Design of Scalable Continuous Media Servers

Cheng-Fu Chou* Leana Golubchik! John C.S. Luit I-Hsin Chung?®

Abstract

Multimedia applications place high demands for quality-of-service (QoS), performance, and reliability
on systems. These stringent requirements make design of cost-effective and scalable systems difficult.
Therefore efficient adaptive and dynamic resource management techniques in conjunction with data
placement techniques can be of great help in improving performance, scalability, and reliability of such
systems. This is the focus of our paper.

Keywords: continuous media systems, dynamic resource management, data placement, storage servers.

1 Introduction

Multimedia applications place high demands for quality-of-service (QoS), performance, and reliability on
storage servers and communication networks. These, often stringent, requirements make end-to-end design
of cost-effective and scalable continuous media (CM) servers difficult. The scalability of a CM server’s
architecture depends on its ability to: (a) expand as user demand and data sizes grow; (b) maintain
performance characteristics under degradation of system resources; and (c) maintain performance charac-
teristics under growth or re-configuration. In particular, the choice of data placement techniques can have
a significant effect on the scalability of a CM server and its ability to utilize resources efficiently. Existing
data placement techniques in conjunction with scheduling algorithms address two major inefficiencies in
such systems: (1) various overheads in reading data from storage devices and (2) load imbalance, e.g., due
to skews in data access patterns. In this work, we focus on the latter issue and specifically on its bearing
on the scalability characteristics of a distributed CM server.

An important issue in distributed designs is the placement of objects on the nodes of the CM server which
directly affects its load balancing characteristics. In the recent past, a great deal of CM server designs, e.g.,
as in [9, 11], have focused on “wide” data striping techniques, where each object is striped across all the
disks of the system as an approach to dealing with load imbalance problems due to skews in data access
patterns (which change over time). An advantage of wide data striping is that it “implicitly” achieves load
balance by decoupling an object’s storage from its bandwidth requirements. However, wide data striping
also suffers from a number of shortcomings which we detailed in [5, 4].

Another approach to dealing with the load imbalance problem arising from skews in data access patterns
is replication, i.e., creating a sufficient number of copies of a (popular) object so as to meet the demand for
that object, where the disadvantages of replication include: (1) a need for additional storage space, and
(2) a need for techniques that adjust the number of replicas as the access patterns change. Some of these
issues are addressed in [17], and in our earlier work [13, 6].

*Department of Computer Science, University of Maryland, chengfu@cs.umd.edu.

"Dept. of Computer Science & UMIACS, University of Maryland, leana@cs.umd.edu. This research was supported in part
by the NSF CCR-98-96232 and ANI-00-70016 grants.

tDept. of Computer Science & Engineering, The Chinese University of Hong Kong, cslui@cs.cuhk.edu.hk. This research
was supported in part by the RGC Earmarked Grant and the CUHK Mainline Research Grant.

$Department of Computer Science, University of Maryland, ihchung@cs.umd.edu.

In this paper, we consider a hybrid approach, where the main focus is on the tradeoffs between striping and
replication. Essentially, striping is a good approach to load balancing while replication is a good approach
to “isolating” nodes from being dependent on other (“non-local”) system resources. That is, the wider
we stripe in a distributed CM system, the more we are dependent on the availability of network capacity
as well as resources not local to a node. Furthermore, replication has the benefit of increased reliability
in terms of: (a) longer mean time to loss of data from the disk sub-system, and (b) dealing with lack of
network resources, including network partitioning. The downside of replication is that it increases storage
space requirements and hence cost of storage. However, as storage costs decrease (fairly rapidly) and the
need for scalability grows, replication becomes a more attractive technique. In summary, the appropriate
compromise between the degree of striping and the degree of replication is key to the design of a scalable
distributed CM server.

Much research has been done on design of CM storage servers, e.g., [9, 11]. To the best of our knowledge,
most of these designs employ wide data striping techniques and the corresponding existing successful
implementations employ only tens of disks. In contrast, the use of replication for the purpose of addressing
changes in data access patterns has been less explored. In [16] the authors consider skews in data access
patterns but in the context of a static environment. In [17], the authors address various questions arising
in the context of load imbalance problems due to skews in data access patterns, but in a less dynamic

environment (than we investigate here)!.

In [8, 7], the authors also consider dynamic replication as an
approach to load imbalance, and in our previous work [13, 6], we study a taxonomy of dynamic replication
schemes. However, all of these works, except our work in [5, 6], either (a) assume some knowledge of
frequencies of data access to various objects in the system, and/or (b) do not provide users with full use
of VCR functionality, and/or (c) consider less dynamic environments than the one considered here. Our
motivation in doing away with such assumptions in our work is largely due to considerations of applicability
of dynamic replication techniques in more general settings and to a wider range of applications of CM

Servers.

Lastly, to the best of our knowledge, previous works do not consider alternative design characteristics
that affect the scalability of CM servers in an end-to-end setting under changes in access patterns (i.e.,
taking into consideration both the network and the storage resource constraints). The quantitative study of
such issues and the cost/performance and reliability characteristics that distributed designs exhibit under
growth, reconfiguration, degradation of resources, and changes in workloads are essential to assessing the
scalability of proposed architectures and to the development of large-scale CM servers, in general.

Based on the end-to-end cost/performance and reliability study presented in this paper we believe that
hybrid designs in conjunction with dynamic replication schemes result in large scalable, reliable, high
performance, and cost-effective CM systems.

2 Hybrid CM System Architecture

A hybrid system architecture is illustrated in Figure 1(a). It consists of a set of nodes connected by,
what we termed, a high speed global switch, which is a high bandwidth resource that can, for instance,
correspond to a high capacity WAN or an ATM-type infrastructure. Each node i, as depicted in Figure
1(b), contains one or more processing units (PUs) and one, what we termed, local switch (e.g., switched
Ethernet) which is used to connect all local PUs as well as local clients. Each client connects to its local
switch. Requests from this client which are serviced by a PU from node ¢ are termed “local”. When a
request from a client cannot be serviced by its local node i, it is forwarded to a remote node j, which

'"We believe that the policies used in this paper can be complementary to the techniques developed in [17].

Global Switch PU;j (processing unit j)

(a) hybrid architecture (b) Node i with k processing units

Figure 1: Hybrid System Architecture.

contains a replica of the requested object. We term this request “global”, as its service requires some
capacity of the global switch, i.e., to deliver data from the remote node, through the global switch to the
local node and subsequently to the client.

Each PU has one or more CPUs, memory, and an I/O sub-system (e.g., a cluster/array of disks), and it
is also connected to the global switch. Each node z € S, where S is the set of nodes in the system, has a
finite storage capacity, D, (in units of CM objects), as well as a finite service capacity, B, (in units of CM
access streams). Likewise, we measure the global and local switch capacities in units of access streams.
In general, different nodes in such a hybrid system may differ in their storage, I/O bandwidth, and local
switch service capacity. This flexibility of the hybrid architecture should result in a scalable system which
can grow on a node by node basis.

Each CM object resides on one or more nodes of the system depending on its current popularity. An
object is striped only across local disks which belong to the same node. Objects that require more than
a single node’s service capacity (to support the corresponding demand) are replicated on multiple nodes.
The number of replicas needed to support requests for a CM object is a function of demand, and therefore
this number should change as the demand changes.

Let R;(t) denote the set of nodes containing replicas of object ¢ at time ¢. Upon a customer’s arrival at
time ¢, there is a probability p;(t) that the corresponding request is for object i and a probability qg(t)
that this request is generated by a client local to node j. The admission of this customer into the system
proceeds as follows. If at time ¢ object 4 resides on node j and there is service capacity available at node
Jj, then the system admits and serves this new request at node j, i.e., locally. Let L;(t) be the load on
node z at time ¢. If at time ¢ object ¢ does not reside on node j or there is no service capacity available
at node j, then the system examines the load information on each node in R;(t), and if there is sufficient
capacity (on at least one of these node and in the global switch), to service the newly arrived request, the
system assigns this request to the least-loaded node in R;(t). Otherwise, the customer cannot be served
immediately. In this case we consider two alternatives : (1) the customer is immediately rejected (referred
to as the no queueing case), or (2) the customer joins a FIFO queue and awaits service where there is
no restriction on the size of the queue (referred to as the queueing case). These are two extreme cases
(i.e., allowing no queueing at all or allowing infinite queueing). And, although these are not necessarily
representative of how a real system should operate?, they are useful in our performance evaluation study,
i.e., these cases provide the necessary insight for the design of CM server.

Note that a “stream migration” approach to dealing with more “short-term” fluctuations in access patterns

?In a real system a reasonably sized finite queue is used, whose size depends on the required performance characteristics;
the actual size of the queue should be a function of the performance characteristics required by an application.

is given in [17]; this is an orthogonal approach and can be combined with techniques presented in this paper.
However, in the interest of isolating the performance effects of dynamic replication we do not consider this
here further. We also note that the problem of determining whether or not there is “sufficient capacity”
(under either CBR or VBR stream models) is orthogonal to the problems studied in this work; much
literature exists on this topic (refer to [10]), and such solutions can be used in conjunction with policies
developed in this paper.

