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Abstract

In this papcr we present an algorithmae approach to
bounding the mean rcsponse lime of @ mulfi-server sys-
tem i wheeh the manemum expected delay routang policy
is used. ve.. an arrivng job will jown the queue which
has the numimal erpected value of unfimished work. We
assume the queuweing system to have N scrvers, each
with an anfintle capacity queue.  The arrval proccss
18 Powsson with parameter X, and the service tune of
scrver i s cxponenlially distributed with mean 1/p;,1 <
1 < K. The compulation algorithm we prescnt allows
one to iradeolf accuracy and compulational cosl. Up-
per and lower bounds on the eapected responsc tumc and
erpected number of customers are compuled; lhe spread
between the bounds can be reduced with additional space
and tone complexily. Framples arc presented which il-
lustrate the excellent rclative accuracy atlamable with
relatively Lttlc computation.

1 Introduction

In this paper, we are concerned with bounding the mean
response time {and thereby the mean number of cus-
tomers 1 the system) of the muimum expected delay
routing policy (a natural generalization of the short-
est queue routing policy). The system under study has
I servers, where ' > 2. Each server has an infinite
capacity queue and service rates are exponentially dis-
tributed with rate p;, i = 1,2,..., K. Without loss of
geueralily, we assuie jig > pto > -+ > jup. The job
arrival process is Poisson with rate A. Upon arrival, the
job joins the queuc with minimal expected unfinished
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work (the formal definition of the routing discipline is
given later). In case of a tic, the job joins the server
with the lowest index. 1 all the service rates are the
gamme, then the seheduling policy reduces to the classie
shortest queue routing policy.

Joining the shortest queue is a natural way to halance
the load in a multi-server system and thereby achieve
better systen performance, 1 e,
One of the major difficultics in analyzing this kind of a
routing discipline is the lack of a closed form solution

niean response e,

since the quenes in the system are not independent be-
cause the arrival to each server depends oun the state
of the entire system. The state space of the system s
multidimensional in nature and infinite i cach of the i
dimeunsions. Most of the published results are Tinnted
to the case where N = 2 with exponential mterarrival
and service tines.

We start with a brief review of the published litera-
ture on the shortest queue routing problem. Winston
(23] showed that shortest queue routing is optimal
the sense that it maximizes the discounted number of
customers to complete service in any specified interval
of tue. It s important to note that shortest queue
policy in a homogeneous system is both socally and m-
dradually optimial [22]. Kingmao [1], and Tater Flatto
and McRean [8] studied this problem with A = 2 via
transform methods. They obtained an expression for
the mean number of jobs in the sysiem expressed as
an infinite sum which can be simplificd under a heavy
traflic asswiption. Cohen and Boxma [ ] treated a sim-
ar problem as a Renmann-Ililbert boundary problem
and obtalned a functional representation for the mean
number of custouters in the systeni. Conolly [3] stud
ied the same model as in [38, 11] and proposed an ap-
proximation algorithm for evaluating equilibrivm state
probabilities via state truncation. Rao and Posner [20)
proposed an approximation algorithim to analy s a sys-
tem with A" = 2 and in which eaclh server has a Jif-
ferent service rate (heterogencous servers).  An arriv-
ing job joined the server with smaller number of jobs
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(rather than joining the server with minimuin expected
delay). The analysis approach involved treaiing one of
the queues as having a bounded capacity so that the
transition rate matrix far the modified system could
be expressed in a matrix-geometric form {19]. Grass-
man [10] studied the same problem with A" = 2 and
solved for transient and steady state behavior. alfin [9]
studied the two servers problem and used a linear pro-
gramming technique to compute hounds on the mean
number of customers in the system. Blane [2] studied
the join the shortest gueue problem with an arbitrary
number of heterogencous servers. He proposed an ap-
proxiimation method which was based on power series
expansions and recursion which required a substantial
computational effort. Nelson and Philips [17, 18] pro-
posed an approximation for the mean response time
with /' homogencous servers. More umportantly, the
approximation allowed general interarrival and service
time distributions. Avritzer [1] studied a dynamic load
balancing algorithin which used threshold policy in an
asymetric distributed system. The result was only
applicable to two distinct types of servers and a small
class of threshold sizes, no formal proof was given on
how to obtlain performance bounds. None of the work
cited above treated more than two servers and simulta-
ncously provided error bounds.

The major contribution of this paper is a computa-
tion algorithin that (1) allows more than i > 2 scrvers,
(2) allows heterogeneous servers, (3) includes scheduling
hased on queue lengths and service rates (thus, a gener-
alization of joining the shortesl queuc) and (4) provides
error bounds. The bounding methodology also allows
one to tradeoff accuracy and computational cost, as will
be demonstrated.

In Section 2, we define formally the queueing sys-
tem we are analyzing. In Sections 3 and 4, we present
Markov models which provide upper and lower bounds
on the mean response tlme, and we formally prove that
these modified models do provide bounds. In this pa-
per, we show how we can further reduce the state space
by lumping similar states. In Section 5, we presenl two
numerical examples and show that the bounds are in-
deed tight. Clonclusions are presented in Sectlion 6.

