, 256 and 65536), so two or more flows can
be computed to the same hash value. A linked list is used
to store flows of this kind of hash collisions. As we have

Cluster A (L1)
N =100

Cluster B (L2)
N =80

1P =137.8.6.5 . . - - .
4P = 138.0.0.2 srclP = 137.8.6.5 mentioned in Section IlI-A, we assume flows are defined in
dstPort = 1434 dstPort = 80 terms of four keys, srcIP, dstIP, srcPort, and dstPort. When

a packet arrives, the system first computes a hash value
Fig. 1. An example of clustersy is the number of flows in each cluster. H4 on its flow ID (the four keys) using a hash function,

H4 = Hash(srcIP,dstIP, srcPort,dstPort). Then the

system finds outd 4 in the hash table and looks at every
Fig. 1, cluster A is a big cluster with a fixed srcIP, whilgiow in the list with H 4, to determine which flow this packet
cluster B is a smaller and more SpeCifiC cluster which Contaiaék)ngs to, or creates a new flow entry if the packet does not
worm spreading traffic from this host. If we choose cluster Bejong to any existing flow.
(worm spreading traffic) instead of cluster A (total traffic) to \We need a new data structure for our flow aggregation,
do aggregation, we keep track of not only the srcIP but also tigich is a tradeoff. If we use a simple data structure like a hash
dstPort. We define level 1() cluster as the biggest clusteraple with linked list as mentioned above, it will be inefficient
which has either the same srclP or dstlP, such as clustertf.aggregate flows in a cluster, which needs to traverse every
define level 2 [2) clusters as the clusters which have fixeglode in the hash table. We need to put flows which are more
values in two dimenSionS, such as cluster B and E, and d6f|"@|y to be aggregated later closer. On the other hand, if we
level 3 (L3) clusters as the clusters which have fixed valugse a complicated data structure like the multi-dimensional
in three dimensions such as cluster D. The higher the legde in [15], it will use excessive memory, and bring too much
of the clusters chosen for aggregation, the smaller the lossoiflerhead to normal flow operations like flow look up.
accuracy.

3) Pick out the larger flows: If there are several big flows H[o[12 . [mo] .. [ess35]

(in terms of bytes or packets) in the identified cluster, wé&l
would pick them out. The first reason is that the size of atta
flows is often much smaller than that of normal flows, s
the big flows in the identified cluster may be normal flow
Secondly, as stated in [26], the omission or inclusion of | ~
bigger flow can have a large effect on estimated total traffic. —{ sretP: 137865]
we would pick out the big flows from the identified cluster an{ .. (ol 202%517 LR o x Lo]
let them retain all the four key attributes. Because some floy— —T
or higher level clusters are picked out, the concept of clust s
is extended to the remaining flows in the original cluster. For
example, in Fig_ 1, Iarge flow C anf3 cluster D are picked Fig. 2. The data structure for adaptive flow aggregation: a two-dimensional

s ; ash table. Node A, B, ... X, Y are flows. Flow As srcIP is 137.8.6.5 and its
out from L2 (.:IUSter B, the remaining flows in cluster B Car{]dstIP is 120.0.0.1. Flow S’s srclP is 202.75.1.7 and its dstIP is 120.0.0.1.
also be considered as a clustér= B — C — D.

4) Maintain high accuracy for most aggregates: Net- Qur data structure is as shown in Fig. 2. The data structure is
work operators are often uninterested in a single flow, byttwo-dimensional hash table. One dimension of the hash table
interested in the aggregates of some flows. For instance, theyy, , the hash value based on a flow's srcIP (the left table of
would like to know how much web traffic is on their link, hash number from 0 to 65535). The other dimensiofis;,
or which hosts generate the most traffic. These aggregagigs hash value based on a flow's dstIP (the top table of hash
or clusters often have some significant attributes such as Kiember from 0 to 65535)H 4, of a packet is computed based
top applications (port) or hosts (IP). One method to maintaghly on its srclP, instead of its flow ID of the four keys, that
high accuracy for the aggregates that network operators gfery, — Hash(srcI P). Similarly, H g = Hash(dstIP).
interested in is to avoid aggregating large flows, as mentionedrake srclP as an example, packets with the same srcIP will
above. From another point of view, in the clusters that aRfinitely be mapped to the sanfé,,, on the other hand,
aggregated, no flow should be significant or stand out froﬁ&ckets with different srcIPs may be mapped to the samg

[dsup: 120001 | dstP:138.0.02 | dstlP:210.0.0.3

|

!
N2
A

the rest, all flows are nearly indistinguishable. because of hash collision. Eadfi,, node has a linked list,
which consists of all srcIPs mapped to tliis,,. For instance,
IV. Data structure srclPs of 137.8.6.5, 202.75.1.7 and 210.70.1.4 are all mapped

First we take fprobe [27] as an example to illustrate the data H 4 = 115. In addition, every srcIP node has a linked list,
structure in ordinary NetFlow process. Fprobe is a libpcapshich consists of all flows with this srclP. The dstIP dimension
based tool that collects network traffic data and emits it @ the hash table has a similar structure. E&tl; node has
NetFlow flow records towards the specified collector. The linked list, which consists of all dstIPs mapped to tHig,.

We only consider clusters containing a fixed srclP or dstIP, se observeX taking the valuer;. The empirical entropy of
we compute the hash value based on these two fields. In tkieis then defined by Equation 1.
srclP/dstIP list, we put flow ID nodes sorted by dstIP/srclIP.
This data structure makes it easier to find flows in one cluster. H(X) == pla:) log p(x:) @)

In the data structure, every IP node has a counter to indicate Ti€X
the number of flow nodes with this IP address. With thi is clear that0 < H(X) < H,4,(X) = log min{Nx,m}.
counter, we can easily get @p list for the IP addresses The above are standard results from [29]. We define the
with the largest flow numbers. Entries in the top list haveormalized entropy adi(X) = Hfjik) If H(X) = 0,
a flow counter and a pointer pointing to the correspondirtgen all observations of{ are the same, i.ep(z;) = 1
IP address node. Now the problem is that the top list is onfgr somez; € X. If H(X) = 1, then the observations
for srclP/dstIP, not for all combinations. The flow aggregatiohave the highest degree of uncertainty or randomness, i.e.,
algorithm is to identify the desired clusters from theSe p(z;) = 1/min{N,, m} for each observed,.

clusters in the top list. Now we introduce the concept of entropy to our problem
of flow measurement. We first define several variables about
V. Entropy based flow aggregation algorithm the properties of flows in a given cluster:

o X: a random variable that denotes one of the four
dimensions (srclIP, dstIP, srcPort and dstPort)

A = {x1,...,z,}: the set of distinct values iX (e.g.,
srclP) that the observed flows take

In this section, we describe our entropy based flow aggre-
gation algorithm. We first illustrate a simple flow aggregation
algorithm in Section V-A. Then we introduce the concept of *
entropy to the problem of flow measurement in Section V-B _
and define a parameter named”P in Section V-C. The ° N the total number of flows in the cluster
detailed description of the entropy based flow aggregation® Ni: the number of flows_t_hat take th(.a.valu!:e S
algorithm is given in Section V-D. Finally, we discuss flow * 2f(%i) = Ni/N: the empirical probability distribution of

aggregation and export in Section V-E. X (in terms of ﬂ(,)\,NS) ,
. I;If(a:i): the empirical entropy ofX (in terms of flows)

))) o Hy(x;): the normalized entropy ok (in terms of flows)