Full VCR functionality (i.e., fast-forward, rewind, and pause/resume) is available to all admitted customers,
with fast-forward and rewind provided at ngpeeq > 1 times the rate of normal playback. We assume that
the user views the data as he/she is searching (e.g., fast-forwarding or rewinding) through it, and thus
Nspeed 18 finite. Let T,?;p be the mean amount of time that a customer spends in the normal playback mode,
before entering some VCR function mode. And, let T, 17, and Tp,,,, be the the mean amount of time
a customer spends in fast-forward, rewind, and pause modes, respectively, before returning to the normal
playback mode. We also assume that the use of VCR functionality (such as fast-forward and rewind)
does not require additional service capacity on the part of the CM server. This can be accomplished, for

instance, by using techniques proposed in [2].

Note that, in a hybrid system we need to maintain load information on remote nodes and other bookkeeping
information, which will require (a relatively small amount) of communication capacity; the exact amount
depends on a particular implementation, and we leave these considerations to future work. Note also
that in the case of wide data striping, the bookkeeping information must be exchanged between nodes to
schedule each newly arrived request, whereas in hybrid architectures, we can tradeoff relying more on local
(rather than remote) information for some loss in performance. Quantitative assessment of this tradeoff is
left for future work.

To assess the scalability characteristics of the potential designs in an environment where data access
patterns change over time, we consider the following cost/performance and reliability metrics: (1) the
system’s acceptance rate, in the no queueing case, which is defined as the percentage of all arriving customer
requests that are accepted by the system; (2) the mean and variance of the waiting time in the queueing
case, i.e., the mean amount of time a customer spends in the queue before he/she is served (the variance is
defined accordingly and is used as a measure of QoS); (3) the capacity of the global switch, the capacities
as well as the number of local switches, the amount of disk storage, all required to support a particular
architecture and corresponding acceptance rate; (4) the mean time to failure (MTTF) of a particular
architecture. Table 1 summarizes the main notation used in this paper.

3 Dynamic Replication

Since the number of copies of object ¢ partly determines the amount of resources available for servicing
requests for that object, we adjust the number of replicas maintained by the system dynamically. The
system’s performance depends on its ability to make such adjustments rapidly and accurately.

3.1 General Approach and Main Tradeoff

Given the distributed server described in Section 2, such a dynamic replication approach gives rise to
several interesting design issues, including: (a) when is the right time for the system to reconfigure the
number of replicas, i.e., when to create an additional copy of an object and when to remove a copy; (b)
to which node should a (new) replica be added or from which node should a no longer (deemed) useful
replica be removed; and (c) what are proper policies for actually creating a new replica (or removing a no
longer useful one). In the remainder of this paper, we discuss and evaluate techniques that address these

4

S set of all nodes in the system

N number of nodes in the system; N = |S]|

K number of distinct objects in the system

B, maximum service capacity of node z (in streams)

B average service capacity of the nodes in the system (in streams)
Cy maximum storage capacity of node z (in streams)

L,(t) | load on node z at time ¢ (in streams)

A;i(?) available service capacity for object ¢ at time ¢; Ai(z) = 3., c g, 1) (Be — La(t))
ReTh; | replication threshold, i.e., the threshold for adding another copy of object i
DeTh; | de-replication threshold, i.e., the threshold for removing a copy of object 4

D; difference between the replication and the de-replication thresholds, i.e., D; = ReT h; — DeTh;
Tengen | length of object ¢

A average arrival rate to the system

R;(t) set of replica nodes for object ¢ at time ¢

pi(t) probability of an arriving request being for object i at time ¢

q;?(t) probability of a request for object 7 being made at time ¢ by a client local to node j
Nspeed | Tatio between the speed of fast forward (or rewind) and the speed of normal playback

T;.Lp mean amount of time a customer spends in normal playback when it enters that mode, for obj 4
T} f mean amount of time a customer spends fast forwarding when it enters that mode, for obj i
T mean amount of time a customer spends rewinding when it enters that mode, for obj i

T},use | mean amount of time a customer spends pausing when it enters that mode, for obj i

Table 1: Summary of notation.

issues in an efficient manner. We note that unless otherwise stated, the following discussion is given in

the context of the no queueing case?.

In general, a replication process of a CM object has a source node (which currently contains a copy of
object 7) and a target node (on which we are placing a new copy of object 7). One simple approach to
performing the replication is to “inject” a single replication stream into each of the source and target nodes,
for reading and writing of the replica, respectively. We refer to this strategy as sequential replication. The
sequential replication policy results in a relatively small increase in load on the source and target nodes,
i.e., equal to the bandwidth requirements of a single user stream. However, such a policy results in a
relatively long replication time (i.e., the replication time is equal to the playout time, at the normal display
rate, of the object being replicated), and consequently many customers may be rejected/queued during the
replication period due to lack of resources for that object, i.e., a lack of other nodes in the system, that
can service requests for that object.

Clearly, one approach to reducing the replication time would be to increase the rate at which the replication
is performed, i.e., to read (write) the CM object from (to) the source (target) node at M times the rate of
a single stream. This, of course, requires M times the bandwidth of a single user stream on both the source
and the target nodes. We refer to this strategy as parallel replication, i.e., conceptually this is equivalent
to using M single streams in parallel to do the replication. Although this approach reduces the replication
time, it also creates an additional load on both, the source and the target nodes, which could result in
rejection of customer requests, possibly for CM objects other than the one being replicated, due to lack
of resources on the source and/or target nodes, which are being used by the replication process. Thus, we
essentially have conflicting goals of (a) using as few resources as possible to perform the replication (in
order not to interfere with “normal” system operation) while (b) trying to complete the replication process
as soon as possible.

3In the interest of isolating performance characteristics of data layout policies and dynamic replication schemes, we first
consider the no queueing case. Later, we also consider a simple queueing policy (i.e., FIFO).

3.2 Early Acceptance

In an attempt to reach a compromise between the conflicting goals stated in the previous section, we
consider “early acceptance” of customers, where admitted customers are allowed to use incomplete replicas
(while the replication is in process). That is, once the system completes replication of the first 77, time
units of a new replica of a object i, it will treat it as a “virtually” complete copy and begin using it
in servicing customer requests for object 7. We are motivated by the continuous nature of objects, and
essentially it is this property that we exploit here. Note that, for ease of presentation, in the remainder of
the paper, we measure the amount of replication completed in time units of normal playback time of that
object, from the beginning of the object, rather than in storage size, e.g., bytes. Furthermore, for simplicity
and clarity of exposition of ideas, in the remainder of this section, much of the discussion is in terms of a
specific object being replicated, and thus we drop the superscript ¢ from our notation (the meaning should
still be clear from the context of the discussion).

The issue that we need to consider is that a user might attempt to access a portion of an incomplete copy
which has not been replicated yet, e.g., by fast-forwarding past the replication point. To allow customers
to have full use of VCR functionality, we need to determine a “safe” value for T,,. Clearly, one safe value
is Teq = Tjengtn (full length of the CM object). However, the intuition is that a smaller value of T¢, should
result in a higher (at least in the “short term”) acceptance rate of customer requests.

In order to lower T, (and improve performance) we construct a model of user behavior which allows us to
compute a “safe” (but lower than Tjeng,) value of T, while still providing the desired QoS (with a high
probability).

3.2.1 Deterministic Model

Given that the replication process constructs a new copy of an object, from the beginning to the end of
the object (i.e., in a “linear” fashion), and using only knowledge of the ratio between normal playback
and fast-forward, i.e., nspeeq, We can construct a very simple model which will allow us to compute Te,, as
illustrated in Figure 2(a). Specifically, if a newly arrived customer is allowed to use an incomplete replica

(Nspeea—1)
after Teq = Tiength ‘;Lpee p
spee

beyond the replication point with probability 1. Thus, if we use this deterministic model for admission of

time units of the object have been replicated, then he/she will not access data

customers to the new replica, then (under a sequential policy, refer to Section 3.1) the “virtual replication
completion time” of an object becomes T, as compared to Tiepgth-

amount of video
replicated (mins)

T ‘ user
replicatiog_\ ! fast-forwarding
process
slope=1 /

slope = TNgpeed

\

(a) Deterministic Model (b) Stochastic Model

State Transition Diagram for M with n,ccq =2, T, =3

T Tiengin time (mins)

Figure 2: Mathematical Models of User Behavior.

3.2.2 Stochastic Model

To further lower the value of T¢,, we employ a stochastic model of user behavior, at the cost of lowering the
probability that the user will not access data beyond the replication point (of course, this probability still
has to be high, but less than 1). Specifically, we model the combination of the behavior of a user watching
a display of a partially replicated object and the corresponding replication process using a Discrete Time
Markov Chain (DTMC)?*, M, with the following state space S:

S = {(‘/7 R) | (O <V< Tllength) N (Tea <R< ’I'length) A
-1
(V<R) A (R-V) < Tiengen 22 ==)} U {(Trap State)}

speed
where V is the current viewing position of the customer and R is the current replication position of the

partial copy being viewed by that customer.