2 Minimum Expected Delay
Routing Model

We consider a system with A > 2 servers, each with
its own infinile capacity queue and exponential service
vate y,, 1 = 1,2,..., K, where o 2 s 2 - 2 Uug.
The job arrival process is Poisson with rate A. Let n;({)
be the number of customers at the i server at time
t. Let Uy (t) = (1 + n,(1))/p,, which is the expected

unfinished work at the i server if the new cuslomer
jotus queve 7. Define U*(0) = min{{; (1), 7 = L,...,N}.
Upon arrival of a job at time 7, the job will join a server
J where U;(¢) = U* (). If a tie occurs, the job will join
the lowest index server in the set {1500 = U0} A
special case of this routing discipline is when all service
rales are cqual, and in this case it reduces to the classie
shortest queue routing problein. We can construct a
Markov model, A/, for this queueing system with state
space:

{s = [mine...ongllny 20, i=1, .. K}
Assume the system is stable; that s p = A/ le‘__, fy <
1. The steady state probability vector for this

continuous-tine Markov model is the solution to.

FG =0 and Fe=1 (n

where 7 is the steady state probability veclor, ¢/ is the
trausilion rale matrix, and ¢ denotes an appropriately
dimensioned colmmn veetor of s,

We can  transform  this  conlinuoustime Markov
model nto a discrete-tune Markov model via um-
formization [21] (the rationale hehind ths transforma-
tion is 1o facilitate the comparison of the original model
and the modified models we introduce later). To express
the one-step trausition probabilities for thix diserote-
time Markov chain, we need the followmg notation:

S = tolal state space of the original model, /.

h = [/\+Zi’\—_—|/'7]‘l

U*(s) = min{IA|U0, = (b 4+m)/ i = L. Ns=
[y oy o))

na(s) = sel of servers in state s for which 17, =
[7*(%).

n*(s) = the lowest mdex Tor servers in set n,(s).

indicator function for condition ¢.

—
—~—
~
St
1

The one-step transition probabilities for a given state

s= oo ng] are:

55— 8§41,

Hi=n"(s)}hA (2)
()

§— 8= Vg > 0Yhy; 3
IN
5 — 5 ]—/1{A+Zl{n,>0}/l,] (n

=1

where s4¢; is the state s with one additional customer

in the i queue. Also note that:

1 I
1 —11[/\+Zl{n, > 0] = Z Ui, =0 (5)

1= =1

Let P be the transition probabihity matrix for the trans-
formed discrele-time Markov chain; we can obtain the

141. Performance Evaluation Review, Vol 20, No. 1, June 1992



steady state probability, at least theoretically, by solv-
ing the following system of linear equations:

AP =7 and T =1 (6)
Of course, based on the state description, 7 is a h-
dimensional vector which 1s mfinite m each dimension.
The exact solution to this problem has been found thus
far to be Intractable.

In gencral, the original problem does not possess a
closed form solution, and it is impossible to solve the
problem numerically due to its state space cardinality.
Since the Markov chain lacks special structure, tech-
niques such as the matrix-geometric methods do not ap-
ply in general. One natural way to approach this prob-
lem 1s 1o construct another model that closely bhounds
the performaunce of the original problem and at the same
time, has cither a known closed form solution or at least
1s cfficicntly evaluable by numerical methods.

An important observation is that the motivation for
using minimum expected delay policy 1s to balance the
workload among all servers in the systems. Consider a
system of two servers with equal service rates in which
the current state is [3, {]. The purpose of using the rout-
mg policy is to balance the system as much as possible;
therefore it 1s reasonable to assuine that a highly nubal-
anced state(e.g., [5,1]) has a much smaller probability
mass than a balanced state (i.e., [3.3]). This crucial
insight, provides the rational for constructing two mod-
ified versions of the original model which can be shown
to bound the mean response time of the original systen.
In both cases we represent the exact hehavior (transi-
tion rates) for the most “popular”™ states. The number
of states in the most popular subset is a function of
the accuracy demanded and computational cost one is
willing to pay. When the systemn leaves this subset we
modify the behavior of the system in such a way that
{a) the modified system has an eflicient solution and (b)
the modified model behavior cau be shown 1o bound the
behavior of the original inodel.

In the following two sections, we prescnt two Markov
models which can provide an upper bound and a lower
bound mean response time. We also present nuineri-
cal procedures for efficiently solving these two modified
models.

3 Upper Bound Model

In this section, we construct a modified Markov model,
M, ., which provides an upper bound for the mean re-
sponse time and the mean number of customers of the
original model, M. For the upper bound model A,
we assume that we have the same system configura-
tion, namely that the job arvival process is Poisson with

rate A and the system has A servers with service rates
fo i =120 N where gy > >0 -2 g