A. A simple flow aggregation algorithm « B: the total number of bytes in the cluster
Before describing our entropy based flow aggregation algo-. B;: the number of bytes that take the value

rithm, we first illustrate a simple flow aggregation algorithm, « pg(z;) = B;/B: the empirical probability distribution of
which was proposed and described in [28]. We defing,.. X (in terms of bytes)
as the memory usage that triggers aggregationapnd as the ~ « Hp(z;): the empirical entropy o (in terms of bytes)
desired memory usage after aggregation. When the memory Hp(x;): the normalized entropy oX (in terms of bytes)
usage reachesi.., the system will identify some clusters |n the first part of our algorithm, we only look at the
and merge all flows in one cluster to one metaflow, thus reduggw distribution in the given cluster. We uge (z;) as the
the memory usage teng.s. It looks at everyLl cluster in probability distribution of X and H;(z;) as the entropy of
the top list to find out if there is one or more2 or L3 X In the second part, we differentiate between big flows and

clusters inside thisL1 cluster (e.g.L2 cluster B/E andL3 small flows. We uses(;) as the probability distribution of
cluster D insideL1 cluster A in Fig. 1). A threshola defines x and Hp(z;) as the entropy ofX.

the minimum size (the number of flows in a cluster) of these Consider the example in Fig. 1, 100 flows form
identified L2 and L3 clusters. Among all identified clusters,cluster with a fixed srclP. Then the entropy of dimension
the higher level ones have the higher priority to do aggregaticgcIP is H;(X) = 0 because all 100 observed flows have
Among all clusters in the same level, the bigger ones hayge same srcIP. Assume all flows have different srcPort, then
the higher priority. We choose these identified clusters oRg entropy with respect to number of flows Bp(X) = 1.

by one from high priority to low priority to do aggregation,As to the dimension of dstPort, there are two significant
until the memory usage is reducedstey. This simple flow values with the probability distribution of(1434) = 0.8
aggregation algorithm can only meet some of the requiremeisd p;(80) = 0.1. Assume the other 10 flows have different
discussed in Section Ill-B, such as keeping as many keyd unique dstPort, then the entropy of dimension dstPort
attributes as possible. More details of this algorithm can e 77, (X) ~ 0.2. From this example one can conclude that
found in [28]. In the rest part of this section, we will introducentropies of these four dimensions are good indicators of their
the entropy based flow aggregation algorithm, which meets ggree of uncertainty or randomness. It tells us if there are
the objectives discussed in Section IlI-B. some significant values that stand out from others or all values

are randomly distributed.

B. Entropy

Entropy is a measurement of uncertainty of a randofr APP
variable. Consider a random variahlé that may takeNx We call those dimensions that have more than one value
discrete values. Suppose we randomly obseiefor m (e.g. the dstIP and srcPort of cluster Bhdom dimensions
times, then the empirical probability distribution of is and those dimensions which have one fixed value (e.g. the
p(x;) = m;/m,z; € X, wherem,; is the number of times srcIP and dstPort of cluster HBjxed dimensionsWhen we

merge all flows in a cluster into one metaflow, we only retaid P Pg. Under this condition, we would choose cluster F to

the fixed dimensions, and no longer keep track of the randato aggregation. So what the flow aggregation algorithm should
dimensions. Among all clusters in Fig. 1, intuitively, we shouldo is to find out cluster F among all sub-clusters of cluster A.
choose cluster B to do aggregation because it meets most of

the aggregation objectives. Firstly, cluster B contains enough Algorithm description

flows compared with cluster D and E. Secondly, the degreeas mentioned in Section IV, we maintain a top list for the

of randomness of its random dimensions is large compargs;qgresses with the largest flow numbers. From the top list,
with cluster A. Thirdly, cluster B contains one more dimensiofqo,, we have several big1 clusters with fixed srclP or dstlP.
(dstPort) than cluster A. o The entropy based flow aggregation algorithm is to find out
We use the Aggregation Priority Parametéi{P) to char- gyery 1,1 cluster's sub-clusters that have the larges?P,
acterize these properties of cluster B. For the four dmensqggt as finding out sub-cluster F inil cluster A. We call them
of a C“jSter' assuming = {all the random dimensionsand yesjred sub-clustersThese desired sub-clusters could not be
F = R = {all the fixed dimensionjs then APP is defined gpordinate to or overlap with each other. Among them, the
by Equation 2. sub-cluster whosd PP is the largest will be chosen. However,
APP; = Min{H;(X;)|X; € R} 2) if several sub-clusters do not contain or overlap with each other

. o _ (we call themdistinct clustery and have similatAP P, they
The larger theAPP of a cluster, the higher priority this \yould all be identified.

cluster would be given to be aggregated. TheP is a direct
indicator of those clusters we want to aggregate because high
APP means that the number of flows in the cluster is large,
and that the entropy with respect to the individual random
dimensions is large, and hence there are no individually
significant flows with respect to these dimensions. Note that
we useH(X;) rather than the normalized entrogy,(X;)
because we should choose the cluster that has enough flows.
What is the relationship between these two properties,

degree of uncertainty and the number of flows in the cluster? | srelP = al sclP—al || | srelP —al i
: : | C31dstPrt=b1 | | C32dstPrt=b1 | | ! | C33dstPrt=bl1 | 1|
Suppose there is &, cluster with a smallerL;; cluster i P cl olP = ¢ i i wePri—3 | |

inside it. The number of flows in thdy (Lgyy) Cluster ————————— " sl !
is N (Ngi1), respectively. Assume everything is randomly
distributed except there is a smalléf,; cluster inside the Fig. 3. An example of the procedure for finding out desired sub-clusters.
big L;, cluster. Then thed PP values of thel.,; and theLy
clusters are, 1) First Step: find out the sub-clusters with the highest
APPy(k +1) = log Nyt APPy: The first part of this algorithm i'_[eratively computes
APP;(k) = —Nk“logNk“ B Nk—N;HllOgi (3) APPy for_each Ieyel of cluster_s and f|_nd§ out those sub-
Nk N Nk Nk clusters with the highest PP, just as finding out cluster
We would choose thd.;q cluster if APP;(k + 1) > B in Fig. 1. Fig. 3 illustrates an example of this procedure.
APPy(k). Given aNy, we can get a threshotifrom Equation The procedure starts fromal clusterC'1 with a fixed srclP,
3. If Npy1/Ni > 6, then APP;(k + 1) > APP;(k). For whose three random dimensions are sorted by their entropy
example, whenV, = 1000, # = 0.25. Hence the smaller in ascending order, dstPort, dstIP and srcPort. The reason for
cluster would be chosen if the size rai\.1 /N, > 0.25. In this reordering is that the lower the entropy of one dimension,
other words, when the size of the smaller cluster reaches OtBB higher the possibility that there is a big sub-cluster in this
of the bigger cluster, it is too significant to be ignored. Thdimension. For example, in Fig. 1, dimension dstPort has a
thresholdd decreases as the value &, increases. In Fig. 1, big sub-cluster B. Looking at dimension dstPort given srclP =
the size ratio of cluster B and cluster A is 0.8, so it is toal, we find out allL.2 clusters such a€'21 and C'22 whose
significant to be ignored. flow numbers are greater than a threshgld If any one of
As we have mentioned in Section IlI-B, if there are sever#theseL2 clusters has a larget P P; than its parent cluste?'l,
big flows in the identified cluster, we would pick them outthis L2 cluster will replace cluste€'1 to become one of the
To do this, we further defin@l PP (in terms of bytes) as: candidates of the desired clusters. We also zoom in or.the
) sub-clusters of each2 cluster. Take”'21 as an example, it has
APPp = Min{Hp(X,)|X; € R} “) o random dimensions sorted by entropy. We find out those
High APPp means there will be no flow much larger thar.3 clusters such a§'31, C'32 and(C'33, whose flow numbers
other flows in the identified cluster. Now we assume all flonsre greater tharf,, and computed PPy of these clusters. If
in cluster B have the same size except flow C, whose size isdily one of thesé& 3 clusters has a larget P P; than its parent
times of that of other flows. Cluster D has 10 flows with thand thelL1 cluster, it will replace them to become one of the
same dstIP. Thed PP (B) = 5.73. If we pick out flow C and candidates. After examining all the sub-clusters in the three
cluster D, theAPP of clusterF' := B—C—Dis APPp(F) = random dimensions, we get a list of candidates for the desired
6.11. Among all clusters in Fig. 1, cluster F has the highesub-clusters, which are distinct clusters with simitaP P;.

