
Reducing 1/0 Demand in Video-On-Demand Storage Servers

Leana Golubchik* John C.S. Luit Richard Muntzt

Abstract

Recent technological advances have made multimedia on-de-

mand services, such as home entertainment and borne-shop-

ping, important to the consumer market. One of the most

challenging aspects of this type of service is providing ac-

cess either instantaneously or within a small and reasonable

latency upon request, In this paper, we discuss a novel ap-

proach, termed adaptive piggybacking, which can be used to

provide on-demand or nearly-on-demand seruice and at the

same time reduce the I/O demand on the multimedia storage

seruer.

1 Introduction

Recent technological advances in information and communi-

cation technologies have made multimedia on-demand ser-

vices, such as movies-on-demand, home-shopping, etc., fea-

sible. Information systems today can not only store and

retrieve large multimedia objects, but they can also meet

the stringent real-time requirements of continuously provid-

ing objects at a constant bandwidth, for the entire dluratiou

of that object’s display. Already, multimedia systems play a

major role in educational applications, entertainment tech-

nology, and library information system.

In this paper, we consider a video-on-demand storage

server, e.g., as the one depicted in Figure 1, which archives

many objects of long duration, such as movies, music videos,

educational training material, etc. The storage server con-

sists of a set of disks (D] . . . ~N), a set of processors (NI

. . . iVK), buffer space, and a tertiary storage device. The en-

tire database resides on tertiary storage, and the more fre-

quently accessed objects are cached on disksl. We assume

that a request for an object must be serviced from the disk

sub-system; the size of the objects (on the order of 4.5 GB

for a 100 minute MPEG-2 encoded movie) precludes them

from being stored in main memory, and the long latency

and high bandwidth cost of tertiary storage2 precludes ob-

“ Computer Science Department, UCLA (leanaQcs.ucla. eclu) This
research was supported in part by the NSF graduate fellowship and

the IBM graduate fellowship.

tDepmtment of Computer Science, The Chinese Unlverslty Of

Hong Kong (cslui@cs.cuhk. hk). This research was supported in part

by the CUHK Direct Grant and the Croucher Foundation,

*ComPuter Science Department, UCLA (muntzQcs.ucla edu).

This research was supported in part by Hewlett Packard through an

equipment grant.
1 we ~sume that the caching on disks is done on-demand, I.e., a

non-disk resident object is fetched from tertiary storage oIIly when

it is referenced; some form of the LRU policy can be used to purge

objects from disks (in order to create space for the newly retrieved

object).

2The seek latency for a 1 3GB tape on a $1000 tape drive can

be on the order of 20 seconds [7], whereas a similarly priced d]sk

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying IS by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMETRICS ’95, Ottawa, Ontario, Canada
@ 1995 ACM 0-89791 -695-6/95/0005 ..$3.50

. .,,,.,,,,,,... ,. ,.,,,,,,...,,,,,....,,,,,,,,.,..,: ,...

m
In21.. .,.,

T1 ●* :

$$+Fj

. .
m

T3
.
.

.
+

1...... *,,,.,,,.,. .,.,.,.,... ..

WI
!.. .,.,, ,, .,,,,,,,, ,,, ,,, ,,, ,, .

~umep
s ace S

. .. . ,+..,,,,,,

@ ““” CNmgg?i.....,,,,,.... ...,.,,:..., ,.,

+

.. .-----....,

Network

display stations: .,.,.,.,., ... ,, .,,.. ,,, ,,, ,..

@El ““” Dn:... ,........,. ,:

Figure 1: Multimedia Storage Server Architecture.

jects from being transmitted directly from tertiary devices.

If the requested object is not disk-resident, then it has to be

retrieved from the tertiary store and placed on disks before

its display can be initiated; this could result, in one or more

objects being purged from disks, due to lack of space. A disk

resident object is displayed by scheduling an 1/0 stream and

reading the data from the appropriate disks.

One of the most challenging aspects of such systems is

providing on-demand service to multiple clients simultane-

ously, thus realizing economies of scale; that is, users expect

to access objects, e.g., movies, within a small and “reason-

able” latency, upon request, We define the latency for ser-

vicing a request as the time between the request’s arrival to

the time the system initiates the reading of the object (from

a disk); the additional delay until data is actually delivered

to the display device is considered relatively negligible. La-

tency can be attributed to: a) insufficient bandwidth for ser-

vicing the request, b) insufficient buffer space for scheduling

its reading from the disks, or c) insufficient disk storage, i.e.,

the object in question may not be disk-resident and hence

may have to be retrieved from tertiary storage before it can

be scheduled for display.

For ease of exposition, we can assume that the server,

of a similar capacity, has a maximum seek time on the order of 35
milliseconds and more than 16 times the transfer rate Tape systems
w]t h sigmticantl y h]gher transfer rates and tape capacities although
not with much lower seek latency do emst, but at a cost $40, 000-
$300,000.

25

depicted in Figure 1, can be described by the following

three parameters: 1) total available 1/0 bandwidth, 2) to-

tal available disk storage space, and 3) total available buffer

space3. These parameters, in conjunction with data layout

and scheduling schemes, determine the cost of the server as

well as the “quality of service” it can offer; although quality

of service is a somewhat ambiguous term, the /at ency, in ser-

vicing a video request, is one useful measure. In general, the

more video streams a system can support simultaneously,

the lower is the average latency for starting the service of a

new request (at least for the disk resident objects).

There are several basic architectures that can be used

for constructing a video-on-demand server [1, 14, 11]. The

distinctions between these architectures can be (mostly) at-

tributed to the data layout and scheduling techniques used.

Let us consider one such system, where the workload can

be described by ~ = (k, h,. ... k), where A: is the arriv~

rate of requests for object z and h“ is the total number of

objects available on the storage server (including the non-

disk-resident objects). Informally, we expect a skewed distri-

bution of access frequencies with a relatively small subset of

objects accessed very frequently, and the rest of the objects

exhibiting fairly small access rates4. In snch a system, it is

fair to assume that there is sufficient disk storage to at least

hold the popular objects; moreover, it is very likely that

1/0 bandwidth is the critical resource which contributes to

increases in latency. One way to reduce the latency is to

simply purchase more disks. A more interesting and more

economical approach might be to either attempt to improve

the data layout and scheduling techniques or to reduce the

1/0 demand of each request in service through “sharing” of

data between requests for the same object.

There are several approaches to reducing the 1/0 de-

mand on the storage server through sharing, or, in effect,

increasing the number of user requests which can be served

simultaneously. For example:

1.

2.

3.

batching delaying requests for up to T, time units in

hopes of more requests, for the same object Z, arriving

during the batching interval and servicing the entire

group using a single 1/0 stream

bridging closing the temporal “gaps” between suc-

cessive requests through the use of buffer space, i.e.,

holding data read for a “leading” stream and servic-

ing “trailing” requests out of the buffer rather than by

issuing another 1/0 stream

adavtive vi.rxmjba ckin~ adj ustirw display rates of re-

que&s in” p~ogress (for the same object) until their

corresponding 1/0 streams can be “merged” into one

In this paper we concentrate on adaptive piggybacking. It is a

more innovative approach and, to the best of our knowledge,

has not been studied (or even proposed) before. Some work

on bat thing [4] and bridging [9] does exist.