The upper bound model can be deseribed as fol-
lows. There are (wo additional model parameters for
My First, we have a threshold paramcter  which in-
dicates the degree of imbalance permitted between dif-
ferent servers” queues (a formal definition for o will be
given later.) A job may depart fron the system only if
its departure does not violate the maxnnum degree of
mnbalance permitted. If the job departure violates the
threshold setiing, the job restarts itself within the same
server. Intuitively, this mechanism forcex a job to stay
in the system at Jeast as long as in the oniginal wodel
and thereby increases the mean nuiber of jobs i the
system. The ratiounale hehind the threshold parameter
is to generate a model thai has a state space which is
a small subset of the state space of the original model.
The sccond parameter is the arlificial capucity, O, where
1= 12, K (again, O will be precisely defined tater)
for cach server. Whenever a job arrives to {the system
and finds that cach server has an integer multiple of ¢
jobs, each server wil put all jobs 1 its quene (exeept
for the arriving job) into a suspended state, and a new
busy cycle 1s started. This busy cvele will end when all
servers complete all johs except for the suspended jobs
‘The suspended jobs are then released and can he scrved.
Note that the definition here is recursive. During the
busy period following suspension of a sel of jobs, the
capacities (' can again be exceeded. causmg another
set of jobs to be suspended. Wheu a busy period ends,
only the set of jobs suspended at the mitiation of that
busy period are released for service. The purposc of the
oo 1< <N s to ereate a malnx with repetitive
structure; based on that structure, we will be able to
derive an efticient nunerical solution algorithm. The
computation algorithi 1s based on a partitioning of the
state space of A, wto {SsUS) -+ } such that all states
n &, i > 0 satisfy the condition 1€, < n, < (i41)(]
for j = 1,..., K. Due to the routing of arrivals and
the constraint on departures, we can show that there is
only one trausition from &, to &1 and the transitions
from & 41 to &, can only go to one state in & As will
be shown later this property allows us to castly forim a
reduced model in which cach S, 18 exactly aggregated.
This modification to the model should also increase the
mean number of jobs in the system compared to the
origmal model since service of a suspended job can only
be resumed when all the active johs depart from the
systen.

As an example, assume thal we have a systom
with four bhomogeneous servers, and we let () =
10, for 7 = 1,2,3, 1 1t is easy 1o sce that &
consists of all states for which ecach queue has De-

142. Performance Evaluation Review, Vol 20, No. 1, June 1992



tween 0 to 10 customers; & consists of all states for
which each queuc has 10 suspended customers, and
has belween 0 to 10 active customers and at least
one queuc has an active customer.  Observe that
the only transition from & to & is through state
[10,10,10,10). Ths is due to the routing of arrivals.
The only noun-zero t{ransitions from &) to & are from
states [LL, 10, 10,10}, [10, 11, 10, 10}, [10, 10,11, 10] and
(10,10, 10, 11] to [10, 10, 10, 10]. This is due to the rule
introduced 1 A, that suspended customers are only
@91’ve(l when the busy period (carresponding to states in

81) has completed. For a heterogeneous server system,
t,ho alues of (Y have to he chosen to be proportional to
the relative service rate in the system to maintain the
saime structure for the transition rate matrix.

An important point is that the parameters d and ¢,
can be chosen to control the extent to which A, be-
haves like the original model M| i.e., the larger d and
(', ave, the farger the portion of the state space that
has behavior identical to the original model. Now, let
us define the following variables for Af,.

Sy, = tolal state s])au‘ of A, where §, C 8.

h = A+ ZI_] /1

() = H:—]‘( Ui = L2000 N, where (U s some
positive intoge‘r bll(’h that [h(‘j > 1.

d = threshold setting where (/) ="+ 1) < d <
(.

NWmar(s)= max{nls = [0y, ... 05, . ngl}

l(s) = smallest integer [ such that I(; —n; >0

for all servers 7, i = 0.1,..., K 1n state s.
Note that {(s) is the depth of recursion of
Job suspensions in state s.

We transforin this continuous-tine Markov model
into a discrete-time Markov chain with the same uni-
formization parameter b which we used in the orig-
imal model M. The onc-step transition probabilitics
of the discrete-tine Markov chain for a given state

s = [ny.yny,ong] are:

L{i = n*(s)}hA (
)}l{”nuu( §) —n, < (I}
o, — (I(s) — D)CT > O hpy (8)

1—]1 /\-1—21{” >U}l{”mm

1=1

H{ni —(I(s) = DC>04] (9)

-3

s§— s++¢

s— s—¢  Hn, >

)—n, <d}

Note that for transition s — s—e,, the second indicator
function reflects that a job cannot depart if it violates
the maximum degree of imbalauce permitted. The third
indicator function reflects that a job cannot depart if it
is i a suspended state. We are now in a position to

formally compare the original (M) and the modified
Markov chamm (M) and prove that the mean response
time of M, s an upper bound on the mean response
thme of Af.

3.1 Proof of upper bound mean re-
sponse time

Our proof that the mean response time of the modified
model 15 an upper bound on the mean response tie
of the original model follows the approach in [7]. Let
T and Ty, be the one-step expectation operators of the
original model A7 and the upper bound Markov model
My That s for any non-deeveasing function f, we de-
fine T in teris of the one-step transition probabihities

Lo be:
TIs) = Y pls—s1/(5)
MES
/'”f(") fm Z I)“[S——'s/]'/'(sl)
SIESH

where pls— ] (pu[s—']) is the transition probability
from state s to state " in M (A), Vs, 5" € 8,

Let. /¢ and 2, be the mean response Line of A and
Al respectively, And let V¥V and N, be the mean -
ber of customers in the system for M oand A/, To show
R < Ry, all we need to show is & < Ny since the
average arrival rate for both models is A, Define the
reward for state s as r{s) = 27]‘_] n, for hoth models.
The mean number of customers m the system can he
expressed in termn of the expected reward function:

No= Yorems) (1)

S€S

Let VH(#) be the total expected reward over § periods
with the one-step reward function - when starting m

state s. We have:
11

Z’]'k[l(ﬁ

b=t

with 7 being the identity function. By the Markovian
property, we have:

Fis) = r(s)+ 71 )

Siuce hoth Markov models are irreducible (easmily scen
from their definitions), steady state performance mea-
sures are independent of the initial state &' and we

have:

N=3 rms) = o Ty o
SES
and (12)

Ny = Z ’)(S)"Tll(b) = []“_!]L; \u, [""/] {13)

€S,
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To show N, > N, we have to show V(s) > V(s) for
all t and all s € 8. As illustrated in [7], to show that
Ny > N, it is sufficient, to show:

(Tu = T)VYs] > 0 (14)

for all t > 0 and for all s € &,.