The complexity of this procedure largely depends on theith the highestd P P;. First, in line 6, allL2 sub-clustersS,
threshold f,.. The higher this threshold, the less sub-clustemse put intoL2. TheseS; have fixed dimension® U {r;}
we need to examine. To dynamically adjy$t we maintain and have flow numbers greater thgn. The two random
an APP,,.. which represents the current maximudPP; dimensions ofS), are represented b§. In line 7 to 21, every
value of all clusters that we have examined. We have not&g is zoomed in on itsL3 sub-clustersL3[j], which have
that the maximumd PP, of a cluster equals ttog N, where three fixed dimensions represented By In line 20, theL2
N is the number of flows in this cluster. We can get= sub-clusterSy, or one or several3 sub-clusters fronT.3[0],
24PPmaz and only examine those sub-clusters whose numbar from L3[1] are chosen and appendediist[i], depending
of flows greater thary,, because only these sub-clusters haven which one has the highegtP P;. In line 22, sub-clusters
the possibility to haved PPy values larger thall PP,,,,,. To in list[i] are appended t@’'List as long as they are distinct
finally find out several distinct clusters with similatPP;, clusters and have similat P Py with the highest one.

we can setf, = k x 24P Pmas where0 < k < 1. 2) Second Step: pick out big flows from the candidates:

Till now we do not differentiate between big and small flows.
Algorithm 1 finding out sub-clusters The second step is to pick out big flows from these candidates,
Input: ClusterC(D), whereD = {srcIP} or {dstI P} such that the remaining subset has the higheBtPs, e.g.,
Output: sub-clusters of highd PP; C List cluster F' in Fig. 1. We call it themaximum entropy subset
FindSubCluster (C){ After we extract the maximum entropy subset from each
1. computeC.APP; candidate, they will have the newP Pg, which are different

2. initialize CList, APPpas, f; from the original APP;. At last, we reorganize the list by
3. R=T\D, whereT = {srclP,dstIP,srcPort,dstPort} r€moving those sub-clusters whose néw Py are not at the
4. sortR to R = {r;|H(ro) < H(r1) < H(rs),0 <i <2} Same level with the sub-cluster having the highests. This

5 fori=0to?2 part is shown in line 24 to 27 of Algorithm 1.
6
7
8

L2 = {Sk|Sk(D @] {TZ}),S]CN > fr}

for every Sy in L2 Algorithm 2 finding out the maximum entropy subset

. computeSy,. AP P; Input: cluster C with random dimensions rd
9. UpdateAPP,, 4z, fr Output: maximum entropy subsets of cluster C
10. G = R\{r;} GetMaxEntropySubse{(C, rd) {
11. sortG to G = {g;|H(go) < H(¢1),0 < j <1} 1. d = MinEntropy(C,rd)
12. for j=0to1 2. sort C to{S;]Si(d), Bi—1 < B;,1 <i< X4}
13. F=Du{ri}U{g;} 3. E=0;H,=0,k=0;, R=0
14. L3[j] = {SS)|SSi(F),SS|.N > f.} 4. fori=1to Xy
15. for everySS; in L3[j] 5. P, =B, /Zxd B;
16. computeSS;. AP Py 6. R=R+PF;
17. UpdateAPP,,qz, fr 7. E = E — PlogP;
18. end for 8. =E/R+logR
19. end for 9. |f (H’>Hk)Hk7H’ k=1
20. list[i].append (MaxAPPy, L3[0], L3[1])) 10. endfor
21. end for 11. returnk, Hy
22. CList = MaxAPPDistinctCluster List, list[i]) }
23. end for
24. for everyCp in CList
25. GetMaxEntropySubseC() We use Algorithm 2 to find the maximum entropy subset
26. end for of a cluster C. First we computeHg for every random
27. reorganize List) dimension ofC, and set to the dimension with the minimum
} entropy (line 1). After that, all flows inC' are sorted to

{84]8:(d), B;_1 < B;,1 < i < X4} (line 2). X4 is the
number of different values in dimensiah S; is the set of
Algorithm 1 represents the algorithm for finding out desiretiows which have the same value in dimensianLet B; be

sub-clusters from the original.l cluster. The input to the the total number of bytes of all flows ifi;, and theses; are
function is anL1 cluster C' with fixed dimensionD. The sorted in ascending order &;.
output of the function i< List, a list of sub-clusters with the The entropy of dimensiord Of cluster C is Hp =
largest APP. Line 1 to 23 of the function describe the first- Y% PilogP;, whereP; = B;/ "% B;. We want to pick
step of the algorithm. Line 1 to 4 are the initialization stepgut some biggestS;, k+1 <i < X;} and let the remaining
including setting the initial value oAPP,,,, to C.APP;, {Si;;1 <14 <k} be the maximum entropy subset. Sometimes
computing corresponding,., settingC List to C, and sorting the maximum entropy subset is generated by picking out the
R by entropy in ascending order, whefeis the three random smallestS;. We do not consider this condltlon because we only
dimensions ofC. As shown in line 5 to 23, we examine theneed to pick out big flows. LeR = Zz 1 P, then the entropy
three random dimensions one by one to get a list of candidatés{S;,1 < i < k} is H, = —Zzzl(P /R)log(P;/R) =

Ex/R + logR, where By, = — Zle P;logP; is the part that other solutions including, 1) NetFlow without memory con-
the subset: contributes toH g. Having this relationship, we straint pasic NetFlow, 2) NetFlow which rejects new flows
can find out the maximum entropy subset by going througbhen the cache is fullriéjecting NetFlow, 3) NetFlow which
theseS; only once, as described in line 3 to 10. The outpuwxports more aggressively when the cache is fedpprting
are k and Hy, that is to say, the maximum entropy subset isletFlow), 4) adaptive NetFlow(proposed in [5]) that adapts

{S;,1 <1<k} and its entropy isH. the sampling rate to traffic, and 5) teenple flow aggregation
_ algorithm proposed in [28]. We take the implementation of
E. Flow aggregation and export fprobe as an example dfasic NetFlow