An adaptive piggybacking procedure is defined to be a pol-

icy for ah ering display rates of requests t n p regress (for the

same object), for the purpose of merging their respective

1/0 streams into a single stream, which can serve the entire

3We will not consider the characteristics of the tertiary dev]ce m

this paper.

4For instance, a movie server would have such characteristics,

where a small subset of popular movies (for that week, perhape) is
accessed simultaneously by relatively many users, furthermore, we as-
sume that the change in access frequency w relatively slow, e g., the
set of popular movies should not change more often than once per
week.

group (of merged requests). The idea is similar to that of

batching, with one notable exception. The grouping is done

dynamically and while the displays are in progress, i.e., no

latency is experienced by the user. Note that, the reduc-

tion in the 1/0 demand is not quite as high as in the case

of batching, since some time must pass before the streams

can merge5; hence, the tradeoff (between these two tech-

niques) is between latency for starting the service of a re-

quest and the amount of 1/0 bandwidth saved. Note also

that, these techniques are not mutually exclusive; in this

paper, we present results of using adaptive piggybacking in

conjunction with batching.

Consider an analogy of servicing video requests, for a

particular movie, to a collection of bugs sitting on a moving

conveyor belt (refer to Figure 2). The conveyor belt rep-

new arrivals

++
k i j J

departures

Figure 2: Conveyor Belt Analogy.

resents one particular movie; its length corresponds to the

duration of the movie’s display, and the rate at which the

conveyor moves corresponds to the normal display rate of

the movie (e.g., 30 frames/see for U.S. television). Each bug

represents a single 1/0 stream, servicing one or (as we shall

see later) more display requests for that movie; the position

of the bug on the conveyor belt represents the part of the

movie being displayed by the corresponding 1/0 stream. If

a bug chooses to remain still on the conveyor belt, then the

corresponding stream displays the movie at the normal rate.

If the bug chooses to crawl forward (at some speed), then

the corresponding movie is displayed at a slightly higher

rate. Similarly, if the bug chooses to crawl backwards (at

some speed), then the corresponding movie is displayed at

a slightly lower rate.

We elaborate on the technicalities involved in altering

display rates (within the bounds not perceptible by a human

observer) in Section 2; for the remainder of this section we

assume that it can be done and concentrate on the (possible)

benefits of this approach. These benefits are as follows; if

two bugs, one crawling forward and one crawling backward,

are able to “merge” at time t, before either one falls off the

conveyor belt, then starting at time t the system is able to

support both displays using only a single 1/0 stream6. Gon-

sider for the moment bug ; in Figure 2, which must make a

decision, namely, whether to crawl forward, toward bug j,

and piggyback on its 1/0 stream or whether to crawl back-

ward, toward bug k, and instead piggyback on its stream. If

5The display adjustment must be gradual (or slow) enough to in-

sure that lt is not noticeable to the user, we assume that altering the

quality of the display (as perceived by an ‘(average” user) IS not an

acceptable solution

6 Clearly, there is a problem of provldlng VCR functlonabty, A

slmdar problem was solved m the context of batching in [4, 6], and

their solution of reserving channels for this purpose, can be used here
as well; furthermore, adaptive piggybacking has one addltlonai ben-

efit After obtalnlng reserved channel and resummg dmplay, further

attempts at merging can be made, If successful, the reserved channel

can be returned and reused by another stream

26

i crawls forward, then it will take less time to me~ge; how-

ever, aft er the merge, a smaller portion of the movie will

remain (to be displayed), and hence the benefits of merging

would not be as great. On the other hand, if i crawls back-

ward, toward k, then it will take longer to merge; however,

greater benefits might be reaped from that merger, if it can

be achieved at an earlier portion of the conveyor belt.

In this paper, we consider several merging policies and

evaluate them with respect to reduction in 1/0 bandwidth

utilization. In general, the following parameters can be used

to improve the number of simultaneous requests that a sys-

tem can serve: 1) delay time (for batching), 2) merging pol-

icy (for adaptive piggybacking), 3) buffer allocation policy,

and 4) display rate altering techniques (see Section 2 for

more details). Reduction in the 1/0 bandwidth consumed

by the aggregate requests for a movie is considered to be

the main goal of these policies. While other resources are

affected, disk bandwidth is likely to be the most important

and costly. This will remain so for the foreseeable future

since disk capacity is increasing at a faster rate than disk

bandwidth.

The remainder of the paper is organized as follows. In

Section 2, we describe the feasibility of supporting multiple

display rates. In Section 3, we briefly state the batching

policy assumed in the remainder of this paper. In Section

4, we describe several adaptive piggybacking policies. Per-

formance analysis of these policies can be found in Section

5, and the discussion of results can be found in Section 6.

Our conclusions and directions for future work are given in

Section 7.

2 Altering Video Display Rates

As stated in Section 1, adaptive piggybacking is a viable

technique for reducing 1/0 demand on a video storage server

(and consequently improving the response time of the sys-

tem), if t he storage server has the capability to dynamically

alter the display rate of a request, or, rather, to dynamically

time compress or time expand some portion of an object’s

display7. In this section we discuss how this can be done.

We make the basic assumption that the display units be-

ing fed by the storage server are NTSC standard and display

at a rate of 30 frames per second (fps). Therefore any time

expansion or contraction must be done at the storage server.

Slow down in the effective display rate can be done by adding

additional frames to the video since the display device dis-

plays at a fixed rate. For example, if 1 additional frame is

added for every 10 of the original frames, the effective dis-

play rate (orig-frames/see) will be 30 x R. Similarly, by

removing frames the effective display rate can be increased.

There is ample evidence that effective display rates that are

+5% of the nominal rate can be achieved in such a way that

it is not perceivable by the viewer. For example:

● A movie shot on film is transferred to video using a

telecine machine which adapts to the 30 fps required

for the video from the 24 fps which is standard for

films; this is done using a 3-2 pulldown algorithm [12,

10], which for every 4 movie frames creates 5 video

frames, where two of the five frames produced are in-

terpolations of a pair of the original frames. A similar

type of interpolation could be used in our application.

7We do not discuss it in detail here, but necessary time adjust-
ments can be performed on the audio portion of an object, using

techniques such as audio pitch correction [2]; clearly, the rate of this

adjustment must be chosen accordingly to insure the necessary syn-

chronization [12] with the video portion of the object,

●

●

Ampex makes a product called Zeus(TM) [5] which

can be used to produce high quality video that has

been time compressed or expanded by up to 8%; ac-

cording to the product literature it can accomplish this

without bounce or blur.

personal contacts within the the video editing indus-

try have assured us alterations of the actua.-display

rate in the 2 - 3~0 range [3] or expansion and contrac-

tion (through interpolation) in the 8% range [2] can be

accomplished without being noticeable to the viewer.

There are two approaches to actually providing the al-

tered stream of frames to be transmitted to the display sta-

tions.

●

●

The altered version of the video can be created on-

line. In this case the 1/0 bandwidth required from the

disk varies wit h the effective display rate. There are

two possible disadvantages of the on-line alteration:

(1) the layout of the data on disk is often tuned to

one delivery bandwidth and having to support multiple

bandwidths can complicate scheduling and/or require

additional buffer storage and (2) to support on the fly

modification may require the expense of specialized

hardware to keep up with the demand.

The altered version of the video is created off-line and

stored on disk with the original version. The obvious

disadvantage of this approach is the additional disk

storage required.