An example state space for M with ngpeeq = 2 is illustrated in Figure 2(b). There are 4 types of state
transitions between adjoining states, which are attributed to: (1) normal playback, (2) fast-forward, (3)
rewind, and (4) pause, which occur with probabilities pyp, pff, Prw, and ppayse, respectively. A more formal
specification of the state transitions in M with a corresponding one step transition matrix, P, is as follows:

(Va R) — (mm(V + Ngpeed * tu; Tlength)a R + tu)
Prob = pys1{ ((V + Nupeea * tu) < (R+)) A (R = V) < Trengtn “2229=1Y A (R < Tyengen) }

Tspeed

(V,R) — (max(V — nNgpeeq * ty,0), R + ty,)

Prob = pyu1{ (B < Tiengin) A (R = V) < Tiengen "22:4=1) }
(V,R) — (V,R+1ty,)

Prob = ppause 1{ (B < Tiengin) A (R V) < Thengen 255471 }
(V,R) — (V+ty, R+1ty) Prob = ppp1{ (R < Tiengtn) }
(V,R) —+ (Trap State) Prob = pss1{ ((V + nspeed * tu) > (R +ty)) A (R < Tiengtn) }
(V,R) — (V,R) Prob = 11{ (R = V) = Trengtn "2=22) V (R = Tiengin) }
(Trap State) — (Trap State) Prob =1

where 1{z} is an indicator function (i.e., 1{z} = 1 if z is true and 0 if z is false), and t,, is the “granularity”
of our model, i.e., the number of time units in an object’s display (under normal playback) corresponding to
a unit of time® in the DTMC M. Finally, pss = (

T ause
(Tnp+Trw‘T‘Tpause +Tff) ’pnp
model parameters which were defined in Section 2, and the “Trap State” in M is a state corresponding to

if Drwy = Ty p -
Tnp"‘Trw +Tpause +Tff) » Brw (Tnp 1w +Tpause +Tff) yFpause
1—=psf—Prw—DPpause, Where Ty, Ty, Ty, and Ty e are application-dependent

V > R, which represents a user’s attempt to access data which has not been replicated yet.

Our goal then is to determine a value of Tg, for which the probability of entering the “Trap State” before
the time the replication process completes (i.e., before R = Tjengsp) is sufficiently low. Or, conversely, given
a value of T¢,, we need to compute the probability of entering the “Trap State” by time t,, < Tiength — Tea,
which can be accomplished through a transient analysis of M [15], i.e., by solving the following set of

equations®:

7(ty,) = w(0) * P and Z mi(tn) =1 (1)

j€S
4 Although by using a DTMC as our model we make the assumption that the amount of time a user spends in a particular
playback mode has a memoryless distribution, we show in Section 4 that the performance of the system is fairly insensitive to

either the parameters of the model or to the distributional assumptions.

SFor instance, if the object is a video clip, then a “natural” time unit in its display would be the amount of time corresponding
to the normal playback time of a single frame (on the order of (%)th of a sec). However, in order to maintain a reasonable size
of the DTMC state space, we allow ¢, to take on larger time scales, e.g., on the order of minutes — essentially, performing
(in general, approximate) aggregation of states.

5More sophisticated methods for computing transient results exist [15], but are not the subject of this paper.

where 7 (t,,) is the vector of transient state probabilities at time t,, w(0) = €(q,r,,) is the initial state vector
which is equal to a row vector of 0’s in all components except for a 1 in the component corresponding to
state (0,7¢q). Our interest then is in 7(yap state) (tn), Which is the probability that the user will attempt
to access data which has not been replicated yet.

Clearly, the efficiency of solving the above solution depends on the size of M, which is finite but can be
quite large. For instance, with Tjepgn = 90, £, = 1 min, and ngpeeq = 2, the size of M’s state space is
on the order of 3000 states. We can trade off computational cost for the system’s performance by using
higher values of t,, e.g., for ¢, = 2 min, the state space can be reduced to approximately 750 states. This
modification can result in higher values of T¢,, due to a “coarser granularity” of the model, and hence the
(potential) loss in the system’s performance’. We will illustrate in Section 4 that it is not necessary to
obtain extremely low values for 7(Tyap state) (tn) in order to provide a reasonable QoS — this is due to the
fact that the model tends to be conservative, especially with higher values of t,,.

In general, this is an acceptable approach since it only needs to be performed rarely, on a per application
basis. That is, a set of statistics or measurements corresponding to interactivity characteristics of an
application intended to be run on the CM server can be used to compute the model parameters (i.e., Ty,
Tf¢, Trw, and Tpayse), needed to solve M. We will show in Section 4 that the model is not very sensitive
to the accuracy of the input parameters and thus is of reasonably practical use — this is partly due to its
conservative nature. Therefore, we expect that the need for “re-solving” of the model with new parameters
would be quite rare and occur only after significant changes in the interactive nature of an application
have been detected.

However, if the state space of M is still unacceptable or a more “run-time” approach to computing T,
is desirable, instead of increasing the value of %,, we can reduce the size of the state space by decreasing
the amount of information included in the model about the user’s behavior. Again, this reduction in
computational cost results in more conservative estimates of Te,, and thus we would be trading off system’s
performance for cost of the solution (for reasons similar to the ones stated above). We elaborate on this
approach next.

We note that simple Markov chain models of user behavior have been employed in previous works on video
servers, e.g., the two state Markov chain in [12]; however, these have been used for a somewhat different
purpose and to the best of our knowledge, with interest in steady state characteristics only.

3.2.3 Reduction of the Stochastic Model

We can reduce the size of the state space and the number of transitions by not including all the information
about user behavior in the DTMC. For instance, the state space and the number of transitions can be
reduced by not including explicitly pause and rewind functionalities in the DTMC but rather “grouping”
rewind and pause with the normal playback mode. This is still “safe” since pause and rewind can not
cause the viewer to access an unreplicated portion of the data. That is, the reduced DTMC, M", would
have 2 types of state transitions between adjoining states, which are attributed to: (1) normal playback
(with rewind and pause “grouped” here) and (2) fast-forward, which occur with probabilities p;,, and
Py, respectively. Similarly, we could have created another DTMC with only one of, pause or rewind, not
explicitly included. We omit these variations since they are very similar in form to the one presented in
this section. We omit a formal specification due to lack of space and point the interested reader to [4].

"In any case, a simple approach to determining the value of T,, would be to solve the model (possibly) multiple times (e.g.,
using binary search), with different values of T¢,, until a desired value for T(Trap State) (tn) is obtained, which, corresponds
to the desired QoS to be provided by the system.

Clearly, the cost of the solution will be reduced, as compared to M, given the reduction in the state space
and the number of transitions. For instance, with Tjepg, = 90, 2, = 1 min, and nspeeq = 2, the size of
M?"’s state space is on the order of 500 states (as compared to =~ 3000 states in M), where a brute force
solution of Equation (1) takes several minutes to compute using MATLAB numerical solutions package
on a Sun Ultra-1 machine. As before, we can trade off computational cost for system’s performance (and
obtain a more conservative solution) by using higher values of ¢,, e.g., for ¢, = 2 min, the size of the state
state is reduced to approximately 130 states. In this case, a brute force solution of Equation (1), requires
less than one minute.

3.3 Threshold-based Activation Scheme

We use a threshold-based approach to trigger object replication and de-replication, both of which are
only triggered at customer arrival and/or departure instances. Threshold-based techniques for reacting to
changes in workload are employed often for improving the cost/performance ratio of a system. Here, as
in other systems, the main motivation for using a threshold-based scheme is that there is a non-negligible
cost for creating or removing a replica®, and thus it should be done “sparingly”.

Furthermore, in such an environment, having the amount of service capacity proportional to the access
probabilities (even if we knew them) would not necessarily insure acceptance of newly arrived customers.
An important factor in the performance of the system is the mixture of requests that arrives and is
ultimately serviced by the nodes of the CM server. That is, we may reject requests for object 7 on node j
due to an influx of requests for other objects residing on node j, i.e., other than object i.

Thus, in this paper we study dynamic data replication and de-replication techniques which do not assume
knowledge of access probabilities. Without such information, one simple approach is to increase (decrease)
the amount of service capacity allocated to an object when the amount of available resources left in the
system to service that object falls below (above) some threshold value.

More formally, when a customer request for object 7 arrives to the system at time ¢, replication of object
i is initiated if and only if all of the following criteria are satisfied: (1) A;(t) < ReTh;, where ReTh; is
the replication threshold and A;(t) = Y ;¢ g, 1) (Bs — Ls(t)); (2) object 4 in not currently under replication;
(3) there is sufficient available service capacity on the source node; (4) there is sufficient available storage
space capacity and service capacity on the target node; (5) there is sufficient available service capacity in
local switches as well as the global switch (i.e., interconnection network).

In the case of de-replication, it should be performed before the system runs out of storage space. Basically,
we do not want to leave this decision until the time the system actually needs the space for creating a
new replica. This is due to the fact that there might be customers using the copy that we would like to
delete, and either we will have to wait for them to complete their display, or we will have to relocate them.
“Planning ahead” for removing copies of “cold” objects before the space is actually needed should improve
the system’s performance.

De-replication is invoked at both the customer request arrival and departure instances. More formally, a
replica of object ¢ at node x will be removed at time ¢ if and only if the following conditions are satisfied:

1. A;(t) = maxjcs{A;(t) > ReTh;}. The motivation for this condition is that the number of replicas
for object ¢ at time ¢ is more than its current workload demand and at this time it has the greatest
excess of replicas among all relatively “cold” objects.

8Even removal time can be significant, since the copy may be utilizes by users that, e.g., would have to be migrated to
other nodes, at the time of removal, again due to real-time constraints on data delivery.

2. 1 has “crossed” the de-replication threshold, i.e.,
Ai(t) — (B — Lg(t)) — Ciz(t) > DeTh; (2)

where Cj;(t) denotes the number of customers viewing object 7 at node z at time ¢. With the deletion
of object 7 at node z, A;(t) would be decreased by (B, — L,(t)). Since a customer viewing object i
at node z will have to be migrated to other replica nodes in R;(t), A;(t) would be further decreased
by Ciz(t).