After the algorithm identifies the desired sub-clusters, the)
system merges all flows in one desired sub-cluster to offe Resource requirement
metaflow. If there are several desired sub-clusters with similarFirst we analyze the resources required by the algorithms.
APP, we get one metaflow from each sub-cluster. If th&he key resource measures include the size of flow memory,
desired sub-cluster is like clustét:= B — C — D in Fig. 1, the size of export bandwidth, and CPU utilization.
then all flows except flow C that are in cluster B but not in 1) Flow memory: Because of our modified data structure,
cluster D are merged to one metaflow, while flow C and theur algorithm uses a bit more memory thhasic NetFlow
flows in cluster D are not modified. AssumeS; is the size of a flow entrys;, is the size of an IP
The metaflow keeps the values of fixed dimensions of thidode in Fig. 2. Considering the worst case, every flow entry
cluster and set the values of random dimensions to *, denotihgs different srclP and dstlP, then our algorithm usgs+
all possible values. Other attributes of this metaflow are similar S;, +4)/5¢ times memory obasic NetFlow4 denotes we
to those defined in [8]: the packet/byte count is the sum of thise one more pointer in the flow enty; is around 64 bytes,
number of packets/bytes of all aggregated flows, the timestaip is around 10 bytes (two pointers and one counter). So our
of the first packet (create time of the metaflow) is the minimumhata structure uses 1.4 times the memorpadic NetFlowin
of this timestamp of all aggregated flows, and the timestampthfe worst case.
the last packet (modify time of the metaflow) is the maximum Besides the memory used for storing active floestropy
of this timestamp of all aggregated flows. based flow aggregationses additional memory when it does
When a packet arrives, the system determines if this pacKew aggregation. The first one is the temporary memory used
belongs to an active flow. For a metaflow, only fields of aim identifying the desired sub-clusters for eaéh cluster.
exact value are compared with corresponding fields of tesume thell cluster hasV flows, the system uses a linked
packet. For example, if a metaflow is (srclP = *, dstIP dist to store the information of all the flows that belong to this
210.0.0.3, srcPort = *, dstPort = 80,TCP), then all followingluster, which includes a pointer to this flow. Because we need
packets of web traffic to the server with IP address of 210.0.0@sort all the flows in this cluster when we compute entropy,
will be regarded as belonging to this metaflow. The metaflowe use this linked list to store the sorted flow information.
will be terminated and exported as other normal flows whekssume the size of a node in this linked listdg;, then the
the termination criteria are met, includinigactive timerand total memory needed for each clustemNs: S¢,;. This memory
active timer Note that the criteria based on certain TCP flagaill be freed after we identify the desired sub-clusters in this
would not be used, because these flags indicate the terminatitrster, so the peak memory 1§, * Sy;, where Ny, is
of only one flow but not the metaflow. the maximum flow number of all thé1 clusters.Sy; can be
When new packets do not belong to any active flow b bytes if each node in the linked list only stores a pointer to
belong to one metaflow, the number of packets and bytestbé flow and a pointer to the next node. The second one is the
this metaflow will be updated. So we can get accurate packeemory used in the bitmap algorithm for counting the flow
and byte counts for the metaflow. The number of flows afumber in every metaflow, which i©(log(Nyeta)), Where
the metaflow cannot be counted directly because we mu$f,.., is the flow number in each metaflow. This part of
distinguish between packets belonging to the old and theemory is not freed until this metaflow is terminated and
new flows and increment the flow counter only if the flovexported.
is new. We use the multi-resolution bitmap algorithm which Adaptive NetFlowmay also use more memory théasic
was proposed in [30] to estimate the number of flows. BefoMetFlow The algorithm divides the NetFlow operation into
merging flows in one cluster to a metaflow, the system creategi@asurement bins. A fixed size of the measurement bin could
multi-resolution bitmap, and maps all flow IDs in this cluster tbe a problem, because its optimal size depends on the traffic
the bitmap. Whenever a new packet is determined to belongniix. If the measurement bin is too large, it keeps many short
this metaflow, the system will map its corresponding flow ID tows unnecessarily long in the memory cache, and uses more
the bitmap. We can get quite accurate result for the estimata¢mory than necessary. If the memory is bounded, then the
number of flows if we use a large enough bitmap. Becausdaptive algorithm decreases the sampling rate lower than
there will not be too many identified clusters, the memonyecessary, and sacrifices the accuracy of all flows. On the other
requirement and the processing overhead are acceptable. hand, if the measurement bin is too small, it splits many long
_ flows to several flows, hence increases the export bandwidth
VI. Analysis and burdens the collector. Oneslaptive NetFlowfixes the
In this section, we analyze the algorithm proposed in thgze of the measurement bin, how much memory that it uses
paper éntropy based flow aggregatiprand compare it with more thanbasic NetFlowdepends on the traffic mix.

2) Export bandwidth: Besides memory, another mainflow aggregation depends on how aggregation is performed
resource constraint is export bandwidth. Our algorithm usaad whether the network operators care about the details lost
either the same or less export bandwidth thasic NetFlow during aggregation. If the dimensions that we discard during
Its export bandwidth is the same basic NetFlowmwhen the aggregation are included in the dimensions network operators
system does not aggregate flows, and less Hzmic NetFlow are interested, then there is loss of accuracy; otherwise, there
when it performs aggregatiorExporting NetFlowmay use is effectively no loss of accuracy. For example, if we identify
a very high export bandwidth, and may flood the collectoand aggregate a cluster of fixed dstIP plus dstPort, then we still
In adaptive NetFlowa router operator specifies the reportedet accurate results for protocol and application breakdowns,
number of flow recordsM desired for each measuremenand the destination host. However, if the network operators are
bin, the algorithm guarantees this fixed export bandwidth ligterested in the srcIP or srcPort of this traffic, they cannot get
decreasing the sampling rate. the accurate statistics of these two dimensions. We compare

3) CPU utilization: We first describe the overhead tdthe accuracy ofentropy based flow aggregatiowith other
normal flow operations, that is, update the flow cache whenlutions by experiments, described in Section VII.
new packets come in and periodically check the flow cache
looking for expired flows. In extreme conditions, if a large Palt practical Considerations

of flows have the same srcIP or dstlIP, then the correspondingO] -)
IP node list will be so long that it would slow down flow ften the reason for abnormal traffic conditions is due to

lookup. Actually we can define a threshold, and when tRecurity attacks and s_uch attacks_often have some common
length of the IP node list reaches this threshold it triggeR&tterns. So our algorithm can relieve the resource overload
aggregation. As mentioned in Section IV, we maintain a tdpy identifying these traffic clusters and aggregating these
list for the IP addresses with the largest flow numbers. Anoth@f9€ amounts of short flows into a few flows. Sometimes,
overhead to normal flow operations is to maintain this top lidf!® overload may be caused by undifferentiated traffic not
Every time we create or delete a flow entry, we need to upd&@minated by any particular cluster, e.g., a shift in load caused
the top list. However, the maximum number of the top list i8Y lInk failure or routing change. In this situation, even if
not large (20 or even less is enough). In addition, We nedff 2ggregated alL1 clusters, the memory which will be
some extra processing to find out the desired sub-clusters f&ed may still not satisfy the requirement. In other words, our
every L1 cluster. The complexity of this algorithm §(N?) solution cannot deal with this case. From this point of view,

whereN is the number of flows in thé1 cluster. The detailed ©Ur solution should be considered as a way to complement
complexity analysis is given in Appendix A. other current solutions, rather than completely replace them.