Based on the above discussion, we will, in the remainder

of this paper, assume that we can alter the effective dis-

play rate by +5Y0 without sacrificing video quality, and we

will consider both the on-line generation approach to provid-

ing the altered stream of frames and the off-line approachs

For the latter, we will include additional considerations in

the scheduling policies that are motivated by the desire to

limit the amount of additional disk space required for storing

replicates of a video.

3 Batching

As already mentioned in Section 1, one way to reduce the

1/0 demand (Mb/s) on the storage server is to batch re-

quests, for the same object, into a single 1/0 request to

the storage server. The tradeoff for the batching approach

is the amount of latency experienced by a request versus

the corresponding reduction in 1/0 demand on the storage

server. In this paper, we concentrate on controlling utiliza-

tion, and more specifically, on controlling utilization of the

1/0 subsystem; for reasonably busy systems (the only re-

ally interesting case), the lower utilization a system has, the

lower is its response time for servicing requests.

There are several ways to batch requests into a single

1/0 stream. Due to space limitations we do not discuss

batching policies here and in the remainder of the paper

assume that the batchtng by timeout policy (see [8]) is used,

which can briefly be described as follows. The timer is set

when a request arrives to the storage server and there exists

no other outstanding request for the same object j. The

system issues an 1/0 request to the storage server Tj time

ah either case we assume that when frames are inserted, the ad-
ditional frame. arc smme mterpolat,on of existing frames (not simply
duphcates). Slmllarly, when a frame M deleted, the preceding and

succeeding frames are altered to reduce the abruptness of the change

(e.g., each becomes an mterpolat,on of the or,g,nal and the deleted

frame)

27

units after the initiation of the timer. Any request, for the

same object, arriving during these TJ time units is batched

and serviced when the timer expires. Assuming that the

request arrival process, for a particular object J, is Poisson
with rate ~J, we can view the system as an A4/G/l queue

with a constant setup time (where the setup time is the

duration of the timer Tj) and a deterministic service time

distribution with a mean of zero. The expected latency for

this type of a system can be found in [13] as:

E[LJ] =
TJ(2+AJTJ)

2(1 + AJT”)
(1)

4 Adaptive Piggybacking

In this section, we describe several adaptive piggybacking

policies. Consider a storage system, where for each request

for an object there exists a display stream and a correspond-

ing 1/0 stream. The processing nodes use the 1/0 streams

to retrieve the necessary data from disks, possibly modify

the data in some manner, and then use the display streams

to transmit the data (through the network) to appropriate

display stations (e.g., in Figure 3, display streams 1 and 2

are serviced using the corresponding 1/0 streams 1 and 2).

The 1/0 demand on the storage server can be reduced by

display:J!:!:,..:::,:,.::.,:!,.,::........

Llti

M“-Y”’’3-”’*”A,—,
j

4
0
h

.....

‘E I
=1
#l
QI
Ml

1------..,.,

.. .
E;
{:

01

,..3,..
,.+ D

(UOstream 1 ~ dwlay stream 1

~ I/O stream 2 + + display stream 2
dkplay stream 3

.. ,., ,,, display stream 4

Figure 3: Simplified View of the System.

using a single 1/0 stream to service several display streams

corresponding to requests for the same object (e.g, in Fig-

ure 3, display streams 3 and 4 correspond to requests for the

same object and are serviced using a single 1/0 streamg, 3.

As stated in Section 1, this can be done in a stattc manner,

i.e., by batching requests (see Section 3), and in a dynamtc

or adaptive manner; adaptive piggybacking is the topic of

this section.

A dynamic approach initiates an 1/0 stream, for each
display stream, on-demand, and then allows one display

stream to adaptively piggyback on the 1/0 stream of another

display stream (for the same object). We can also view this

as a dynamic merging of two 1/0 streams into one. Be-

fore the merge, there were two 1/0 streams, each serving

gDePending on the network character] stlcs, it might be wiser tO de-

lay “splitting” display streams 3 and 4 until the last possible moment,

i e , transmit them through the network as a single stream for as long

~, possible., However, we do not consider network characteristics ,n
this paper, I.e., we assume that there M sufficient bandwidth available

m the network, hence, we shall not consider alternative transmtsslon

policies here which can reduce network bandwidth utdizatlon

one (or more) display stream(s), where the display streams

correspond to two temporally separated displays of the same

object. After the merge, there is only one 1/0 stream, which

can service both display streams, and furthermore the cor-

responding displays are then “in synch”. As described in

Section 1, this merging can be accomplished by adjusting

requests’ display rates, i.e., rather than displaying each re-

quest at the “normal” rate, the system can adjust the display

rate of each request (see Section 2), either to a “slower” rate

or a “faster” rate, in order to close the temporal gap between

the displays. Although adaptive piggybacking and batching

are not mutually exclusive techniques, for ease of exposi-

tion, in this section we concentrate on adaptiue piggybacking

policies only. The results of using adaptive piggybacking

policies in conjunction with batching policies are reported

in Section 6.

Our goal in this paper is to investigate the benefits,

namely, the reduction in 1/0 bandwidth utilization, attribut-

able to the adaptive piggybacking rather than due to a par-

ticular storage server architecture. Therefore, we do not

specify data layout and/or scheduling schemes, and further-

more, we do not specify a particular display rate alteration

technique Instead, in the following derivation, we associate

an 1/0 cost with each 1/0 stream, where the cost is a func-

tion of the corresponding display rate. In other words, the

1/0 cost for servicing a slow- (or a fast-) rate display can

be different from the 1/0 cost for servicing a normal-rate

display 10. For instance, the speed up (or slow down) can be

achieved by replicating data (see Section 2), in which case,

the total number of bytes read from disks may differ, de-

pending on the display rate of a stream. If on the other hand

dropping (or duplication) of frames is used (see Section 2),

then the total number of bytes read from disks will remain

the same, regardless of the display rate of a stream. In the

following development we do not make assumptions about

which method is used to achieve different display rates.

We can view the duration of the object’s display as a

continuous line of finite length and consider the problem

of adaptive piggybacking as a decision problem; given the

global state of the system, i.e., the position (relative to the

beginning of the display) of each display stream in progress,

we must choose a display rate for each of these requests,

such that the total average 1/0 demand on the system is
minimizedll Since merging is only possible for I/o streams

corresponding to displays of the same object, we can con-

sider each group of requests for the same object, separately.

For the remainder of this section, we consider requests for a

particular object only, i.e., the remainder of the discussion

is in terms of a single object.

We begin by deriving the general conditions under which

1/0 streams t and j can be merged in such a way as to

reduce the total 1/0 demand on the storage server. Initially,

we assume that merging can occur at any time during the

object’s display; this assumption is removed at the end of

this section. We define the following notation for derivation

purposes (refer also to Figure 4):

10 Note that, there ~o”ld be other costs, other than I/o bandwidth,

associated with reading data at higher or lower rates, e g , addlt]onal

buffering space, scheduling complexity, etc , for Instance, one might

consider using only two alternate display rates (e g , normal and fast)

to reduce the scheduling complexity However, since we do not con-

sider a specific architecture, we WII1 not evaluate such costs m this

paper
11 Note that we take mmlmlzat]on of the average I/o demand as

the objective Such reductions, If small. would not necessarily be a

good measure of how latency M decreased, however we wdl show that

large reductions are obta]nabie, and therefore the reduction m 1/0

bandwidth requirements WI1l translate dn-ectly to latency reduction

28

s; =

Sk =

s; =

PM =

Pk =

Pm =

c; =

ck =

c; =

d =

dm =

display speed (in frames/see) of display stream k

if no attempt to merge is made, where k G {z, j}.

adjusted display speed (in frames/kec) of display

stream k if merging attempts are made, where

k c {z, j}.
display speed (in frames/see) of display stream k

after merging, where k c {z, j}.
total number of frames in a video object.

current position in object’s display (in frames) of

1/0 stream k, where k E {z, j}.

position (in frames) in an object’s display where

1/0 streams i and j merge.