3. Y ses Dz(t) < Dg, where Dg is the storage space threshold for activating de-replication.

4. In the case of the Delayed Migration (DM) de-replication policy only (see Section 3.4.2), there is an
additional condition, namely that C;;(t) must be equal to 0.

To prevent the system from oscillating between replication and de-replication, a difference of D; is intro-
duced between ReTh; and DeT'h;, ie., DeTh; = ReTh; + D;. That is, we introduce hysteresis into the
system.

Thus, we use dynamic replication and de-replication techniques which do not assume knowledge of access
probabilities. To improve threshold estimation in the absence of access statistics, we use the last interarrival
time for object ¢ to (coarsely) “approximate” p;(t) and compute threshold values as follows:

1. For each object %, we record its last request access time, at;. At arrival time, ¢, of a request for object
i, we compute its latest interarrival time, (¢ — at;), and use it as a coarse “approximation” of p;(t).
Whenever a new request for object ¢ arrives, we record at; and update the thresholds for the object
1 accordingly.

2. Then, ReTh; = | ge;‘%l] That is, the replication threshold, ReTh;, represents the amount of work-
load, corresponding to requests for object i, that are expected to arrive in the next 77, time units,
which is the amount of time needed to create a new (virtual) replica of object 7 (should we deem it
necessary). Thus, the motivation for this setting of the replication threshold values is that if we have
fewer resources than are estimated to be needed in a period representing the amount of time needed
to create another replica (i.e., add resources), then we increase the number of replicas. That is, we
attempt to match the available resources with anticipated workload.

T?
3. Lastly, DeTh; = ReTh; + H;, where H; = | ﬁ’%"], i.e., we introduce a hysteresis. The motivation

for this setting of the hysteresis value is similar to the motivation given above for ReTh;, except

Ti . ..
that %ft—h corresponds to the expected number of requests for object ¢ that might arrive in the next

t;
Tiengin time units, i.e., during the entire duration (in normal playback) of the display of object i.
That is, Tj,,), corresponds to an estimate of the amount of time that will elapse before some of the
currently allocated resources, which can be used to service requests for object ¢, are released. That

is, we can release resources that are in access of what we anticipate is needed in that time period.

Note that we dynamically adjust threshold values based on minimal amount of information, i.e., the last
inter-arrival time of a request for object i. We used static threshold values in [6]; however, extensive
simulations showed that the system’s performance (using the metrics described earlier) is significantly
improved through the use of dynamic threshold values. The tradeoff is the need to adjust thresholds
and the need to collect some information (i.e., the latest inter-arrival time of requests for each object in
the system), which we note is fairly small. Hence, in the remainder of this paper, we only consider our
replication policies under dynamic threshold values.

10

3.4 Policies
3.4.1 Selection Policies

Firstly, the choice of a source node for replication of object 4 is simple: we select the least-loaded node in
the set R;(t). For the target node, we choose the node which has the highest estimated residual service
capacity (in streams) and has available storage capacity. More formally, we choose the node z such that
T ¢ Ri(t) and Ly(t) = maxyec(s_R;(1) {51’%59(%)}, and the remaining storage capacity on z is sufficient
for the new replica, where -y, (t) corresponds to the number of replication processes already in progress on
node y at time . Intuitively, such a choice should avoid replication of multiple relatively popular objects

on the same target node (which may later compete for that node’s capacity).

3.4.2 Replication Policies

We now describe the replication policies. Recall that T , as determined in Section 3.2, represents the

ea’
initial amount of data that must be replicated before customers are allowed to use a partial replica, and
it is measured in units of normal playback time of that object. Thus, the value of T?, is independent of
the replication policy used, but how long it takes to copy T¢, time units worth of data is a function of the
replication policy. For example, if replication proceeds at the same rate as playback (as in the sequential
policies below), then the replication time will be equal to Teia, but if replication proceeds at a faster rate

(as in the parallel policies below), then the replication time will be smaller than T¢,.

Sequential Replication (SR): The replication is performed “sequentially” (as described in Section 2),
i.e., the system replicates at the rate of normal playback of a single stream by injecting a single read stream
at the source node and a single write stream at the target node — each of these requires the same capacity
as a single user stream. Thus replication of object 7 takes Tliength time units, and users are not admitted to
the new replica until the entire copy is complete. This policy is considered for comparison purposes only.

Sequential Replication + Early Acceptance (SREA): The replication is performed as in the SR
policy, except that newly arrived users can be admitted to the new (incomplete) replica as soon as T¢,
time units of that object have been replicated on the target node. Furthermore, this “virtual” replication
completion time is used in checking the satisfaction of condition (2) in the decision of when to create a
new replica (see Section 3.3).

Parallel Replication (PR): The system replicates at M times the rate of a normal display of a single
user stream, where M = min((Bsource — Lsource(t)); (Btarget — Ltar'get(t))) at time ¢, when replication

Tl
begins. Thus the “real” replication time of object ¢ is reduced to l—e;\’ft—h, and users are not admitted to
the new replica until the entire copy is complete. This policy is considered in order to show a contrast in
performance between policies that do and do not utilize the early acceptance technique.

Parallel Replication + Early Acceptance (PREA): The replication is performed in the same manner
as in the PR policy, except that users are admitted to the new (incomplete) replica after the first Tga time
units of the replica are completed. Furthermore, as in the case of the SREA policy, this “virtual” replication
completion time is used in checking the satisfaction of condition (2) in the decision of when to create a
new replica.

Mixed Parallel, Early Acceptance + Sequential Replication (MPEA): The first 7', time units
of the object are replicated as in policy PREA and the remainder of the object is replicated as in policy
SREA. Users are admitted to the new (incomplete) replica after the first T¢, time units of the replica are
complete. And, as in the other policies using early acceptance, the “virtual” replication completion time

11

is used in checking condition (2) in the decision of when to create a new replica.
3.4.3 De-replication Policies

The decision process of which replica to remove will be described in Section 3.3. What remains to determine
is the choice of the node from which to remove it. Part of the difficulty is in considering the customers
that would have to be migrated from the node where the removal occurs. We consider the following
de-replication policies.

Delayed Migration (DM): This policy removes a replica of object 7 only after the last customer finishes
viewing the movie. That is, we only remove the replica of object i at node z at time ¢ when Cj;(t) =0 in
Equation (2). No new users are admitted to this replica after the de-replication decision is made. This is
motivated by the (possible) implementation complexity of migrating customers from one node to another.

Immediate Migration Minimum Overhead (IMMO): This policy chooses the node on which fewest
customers are currently viewing object . The motivation here is to reduce the (possible) system overheads
associated with user migration. That is, at time ¢ the replica of object ¢ is removed from node z where
Ciz = minge g, (;){Ciy(t)} in Equation (2); The Cj, customers are distributed evenly among the remaining
nodes in R;(t).

Immediate Migration Maximum Capacity (IMMC): This policy selects the node which could pro-
vide the greatest estimated (residual) service capacity after the replica of object i is removed. That is, at
time ¢ the replica of object 7 is removed from node x where Cj; = maxycp,){Ciy(t) + (By — Ly(t))} in
Equation (2); the Cj; customers are distributed evenly among the remaining nodes in R;(t).

4 Discussion of Results

In this section, we first present a scalability study of CM server designs in the context of data placement
techniques where the main concern is the system’s load balancing characteristics and the subsequent system
performance. Then, we focus on a performance study of dynamic replication schemes, used in conjunction
with the data placement techniques, with emphasis on their sensitivity to user model parameters, workload
characteristics, and skewness of data access patterns, as well as applicability to various CM applications.
(Table 2 lists parameters along with their default values/distributions and alternatives as used in the
remainder of this section. All values are given in units of minutes, unless otherwise specified.)

4.1 Scalability Study

In this section we present results of our simulation study using the cost/performance and reliability metrics

given in Section 2. The arrival process (of requests for objects) is Poisson with a mean arrival rate of
A= uiBN

Tlength
in terms of a, i.e., relative to the total service capacity of the system (e.g., a = 1.0 corresponds to the

, where 0 < a <1 is the “relative arrival rate”. For ease of presentation, we discuss the results

maximum service capacity of the system). We consider the design of a CM server with the following

capacity requirements: (1) a total service capacity of N x B = 1600 streams; (2) a total storage capacity
of K = 400 distinct objects; and (3) each object is of length Tlimgth = 90 minutes.