Based on the definition of the one-step expectation
operator on the original model M and the upper bound
model M, we have the following relationship for any
state s € &

K

(Tu=TV () = D (0> 0) A (Mmar(s) —ns =d)) |

=1
((n, >0) A (n, —(I(8)—1)(; =0))}
pih[f(s) = f(s—ci)] (15)
where the syimbol “A” is the logical AND and “|” is
the logical OR operator. Substituting V*(s) for f(s),
it follows easily that Equation (14) is satisfied if the
following conditious are satisfied:

Vis] = Vi[s—c,] 20
fori=1,...,A;t>0,n>0; s&€8, (16)

Theorem 1
Vsl = Vi s—¢,] >0

fori=1,.." Kit>0;n;>0; scS8,

Proof: The proof is given in the Appendix. |

3.2 Computational algorithm for solv-
ing the upper bound model

In this section, we describe an algorithm for computing
the mean respouse time of the upper bound model. We
define a partition of the state space of M, 8 = U8,
and §;NS; =0, Vi #j, where:

So = set of states with n, <), j=1,2,... I\

Si = set of states with (', < n, < (i + 1),
J=12,...,K and fori > 1.

Ps, s, = transition probabilily matrix from states in

&; to states in &)

The transition rate matrix %, has the form depicted in
Figure 1.

This 1s a block tridiagonal transition probability ma-
trix and therefore represents a quasi-birth-death pro-
cess. By aggregaling each partition §;, we can form a
birth-death process. Next, we show how to obtain the

Ps,s. Ps,s, 0 0 0

Ps, s, Ps.s, Ps,.s, 0 0

P, = 0 Ps,s, Ps,s, Ps, s, 0
0 ) Ps.s, Ps.s. Ps.s

Figure 1: Transition probability matrix for upper hound
imodel.

exact conditional state probability vector. given that
the system is in partition &. Once we have this imfor-
mation, it follows ecasily that we can obtain the aggre-
gate transition probabilities exactly.

There are several important features of this upper
bound wodel, . First, there is only a single state
in & that has a non-zero transition probability mto a
state 10 Siyq, 7> 0. Let us call this stale s, (Cy) State
5;(Cly) s

s, (Coy =Ty ona,.
ny =0+ 05V j=12.. N\

onpl eSS, whare

This follows from the rule used (o assign an arriving
custonier to a server. Also, there are A states from 8,
that have uown-zero transition probabilitios to states i
S,—) where ¢ > 1. Each corresponds to which server is
the last to complete its “active™ (non-suspended) cus
tomers. Let us call these states s, (), T <IT <N, i > 1.
These statey are:

sy = [nyonsg.., nple s whore
o o= iCT+ 1 and
n, = i for {£j and [ j=12... N

This follows fronm the restrictions on departures in the
upper bound model.  The following are casidy =cen
to be the transition probabilities hetween s, ((1) and
sip{D =12 K:

HIE= 0" (s;(Cu)) }Ah
pule for =12 .. ., K

,S,(('()) — M-I—l(“
S,_H(l) - ""1(("())

Another nuportant observation is that the submatrices
Ps, s, for i > 1 are all identical. We now consider how
to compute the conditional state probabitities P{s €
818} exactly, We first need the followmg vesult from

[6]:

Theorem 2 Groen an irreducible Markov process unth
statc space S = {AU B} and transilion probabilily ma-

trie:
Pia Panp
Pnax Ppng
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wheve Py j ts the {ransition probability sub-matriz from
partifeon § 1o j. If Pp o has all zcro ontries cxecpt for
some non-zcro entries mn the i column. the conditional
steady stalc probability vector, given that the system s
in partition A, 1s the solution to the following system of
bhnear cquations:
Fia[Paa+ Pan L'_,P] = @4
Tae = |1

where e 15 a row veetor with a O an cach component,
except for the i component which has the value of 1.

We are now in the position (o compute the con-
ditional state probabilities on each partition exactly.
Without loss of generality, let us consider §,, for some
i> 1.