1/0 bandwidth (in bits/see) of 1/0 stream cor-

responding to display stream k, with a display

speed of S;.

1/0 bandwidth (in bits/see) of 1/0 stream cor-

responding to display stream k, with a display

speed of Sk.
1/0 bandwidth (in bits/see) of 1/0 stream cor-

responding to display stream k, with a display

speed of S:.
distance (in frames) between 1/0 streanms z and

j, which is equal to Pj – pi.
distance (in frames) between the merge point and

the current position of j, which is equal to p~–pj.

Figure 4: State of the system.

Figure 4 represents the duration of an object’s display as

a continuous line of length pM. Each display stream, e.g.,

stream i, is identified by it’s position in the object’s display,

p,, and is moving at a particular display speed, S,. In order

to merge 1/0 streams i and j, firstly, we have to insure that

Si > S1. Secondly, we can define the following distance

and cost constraints which can be used. in anv adaDtive

piggybacking policy, to identify merging opportn”nities; i.e.,

whether or not it is possible and cost effective to merge

1/0 streams z and J. The cost constraint insures that the

total 1/0 demand (measured in bits read from the disk) with

merging is less than the total 1/0 demand without merging.

This 1/0 cost constraint is as follows12:

~ (PM – PI)C: + (PM -P* - d)c;
s; s;

(2)

Note that this constraint is only meaningful when the num-

ber of bits read from the disk is not independent of the

display rate, i.e., in our case it is meaningful onlly when

replication is used. Otherwise, any merging prior to the end

12since 1/0 stream i is merged with j, after the merge Onl,Y

cost of stream j need be considered beyond the merge point
the 1/0

of a display results in savings; then Equation 3 becomes the

only constraint, namely, the object length (or duration of its

display) is finite and hence requires the following distance

constraint:

P:+d+dm < PM (3)

Finally, the merge time constraint is:

d+drn dm— .—
s, s]

(4)

Let d] be the maximum d such that the 1/0 cost condition

in Equation (2) is satisfied. We obtain dl by using Equation

()
(4) to obtain dm = d & and then setting the equality

in Equation (2); hence:

[’

(PM-P,)C’ + (PM-Pt)c; _ (Pir?y
,

dl = 1
[(:-;+0+(:)(:+%)] “)

Let dZ be the maximum d such that the distance constraint

in Equation (3) is satisfied. Again, d2 can be obtained by

substituting the expression for dm into Equation (3) and

solving for equality:

d, = (PM -Pt)(st -S,)
s,

(6)

Let d* be the maximum distance between two 1/0 streams

such that merging these two streams (at dm), results in a

reduction of 1/0 demand on the storage server. Therefore,

d* = min(dl, dz) (7)

We can now apply this result to the various adaptive pig-

gybacking policies, which are described next. Our goal is to

find adaptive piggybacking policies which have significantly

lower expected 1/0 demand compared to that of the baseline

policy 13.

We make the following observations about the display

adjustment decisions. Consider again the system state de-

piction in Figure 4; clearly, the only stochastic events in the

system are the arrival points; such events as merging of two

streams, end of a display, etc., are predictable. Hence, an

optimal policy can evaluate all possible display rat es, make

appropriate decisions with respect to minimizing the aver-

age system 1/0 demand, and then not re-evaluate these de-

cisions until the next arrival point. However, this would be

computationally intensive and hence impractical. Instead,

we consider a class of (simpler) policies which make speed

adjustments when one of the following four types of events

occurs: 1) arriual, 2) merge, 3) dropofl, and 4) window cross-
ing. An arrival event corresponds to an initiation of a new

1/0 stream. A merge event corresponds to the merge of

two 1/0 streams, and a dropofl event corresponds to the

end of a display of an object, i.e., to a “departure” of an

1/0 stream. A window crossing event refers to passing the

boundary of a catch-up window, which is illustrated in Fig-

ure 4. We define a catch-up wzndow, ~P(p,), fOr pOlicy p,

to be the maximum possible distance between stream i and

stream J, ahead of stream i, such that “profitable” merging

13* ~ol,cy that does not use display adjustment, I.e , each VO

streams is displayed at Its normal display rate

29

is possible; Wp (p,) is computed relative to position PI in an
object’s display; we shall see shortly how the catch-up win-

dow is used in the merging policies below. Wp (p,) can be

computed using Equation 7.

The sooner (in the object’s display) merging occurs the

more resources (e.g., disk bandwidth, buffer space, etc.) can

be conserved and used by the storage system to service other

requests. Hence, in the remainder of this paper we shall

assume the maximum possible deviations from the normal

speed (both for slower and faster than normal display rates).

In other words, we limit our policies to consider only three

possible display rates: 1) the slowest rate, S~,~, 2) the nor-

mal rate, .%, and 3) the fastest rate, s~~~; the correspond-

ing 1/0 demands, or cost rates, are Crnin, C., and C~a=.

1. Baseline policy:

This is the normal situation: when reauests arrive, there

is no attempt to adjust the display rates, i.e., all requests

are assigned the normal display speed of S. and there are

no merging events in the system. (Note, that the lack of

merging does not exclude the possibility y of initial batching.)

2. Odd-even reduction policy:

A simple display rate adjustment policy which attempts to

reduce 1/0 demand by at most 5070 is the Odd-even reduc-
tion policy. The basic approach is to pair up (for merg-

ing) consecutive arrivals, whenever possible; the algorithm

is given below. Let us define Woe(O), measured relative to

the beginning of an object’s display (see Figure 5), to be the

catch-up window for the odd-even reduction policy. The al-

new arrival

J ~sm~ sm; s+s -
max mm

d c lq~ 44 —

‘* Win(o) —-+

Figure 5: Scenario of Odd-even

gorithm for odd-even reduction is:

Algorithm Odd-even reduction

Case arrival of stream i:

// PM

Reduction Policy.

If ((no stream, in front, is within Woe(O) frames) or

(stream immediately in front is moving at S~~~))

s, = Smtn;
else

s, = sm.=;
Case merge of i and J

drop stream i;

s, = S.;
Case window crossing, WO.(0), (by stream i)

If (S, == S~,n) and

(no stream behind, in W..(O), moving at S~a.)

s,=.%;
else

S, is unchanged

end

Figure 5 illustrates one possible scenario of this policy.

When an 1/0 stream d arrived to the system, 1/0 stream

c was still in the catch-up window, WO~(0), “moving” at

the display speed of S~,~; in this case, the display speed of

request d is set to S~~~. Likewise, when stream b arrived to

the system, 1/0 stream a was within the catch-up window

W..(O); therefore, the display speed of b is set to S~am. In

this scenario, 1/0 streams a and b merge into a single 1/0

stream, and st~eams c and d also merge into a single 1/0

stream.