If our algorithm fails to find appropriate clusters, we conclude
that the traffic is undifferentiated and take other actions such as
B. Accuracy in rejecting NetFlowexporting NetFlowor adaptive NetFlow

Various network anomalies all tend to generate excessive”nother problem is that the traffic from a busy web server
number of flows, often exceeding the resource contraints B8Y be identified as the desired cluster by our algorithm. So if
traffic monitors. Most countermeasures need to give up soimere are links in the network that are dominated by particular
accuracy in traffic capturing. For example, one countermeas(festers in the normal case, network operators can use policy
is rejecting NetFlowthat rejects all new flows when thet0 protect such clusters, resulting in the algorithm looking
cache is full. Another countermeasure adaptive NetFlow for other clusters or performing aggregation only when they
that automatically chooses a lower sampling rate duringeggceed their policy defined limits. If there is a flash crowd to a
DoS attack. While this measure degrades the system gracef@fjver. it will be very similar to a DoS attack from the point of
during attack, it unfortunately affects the accuracy of all flow§ew of our system. Then the flows of this flash crowd will be
collected. Sometimes the bottleneck is not the netflow (in tigentified and aggregated when they exceed the limits defined
router), but the flow export process, especiallyeixporting by network operators.

NetFlow Accuracy can be lost in two ways: (@) routers export

NetFlow records to the collector using UDP and flow records VII. Experimental evaluation

are lost due to congestion; (b) the post-processing analysigy this section, we evaluate different solutions by running
and visualization tools cannot keep up with this avalanche gfom on synthetic and real trace files. These solutions include
flows. o basic NetFlow rejecting NetFlow exporting NetFlow adap-

When comparing with those c'ou'ntermeasures that Io;e flqm,% NetFlow simple flow aggregatioandentropy based flow
during heavy load, the superiority of flow aggregation iggqgregation We first present our experimental setup, and then

easily established. The comparison of flow aggregation agaiaﬁ;e out evaluation results on different trace files.
adaptive Netflowhowever, is hard to quantify. By lowering the

sampling rateadaptive Netflowvill lower the accuracy of all .

flows with equal probability; hence all kinds of aggregates (- EXperimental setup

ports, IP addresses, etc.) also lose accuracy proportionally. OnVe first present our metrics and experimental datasets. For
the other hand, flow aggregation uses a lower resolution orgygiven cluster, assumey, n,, np are the number of flows,

for some, but not all clusters, so loss of accuracy for differeptckets and bytes of this cluster. This given cluster can be any
aggregates is quite different. The loss of accuracy brought tvgffic aggregate that network administrators are interested in,

e.g., all the traffic sent from a specific ho8tasic NetFlow

can get accurate values of these numbers, while the estime
values from other solutions will be different from the accurat
ones. Different solutions use different amounts of resourc
and have different accuracy. We use the following metrics - i

evaluate these solutions:
o memory usage - memory used at the observation point

« export bandwidth - number of flows exported during the'd- 4

past 2 minutes

« relative error - average error for byte, packet, or flow

estimates

relerr; =

Equation 5 is used to compute the relative error of a giver
solution. We repeat the experiment fmrtimes,n;, n;’,, and

—

ni are the estimated value for the number of flows, packet:

1

m

—

n;j

t T [, A (Ts, Te] Description
A | 10s | 1s | [900, 1200] [0, 5400s]
B | 10s | 5s [180, 240] [0, 5400s]
C | 10s | 1s [180, 240] [0, 5400s]
D | 10s | 5s [36, 48] [0, 5400s]
E | 0.1s| 0.1s [2, 20] [2700s, 3700s] DoS attack
F | 0.1s| 0.1s [2, 20] [2000s, 4000s]| worm spreading
G | 10s 1s [180, 240] [0, 5400s] web traffic
TABLE I

Synthetic trace flow information.

SN -21<i<mi=fpB (5

i=1

and bytes in the*" experiment of this solution.

The data sets that we measure different solutions are:

« “Synthetic” - a synthetic trace file generated by CSIM
o “DarpalDE” - the training data of the 1998 DARPA

Intrusion Detection Evaluation
o “CaidaOC48” - a 30 minute trace of the traffic on an
OC48 IP backbone link, provided by Caida

B. Resource evaluation on synthetic trace file

We use CSIM, a general purpose discrete-event simulat
to generate a synthetic trace file. During the observation tin
of 5400s, there are seven types (A, B, C, D, E, F, G) ¢
flows. Flows of each type arrive as a Poisson process, and !
inter flow time is exponentially distributed with mean In
every flow, the packet arrival is also Poisson, and inter pack
time is exponentially distributed with mear. The number
of packets for every type of flow is uniformly distributed in a
rangel[l;, h;]. The characteristics of these seven types of flon
are shown in Table Il. Flow E is a simulated DoS attack, a
flows of type E have the same dstIP and dstPort. It does r
last during the whole duration of 5400s, but starts at 2700
and ends at 3700s. Flow F is a simulated worm spread,

Fig. 5.

10

flows E and F, theit and r are longer,! and h are larger.
Their IP address and port are randomly generated except that
all flows of type G are web traffic to the same dstIP.

x 10

—6— basic NetFlow
—— exporting NetFlow |
~°| &« adaptive NetFlow [~
—*— flow aggregation

w

bzte)

W

[S)

memory usage (

1 1
2000 4000

. 3000
systime (sec)

Memory usage for different solutions on synthetic trace.

6000 T T

: : —e— basic NetFlow
| | | —— exporting NetFlow

| S — b, A — adaptive NetFlow | |
: : : —— flow aggregation

4000

export bandwidth
8

)

=1

=1

=]
T
I

i s 3

|
5000

I
2000

Hk Fek l
i

1
4000

d
1000 6000

3000
systime (sec)

Export bandwidth for different solutions on synthetic trace.

x 10* adaptive NetFlow

T T
i | —e— sampling rate

W
o
W

ing rate

0.2

memory usage
N

sé—mpl

o
=]
S

10.02

0 H H H H H
2100 2140 2160 2180 2200 = 2220 2240 2260

systime (sec)

H
2120 2280

Memory usage and sampling rate in several measurement bins of

ig. 6.
ﬁ?bptive Netflowon synthetic trace.

flows of type F have the same srclP. It starts at 2000s, and

ends at 4000s. Flow A, B, C, D and G are simulated normalFig. 4 shows the memory usage of different solutions. we
traffic, they last during the whole duration. 7, [and h are define m,,,, = 40000 bytes, and mgy.s = 30000 bytes.
different for each type, so they have different characteristid/hen memory usage reaches,,.., different systems (except
long-lived or short-lived, dense or sparse. But compared wittasic NetFlow perform different operations to reduce memory