Lenuna 1 Lt Ps, s, be the transiion probabilily ma-
trix whach s sinalar 1o Ps, s, except for the following

2

modification:
Psi(ColsalCa) = Psy(Ca)s(Co) T AN (17)
Psuisntly = Payenn + pubh
where L= 0" (5,21 (CH))18)
Pe,j)eall)y = e j=102,..  K;j#1(19)

The solution 1o the followimg system of hncar equa-
tions:

o
and T =1

7

5
5

Ps, s

provides the conditronal sleady statc probabilily of state
s gquoen that the Markov chain 1s in some state i §,.
that 1s:

Y s€S8;

Proof: Let us partition the state space 8, = {8$; U S, }
where S; = Uj —0S; and S;I =8, ~ 8:. There is only
a single return state in S,', which is s;{CY), from the
states in S,“. Based on Theorem 2, the modification
of Equation (17) provides the conditional steady state
probability, given the system is in S;. Now partition
the state space & = {S! U S} where 8} = U;;:,SJ.
Note that there is only one return state in &;, which
18 5,(n"(5i=1(Cv))). Again, based on Theorem 2, the
modification of equation (18) and equation (19) pro-
vides the conditional state probability vector, given the
system is in state 8;. [ |

A y A Py x
0 agyg agyg agyg agy
‘\_ \_
H M " i u
agg agg agyg agg agg

Figure 2: Aggregate Chain for upper bound model

Since we can compulte the conditional state probabil-
ities for each partition 8, exactly, we can exactly aggre-
gale states in each 8§, into a single state 5,71 > 0. The
aggregate chain is depicted in Figure 2.

)\() = ﬁ(,s()(('())) /\ /7
’\ﬂ:l.q = w5 (W) Ah
IN
fagg = Y 705 (D) b

=1

Solving this chain, we have:

]\ ~1
™(s0) = [1 +*——i———] (20)
Hagy = Aagy
- « s
A
T(s) = [1+ = ] < 5 > (_;Q
Hagg — /\:(gy Hagg Hayy
Jor i= 1,2, .. (21)

To obtain the mean number of customers in the the
upper bound model, N, let us define the following,

N
e

(1() -
=1
Ms) = r(s) =iy sES
Ns) = Y #Hs)F(s)
€S,

whete T(s) is the solution of the following Markov chaim:

7Ps s = T and  Fe=1
Then we have;
o0 N
Nu o= K)® o)+ [Vl )+ica] o (s )22)
=1

Since N(s,) = N(s;) for i # j where £, > |, we can
simplify the expression above and obtain the expression
for N,,:

Nu = Nso)n™(s0) + N(s)(1 — 7% (s0)) +

ot /I(II]r/ + R
Codg———""—57 (54) {23)
(/’a.q_q — /\uvg(/)“

From Litile's Result [13]. the upper bound mean system
response Lime is:

R, = Ny/A (21)
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4 Lower Bound Model

In this section, we construct a modified Markov model,
My, which provides a lower bound for thie mean response
time of the original model, A7. We first give an informal
description and motivation for the lower bhound model.
As in the upper bound model, two additional param-
eters are used to specify model My, namely, d and (7,
i=1,..., K. Ajob may depart normally from the gys-
tem only if the departure does not violate the maximum
degree of imbalance permitied. If a job departure vie-
lates this threshold setting, the systent goes into a full
servace mode. In this mode, the system behaves like
an M/M/K system with a special service discipline;
specifically il there are j customers (where j < ) m
the system, these j customers execute on the j fastest
servers. I there are more than A" customers in the sys-
tem, then the system behaves like a regulay M /MK
system. The system operates in this mode until the next
idle time, and then it starts behaving like the original
system again. Also, when a job arrives and fiuds that
the systemn has 'y customers, where (' = Zf\:] (5, the
system again begins to operate m a {ull service mode
until the system goes idle and then it reverts back to
its original behavior.  Intuitively, these modifications
yield a lower bound on the mean response tiwe, Since
the modifications are an idealization in which either the
model beliaves exactly as the original model or the best
possible service rate is delivered. While this is intuitive
we will also forinally prove that the modified model A7,
vields a lower bound on the mean response time. Of
course, it Ix intended that d and (5.7 = 1,2,..., A\ be
chosen large enough so that most of the time, Ay be-
haves like the original model. On the other haud, to be
able to solve the niodel efficiently, we would like to keep
these parameters sinall.

4.1 Proof of lower bound mean response
time
In order to facilitate the comparison between M and

My, we organize the state space for model Al using the
following notation:

N = set of states with exactly 7 jobs in the sys-
tem, where 1 = 0,1, ...

gl' = {-/\‘/‘l U .\‘2 U ‘.\"("'f}

(), ; = submatrix containing transition rales from
states in V) Lo states in A

Qi¢ = submatrix containing trausition rates from

states in N, to states in G
Figure 3 illustrates the form of the transition rate ma-
trix for model Al when states are ordered according to
the number of customers in the systeimn.
Using the state replication technique from [16], it is
easy to show that we can transforin the model A7 into

Qo Qog 0 0
(\)g,l) (Jg ¥ (ng:'f.H {)
0 Qg Qoo+t Qopgroge
0 0 Qcy4oci41 Qo 4

Figure 3: 'Transition rate matris for 1/

another model, My, by duplicating the states m G with-
out perturbing the expected number of customer in the
system. Let us call the duplicated set. of states ¢ 'The
transition rate matrix My, which results from the du-
plication of states w ¢, s illustrated in igure 1. More
formally if' [z,. 7, 7, ;] 16 the steady state solution for
model AL, the steady state probability vector for model
RYSDS