W.. (0) can be computed using Equation (7), where the

values of d] and dz can be found (using Equations (5) and

(6), respectively) by simply setting p, = O,, C, = C~ac,

s, = sm.., c, = cm,., s, = Sm,n, c: = c, = c., s: =

S; = S., C; = Cn, S: = S.. Then, we have:

[%+1
‘]=[(&)+(s.a:::.,.)(e+&-&)l ‘8)

(9)

3. Simple merging policy:

As in the case of the odd-even reduction policy, we first

define W.m(0) to be the catch-up window for the Simple
merging policy, measured relative to beginning of an ob-

ject’s display (see Figure 6). In addition, we define Wflm(0)

to be the maximum merging window for the simple merging

Dolicv. ako measured relative to the beginning of an object’s

~ispl~y (see Figure 6). W,&(O) indicat~s the-latest po~sible

position where two streams can merge, i.e., if z arrives to

the system and finds J W,m (0) frames ahead of it, then z

and j can still merge, and moreover they will merge at the

right-hand boundary of W,mm (0) (see Figure 6). The basic

Figure 6: Scenario of Simple Merging Policy.

rationale behind simple merging policy is to assign streams

to “merging groups”, where one stream, e.g., stream i, ini-

tiates the group, and all streams that arrive to the system

while stream i is in WSm(0), eventually merge with stream

i; the last stream will merge “into the group” before leaving

W~~m(0). The algorithm for the simple merging policy is:

Algorithm Simple merging policy

Case arrival of stream i:

If no stream within W,m(0) is moving at S~,m

S, = sm,n;
else

s, = sm.=;
Case merge of i and ~

drop stream t;

s, = sm,m;
Case window crossing, W~m(0)

St =Sn;
end

Note that the rationale for keeping the display speed at S~,~

until crossing the right boundary of W,mm(0) is to allow all

streams in the merging group to eventually merge.

Figure 6 illustrates one possible scenario under this pol-

icy. When 1/0 stream c arrived to the system, 1/0 stream a

had already moved outside of the catch-up window Wsm (0);
therefore, the display speed of 1/0 stream c was set to

30

s mtn. When stream b (streams d and e) arrived to the sys-

tem, stream a (stream c) was within the catch-up window,

W.~(0); therefore, their display speeds were set to S~a=.

In this scenario, stream b eventually merges with stream a,
and streams d and e merge with stream c (all merges occur

within W,&(O)).

W.~(0) and Ws&(0), can both be computed using Equa-

tion (7). The values of dl and dz can be found (using Equa-

tions (5) and (6), respectively) by simply setting pt = 0,

C, = Cm.., Si = Sm.., C, ‘cm,., ‘J = ‘7Tlt.7 c: = c; =

C., S; = S; = S., C? = C., S: = S.. Then, we halve:

d2 _ PM(smaz - srnirt)
c1 (11)
‘me*

and

W.m(0) = min(dl, d2) (12)

w,%(o) = Win(o) + dm

4. Greedy policy:

If the request arrival rate to the system is moderate to high,

then it is advantageous to merge requests as early as possible

(thereby reducing the 1/0 demand sooner). Both odd-even

reduction and Simple merging policies attempt to accom-

plish this. But, it is still possible to further merge 1/0 re-

quests, which have accomplished some form of “early merg-

ing”. The greedy policy attempts to merge 1/0 requests as

many times as possible, during the entire duration of an ob-

ject’s display. Therefore, in addition to the iraiticd catch-up

window, W9(0)1 measured relative to the beginning of an

object’s display, we shall also use J$’9 (p,), a catch-UP win-

dow measured relative to position p, in an object’s display.

This “current” catch-up window is used by the greedy policy

new arrival

Figure 7: Scenario of Greedy Merging Policy

(described below) as an indication of opportunity for further

merging.

The greedy policy works as follow. Upon arrival of a re-

quest for the object, the speed adjustment is performed as

in the odd-even reduction policy, If on crossing the catch-

up window, the stream determines that it hae not yet been

paired up for merging, then it checks Wg (Wg (0)), for possi-

bfity of merging with some stream in front. When merging

occurs at positiou p,, a new catch-up window Wg(pt) is com-

puted. If there is no 1/0 request within this window, the

request’s speed is set to Sn. If there are some requests within

the catch-up window Wg (p,) and the 1/0 request immedia-
tely in front has a display speed of S~, then that request’s

speed is set to Smin and the speed of the request at position

pi is set tO S~OZ. In algorithmic form, the greedy policy is

described as follows:

Algorithm Greedy Algorithm

Case arrival of stream i:

If ((no stream, in front, is within Wg(0) frames) or

(stream immediately in front has display speed Sma.))
s, = Sm,n;

else

s, = sm.=;
Case merge of streams i and j

drop stream i;

compute Wg(pj), where Pj is the position of stream j;

If ((no stream k with speed S~, is immediately in front,

within Wg (pj) frames)

s, = .%;
else

& = S~,n;

s, = sm..;
Case window crossing, Wg(0), (by stream Z)

compute Wg(p,);

If ((Si == S~~~) or

(Sj == S~~., where ~ is stream immediately

behind i, in Wg(0)))

S, is unchanged

else If (stream k with speed S., immediately in front,

is within Wg(p,))

& = Sin,.;

s’ = .%.x;

else
s, = s.

end

Figure 7 illustrates one possible scenario of this policy.

1/0 streams b and d (not shown) have been already merged

with 1/0 streams a and c, respectively; this occurred in the

first catch-up window Wg (0). After merging of 1/0 streams

d and c, 1/0 stream c attempts to merge with 1/0 stream

a, in catch-up window W9(P,). At the same time, a newly

arrived 1/0 stream, f, attempts to merge with I/o stream

e, which is within its catch-up window Wg (0).

W~(p,), can be derived from Equation (7). The values of

dI and dz (now both functions of the Z’S current position, i.e.,

P:) can be found by simply setting c, = cm.., .$ = Smax,

CJ = c,.,., SJ = snm, C:=c; =cn, s:=s; =sn,

cz = c., .$’; = S.. Then, we have:

pw:)c. + PMJk]

‘1=[(*)+(....’H.*.)(**+*-~)] ’14)
~2 = PA4(STW2 – sm.)

s
(15)

max

Limited Merging

At this point we remove the assumption that merging can

occur at any time. If replication of data is necessary in order

to perform the display rate alteration (see Section 2), then

we must consider another parameter, namely, the amount

of additional disk space that would be necessary to store

replicated data. As already mentioned, there is a trade-

off between the amount of additional storage, necessary to

replicate data, and the reduction in 1/0 demand that can

result14 We can evaluate the tradeoff by placing an addi-

tional constraint on the merging policies, namely, the con-

straint of a maximum merging point, (in the display of an

14 Note that we do not necessarily have to store three different

versions of an obJect, each corresponding to a different display rate,
For instance, m the .wmple mergmg POIICY, we only need the S1OW and

the fast vers]ons wh]le in the max]mum merging window (W,mm(0))
and only the normal version outside of the maximum merging window.

31

object). In other words, we can control the amount of data

that must be replicated by allowing merging only if it can

occur within a specified amount of time or rather within a

certain distance (in frames), from the beginning of an ob-

ject’s display; we refer to this distance as p~a’. Consider

again Figure 4 and Equations (2)-(4) which describe the

distance and cost constraints that must be met in order to

attempt merging of two display streams. To control the

amount of replication, we enforce the additionat constraint

that the merge must occur before p~’ rather than before

p~, i.e., Pm < p~””. Thus, Equations (3) and (6) are re-

placed by Equations (16) and (17), respectively, as follows:

Pi+d+dm < pxa’ (16)

d, = ‘p:”= ‘p~(s’ - “) (17)

Alt other equations can remain unchanged. (Of course, these

modifications must be carried through for all the adaptive

piggybacking policies described above.) Results of studies of

adaptive piggybacking, in conjunction with batching, both

with and without a constraint on the maximum merging

point, are reported in Section 6; performance analysis of

these policies can be found in Section 5.