Since the main motivation for using dynamic replication policies is the need to react to changes in data
access patterns, we consider the performance of these policies as a function of such changes. That is,
the workload will have the characteristic that every “rotation time period” of X minutes, p;(t)s change.
One change in access probabilities is described by Equation (3), which is intended to emulate a relatively

12

Parameter

Default

Alternatives

Arrival process

Poisson with a = 1.0

(1) Poisson with a = 0.8
(2) “time of day” based Poisson with
a = 0.9 for 7 hrs, a = 0.5 for 17 hrs

(3) on-off source with a = 0.8, % = % (min),
é = 6 (min)
(4) on-off source with a = 1.0, % = % (min),

L =6 (min)

User Behavior Model
(used in computing T,)

Stochastic with no reduction in state space
(DTMC M with TTrap State(tn) = 0.1)

7
T,lenqth

90 Vi

10 Ve

Playback Mode distribution
(NP,FF,RW,PAUSE)

Uniform
[0.95x mean, 1.05X mean]

Interactivity NP:FF:RW:PAUSE =19:1:1:1 (1) NP:FF:RW:PAUSE=19:1:1:1
Parameters ‘ ,I‘l'length = 90? Ngpeed =4 ‘ ‘ ,I’l'length = 10’. Ngpeed=4 ‘
Tj, =95, Th, =05, Ty, = 0.5, Tjgyse =05 | Thy = 1.9, Th, = 0.1, T}, = 0.1, Tigy ., = 0.1
T, =12 T, =3
(2) NP:FF:RW:PAUSE=4:1:1:1
. Z?ength = 9(')’ "Lspeed:4'
Ti, =2 Tj; =05, Tf, = 0.5, Tioyee = 0.5
T, =18
(3) NP:FF:RW:PAUSE=4:1:1:1
, Tiengtn = 10, Mspeca=4
Thp =2, T}f =0.5, T;w = 0.5, Tpayse = 0.5
Tea =3
Replication policy SREA PR, MPEA, PREA
De-replication policy DM
Access Probability change “gradual” “abrupt”
Skewness distribution Zipf, 8 = 0.0 Geometric, x = 0.618

q; () uniformly distributed between 1 and N,
for each object 7, V¢ > 0
Ds 5
Architecture (1) arch2.0: B, =80 Vz, C; =28 Vz, N = 20 (2) arch1.0: B =20 Vz, Cy, =7 Vz, N =80
(3) arch2 group, (4) arch3 group,
(5) arch4 group, (6) arch5 group,
(7) arch2w (see Table 3)
(8) heterogeneous arch (see Section 4.1.3)
K 400
Request Queue Size Zero infinite
Network constraint nc= 1.0 nc=0.1,...,0.9
Rotation time period 200 (min) 50,100,400,600,800,1000,1200 (min)
Table 2: Parameters.
“gradual” increase/decrease in popularities:
pi—I—Z(t) ifiisodd& 1<i< K -1
o) pc(t) ifisodd &i=K —1
Di = e e .
! pi—2(t) ifiiseven & 2 <i < K
p1(t) ifi is even & 7 = 2

(3)

where t and t' refer to two consecutive rotation periods and for ease of presentation we assume that
K is even. This is to illustrate that even under a relatively gradual change, dynamic policies are still
useful. Furthermore, we believe this is a reasonable “emulation” of change in access patterns for many CM

applications.

To test our policies further, we also emulate an “abrupt” increase in popularity of currently unpopular
objects as well as a “gradual” decrease in popularity of the currently more popular objects as follows:

p1(t) ifi = K
Pit1(1) if1<i<K-1

pi(t') = (4)

13

Here, we consider the Zipf distribution, given in Equation (5), for skewness of access probabilities.

Prob[request for object 7] = ﬁ Vi=1,2,...,K and 0<60<1 (5)
i

)

_ _1 (1-9) _ K 1 _ :
where ¢ = = and H = > j=1 a0y We set § = 0.0, which corresponds to the measurements

K
performed in [3] (for a movies-on-demand application). In Section 4.2 we also consider a finite geometric
distribution, for skewness of access probabilities.

The architectural settings considered in this section are the default parameters of Table 2 together with
Table 3°. Here arch2w corresponds to wide data striping, where a single copy of each object is striped
across all nodes of the system, and arch2 through arch5 groups correspond to various configurations of a
hybrid CM server. For the hybrid architectures we experiment with different amounts of per node storage
space capacity, in order to illustrate the tradeoff between storage space capacity local to a node and the
corresponding required capacity of the global switch.

Arch type | No. of | Srv cap/node Stor space/node
nodes | Lcl switch cap
(in streams) (in objects)
arch2w 20 80 20
arch2 group 20 80 22; 24; 26; 28; 30
arch3 group 10 160 44; 48; 52; 56; 60
arch4 group 5 320 88; 92; 96; 100; 104
archb group 2 800 205;210;215;220;225

Table 3: Parameters for architecture groups.

Moreover, we consider the affect on the overall system performance of limitations of communication network
resources. Let nc represent the ratio of the global switch and the storage system service capacities, i.e.,
nc = 1.0 represents equal service capacities in the storage and communication sub-systems. Then we
vary the service capacity of the global switch, 0.1 < nc < 1, and compute the subsequent degradation
in performance experienced by the various architectures. The motivation for these experiments is to: (1)
observe the performance degradation characteristics of possible CM server designs (as this is an indication
of their scalability), and (2) assess whether reduction in overall required global switch capacity (which
should lead to lower costs) is possible without significant loss in the overall system performance.

Lastly, below “upper bound” on the acceptance rate refers to the acceptance rate that a wide data striping
system can achieve without considering network capacity constraints; thus this is the only curve in the
following figures that is not a function of nc.

4.1.1 Wide Data Striping System vs. Hybrid System

Figures 3 and 4(b) illustrate that under lower network capacities, a hybrid system has better overall
performance as well as performance degradation characteristics than the wide data striping system. More
importantly, the hybrid architecture allows us to tradeoff capacities of the various system resources in order
to achieve a more cost-effective system overall. Specifically, we can tradeoff local storage space and local
switch capacities with global switch capacity and achieve nearly the same performance characteristics. For
instance, for a particular architectural setting, the larger the local storage space capacity is, the smaller
the global switch capacity need be, in order to achieve the same overall system performance, e.g., consider
the “arch2 group” in Figure 3(a) — in the case of the 24 objects/node architecture, the corresponding

9For a hybrid system that requires more storage space than the corresponding wide data striping system we only increase
the storage space per disk, not the number of disks, as that would also increase the service capacity and hence would not
make for a fair comparison.

14

Acceptancerate Acceptancerate
7 T T _] 7 T T T T]
1.0 10
B B w e AT
08 08 /’g//—/,x’ s e
7 /X)/0/ «A"
- | 7 x . |
06 0.6 e O -
I - / . A upper bound
x" o » APPERNNY.
. e/‘ I wide striping
04l 5 - 04 ’,'A 44 objs/ node
- — 28 objs/ node B Orr—mmn—m | K ———=
o’ » upper bound _ - = e 52 objs/ node 48 objs/ node
02l A Boammemmmnnn 30 objs/ node] 02l A g ———-=- —
wide striping 56 objs/ node
a’ 6—-—-— a” _ = —
| 22 objs/ node B | 60 objs/ node B
0.0 | | | | | 00 | | | | |
02 0.4 0.6 08 10 02 0.4 0.6 08 10
network constraint network constraint
(a) arch2 group (b) arch3 group
Acceptancerate Acceptancerate
7 T T T T] 7 T T T T]
1.0 10
B—B—Bﬂ;‘;——w C—f——8—5—9—8—8—8—H
. = - - - - - PP-S s
/y/e/ pe ﬁy,k%%%%%gro
08 *é/’/j}(’///e/ A T 08[o~ e -
~ .- O—-—— L
e A 205 0bjs/ node A
os[@” A 1 06~ A 1
L Y —— Aupper bound L
AT G2obisinode widesriping _.*
4]~ a” j N 4~ Xm— N
04 . 96 objs/ node_ 04 3 210 objs/ node
. upper bound 100 Otly nﬂe Lt 4 215 objs/ node
- A Brmeeieeeaas 104 objs/ node - - 2 V- =-— .
02 7 wide striping ! 02 220 objs/ node
a 88 objs/ node a 225 0bjs/ node
00— | | | |] 00 | | | |]
02 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10
network constraint network constraint
(c) arch4 group (d) arch5 group

required service capacity of the global switch'? is 1280 streams, whereas in the case of the 30 objects/node

Figure 3: Different network constraints.

architecture, it is only 960 streams.

Conversely, the larger the local switch is, the more we can reduce the storage space and global switch
capacities, e.g., consider the “arch2 group” in Figure 3(a) — in this case with a local switch capacity of 80
streams'!, the corresponding required total storage space capacity is 600 objects (i.e., 30 objects /node) and
the corresponding required service capacity of the global switch is 960 streams. Consider now the “arch4

10The needed global switch capacity is determined from Figure 3(a) by first fixing the acceptance rate that we would like
to achieve. Here, we fix the required acceptance rate to be at least 0.95 * acceptance rate of the “upper bound result”, and
then determine, using Figure 3(a), the smallest network constraint, nc, that satisfies that acceptance rate for the appropriate
architecture curve; then, the required global switch capacity is nc * 1600 streams where 1600 streams corresponds to the

maximum required system capacity.
UThese values can be determined from Tables 3 and 4.

Acceptancerate Acceptancerate
[T T T T T T_] 7 T T T T T_]
1.0 1.0
- igi: ~ a7
08| 1 08| % //f/’ A]
H0x
g pe
| —] | & . L]
06 AWldestnpmg 06 /i/x//e/ A
........ 7 . .
e a
arch2 g,ﬂ/;(- ————-
“ o T oo e A govisinede
archd 0/‘ . A 26£>bj_s/i101_19_
02~ archs | oz a7 geeerbound - 28objs node n
a’ wide striping 30 objs/ node
- - | 22 objs/ node _
U | | | | | | 0.0] | | | | |
0.2 0.4 0.6 08 10 12 0.2 0.4 0.6 08 10
rotatio time period x 1[]3(min) network constraint
(a) arch2, arch3, arch4 and arch5 (b) arch2 group

Figure 4: Abrupt increase/gradual decrease.