7 4

’ i
Ty Mg Ty Tg| whare mg =g + 7

Note that there is a one (o one mapping bhetween the

" Qoo Qog 0 0 1]
Qoolee 0 Qg ¢'p 41 0
Qoo U Qoo Qo orm 0

0 { (2(’,+)g’(:?(‘f—l-l,(‘f+l(\2(‘,»+I‘(';+Z_’
0 0 0 Qeygncyst Qoggneypn-

Figure [ Transition rate matrix for My,

states m ¢ and the states i ¢/, and Quigr = Qa.g.
Qoo = Qgro and Qi prg = Qe qrgr Starting from
an empty systenm, only the stales v G are visited until
the number in the systeny exceeds Cpo When the num-
ber in the system falls to (7 again, the states in ¢ are
visited rather than the states in @ until the system goes
idle. At this pomnt the described behavior repeats. Tntu-
itively, the idea s that 1 (' s large enoughy, the number
in the systemn only rarcly excecds €7p and therelore most
of the time, M; hehaves exactly as the origimal model

A‘IA

Although the states i G are ore popular than the
ollier states in the model, there are still a large mannber
of states in ¢ which have low steady state probabil-
ity, for example. those states with large immbalavec m
gquene length.  With this i mmd. let us partition ¢
mto two sets of states, ¢ and ¢y where ) contalns
all those statles that satisly the threshold settiug o, and
Gy = G — G;. Based on the vesults from [I1], transi-
tions {ront G to Gy can be transformed into transitions

U'To simplify notation, we use 1 to tepresent steady state

>0
probabilities fo1 states other than state O and the states in G
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from G to the corresponding states in G’ (since there
18 a one to one mapping between the states in G and
G') without perturbing the mean number of customers
in the systems. Formally, the steady state probability
vector for model My is:

" 1"
Ty l':gl 71(__‘;’E>§}:|

" H t 1
where 1 = [_7&}119] +rg = Ig+ Iy

The transition rate malrix for this new model Ay is
illustrated in Figure 5.

(Qu,n Qo.e, 0 0 0
Qoi0Qai g, Qarg Qoo 0
Qoo 0 Qorgr Qoropsl (

0 0 Qecpii1.6 Quyir,cr1 Qogrrcppa
0 0 0 Qeyoc+1 Qopia,cp40

Figure 5: Transition rate matrix for Ma.

Now, (conceptually) we apply exact aggregation [5]
to the states in G’ and to the states in N; for i > ().
That is, we aggregate all states with equal number of
custonier into a single state. Denote the aggregate state
corresponding to ¢ customers in the systems as a;, and
let gi; be the aggregate rate between aggregate stale 4
and j. The transition rate matrix for this model Ms, is
llustrated in Figure 6.

[Quo Qug, 0 0 0 0
(291,0 Qg1,91 (J‘Jl,a; an,az le,(ts QCu.M T

ga,.0 0 gaya Yaya. 0 0
0 0 Yay,ay Gag,ay Jay,as 0
U 0 0 Yaz,ay Yasz,as Jas,ay

Figure 6: Transition rate matrix for Ms.

We are now in a position to compare model Mj
(which has the same expected number of customers as
the original model, M) to the lower hound model M
since they have similar transition structures. Note that
in the lower hound model A, the system operates in
the full service mode when it s in states a;, ¢ > L. That
is?:

S 1<i<K

25
Zf:ll"j 1> N @

*
ganﬂv‘-x

?Fo simplify notation, we use notation ag (a state with no
customers in the system) and 0 interchangeably.

It s clear that these aggregate rates g, i My are
upper bounds on aggregate trausilion rates g, ., it

M.

Again, to lacilitate a formal prool that M, provides
a lower bound, we transform the two continuous {ime
Markov models, Af3 and M, into discrete-time Markov
chains with the uniformization parameter . We can
then apply the same approach as in Section 3.1 1o show
that the expected number of customers in the system for
model My is less than the expected number of customers
in model Mz, Based on the difference of the one-step
expectation operator 17 (for model M) and T, we need
the following conditions to hold:

Y

Vi) — Vias) < 0 P> Land t > 0(26)

Theorem 3

Viai—)) = Via) <0 i

AV

Fand £ >0

Proof: The proof is given in [15]. |

4.2 Computational algorithm for solv-
ing the lower bound model

In this section, we deseribe an algorithm for computing

the mean response time of the lower bound model A7

Let 8y = {ny UG} Again, the transition rate matrix

Is depicted i Figure 7:

[ Qoo Qog, 0 (0 0 0
(\2';’1,“ le.gl (\2&'7;.4‘11 («2!:'71,(13 ('ng‘rl_,, (Jgh.v/,, o

‘(/::."” 0 .f/jl,a, -(/::[,413 0 0
O 0 Wi Yasa Yoo
() U 0 g:a.ﬂ_) ”:_a.”.& !1:;3\(14

Figure 7: Transition rate matrix for lower bound muodel.

Observe that if we know the conditional state proba-
bilities for states 11 &), we can aggregate Sy as a single
state, sy, and we will have an efficient. algorithm for
computing the mean number of customers in the sys-
tem. Note that there is only a single return state to &,
from the states outside 8y, and based on Theorem 2,
the state probabilities conditioned on the systenm heing
in Sy can be obtained by solving the following system
of linear equations:

Cr
7}(8()) QSn,Sn + Z (‘\)Sl'le\"1 £ .f_(l) - ()
=1

;(S()) [ = [
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where 7"?(&)) is the steady state probability vector, given
the system is in Sy. We can now apply exacl aggrega-
tion; the aggregated process is depicted in Figure 8.