5 Performance Analysis

In this section we present analytic solutions for computing

1/0 demand on a storage server which uses adaptive piggy-

backing policies in conjunction with batching. We define the

following notation (also see Figure 8) used in the derivation

of this section. All computation is done with respect to a

particular multimedia object j. Unless otherwise stated, we

drop the subscript j for simplicity of illustration.

PM .—

T —.

A .

te .

ta .

Wp(p,) =

WY(p,) =

BWP =

number of frames in a movie

batching delay time (deterministic)

mean arrival rate

mean time between the end of one batch-

ing delay interval and the beginning of the

next one (see Figure 8)

r.v. representing the time between 1/0

stream initiation
catch-up window for policy p, relative to

posi~ion p,
mammum merging window for policy p,
relative to position p,
mean total 1/0 demand (under policy p)

(bits/see)

Note that, below we do not give equations for either WP(p,)
or WPm (p,), where p could be the odd-even (oe), simple (sin),

or greedy (g) policy. These equation can be found in Sec-

tion 4. Note also, that the above mentioned equations, for

WP(p,) and WPm(p,), already allow for the limited merging
case. i.e.. the case where there is a limit on the maximum

allowed merging time.

First let us derive the density function of t.,which is

the interarrivat time between two streams arriving to the

storage server. Since the request arrival rate is Poisson with

rate J, t. = ~. Therefore, the density function of ta is:

f%(x) = Ae-~(’-T) forx~T (18)

request arrival (starts a new batching interval)

J

t
T *t+

q
1 I

‘a:

b
time

stream arrival stream arrivat

Figure 8: Arrival of 1/0 streams after a delay.

Since the normal duration of a movie object is pM/S~,

N, the expected number of 1/0 streams that the storage

server

5.1

has to support is:

()(JN=~
1)_pM/.%

n ~mxft. (x)dx –~

Analysis of baseline policy

We begin with the analysis of the baseline policy, w

19)

ich

is very simple, since there are no merges and each stream

carries a fixed cost of C,,; the expected bandwidth demand

is:

Bwb = NC. = -Cn
l/A+T

(20)

The expected bandwidth demand without batching can be

obtained by setting T = O.

5.2 Analysis of odd-even policy

The behavior of the odd-even policy is such that pairs of

consecutive 1/0 streams are statistically identical. We can

therefore analyze the mean 1/0 demand for one such pair,

and then compute the average 1/0 bandwidth by multiply-

ing half the rate of intensity of 1/0 streams by the aver-

age demand per pair. Under the odd-even policy, merges

are possible under certain ranges of int erarrival times and

batching delays. Consider two consecutive streams SI and

S2 which arrive to the system z time units apart (assume

that sz is the lagging stream). Assume for the moment that

it is possible for these streams to merge, and let tm be the

time it would take SI and S2 to merge, computed from the

time of sz’s arrival. Let tf be the time from the merge point

of these two streams until the end of the object’s display;

then:

Zsmzn
tm =

s – smtn (21)
m..

tf =
PM – (tm + x)’%,.

s. (22)

Note that merging is possible only if two streams arrive

within the catch-up window Wo, (0). Therefore, the com-

bined 1/0 demand for streams SI and S2, given that they

arrived r time units apart and that they can merge (i.e.,

that x <w) is:

B W~ = (tm + z)Cmm + tmCmac + tfCn (23)

The three costs correspond to the bandwidth demands of a)

the leading stream, SI, first moving at display speed S~,~, b)

the trailing stream, S2, first moving at display speed Sm.=,

and c) the remaining 1/0 demand, after merging, and con-

tinuing display at the speed of S~.

32

Similarly, if z > &, then the 1/0 demand of the pair

of streams is:

[

‘oe(”) Cmin + PM –BW:em = 2 e —
Woe(o)cn

s s. 1 (24)
m:n

The expression corresponds to each of the streams at first

having a display speed of S~,n and after moving beyond the

catch-up window, reset ing the display speed to Sn. At this

point, we can compute B WOe, i.e., the total mean bandwidth

demand in the system:

+ &=!#~w:e~*#* ft.(z)) ax

y
- (25)

.

5.3 Analysis of simple merging policy

The analysis of the simple merging policy is similar to that of

the odd-even policy, except that instead of looklng at pairs

of streams, we consider “merging groups” of streams, i.e.,

groups of streams that eventuzdly all merge together (see

Section 4). Similarly to the odd-even policy, we note that

all “merging groups” are statistically identical, and hence

we can analyze the mean 1/0 demand for one such group

and compute the average 1/0 demand by multiplying the

rate of intensity of such groups by the 1/0 demand for each

group. Under the simple merging policy, merging is possible

if upon initiation of a stream, there exists anothez stream

within the catch-up window, W,m (O), which is moving at

speed S~,.. Let /3 be the number of streams, wi~hin the

window W,m(0), that can (eventually) be merged; we call

this set of streams a “merging group”. We approximate ~

by:

{
/3 = max lWS~~)(~!m’n +1J,2

}

(26)

The first component corresponds to the number of streams

that can fall within window W,m (0); by setting ~ ~ 2, we

consider the (merging) effect when at least 2 streams are

available for merging.

Assume that alf streams in a merging group are s~parated

by time x and that there are ~ merging streams within the

catch-up window W.m (0). The second stream needs tm (or
X5’

‘n’;,n) time units to catch up to the leading stream

fi~~~~e first stream in the group), the third strea]m needs

2t~ time units to catch up, etc. The leading stream will keep

the display speed at Sm~n until it reaches position ‘W,%(o),

then the display speed will be reset to S~. Therefore, the

amount of time during which the leading stream has the

display speed of S’n is:

tf =
PM – W&(o)

s. (27)

The 1/0 demand for the merging group, given that they

are separated by time z and that merging is possible, can

be expressed as:

Wm(o) ~
BW~m = ~ .,. + C’(b) tmcm.= + tfc. (28)

In, n

where C(b) = ~(~ – 1)/2. The cost terms correspond to

the cost of the leading stream moving at Sm,n and tdl other

streams, originally within the catch-up window W~m(0), mov-

ing at speed S~a=, trying to catch-up. The last cost term

represents the remaining time after the last merge, when the

leading stream moves at speed S’n.

If, on the other hand, merging is not possible for a given

interarrival time z, then the 1/0 demand for the merging

group is:

BW:: = /3*

[

W&(o)c + PM – W.&(0)C— ~tn
s S. 1n (29)

mtn

The expected 1/0 demand for the simple merging policy is:

w
BW.m =

fT-mtn (BW& * $ * ft.(x)) dx
&l

.

+ .f*(Bw:: *#*ft.(z)) d.
y (30)

.

5.4 Analysis of the greedy policy

The performance analysis of the greedy policy is more com-

plex. Let us first refer to Figure 9 and consider the merging

pattern. This figure depicts a system with eight streams.