15

group” in Figure 3(c) — although in this case the local switch capacity increases to 320 streams, the corre-
sponding required service capacity of the global switch drops down to 640 streams and the corresponding
required total storage space capacity drops down to 460 objects (i.e., 92 objects/node). These results are
due to the fact that with larger local switch capacities, we can service more customer requests locally
(hence the corresponding smaller required global switch capacity). Furthermore, larger local switches and
corresponding larger node service capacities also provide more opportunities to take advantage of the load
balancing characteristics of striping within a node (hence the smaller required storage space capacity per
node).

4.1.2 System Sizing Issues

Quantitatively evaluating the tradeoffs between local switch capacity, node storage space capacity, and
global switch capacity is no easy task, as it is not immediately clear how to tradeoff one resource for
another. Ideally, one would like to evaluate these tradeoffs based on cost. However, cost considerations are
a complex issue, given that costs depend on many factors. Thus, next we instead evaluate the different
hybrid designs based on the amount of each resource they require relative to the wide data striping system.
Such an evaluation quantitatively illustrates to the designer the relative merits of the different architectures,
without the need for choosing a specific technology?. The purpose of these experiments is to illustrate
how a CM server designer can deal with these (fairly complex) system sizing issues.

We further refine our test cases in Table 4, and choose the per node storage space and corresponding
global switch capacity of each architecture based on the results of the previous section, i.e., we choose
those architectures that can achieve an acceptance rate of at least 0.95% acceptance rate of the “upper

bound result” with reasonably small per node storage space and global switch capacities'®. Figure 5
Arch No of | Srv cap/node Stor space Glbl
type nodes | Lcl switch cap per node switch cap

(in streams) (in obj’s) | (in streams)
arch2w | 20 80 20 1600
arch2 20 80 26 1120
arch2.1 | 20 80 30 960
arch3 10 160 52 800
arch4 5 320 92 640
arch 2 800 215 320
arch5.1 2 800 225 160

Table 4: Parameters for architectures used in Section 4.1.

resource requirement of arch ¢ .

- Vi # 2w.
resource requirement of arch2w
Hence, the straight line at the value of 1.0 in each of the graphs of Figure 5 corresponds to the (“scaled”)

resource requirement of “arch2w”.

depicts the results of this comparison for each resource as

As already stated, these results illustrate to the designer the relative merits of the different architectures
by quantifying the tradeoffs between the various resources of the CM server. Based on these results and
current costs and technology trends, the designer can make system sizing decisions.

12Characterizing a resource using only its capacity may result in a simplification for certain types of resources; however,
this is still a good abstraction for evaluating cost-effectiveness of designs, without having to choose a specific technology for
each system component.

13The upper bound is computed without considering network capacity constraints; since it is not always achievable by an
architecture, we choose a performance goal that is reasonably close.

16

global switch sizeratio

local switch sizeratio

1.0

0.8,

0.6

04

0.2

0.0

10|

8|

2o [
Tz [

total storage spaceratio

s [

oI [—

swee [

o -
|

ar

S

type

number of local switchesratio

|

2
23
@

b

arch type

14

12|

1.0

0.8,

0.6

1

0.5

0.4
02 1 I

0.0

swre [l
ropre | [l
|

2w -
TR

s [
Y re

2o -
Tewe [—|
s [
v |
s [
15U [

arch type arch type

Figure 5: System sizing.

4.1.3 Heterogeneous Systems

Next, we illustrate the ease of dealing with heterogeneous systems when using hybrid CM server designs

without loss of performance as compared to an equivalent homogeneous case!.

For this purpose, we
consider a hybrid CM architecture with 5 nodes and a total service capacity of 1600 streams. We use two
test cases in the following experiments, both based on the homogeneous version of “arch4” with the storage
space capacity of 104 objects per node (refer to Table 3). We introduce 5% and 10% differences in storage
space and service capacities between the nodes of the system (as well as corresponding differences in local
switch capacities), e.g., to emulate a system that gradually grows (as well as experiences replacements
due to failures) and thus is forced to use heterogeneous resources'®. In the results depicted in Figure 6(a)

heterogeneous systems achieve performance that is comparable to homogeneous system performance.
4.1.4 Reliability

We use the mean time to failure (MTTF) as our reliability metric, defined as the mean time until some
combination of disk failures results in loss of some data that can no longer be recovered through the use
of redundant information. We compare the architectures in Table 4, using a conservative estimate for the
hybrid system based on an assumption of only a single copy per object. The results are depicted in Figure
: . MTTF of arch 1 : . .
6(b) as the following ratio MTTFE of arch2w Vi # 2w, where the straight line at 1.0 corresponds to the

(“scaled”) MTTF of wide data striping. The derivations of the MTTF equations used to compute the

14We expect CM servers to have heterogeneous resources as a result of system growth (due to expansion) and disk failures
(and subsequent replacement). We are not aware of wide data striping techniques for systems with heterogeneous resources
which do not suffer from loss of either bandwidth or storage resources. Hybrid designs do not suffer from such a loss.

15We have one test case of a 5 node system, with 84, 94, 104, 114, and 124 objects/node, respectively and service capacities
of 256, 288, 320, 352, and 384 streams, respectively; we have another test case of a 5 node system, with 94, 99, 104, 109, and
114 objects/node, respectively and service capacities of 288, 304, 320, 336, and 352 streams, respectively.

Acceptancerate MTTF ratio

10~ ‘ ‘ 1 20 !

08~ - N
g// i}

0.6[~ 7

—
homogeneous 10
04 eterogeneoL

heter ogeneous (5%)
0.2~ n

0.0[C I I I I 11 0 | | |

| | |
0.2 0.4 0.6 08 1.0 arch2 arch2l arch3 arch4 arch5 arch51
network constraint arch type
(a) Heter ogeneous systems (b) MTTF comparison

Figure 6: Heterogeneous systems and MTTF.

results in Figure 6(b) are given in [4].

These results clearly show that higher reliability can be achieved by hybrid systems, even for objects
that only have a single copy, as compared to wide data striping. This increase in reliability is due to the
“isolation” of fault affects, i.e., the wider we stripe an object, the more disk failures can affect it. Of course,
the reliability is even higher for objects with multiple copies, as is natural in a system which employs data
replication. Thus, in a hybrid system, we can provide significantly higher reliability for the popular objects,
as there will always be multiple replicas of such objects in a hybrid system. Lastly, under network failures
or high workload conditions at remote nodes, local nodes can at least deliver some objects'®, which is not
the case for wide data striping, as all nodes and network capacity must be available in order to serve a
request for any object.

4.2 Policy Performance Evaluation

In this section we conduct a number of experiments!'? in order to understand the sensitivity of the dy-
namic replication policies to differences in architectures, user model parameters, workload characteristics,
skewness in data access patterns, as well as applicability to different CM applications.

There is a multitude of parameters that can be varied in studying performance of dynamic replication
policies. And, we performed a great number of experiments [4]; we present a subset here to illustrates

our points. Several entries in Table 2 require a few words of clarification. The default arrival process (of
requests for objects) is Poisson!® with a mean arrival rate of \ = T%B N , where 0 < a <1 is the “relative
length

arrival rate”. As before, we discuss the results in terms of the relative arrival rate, a, i.e., relative to the

total service capacity of the system. In order to further explore the benefits of early acceptance schemes,
we consider another arrival process, specifically an on-off process which, with proper parameter settings,
exhibits more bursty characteristics . An on-off process is a two state Markov chain, i.e., one state is an
“on” state and the other state is an “off” state. Let 8 be the transition rate from “on” state to “off” state
and « be the transition rate from “off” state to “on” state. When the process is in the “on” state, one
customer arrives every (deterministic) time interval %. There are no arrivals when the process is in the

8 For example, in a movies-on-demand application, even if a requested movie is not available, the user has the option to
choose another movie that may be available.

1"Most results presented here are obtained with 95 & 5% confidence intervals; all results are within 95 + 10% confidence
intervals.

8We believe it is reasonable for us to consider a Poisson arrival process for purposes of this study, since user requests are
essentially considered on a “per session” basis; refer to [14] for details that support the use of Poisson arrivals in this case.

Tn our case, the on-off process with % = 0.5 minutes and % = 6 minutes has the same mean arrival rate, A, as the
corresponding Poisson process. However, its variance is 12 times the variance of the corresponding Poisson process.

18

“off” state. In order to make a meaningful comparison, the parameters of the on-off arrival process, i.e.,

the deterministic arrival rate A and transition rates 8 and « are set such that the on-off process has the
ap

same mean arrival rate as the Poisson process, i.e., Aﬁ =)\, but a higher variance, i.e., A% CEvLR

At customer arrival and departure instances, as well as at completion of object replication instances, the
system first adjusts the threshold values (as described in 3.3). Then, if excess service capacity is available,
the system gives priority to replication of objects based on current threshold values where remaining
capacity (in the queueing case) is given to currently “serve-able” requests in the queue, in a FIFO manner.
A request for object i is “serve-able” at time ¢ if A;(¢) > 0 and there is sufficient network capacity to serve
this request.

In this performance study, we not only consider the Zipf distribution for the skewness of access probabilities
(refer to Section 4.1), but also a finite geometric distribution, given in Equation (6), where we set x = 0.618.

() (1 - x)

Problrequest for object 7] = T K
- X

Vi=1,2,...,K (6)
The motivation being that some applications (other than movies-on-demand) may exhibit higher skewness
in data access, e.g., news-on-demand. As we are not aware of measurements available for applications such
as news-on-demand, we use a “generically” highly skewed distribution, i.e., the geometric?°.