Figure 8: Aggregate Chain for lower bound model

The transition rates for the aggregated chain are:

) = . »

y.s‘_,,rh = "l" SU Qénd € = 1.,..,(;}' -+ 1
Javas = A . i>1

* —_—
g(lq,“‘n - /l‘J
i : . .
o D=1 My i=2,3,... A
‘1(41,a1—1 * L
Jt otherwise

X
where p* = 5700 i

Solving the chain, we have:

T (s0) =
Crlod Cy+l
- —1
1 + Z Z /\1 Z ]qn(l HJ(I]\ tlL—x ]+
i=l j=1 k
Crtl (f-l—l
Cr+l—j
)\ Z B Z T50,a;)
k=j
Crtl -1
* -1 e
( H gak,ak—1) ] (2()
k=j3
i Cr+tl

™ (a;) = w(s0) D N7

i=1

T )] =1l (28)

E lso,aj

Cr 4l 41
T (a;) = (,50)(“ yimCr=t Z )‘<f+l—J(Z o)
Cr+1
( H g:;k,ak—l‘)_l] =042, (29)

To obtain the mean number of customers in the sys-
tem, V;, and the mean response time, I, let

N(8y) = Z r(s)7(s)
se€San

Then we have:

Ny = N(s0)r*(s0 +Zz7r @ (30)

i=1

By = NJ/A (31)

Remark: Further State Space Reduc-
tion

In the previous section, we discussed the methodology
of constructing an upper bound model A, and a lower
bound model M.
the models are:

The computational costs in solving

1. obtaining the conditional state probabilities
in & and &

2. obtaining the steady state probabilities of
the aggregaled process and,

3. obtaining the performance measure, e.g.,
expected response time or expected num-
ber of customers.

The larger the state space cardinality of &, the more ac-
curate are the results obtained. Ju this section, we dis-
cuss how we can reduce the state space of 8 by luniping
semalar states.

Kemeny and Snell [12] studied under what conditions
an aggregatoed process is still Markoviau. The condition
for a Markov process to he lumpable with respect to a
partition {PyUP;U---}, where P; NPy =, is that for
every pair of sels Py and Py, v », has the same value
for every state k € P; where: ‘

P E Gk

l1eF;

f())’ Af [ ’1’1'_

We can apply this notion to our minimum expected
delay routing problem.

Let J be the nuniber of distinet types of servers in
the model where two servers are of the samne ty pe il and
only if they have the same service rate. For any state s

define the following mapping:

fos — ALli=1,2,...,J}
where:
L, = xs a set of tuples (v, 35)
ai; = is a quenc length for a scrver of type 7 that
appears in state s
Bij = is the number of servers of type ¢ that have

queue length oy; in state s

We define a partition of the state space &, (or &)
by specifying that s),s0 € Sy(or &) are in the same
partition if and ouly if f(s1) = f(s2).

For example, assuime we have a four server system
with gy = jo = 4, i3 = 3 and //; = 2. There are three

distinet types of servers and J = 3. We can group stales
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such as s; = [3,4.2, 1] and s = [1,3,2, ] into the same
partition since the ;.7 = 1,2, 3 for both states are:

h={10.60Ekh={2Dhi= {11}

It is not difficult to sce that the condition for lumpabil-
ity is satisfied and we can greatly reduce the state space
of the model that needs to be solved.

5 Numerical Example

In this section, we present two examples to illustrate
the bounding algorithm.

The system we consider in our first example consists
of four homogeneous servers. To vary the system uti-
lization p from 0.1 to 0.9, we fix the input arrival rate
al 4.0 and vary the service rates for all servers. For
this example, we set d = 4. For p = 0.1 to 0.7, we set
Cy =7, lor p = 0.8 weset ¢, = 9andfor p = 0.9, we set
(5 = 10. Table | iHustrates the upper and lower bound
mean response tine as a function of system utilization.
Percentage error” is defined to be %“;—gf x 100%. Note
that the bounds are very tight.

The second system we consider has four heteroge-
neous servers with j = 10, g0 = 9, 3 = 8 and pq = 6.
To vary the system utilization from 0.1 to 0.9, we fix
the service rates for all servers and vary the input ar-
rival rate. We set d = 6, and for p = 0.1 to 0.7,
we set (=< 9,8,7,5 >. For p = 0.8 to 0.9, we set
C =< 12,11, 10,8 >. Table 2 illustrates the upper and
Jower bound mean response time.

To illustrate the tradeofl hetween computational cost
and accuracy of the bounds Let us consider the ho-
mogeneous queueing system in the first example. By
fixing the system utilization at 0.9 and increasing the
number of states generated, we see the huprovement of
the bounds on the meau response time. The result is
illustrated in Table 3.

6 Conclusion

Joining the shortest queue load balancing is appealing
to study not only due to it’s stuplicity in implemen-
tation, but also due to the fact that it is theoretically
difficult to analyzc because the arrival process is state
dependent and therefore no closed form solution exits
in general. Also due to the fact that each server has an
infinite capacity queue, the state space cardinality of
the Markov model is infinite and it becomes impossible
to generate the entire state space to analyze the Markov
model numerically. We have presented an approach 1o
bound the mean response time and the miean number

*1f the spread in bounds is less than < 107¢, we leave the
entries for the spread of the bounds and percentage error blank.

of customers of minimum expected delay routing pol-
icy, which is a generahization of the join the shortest
queue routing policy. The algorithmic approach pro-
vides the flexibility to tradeoll computational resourees
and tighter bounds. There is ongoing work in how to
choose d and € such that we can a priori prediet the
error bounds. Also there is ongoing work m mvestigat-
ing the possibility of bounding the mean response time
under more relaxed conditions, e.g., by allow g geneval
interarrival and/or service distributions.