All of them start out z time units apart, and eventually, all

eight streams can be merged into one. Note that for the

first level merge (refer to Figure 9, the system reduces the

number of streams by half but alf remaining streams (e.g.,

SI, ss, EJ5, ST) are 2x time units apart. After the second level

merge, only two streams remain, S1 and ss, and they are 4Z

time units apart. With this observation, let 1 be the highest

level of merges under the greedy policy. The expression for

[is:

1 = max{k : g(k) > O} (31)

where

[(s
g(k) =pal – 2(k–]~r- s. + s :;

)1
sm,n (32)

n.. mtn

and

H[= ++ (Smtn+AWg(0))e(-’w’(21~V”T)

M,n,n
1

(33)

Given that the streams can go through 1 levels of merges,

lpm~: s
level 2 ‘5

...-=. 1
. --------- -----e ------

level 1 ‘7
~-..

-----” ---- ‘1

‘8 ‘7 ‘6 ‘5 ‘4 ‘3 ‘2 ‘1

b- x+ +2X4 ~ 4x —1

Figure 9: Merging pattern for streams under greedy policy.

the leading stream, after the last merging point, will have

tf time units of display left, at a speed of S~, where tfis:

‘f= [- (’+sm.:%t,.)‘mtn
(34)

33

where the first term represents the remaining frames of the

object, after the last merging event, displayed at the speed

of Sn.
Given that the interarrival time between streams, par-

ticipating in a 1 level merge, is z, and that there are Z ~ 2

levels of merges, the 1/0 demand is:

B W:

where

[

= (h+ Z)cm,n+ tmc’mu

][1
$+

PM/%

: ~(d [:] [$]]+ [*] [;] (35)

[(s
h(j) = 2(3-1)7- Cn + s “n

-Sm,n) 1(Cm,.+C~az) (36)
max

The first term in Eq. (35) represents the bandwidth demand

for the first level merge while pairing up # streams. The

second term represents the bandwidth demand for the sec-

ond level, etc., until the Zth level merge while pairing up #

pairs. (Note that for level two and up, the leading streafi

will first move at S~ because it will finish merging earlier

than the next pairs of trailing streams; when the trailing

streams finally finish their merge, its display speed will be

reset, from Sn to S~,~, while the trailing stream (resulting

from the merge) will attempt to catch-up at the speed of

S~am.) The third term represents the bandwidth demand

for the leading stream, moving at the display speed of S~,

all the way until the end of the object’s display.

If merges are not possible, given z, then the 1/0 demand

will be:

[

PM-wg(0)cy%mzn+ ~
BW:m = “’” .

1
n N (37)

ph[/sn

unconditioning on the int erarrival time z, we have:

*
BWg = /(BW~ * f,a(z)) dx

JT

Finally, we constrain the bandwidth demand of the odd-even

policy to be the upper bound for the bandwidth demand of

the greedy policy, i.e.,

BWg = min(BW,, BWO,)

5.5 Validation of Analyt ic Results

(39)

In conclusion of this section, we validate our our analytic re-

sults (see Section 5) by comparing them to results obtained

from simulation. These comparisons, of all three policies

in conjunction with batching by timeout (see Section 3) are

depicted in Figures 10-12, where “delay” refers to the batch-

ing interval (in minutes) and each curve represents the per-

centage improvement in 1/0 demand, as compared to the

baseline policy. They indicate that the largest divergence

from the simulation occurs when the arrival rate is low; the

analytic result match the simulation closely when the arrival

rate is moderate to high. This is sufficient for our purposes

since we are interested in applying our techniques to video

objects with relatively high access rates, i.e., popular ob-

jects.

Comparison to Simulation (odd-even)
50

*- —-~-—
delay=8 (slm) B delay- (Sire)

r –– – – – T - A ---------------
40— delay=8 (anslytic) delay=o (anslyhc) _

X——————––
delay=5 (sirn)

+--–--–--7-
delay=5 (anslyuc)

30–
%%

‘%**.20 –
“,%+

\

Q-..:. %
‘-. %

.%2---
----Q--.>-

10 – -+z::-
‘ .-*.. _

-~. ___---
---- —-+)..-

1 I I I ?

2 4 6 8 10
Inter .&r Time (mirt)

Figure 10: Odd-even policy.

Comparison to Simulation (simple)

*--–--7--–-
delay=8 (s]m) H delay=o (sire)‘.

A v- – – –– – 7- A -----------:--
40 – ‘. delay=8 (srralync) delay=o (snalytrc) _

‘.
‘A. >

c3—---~— —
delay=5 (sun)

---- *—————7-
-.

‘A..
30– ---- —

-- A --- ----
-*. -$

E

1-1
-----..

; 20 %= A.

& Q.a “-”*<*___

10 -%----
L:--e.-. _-*_

‘-x---

‘ ‘-*:-:.-*.-=,-+---:%
--

-9, ,
2 4 6 8 10

Inter Arr Time (mirr)

Figure II: Simple policy.

6 Dkcussion of Results

In this section we present results of studies of adaptive pig-

gybacking policies in conjunction with batching policies. To

avoid degradation in display quality, we assume that the ad-

justed rates, S~,~ and S~a=, are within 5% of the normal

display rate, S~ (see Section 2). In the remainder of this dis-

cussion, we use the the following values for the parameters

presented in Section 4:

sm,. = 28.5 frames/see

s. = 30.0 frames/see

smax = 31.5 frames/see

c m:. = 1.425 Mbits/see

c. = 1.5Mbits/see

c maz = 1.575 Mbits/see

Batching by timeout (see Section 3) is used as the batch-

ing policy in all results presented in this section. The delay

34

Comparison to Simulation (greedy) the batching delay (see Equation (1) in Section 3), continues

1’
I I I I

\
* Qdelay=O (situ),

A --------------
dclay=O (srtnlytic)

\
Q-—--7-——

deIay=5 (mu) -

I I I I 1-

2 4 6 8 10
Inter Arr Time (rein)

Figure 12: Greedy policy.

time is varied between O and 10 minutes. and the mean in-

terarrival time (between consecutive requests for the same

movie) is varied between 0.5 and 10 minutes. In the follow-

ing discussion, we consider the total average 1/0 bandwidth

demand on the storage server as the measure of interest.

More specifically, in each graph, we present the percentage

improvement, of various policies, as compared to the base-

line policy. For ease of exposition, we initially assume no

restrictions on the maximum allowed merging time (see Sec-

tion 4). At the end of this section, we consider the effect of

restricting merges to occur within a specified time interval.

We first consider the affects of batching, i.e., the decrease

in 1/0 demand on the storage server due to batching and the

corresponding increase in the average latency for starting the

service of a request. This comparison is illustrated in Figure

13, where the inter arrival time is kept at 4 minutes and the

batching delay is varied between O and 10 minutes. This

35

[\

‘\,
A

30 ‘.., \,

S ‘.

~s
‘.

‘.u

Q
edd_eveo—

A ---------
simple

(3—-—————
greedy

;
-.

! ,\j

..*
[m . .

‘..

‘..

E 15 ‘.

E
10

5
mean interarrival

time = 4 min

Oj
9. A 6 x 10

Delay (iii)

Figure 13: Varying Delay.

graph indicates that, as the batching delay increases, the

decrease in 1/0 demand quickly shows diminishing returns

while the average latency, which grows almost linearly with

to grow.