11

usage tomg.s, While basic NetFlowis assumed to have we omit the resource evaluation results, which are the same
unlimited memory. Fig. 5 shows the export bandwidth of theses what we expect and similar to those of the “Synthetic”
solutions. We record export bandwidth every 2 minutes, whictataset. To compare the accuracy aafaptive NetFlowand
is defined as the number of flows exported during the paseftropy based flow aggregatiomwe perform post-processing
minutes. Forexporting NetFlow before reachingn,,..., its on the flow records exported froadaptive NetFlowentropy
memory usage and export bandwidth are the same as thaba$ed flow aggregatioand basic NetFlow We perform three
basic NetFlow After exceedingm..., itS memory usage is post-processing steps based on the applications used by most
bounded bym,,..., but the export bandwidth is much highemanalysis and visualization tools.
than that ofbasic NetFlow The first post-processing step is protocol breakdown. For
For adaptive NetFlowwe use the measurement bin of these solutions, protocol breakdown counts the number of
minute. Before reachingn,,.., memory usage oldaptive bytes, packets and flows for TCP, UDP and ICMP. We repeat
NetFlowis a little greater than that ddasic NetFlow due to each experiment for 5 times, and geterr using Equation 5.
the unnecessarily long time thatlaptive NetFlowkeeps short Relerr results foradaptive NetFlowand entropy based flow
flows in the memory, as we mentioned in Section VI-Al. Oaggregation are shown in Table Ill. It may be unfair to
the other hand, export bandwidth aflaptive NetFlows also compare theelerr results for the number of flows directly,
greater than that dbasic NetFlow The reason is that manybecause we use the bitmap algorithm to count the number
flows we generated are much longer than the measuremehflows of the identified clusters. We also give out the flow
bin of 1 minute, so they are split into several flows. Afteerror result without using the bitmap algorithm, as shown in
exceedingn,,.., its memory usage is bounded by, and the “flow err” column. The flow error result using the bitmap
the export bandwidth is stable. For more detail, its memoalgorithm is shown in the “bitmap” column.
usage and sampling rate in several measurement bins ar€he second post-processing step is port breakdown, which
shown in Fig. 6. At the beginning of one measurement bin, tlheunts the number of bytes, packets and flows for different
sampling rate is equal to 1 (process every packet). When therts. Foradaptive NetFlowand entropy based flow aggrega-
memory usage reaches,, .., adaptive NetFlowdecreases its tion, we calculaterelerr for the top srcPort/dstPort sorted by
sampling rate. At the end of one measurement bin, all actittee number of bytes, packets and flows. For brevity, we only
flows in the cache memory are exported and the sampling rateowrelerr of the top 8 srcPorts sorted by the number of bytes
is reset to 1. In this experiment, the sampling rate decreaseslable IV, and omit the other fiveelerr tables. The third
to a low value of around 1/30 (as shown in Fig. 6). post-processing step is to find the top hosts by bytes, packets
For entropy based flow aggregatipbefore reachingn,,,..., or flows of traffic generated/receiveRelerr results of top 8
its memory usage is larger than thathafsic NetFlow due to dstIP sorted by bytes are shown in Table V.
the overhead caused by the new data structure, as we analyzdetom theserelerr results, we conclude thantropy based
in Section VI-Al. Its export bandwidth is the same as that éfbw aggregatiorprovides better accuracy for legitimate flows
basic NetFlowAt around 2000 sec, the memory usage exceettmnadaptive NetFlowAs shown in these three tablestropy
mmaz- 1he algorithm identifies the cluster of the simulatetased flow aggregatioachieves accurate results with zero byte
worm spread (with the same srcIP) and aggregates flowseimors and packet errors. The reason is that flow aggregation
this cluster. Both the memory usage and export bandwidth &eeps the accurate byte and packet counts for metaflows. The
much lower than those dfasic NetFlow At around 2700 sec, Smurf attack in this dataset generated large number of ICMP
the simulated DoS attack is generated, so the memory usélgers, which causes the memory usage to reagh,, and
exceedsn.,., again, which triggers the second aggregatiotriggers flow aggregation. The TCP and UDP traffic is not
The third aggregation occurs at around 3800 sec. The reasffiected, so there is no error in the flow counts for TCP and
is that we use amctive timerof 30 minutes, so the metaflow UDP in Table Il and the flow counts for all the top srcPorts in
generated from aggregation at 2000 sec is terminated arable IV. On the other hand, we aggregate those ICMP flows
exported at 3800 sec. But because packets in this worm spreathe victim dstIP in the Smurf attack into one metaflow and
have not stopped, many new generated flows make the memdoynot keep the flow counts, so the flow counts for ICMP and
usage reachn,,,, again and trigger the third aggregation. Athe victim dstIP have high error rates of 66.04% and 57.60%
the time when system performs aggregation (around 2000 sexspectively. After using the bitmap algorithm, the flow count
2700 sec, 3800 sec), the peak memory usage is a little highesults become much more accurate, as shown in the “bitmap”
thanm,,q., which includes the additional temporary memorgolumns.
used in identifying the desired sub-clusters.

D. Accuracy evaluation on “CaidaOC48" dataset

C. Accuracy evaluation on “DarpalDE” dataset The “CaidaOC48" data set is a 30 minute trace from Aug

In this section, we will show results from experiments 08002 of one direction of traffic on an OC48 link located in San
traces of actual traffic. The dataset we use is part of the trainidgse, provided by Caida. The flow rate, packet rate, and byte
data of the 1998 DARPA Intrusion Detection Evaluation [31}ate of this data set is 5k/s, 75k/s, and 396M/s respectively. We
which contained a wide variety of simulated intrusions. Wartificially generate several DoS attacks and worm spreads and
choose Wednesday data of week 1 as our experiment datéx it with “CaidaOC48”. The information of these attacks is
because it contains DoS attacks such as Smurf. For brevitiown in Table VI. The time of traffic A being [120s, 180s]

Relative error (%) of protocol breakdown on “DarpalDE” dataset.

adaptive NetFlow

protocol | % byte err | packet err| flow err | bitmap
TCP 85.2 0.21 0.28 15.18 NA
UDP 0.6 0.97 0.77 33.15 NA
ICMP 142 | 21.21 21.04 36.99 NA

entropy based flow aggregation

protocol | % byte err | packet err| flow err | bitmap
TCP 85.2 0 0 0 0
UDP 0.6 0 0 0 0
ICMP 14.2 0 0 66.04 0.99

TABLE Il

Relative error (%) of port breakdown on “DarpalDE” dataset.

adaptive NetFlow
srcPort % byte err | pkt err | flow err | bitmap
80, tcp 66.54 0.31 0.32 16.63 NA
20, tcp 11.45 0.26 0.26 8.31 NA
25, tcp 0.58 0.68 0.36 3.00 NA
53, udp 0.52 1.73 1.26 26.68 NA
21, tcp 0.075 1.29 0.40 21.31 NA
23, tcp 0.072 2.05 1.27 16.19 NA
123, udp | 0.069 2.90 2.90 37.91 NA
11306 , tcp| 0.019 0 0 0 NA
entropy based flow aggregation
srcPort % byte err | pkt err | flow err | bitmap
80, tcp 66.54 0 0 0 0
20, tcp 11.45 0 0 0 0
25, tcp 0.58 0 0 0 0
53, udp 0.52 0 0 0 0
21, tcp 0.075 0 0 0 0
23, tcp 0.072 0 0 0 0
123, udp | 0.069 0 0 0 0
11306 , tcp| 0.019 0 0 0 0
TABLE IV

adaptive NetFlow

dstlP % byte err | pkt err | flow err | bitmap
172.16.114.50 | 14.66 21.17 19.68 29.74 NA
172.16.116.44 | 9.09 0.46 121 14.11 NA
172.16.114.169| 8.16 0.44 0.99 12.24 NA
172.16.114.148| 5.19 0.95 0.62 17.00 NA
172.16.113.84| 5.03 0.97 1.23 9.08 NA
172.16.114.207| 4.64 1.32 1.32 16.94 NA
172.16.112.194| 4.44 1.31 1.32 15.62 NA
172.16.112.149| 3.88 0.97 1.05 6.33 NA
entropy based flow aggregation
dstIP % byte err | pkt err | flow err | bitmap
172.16.114.50| 14.66 0 0 57.60 0.86
172.16.116.44 | 9.09 0 0 0 0
172.16.114.169| 8.16 0 0 0 0
172.16.114.148| 5.19 0 0 0 0
172.16.113.84| 5.03 0 0 0 0
172.16.114.207| 4.64 0 0 0 0
172.16.112.194| 4.44 0 0 0 0
172.16.112.149| 3.88 0 0 0 0
TABLE V

Relative error (%) of IP breakdown on “DarpalDE” dataset.