Appendix: Proof for Theorem 1

VIs] =V [s—c,] > 0
Jori=1. . KNt > 0,n >0, s€8,

Proof: The proof is by induction on t. When { = 0,
V() = 0 for all s; therefore the condition is satisficd.
Now assume the condition is satislicd for 1 = . For
t = n 4+ 1, we have in g,vnvral":

"m+l (.s')——"m-H(s——t,) —

Iy
r(s) + ZAM{J’ = 0 () ]V (o )+
7=l

I
S Hny > 0h, MV (5= ) +
J=da#i
K
JOV ™M (5—c, )+ Z Hny, =0h, RV (s) 3 --
SR

I
H(s—e )+ > AI{j=n"(s=c )V (5=, 40 )+
=1

K
Z L{n, >0}, bV (5= Yoy =) +
1=1u#
Hn, = 1> 03 h V7 (s—c, —€e,) +
K
Z oy =0Y,h+1{n, —1=0},h
)= #F

"7))(5_(})

Grouping similar terms, we have:
‘lvm+l(ﬁ)__‘vm+l(ﬁ_") —

r(s) —r(s—e,)| +

#Note that the conditon implies that in state s, there is at

least one job in the '" queue.
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System States Respounse Time | Response Tiune | Spread of | Percentage
Utilization | Generated Upper Bound Lower Bound Bounds Error
0.1 175 0.100074 0.100071
0.2 175 0.201692 (.201642
0.3 175 0.309557 0.309557
0.4 175 0.431129 0131129
0.5 175 0.579080 0.579068 0.000012 | 0.00103 %
0.6 175 0.773178 0.772967 0.000211 | 0.0136-1 %
0.7 175 1.061225 1.0K6TTT 0.004418 | 0.21000 %
0.8 245 1.569928 1.55:1950 0.014978 | 0.47931 %
0.9 280 2.867803 2.752649 0115151 | 2.04883 %
Table 1: Homogeneous servers systen
System States Response Time | Response Time | Spread of | Percentage
Utilization | Generated | Upper Bouund Lower Bound Bounds frror

0.1 3095 0.1035673 0 103301 0.000272 | 013048 %
0.2 3095 0.1077 18 0.107435 0.000283 | 013153 %
0.3 3095 0.113167 0.112859 0.000308 | 0.13627 %
0.4 3095 0.120737 0.120305 0.000132 | 0.17922 %
0.5 3095 0.131729 0.131086 0.000613 | 021166 %
0.6 3095 0.148537 0.117701 (.000836 | 0.28221 %
0.7 3095 0.176870 0.171620 0.002250 | 0.61013 %
0.8 6410 0.230285 0.225782 0.004503 | 0.98735 %
0.9 6110 0.391237 0.372385 0.018852 | 216876 %

Table 2: Heterogeneous servers systen
¥

K
Z AR j = n"(s) V" (s4¢;)—

7=1

K
ORI = n"(s—e )]V (5= +e)) | +
=1

K

Z Hny >0, bV (s—c) -

)=l #d

Vm(.b'—él'—fj} +
“ihvm(s—.”)—l{n’vl>0}IJ'1,/1V7"(3—(>,._(1)
_.I{II,———l - 0},““11717'”(8-—6‘1)

K
S0 Hn=0hph [V () = VM (5=c)

i=lij#

It is clear that the first [] term is greater than zero. By
the induction hypothesis, the third, fourth, and fifth []
terms are greater than zero. It remains to prove that

the second [] ternn is greater than or cqual to zero 'To
answer this question, we break this term into four cases

Case | for state s, i £ n*(s) and lor stale s — ¢,
i£En (s—e,), this imphes n*(s) = 0n*(s—r¢,) = ) where
J # 1, the xecond terim s

A
ST ()} [ (5 ) =V (5= e )
J=h A

whicl is greater than or equal to 0.

Case 20 for state s, 7 = n*(s) and for state s — ¢,
1= n*(s — ), the second term is:

A (V7 (s4e,) — Vs —c +0)) > ()

Case 3. for state s, 7 £ n*(s) and for state s — ¢,
1= n*(s —¢,), the sccond term s

h
D MG = s s )=V s )
)=Lg#

which is greater than or equal to 0.
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d| C States Response Time | Response Time | Spread of | Percentage
Generated | Upper Bound Lower Bound Bounds Errors
417 175 3.157382 2.187368 0.670011 | 11.86968 %
419 245 2.927385 2.624671 0302711 | 5. 1h228 U
4110 280 2.867803 2.752619 0115154 | 2.04883 %
5112 HiR 2.790852 2.760358 0.0301494 | 051932 %

Table 3: Computational Cost vs. Accuracy

Case 4. for state s, i = n*(s) and for state s — ¢,,
i # n*(s — ¢,). This case 1s obviously lmpossible. [
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