Moreover, the interactivity entry in Table 2 refers to how interactive the users are, with NP: FF: RW:
PAUSE referring to the ratio between normal playback (NP) and the various VCR functions (FF, RW,
PAUSE/RESUME). These values are used as parameters of M in the computation of T%,. The default
values are in agreement with the range of values used in [12]. Unless otherwise stated, in all figures below
we use the default values given in Table 2.

Finally, we note that, although the evaluation of the replication policies presented in the remainder of this
section is gquantitative, the main focus of the following discussion is “trends” in the curves and relative
performance of the policies, rather than absolute performance. This is due to the fact that our main
motivation is to explore the above stated issues and tradeoffs, rather than to predict the (exact) performance
of the system through simulation. To this end, we run the simulations at a very high load for the no
queueing case 2! in order to illustrate our points (since it almost does not matter what resource management
techniques are used at low loads). This is not to say that we recommend that the system is operated at
such high loads; e.g., clearly, under extremely frequent changes in access patterns?? the acceptance rate
will be low under very high loads and thus, under such conditions the real system should be operated at

lower loads. In the queueing case, we use somewhat lower loads to insure system stability.

4.2.1 Static vs. Dynamic

We first summarize the motivation for using dynamic replication policies, as opposed to static ones®3.

Based on extensive simulations (refer to [4]), we believe that dynamic replication with early acceptance
does result in significantly better performance as compared to a static scheme. With a reasonably large
amount of per node resources dynamic policies perform better than the static policy. As the per node
resources become fewer, while keeping the same amount of overall system resources, the benefits of the

20Furthermore, applications with relatively little skew in access patterns should not, in a sense, present a performance
problem in this case, and thus we do not consider such access patterns here.

21There is no stability issue here.

22We include these for the sake of completeness.

23 The details of a static policy used and the results of the simulations are omitted due to lack of space and can be found in
[4]; this comparison is a conservative one.

19

more conservative dynamic policies are significantly diminished However, addition of early acceptance
mitigates this problem. In general, these results are due to the fact that, dynamic replication schemes
make good decisions about: (a) which CM objects are hot, and (b) when to replicate such objects. The
problem with the more conservative policies is that the inability to make rapid adjustments in number
of replicas is a more severe handicap when resources are few, which is alleviated through the use of early
acceptance.

One advantage of the static policy, of course, is that it is easier to implement. Specifically, the need to
migrate users from one node to another (in mid-stream) during de-replication may result in complications
in the implementation. In the results summarized above as well as in the remainder of the paper, unless
otherwise stated, we use the DM de-replication policy in an attempt to make a more fair comparison with
the static policy.

4.2.2 Early Acceptance vs. No Early Acceptance

We now motivate the use of early acceptance techniques in conjunction with dynamic replication policies.
To this end we compare performance of the dynamic policies with and without the use of early acceptance.
This comparison is depicted in Figures 7, 8, 9, and 11, where the more important observations are as

follows.
Acceptancerate Acceptancerate
1of-T ‘ 1 1] ‘]
09— — ool-& —
ﬁ*——:‘!m-" e o
08— - 08fg---"% -
07f- B e At Y4 o7 —
-
v «__ B
SREA VF’REA SREA PREA
06— i - 0.6 —
R _ SR R R
MPEA MPEA
05 ! ! ! ! i] il ! ! ! !]
0.2 0.4 0.6 08 10 12 02 0.4 0.6 08 10 12
rotation time period x 103(m|n) rotation time periodx 103(m|n)
(a) arch1.0 (b) arch2.0

Figure 7: Default settings.

Acceptancerate Acceptance rate

10— — 10— —
09 09

08 08

0.7 0.7

06— - oslY -
. _----%
05— - - osl b
- "oREA "bREA
odl- - N R SREA PREA
v R SR SR W
03— MPEA — 0.3 MPEA —
| | | | | | | | | | | |
0.2 0.4 0.6 08 10 12 0.2 0.4 0.6 08 10 12
rotation time period x 103(min) rotation time period x 103(mm)
(@) arch1.0 (b) arch2.0

Figure 8: Default settings, with geometric distribution of access patterns and both architectures.

Firstly, based on extensive simulations, we conclude that early acceptance does result in a nice compromise
between using resources for performing replication and using resources for servicing customer requests
(as stated earlier). This point is best illustrated by considering the more conservative policy with early
acceptance, i.e., SREA, and comparing it to the least conservative policy we have without early acceptance,

20

Mean waitingtime (min)

Mean waiting time x 103 (min)

Iy T T T
| o—
. AREA

18

16

MPEA

14

12

10

0.8

0.6

0.4

T T T T T

80.0

rotation time period x 103 (min)
(a) arch1.0

rotation time period x 103 (min)
(b) arch2.0

Figure 9: Default settings with a=0.8

Variance of waiting time

Variance of waiting time x 10-3

450 T T ™ N T T T T
N [} | N [} |
400~ \, i SREA
\N R R
3O~ 4 N - | B
| 50001 -
V5 N e
200 " PREA _] PREA
4000 N —
a.
3000} - =

rotation time period x 10° (min)

e i dl
0.8

10 12
rotation time period x 1()3 (min)

Figure 10: Default settings but with a=0.8

i.e., PR. SREA uses as few resources as possible for

customers fairly quickly — this policy performs well consistently, i.e., it either results in the best or nearly

replication but still makes the new copy available to

the best performances in the test cases examined in Figures 7, 8, 9, and 11.

To further explore the effects of early acceptance, we consider (1) more bursty arrival processes, i.e., the
on-off arrival process and (2) the queueing case. More specifically, we observe that all policies with early
acceptance (such as SREA, MPEA, and PREA) as compared to the PR policy are: (a) less sensitive to the
more bursty arrival process (compare Figure 7(b) with Figure 11(b)), and (b) result in better performance

in the queueing case?*

time variance (see Figure 10). Note that, in a system with a small mean waiting time but a large waiting

, 1.e., smaller mean waiting time (see Figure 9) and better QoS, i.e., smaller waiting

2We already showed that these result in better performance in the no queueing case.

Acceptance Rate

Acceptance Rate
10 ‘

09

O.Biilgf:’g_'ffftfffgfii—'&fii—'&firgi
K

o

Lo

07
o -— O —©——O0—-—06—-—20

06

05 ! ! ! ! ! !

10 ‘ ‘

0.9

0.8 —

07

0.6

05 ! ! ! ! ! !

0.0 02 0.4 0.6 0.8 10 12
rotation time period x 103(min)
(@a=08

Figure 11: Default setting but with on-off process:

0.8 10 12
rotation time period x 1(?(min)
(b)a=1.0

% = 1 (min), and é = 6 (min)

21

time variance, it is still possible for a customer to suffer a fairly long waiting time period on occasion; this
is clearly undesirable. Hence, we use the variance of the waiting time as our measure of quality of service.

4.2.3 Sensitivity to User Model

Next we show that the mathematical model of user behavior is not very sensitive to the precision of
the model parameters (which need to be computed based on statistics or measurements collected about
user behavior), and thus it is of reasonably practical use. To validate this conjecture, in our simulation we
deviate on several points from the analytical model. Firstly, in our simulations the distribution of residence
times in various user playback modes (NP, FF, RW, PAUSE) is uniform as compared to the exponential
assumption made in the analytical model?®. For all cases where the interactivity model corresponds
to NP:FF:RW:PAUSE = 19:1:1:1, the fraction of admitted customers that enter “Trap State” in our
simulations is zero — recall that, in our computation of T¢, we chose TTrap State (tn) = 0.1 (refer to Table
2). This is partly due to the fact that our analytical model tends to be conservative (see Section 3.2)2.

To further “stress test” our model we ran a set of simulations where T} § was increased by 20% in the
simulation, as compared to the parameter used in the analytical model. The result is that there is no
change in the fraction of admitted customers entering the “Trap State” in the simulation, i.e., it is still
zero. This supports our conjecture (made in Section 3.2), that the parameters used in the analytical model
do not have to be exact, with respect to the “real” user behavior — that is, fairly large inaccuracies in
the collected statistics about the user behavior can be tolerated and consequently the model is reasonable,
and “re-solving” of the model with new parameters only needs to be performed “occasionally” (and not
necessarily in real-time as explained in Section 3.2).

These results are due to: (1) the conservative nature of the analytical model; (2) good dynamic threshold
adjustment methods, i.e., the system is able to distinguish between “hot” and “cold” objects sufficiently
well; and (3) the fact that the level of interactivity (19:1:1:1) is relatively low (although reasonable for
a movies-on-demand application [12]). Thus, in order to further “stress test” the analytical model, we
consider a workload with a significantly higher level of interactivity (i.e., alternative (2) for interactivity
settings in Table 2) — this may not necessarily correspond to a realistic workload but is useful for purposes
of illustration. Here we consider the following observations in simulations: the fraction of admitted cus-
tomers entering the “Trap State”, the mean amount of time a customer spent in the “Trap State”, given
that he/she entered it, and the maximum amount of time a customer spent in the “Trap State”, given that
he/she entered it.

Even with such high interactivity levels, the results show that the fraction of admitted customers which
enter the “Trap State” in the simulation is quite small (on the order of 107%). That is, in our experiments,
most admitted customers do not enter the “Trap State”. Even in the rare case when an admitted customer
did enter the“Trap State”, the mean and the maximum time he/she spent in the “Trap State” in the
simulation was less than 30 seconds. However, we would like to stress that this rarely occurs.