12

means it starts at 120s and ends at 180s. SrclP of traffic
A being “*.***" means its srclP is a randomly chosen IP
address. Byte of traffic A being 40 means its packet size is
40 bytes per packet. SrclP of traffic B being “3 hosts: a.b.c.d”
means there are three hosts that send the traffic, and dstIP of
traffic B being “a.b.*.*” means the first two parts of the dstIP
are equal to the srclP.

As we have mentioned in Section |, for high-speed in-
terfaces, Cisco introduced sampled NetFlow. We do not use
sampling for the last two experiments because of their low
data rate (about 118 Kbytes/sec for the synthetic dataset and
4 Kbytes/sec for the “DarpalDE” dataset). For this OC48 data
set, we set the packet sampling rate to 1/100. That is, we use a
basic sampling rate for all solutions includibgsic NetFlow
In addtion, we only focus on the error caused by decreasing the
sampling rate or performing flow aggregation under memory
shortage and ignore the error caused by the packet sampling
under normal conditions. So we preprocess the trace file by
sampling it using a sampling rate of 1/100. After that we run
different solutions on the pre-sampled trace file.

O 1=~ —o— basic NetFlow |~
: : : : : : —=— flow aggregation

memory usage (byte)

i i i i i
800 1000 1200 1400 1600 1800 2000
systime (sec)

H H
400 600

i
0 200

Fig. 7. Memory usage foentropy based flow aggregatian “CaidaOC48”
dataset.

We setmqa. = 900000 bytes and mges = 850000 bytes
for all solutions. Foradaptive NetFlowwe use 20 sec as the
size of the measurement bin such that its export bandwidth is
similar with that ofentropy based flow aggregatioRor simple
flow aggregationwe setr = 30, which means the minimum
size for the identified clusters is 30. Fig. 7 is the memory
usage ofentropy based flow aggregatiofmhe increases in the
memory usage obasic NetFloware caused by all the DoS
attacks and worm spreads shown in Table VI except traffic F,
whose flow rate is too low to trigger flow aggregation.

Entropy based flow aggregatioaccurately identifies all
the clusters of the DoS attacks and worm spreads except
traffic F. The metaflows resulted from tleatropy based flow
aggregationpresent the network administrators some useful
information about these DoS attacks and worm spreads. For
example, for traffic B and Centropy based flow aggregation
generates three metaflows, each one corresponds to one host
that sends out the worm traffic. Each metaflow gives out
the information including begin time, duration, srclP, dstPort,
protocol, byte number, packet number and flow number of this

13

\ time simulated attack | flow rate srclP dstIP srcPort dstPort [protocol | byte |
A [120s, 180s] DDoS 33k/s *E xR 162.131.189.129 * 80 TCP 40
B [360s, 480s] Blaster worm 0.75k/s | 3 hosts: a.b.c.d a.b.x.* 1000 - 1999 135 TCP 40
C [360s, 480s] Blaster worm 2.25k/s | 3 hosts: a.b.c.d * kR K 1000 - 1999| 135 TCP 40
D [450s, 510s] | DoS after Blaster| 10k/s a.b.*x* 207.46.18.94 | 1000 - 1999 80 TCP 40
E | [600s, 1200s] | Slammer worm 5k/s 5 hosts: x.y.z.w kR kK 3355 1434 UDP 376
F | [1620s, 1800s]| Welchia worm 0.5k/s 239.187.123.15 239.187.*.* ICMP 92

TABLE VI

Information of simulated DoS attacks and worm spreads.

worm spreading. DstIP and srcPort of the worm traffic are nobntaining attack flows as well as pick out some large normal
given by the metaflow because of flow aggregation, which alews belonging to the identified clusters. After identifying
randomly chosen by the worm. these clusters, the system merges flows in the clusters to

In accuracy evaluation on the “DarpalDE” dataset as showmetaflows, and updates information of the metaflows from new
in Section VII-C, we only compare the accuracyaafaptive incoming flows belonging to these clusters.
NetFlowandentropy based flow aggregatioBecause the flow We analyze the resource requirements and accuracy of
rate is very low, there is very few other legitimate traffic wheour solution, and compare it with other current solutions.
the DoS attacks occur. Seimple flow aggregatioracts in Experimental evaluations on synthetic and actual trace files
a similar way asentropy based flow aggregatiathoes, and confirm our analysis on resource requirements, and show that
rejecting NetFlowalso has a good result because most of thaur solution provides better accuracy for legitimate flows. The
packets that are thrown away are DoS attack packets. On theasurements for bytes and packets are completely accurate,
other hand, the “CaidaOC48” dataset has a high byte/flow rateyd measurements for flows are nearly accurate using the
so we compare the accuracy of all the four solutions for th@tmap algorithm.
“CaidaOC48” dataset.

Relerr results of some top dstIPs of these solutions are APPENDIXA
shown in Table VII. The byte error and flow error i&fecting Complexity analysis of Algorithm 1
NetFlow are similar, because it just rejects new flows when Assume there areV flows in an L1 cluster C, we give
the flow cache is full and does nothing to the lost flow dataut the complexity analysis of Algorithm 1. The computation
On the other hand, the flow error aflaptive NetFlows much complexity depends on those operations that need to look at
greater than its byte error, becaustaptive NetFlovdecreases part or all flows in cluster, including the operations in line
the sampling rate and compensates this by multiplying the jine 8 and line 16. There are two steps to compute the
result by the sampling rate while cannot do correspondiRgtropy of a random dimensiahof clusterC. First, sort the
compensation to the flow numbers. Our two flow aggregatigyws by the value of dimensiod such that all flows with
solutions provide better accuracy than the other two solutionge same value in dimensiahare put together. This step can
Forentropy based flow aggregatiponly the victim of traffic A pe regarded as an insertion sort with the frequency count of
has error in the flow count. Howevesimple flow aggregation N (N —1)/2. The second step is to compute the entropy, which
identifies otherL2 and L3 clusters with size greater than has the frequency count d¥. ClusterC' has three random

which results in the flow errors of some hosts. dimensions, so the frequency count of the operation in line 1
is3N(N —1)/24 3N =3(N?+ N)/2.
VIIl. Conclusion The operation in line 8 is to computéP Py for all .Sj, in

NetFlow is the traffic measurement solution most widel 2,1 <k < ns, wheren, !S the numbernqsk in L2. Assume
e number of flows oF}, is Ny, then) ", N, < N. S}, has

used by ISPs to determine the composition of the traff : . .
mix in their networks. However, NetFlow has the probleriVC fandom dimensions, so the frequency count of computing
' S APP; is 2Ny (N, — 1)/2 + 2Ny The frequency count of

of overrunning available memory for flow records durin) . . e
abnormal situations. Currently available countermeasures h puting theAP]sf of 2a|| Sk n L2 s Zkfl(QNk(N’“ N
2+2Nk): k;lNk +Zk:1Nk‘ < N< + N. So the

their own problems. We propose an entropy based adapt] fline 8 BN213N . Similarly. the f
flow aggregation algorithm. This mechanism, while certainl yequency countg '”3‘ BNZ+3N. Similarly, the requency
unt of line 16 is6 N< + 6 N. From the above analysis, the

not a panacea, provides relief from DoS attacks and ot)) ;) 5
security breaches. Additionally, it significantly improves th§omputation complexity of Algorithm 1 i©(N=).
accuracy of legitimate flows.