Next, we compare the adaptive piggybacking policies,

but without batching; the results of this comparison are de-

picted in Figure 14 (as a percentage improvement over the

baseline policy), where the interarrival time is varied be-

tween 0.5 and 10 minutes. This graph indicates that the

80 –~
I I I I I

,
Q

70
+

edd.even

A ----------

‘\,

simple

~60 – o-—-———

k

greedy

.5

E50 –

‘ \ :

~ ‘\,
~ ‘ .A

Q40 ‘. \

A
‘.

% ‘%-- ----
-. * .\b

30 -------

Lwithout batching
2-I [I I -7--%/

2 4 6 8 10
Inter Arr Tme (rein)

Figure 14: Varying Arrival Rate (no batching).

odd-even policy results in a significant reduction in 1/0

demand; recall, that the odd-even policy allows each 1/0

stream to participate in (at most) a single merge, and hence

it can result in (at most) a 5070 decrease in 1/0 demand.

For the cases presented in Figure 14, the reduction in 1/0

demand, as compared to the baseline policy, ranges from

47.92%, corresponding to a fairly small interarrival time of

0.5 minutes, and 20.92%, corresponding to a fairly large

int erarrival time of 10 minutes. Further reduction can be

achieved by allowing each 1/0 stream to participate in mul-

tiple merges, for instance, by using the greedy policy. The

results for the greedy policy (without batching) are also il-

lustrated in Figure 14, where we achieve a further reduction

in 1/0 demand; again, as compared to the baseline policy,

the results for the greedy policy range from 81.0%, for the

fairly small interarrival time of 0.5 minutes, to 20.92%, for

the fairlv larize interarrival time of 10 minutes. The results
“u

are qualitatively similar, when bat thing is used in conj unc-

tion with adaptive piggy backing15; however, due to lack of

space we do not illustrate them here (see [8]).

Although a greater reduction in 1/0 demand is achieved

by the greedy policy, as compared to the odd-even policy,

allowing more than a single merge per 1/0 stream could be

costly in terms of other resources. For instance, if display

rate alterations are done through replication of appropriate

data, then we can reduce the amount of replication needed to

support adaptive piggybacking by constraining the merges

to occur before a specified maximum allowed merging time

(see Section 4). Therefore, in Figure 15 we investigate the

benefits of adaptive piggybacking under an additional con-

straint of a limited merging time (see Section 4 for the new

constraint). In this figure, the percent reduction in 1/0 de-

mand, as compared to the baseline policy, is depicted as a

function of the maximum allowed merging time (each curve

15~]early, _ the batching interval increases, the range of work-

loads over which these pollcies exhlblt significantly different behavior
decreases.

35

corresponds to a different inter arrival time). The results

are obtained using the odd- even policy, without batching.

(Qualitati~ely similar results can be obtained for systems
with batching delays as well as other adaptive piggybacking

policies; however, due to lack of space we do not illustrate

them here.)

Odd-Even (batching interval = O rein)

‘“1 I I 1 -a
~/k- .--. --&-------------------A

d? -.—.—- — -—-o

1
)

40 –

~

.5

E
10 –,

I/lambda= 1

0
————
nmbda.4 +

I I I I 1

0 50 100
Amount of Replication (rein)

Figure 15: Benefit vs. Maximum Merging Time

As expected, given fairly small interarrival times, most of

the reduction in 1/0 demand, shown earlier in Figure 14, can

be achieved using relatively small maximum merging times;

the implication is that, if replication of data is used to sup-

port merging, then most of the benefits of “unrestricted”

merging can be achieved with relatively little increase in

disk storage cost. For instance, given an interarrival time of

0.5 minutes and a maximum merging time of 5 minutes, the

reduction in 1/0 demand is 31. l~o, as compared to 47.92~o

with unlimited maximum merging time; however, the corre-

sponding increases in disk storage (for a 120 minute MPEG-I

compressed video) would be x 56 MB for the 5 minute max-

imum merging time, and x 1.35 GB for the unlimited merg-

ing time16. Of course, as the interarrival times increase,

so does the maximum merging time, necessary to obtain a

‘significant” reduction in 1/0 demand.

7 Conclusions

On demand video servers present some interesting perfor-

mance problems. Part of the effort is simply to understand

the constraints and goals well enough to appreciate what is

possible. In this paper we have considered a novel method

of reducing the 1/0 bandwidth required while at the same

time providing a guaranteed maximum latency. We have

exdoited the fact that video stream rates can be varied–.
by small amounts without perceptible degradation in video

quality. We have analyzed several hueristic policies. The

results indicate convincingly that smaJl variations in the de-

livery rate can enable enough merging of 1/0 streams that

significant reduction of 1/0 bandwidth is realized.

Future work will include a search for better approxima-

tions for hueristic policies. We will also attempt to find a

161n calculating increases in storage space, in this section, we as-

sume that only one additional copy of the data would be necessary,
i.e., for any portion of an object, only two copies need to be main-
tamed (see Section 4).

either an optimal merging policy or a tight lower bound on

the optimal solution. This would give us a way of judging

how close the simple, hueristic policies are doing. In addi-

tion, for the case where replicated data is used to provide

the 1/0 streams for the varied rate displays, there is an open

question of how much of (the initiaJ portion of) each object

to replicate.

Acknowledgements
The authors are grateful to Daniel Potasz for all the valuable

discussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Steven Berson, Shahram Ghandeharizadeh, Richard R.

Muntz, and Xiangyu Ju, Staggered striping in multi-

media information systems. SIGMOD, 1994.

Personal communication Mr. Rich Igo and Mr. Bill Car-

penter at Ampex Corp.

Personal communication Ms. Cary Shott at Lightwors

USA and Digital Images.

A. Dan, P. Shahabuddiu, D. Sitaram, and D. Towsley.

Channel Allocation under Batching and VCR Control

in Movie-On-Demand Servers. Technical report, IBM

Research Report, 1994.

Product Description. Zeus (TM) Video Processor.

J. K. Dey, J. D. Salehi, J. F. Kurose, and D. Towsley.

Providing VCR Capabilities in Large-Scale Video

Servers. Submitted to ACM Multimedia ‘9.4, 1994.

A. L. Drapeau and R. Katz. Striped Tape Arrays. In

Proc. of the 1.2th IEEE Symposium 00 Mass Storage

Systems, pages 257-265, Monterey, California, April

1993.

Leana Golubchik, John C.-S. Lui, and Richard R.

Muntz. Reducing 1/0 Demand in Video-On-Demand

Storage Servers. Technical Report CSD-940037, UCLA,

October 1994.

M. Kamath, D. Towsley, and K Ramamritham. Buffer

Management for Continuous Media Sharing in Multi-

media Database Systems. Technical Report 94-11, Uni-

versity of Massachusetts, February 1994.

T. A. Ohanian. Dzgital Nonhnear Editing: new ap-

proaches to editing film and video. Focal Press, 1993.

B. Ozden, A. Biliris, R. Rastogi, and A. Silberschatz. A

low-cost storage server for movie on demand databases.

VLDB, 1994.

M. Rubin. Nonlinear: a guide to electronic film and

video editing. Triad Publishing Co., 1991.

H. Takagi. Queuing Analysis, A Foundation of Per-

formance Evaluation. Volume 1: Vacation and Priority

Systems, Part 1. North-Holland, 1991.

F. A. Tobagi, J. Pang, R. Baird, and M. Gang. Stream-

ing RAID - a disk array management system for video

files. ACM lftdtimedia Conference, pages 393-399,

1993.

36