If we want to further reduce the time a customer may spend in the “Trap State”, some possible solutions
include: (1) migration of customers entering the “Trap State” to other nodes which contain a copy of

25We experimented with other distributions as well, e.g., normal; the results were within a few percent of those given here
(in the interests of brevity we do not present them).

26We experimented with values of T, that were smaller than those predicted by the analytical model, to determine whether
the model’s conservative nature is resulting in some loss of performance — this turned out not to be the case in our experiments,
that is, beyond a certain value of 7%, one only obtains diminishing returns in performance gains, but the fraction of accepted
customers which enter the “Trap State” continues to grow.

22

Acceptancerate

0.6

04

0.2

0.0

Acceptancerate

10

09

08

0.7

0.6

05

02

04

06

(@ a=0.8

|
08 10 12
rotation time period x 103(m|n)

02

04 0.6 08 10 12
rotation time period x 103(mm)

(b) a= 0.9 for 7 hours; a= 0.5 for 17 hours

Figure 12: Default settings, but with alternatives (1) and (2) for arrivals.

the object they are viewing and have available service capacity, or (2) increasing T?, (at the cost of some
performance degradation).

4.2.4 Sensitivity to workload characteristics

Next, we show the lack of sensitivity to the workload characteristics, accomplished through the use of
early acceptance. To this end we ran a set of simulations with three different modification to the workload
characteristics (refer to Table 2), as compared to the default workload used thus far (i.e., as compared to a
Poisson process with a constant rate and a = 1.0): (1) “time of day” based workload, which is still Poisson
but with arrival rates based on time of day, i.e., with a = 0.9 over 7 hours of a day and a = 0.5 over the
remaining 17 hours; (2) lower workloads, i.e., still Poisson with a constant arrival rate but with a = 0.8;
and (3) more bursty workloads, i.e., an on-off arrival process with a = 0.8, % = (0.5 min and % = 6 min.
The results are depicted in Figures 11 and 12. More specifically, we observe that all policies with early
acceptance (such as SREA, MPEA, and PREA) as compared to the PR policy are less sensitive to changes
of workload characteristics (e.g., compare Figure 11(a) with Figure 12(a)).

4.2.5 Applicability to a variety of applications

Next, we consider applicability of dynamic replication with early acceptance to a range of applications
of CM servers. To this end, we ran a set of simulations with: (a) smaller objects, i.e., shorter clips
with Tfewth = 10 min Vi, as well as in addition (to smaller clips) (b) higher levels of interactivity,
NP:FF:RW:PAUSE=4:1:1:1; these cases correspond to interactivity alternatives (1) and (3) in Table 2.
The results for cases (a) and (b) are illustrated in Figures 13 and 14, respectively. Qualitatively, all the
conclusions made above, in the context of Ty, ., = 90, still hold®”. We also considered the sensitivity of
the mathematical model of user behavior to the new workload settings; the results are similar to the ones
stated above (refer to [4] for details).

5 Conclusions

In this work, we focused on scalability of large CM end-to-end server designs (in the context of data
placement issues) as a function of their cost/performance and reliability characteristics under various
workloads and system constraints. We have presented a performance study where the main observations
are as follows:

2TWe observe that there is a significant reduction in the acceptance rate in Figure 14 as compared to Figure 13. This is due
to the fact that with higher interactivity levels each customer stays in the system longer, on the average. That is, with higher
interactivity levels each customer holds on to the resources allocated to him/her longer.

23

Acceptancerate Acceptancerate

10— — 10| —

a
09l —H{ oof-g——® b -

0.8 08— —

07 o — o7 o— —
AREA AREA
R R
06— —| 06— —
MPEA JMPEA
PREA PREA
] | | ! | i] | | | | 1]
100 200 300 400 500 600 100 200 300 400 500 600
rotation time period (min) rotation time period (min)
(a) arch1.0 (b) arch2.0

Figure 13: Default settings with alternative (1) for interactivity settings.

Acceptance Rate Acceptance Rate
T T T T T T T T
10 - 10} a— '
o—
SREA EA
&7 &5
R R
09l — oo MPEA —
MPEA
i X--
)ngA PREA
08— — 08— —

07 0.7~ —

06— — 06— —

o5 ! ! ! ! i I ! ! ! !]

100 200 300 400 500 600 100 200 300 400 500 600
rotation time period (min) rotation time period (min)
(a) arch1.0 (b) arch2.0

Figure 14: Default settings with alternative (3) for interactivity settings.

The use of hybrid designs allows us to tradeoff resources and specifically we can tradeoff a node’s local
storage space, its local switch capacity, and the system’s global switch capacity given a particular
performance requirement. This should allow a system designer to make better system sizing decisions
by making appropriate tradeoffs, i.e., it should allow for cost-effective designs while satisfying the
required system performance.

Hybrid designs naturally extend to systems with heterogeneous resources with little or no loss in
performance as compared to the corresponding homogeneous systems. Since in practice we expect
CM servers to have heterogeneous resources as a result of system growth (due to expansion) and disk
failures (and subsequent replacement), this is an important characteristic.

Hybrid designs result in higher system reliability even under the conservative assumption of have a
single copy per object. Better reliability characteristics are of significant importance to CM servers
since they service real-time workload and furthermore there is a need to recover from failure in
real-time [1].

Dynamic replication schemes in conjunction with early acceptance provide a good compromise be-
tween using resources for performing replication and using resources for serving customers which in
turn results in good performance characteristics across a wide range of workloads, skewness data
access patterns and frequency of changes in data access patterns.

The mathematical model of user behavior, which is used to allow early acceptance in a “safe” manner,
is not very sensitive to the precision of the model parameters, as illustrated by testing over a wide
range of workloads as well as by using different assumptions in the simulations as compared to the
model. Thus, this approach is of reasonably practical use.

Dynamic adjustment of threshold values, in conjunction with dynamic replication and early accep-

24

tance, results in systems that are able to make a reasonably good distinction between “hot” and
“cold” objects. This in turn results in improved system performance.

We believe that this suggests the usefulness of these techniques across a wide range of continuous media

applications.
References

[1] S. Berson, L. Golubchik, and R. R. Muntz. Fault Tolerant Design of Multimedia Servers. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 364-375, San Jose, CA, May 1995.

[2] M.-S. Chen, D. D. Kandlur, and P. S. Yu. Support for Fully Interactive Playout in a Disk-Array-
Based Video Server. Proceedings of the 2nd ACM Intl. Conf. on Multimedia, pages 391-398, October
1994.

[3] A. L. Chervenak. Tertiary Storage: An Evaluation of New Applications. Ph.D. Thesis, UC Berkeley,
1994.

[4] C. Chou, L. Golubchik, J. C.S. Lui, and I-Hsin Chung. Design of Scalable Continuous Media Servers
with Dynamic Replication. Technical Report CS-TR-4232, University of Maryland, March 2001.

[6] C.-F. Chou, L. Golubchik, and J. C.S. Lui. Sriping doesn’t scale: How to achieve scalability for con-
tinuous med ia servers with replication. In Proceedings of the International Conference on Distributed
Computing Systems (ICDCS), Taipei, Taiwan, April 2000.

[6] C.-F. Chou, L. Golubchik, and J. C.S. Lui. A performance study of dynamic replication techniques
in continuous media servers. In International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, San Francisco, CA, August 2000.

[7] A. Dan, M. Kienzle, and D. Sitaram. A Dynamic Policy of Segment Replication for Load-Balancing
in Video-on-Demand Servers. ACM Multimedia Systems, 3:93-103, 1995.

[8] A. Dan and D. Sitaram. An Online Video Placement Policy Based on Bandwidth to Space Ratio
(BSR). In Proceedings of ACM SIGMOD’95, 1995.

[9] Bolosky et al. The Tiger Video Fileserver. Technical Report MSR-TR-96-09, Michrosoft Research,
1996.

[10] S. Ghandeharizadeh and R. R. Muntz. Design and Implementation of Scalable Continuous Media
Servers. Parallel Computing Journal, pages 123-155, January 1998.

[11] R.L. Haskin. Tiger Shark : A Scalable File System for Multimedia. Technical report, IBM Research,
1996.

[12] K.D. Jayanta, J.D. Salehi, J.F. Kurose, and D. Towsley. Providing VCR Capacities in Large-Scale
Video Servers. In Proc. ACM Intl. Conf. on Multimedia, pages 25-32, 1994.

[13] P. W. K. Lie, J. C.-S. Lui, and L. Golubchik. Threshold-Based Dynamic Replication in Large-Scale
Video-on-Demand Systems. Multimedia Tools and Applications, 11(1):35-62, 2000.

[14] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transac-
tions on Networking, 3(3):266—244, June 1995.

[15] W. J. Stewart. Introduction to Numerical Solution of Markov Chains. Princeton University Press,
1994.

[16] N. Venkatasubramanian and S. Ramanathan. Load Management in Distributed Video Servers. In
Proceedings of ICDCS, pages 528-535, Baltimore, MD, May 1997.

[17] J. Wolf, H. Shachnai, and P. Yu. DASD Dancing: A Disk Load Balancing Optimization Scheme for

Video-on-Demand Computer Systems. In ACM SIGMETRICS/Performance Conf., 1995.

25