We choose five fields typically used to define a flow, and

use 11 combinations of these five fields to define clusters. Tl M. Roesch, “Snort: Lightweight intrusion detection for networks,” in
Proceedings of USENIX LISA999.

eff|C|entIy |mplement the algorlthm in real-time, we deS|gn a{2 V. Paxson, “BRO: A system for detecting network intruders in real-time,”

new data structure called two-dimensional hash table. Based in 7th USENIX Security Symposiuf998.
on the concept of entropy from information theory, we use thé?] K. McCloghrie and M. Rose, “Rfc 1213 Mar. 1991.

N L. 4] Http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.
parameter ofAPP to indicate the priority of clusters to be [5] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better

aggregated. The algorithm can efficiently identify the clusters netflow,” in Proc. SIGCOMM '04 2004.

REFERENCES

(6]
(7]
(8]
(9]
[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]
[24]

[25]

[26]
[27]
(28]
[29]
[30]

[31]

14

% rejecting NetFlow adaptive NetFlow | simple flow aggregatio entropy based
dstlP of total | byte Err. | flow Err. | byte Err. | flow Err. | byte Err. flow Err. byte Err. | flow Err.

162.131.189.129 1.20 5.05 17.95 0.67 38.72 0 2.07 0 1.34
162.131.175.2320 0.50 2.11 0.09 0.32 36.26 0 0.31 0 0
3.142.98.83 0.48 1.00 0.78 1.64 41.84 0 1.11 0 0
162.131.199.254 0.43 1.53 0.79 1.68 29.78 0 0 0 0
238.109.212.178 0.43 1.08 1.07 0.99 38.97 0 1.04 0 0
115.42.247.74 0.28 0.76 0.80 2.21 17.67 0 0 0 0
241.46.188.127| 0.21 1.08 1.23 0.84 40.92 0 0.47 0 0
241.46.218.115| 0.17 1.08 1.01 2.13 41.04 0 0 0 0
238.109.212.180 0.16 0.89 0.90 1.22 40.37 0 0 0 0
241.46.185.227| 0.15 0.65 0.62 1.74 39.69 0 0.69 0 0

TABLE VII

Relative error (%) of dstIP breakdown on “CaidaOC48" dataset.

Http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120limit/120s/120s11/12sanf.htm.
Http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120t/120t3/netflow.htm.

IPFIX Aggregation, http://www.ietf.org/internet-drafts/draft-dressler -
ipfix-aggregation-02.txt. e
C. Estan and G. Varghese, “New directions in traffic measurement a i |

accounting,” inProc. SIGCOMM ’'02 2002.
B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive random sampling fof&.
load change detection,” iRroc. SIGMETRICS '02 (extended abstract) ¥
2002.

N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” iProc. SIGCOMM ’'03 2003.

N. Hohn and D. Veitch, “Inverting sampled traffic,” ifroc. IMC '03,
2003.

D. Plonka, “Flowscan: A network traffic flow reporting and visualization
tool,” in Proceedings of USENIX LISR000.

D. Moore, K. Keys, R. Koga, E. Lagache, and kc Claffy, “Coralreef
software suite as a tool for system and network administrators,” in
Proceedings of USENIX LISR001.

C. Estan, S. Savage, and G. Varghese, “Automatically inferring patter
of resource consumption in network traffic,” Proc. SIGCOMM '03
2003.

K. Keys, D. Moore, and C. Estan, “A robust system for accurate rez
time summaries of internet traffic,” iRroc. SIGMETRICS '052005.

Y. Zhang, M. Roughan, C. Lund, and D. Donoho, “An information-
theoretic approach to traffic matrix estimation,” Rroc. SIGCOMM
'03, 2003.

W. Lee and D. Xiang, “Information-theoretic measures for anomal
detection,” inProc. IEEE Symposium on Security and Priva2@01.

K. Xu, Z. L. Zhang, and S. Bhattacharyya, “Profiling internet backbon
traffic: Bahavior models and applications,” Proc. SIGCOMM '05
2005.

Y. Gu, A. McCallum, and D. Towsley, “Detecting anomalies in network
traffic using maximum entropy estimation,” Proc. IMC '05, 2005.

Y. Liu, D. Towsley, and T. Ye, “An information-theoretic approach to
network monitoring and measurement,” moc. IMC '05, 2005.

CERT Coordination Center. CERT Advisory CA-1998-01 Smurf
IP Denial-of-Service Attacks, http://www.cert.org/advisories/CA-1998-
01.html.

CERT Coordination Center. CERT Advisory CA-2003-04 MS-SQ
Server Worm, http://www.cert.org/advisories/CA-2003-04.html.
CERT Coordination Center. CERT Advisory CA-2003-20 W32/Blaste
worm, http://www.cert.org/advisories/CA-2003-20.html.

CERT Coordination Center. CERT Advisory CA-1996-21 TCP SY
Flooding and IP Spoofing Attacks, http://www.cert.org/advisories/CA
1996-21.html.

N. Duffield, C. Lund, and M. Thorup, “Charging from sampled network
usage,” inProc. SIGCOMM Internet Measurement Workshap01.
Http://sourceforge.net/projects/fprobe.

Y. Hu, D. M. Chiu, and J. Lui, “Adaptive flow aggregation - a new solu-
tion for robust flow monitoring under security attacks,”Rmoc. NOMS
‘06, 2006.

T. M. Cover and J. A. Thomaglements of Information Theary N.
Y.: John Wiley & Sons, Inc., 1991.

C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting
active flows on high speed links,” iRroc. IMC '03, 2003.
Http://www.ll.mit.edu/IST/ideval/data/1998/training/.

fre and operations.

Journal.

Yan Hu received her B.E. degree in Electronic
Engineering from University of Science and Tech-
nology of China and M.E. degree in Communication
& Information System from Chinese Academy of
Sciences, P.R. China, in 2000 and 2003, respectively.
She is currently a PhD student in the Department of
Information Engineering at the Chinese University
of Hong Kong. Her research interests include traffic
measurement and analysis, network security.

Dah-Ming Chiu (SM'02 - F'08) received a first
degree from Imperial College, London, and a Ph.D
degree from Harvard University. He worked in Bell-
Labs, DEC and SUN before joining the Chinese
University of Hong Kong in 2002. He is currently
serving as the associate director of the university's
Institute of Theoretical Computer Science and Com-
munications (ITCSC); and an associate editor of
IEEE/ACM Transactions on Networking (ToN). His
current research interests include network resource
allocation, routing, traffic measurement and analysis,

P2P networking, wireless networks and economic issues in network architec-

John C. S. Lui (M'93 - SM’02) received his Ph.D.

in Computer Science from UCLA. Currently, he is
the chair of the Computer Science & Engineering
Department at CUHK. His research interests span
both in systems as well as in theory/mathematics
with the emphasis on the robustness, scalability, and
security issues on the Internet. John received various
departmental teaching awards and the CUHK Vice-
Chancellor's Exemplary Teaching Award, as well as
the co-recipient of the Best Student Paper Awards
in the IFIP WG 7.3 Performance 2005 and the

IEEE/IFIP Network Operations and Management (NOMS) Conference. He is
an associate editor in IEEE ToN, TPDS, TC and the Performance Evaluation

