Multimedia Systems (1996) 4: 140-155

A

Multimedia Systems
© Springer-Verlag 1996

Adaptive piggybacking: a novel technique for data sharing
in video-on-demand storage servers*

Leana Golubchik'**, John C.S. Lui****, and Richard R. Muntz>{

' Department of Computer Science, Columbia University, New York, NY, 10027, USA
2 Department of Computer Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
3 Computer Science Department, University of California at Los Angeles, Los Angeles, CA 90095, USA

Abstract. Recent technology advances have made multime-
dia on-demand services, such as home entertainment and
home-shopping, important to the consumer market. One of
the most challenging aspects of this type of service is pro-
viding access either instantaneously or within a small and
reasonable latency upon request. We consider improvements
in the performance of multimedia storage servers through
data sharing between requests for popular objects, assuming
that the I/O bandwidth is the critical resource in the sys-
tem. We discuss a novel approach to data sharing, termed
adaptive piggybacking, which can be used to reduce the ag-
gregate /O demand on the multimedia storage server and
thus reduce latency for servicing new requests.
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1 Introduction

Recent technological advances in information and commu-
nication technologies have made multimedia on-demand ser-
vices, such as movies-on-demand and home-shopping, fea-
sible. Information systems today can not only store and re-
trieve large multimedia objects, they can also meet the strin-
gent real-time requirements of continuously delivering an
object at a specified bandwidth for the entire duration of its
display. Multimedia systems already play a major role in ed-
ucational applications, entertainment technology, and library
information systems.

In this paper, we consider a video-on-demand storage
server, such as the one depicted in Fig. I, which archives
many objects of long duration, such as movies, music videos,
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Fig. 1. Multimedia storage server architecture

and educational training material. The storage server con-
sists of a set of disks (D ... Dy), a set of processors (V)

. Ni), buffer space, and a tertiary storage device. The
entire database resides on tertiary storage, and the more fre-
quently accessed objects are cached on disks. (We assume
that the caching on disks is done on-demand, i.e., a non-disk-
resident object is fetched from tertiary storage only when it
is referenced. Some form of the Least Recently Used (LRU)
policy can be used to purge objects from disks to create
space for the newly retrieved object.) We also assume that
a request for an object must be serviced from the disk sub-
system. The size of the objects (on the order of 4.5 GB for
a 100-min MPEG-2-encoded movie) precludes them from
being stored in main memory. The long latency and high
bandwidth cost of tertiary storage precludes objects from
being transmitted directly from tertiary devices. (The seek
latency for a 1.3 GB tape on a U.S. $1000-tape drive can be
on the order of 20 s (Drapeau & Katz 1993), whereas a simi-




larly priced disk, of a similar capacity, has a maximum seek
time on the order of 35 ms and more than 16 times the trans-
fer rate. Tape systems with significantly higher transfer rates
and tape capacities, although not with a much lower seek
latency, do exist, but at a cost of U.S.$40000-$300000.)
If the requested object is not disk-resident, then it must be
retrieved from the tertiary store and placed on disks before
its display can be initiated. This can result in one or more
objects being purged from disks due to lack of space. A disk-
resident object is displayed by scheduling an I/O stream and
reading the data from the appropriate disks.

One of the most challenging aspects of such systems
is providing on-demand service to multiple clients simul-
taneously, thus realizing economies of scale. That is, users
expect to access objects such as movies within a small and
“reasonable” latency, upon request. We define the latency
for servicing a request as the time from the request’s arrival
to the time the system initiates the reading of the object
(from a disk). The additional delay until data are actually
delivered to the display device is considered relatively neg-
ligible. Latency can be attributed to: (a) insufficient band-
width for servicing the request, (b) insufficient buffer space
for scheduling its reading from the disks, or (c) insufficient
disk storage, that is the object in question may not be disk
resident and hence may have to be retrieved from tertiary
storage before it can be scheduled for display.

For ease of exposition, we can assume that the server,
depicted in Fig. 1, can be described by the following three
parameters: (1) total available I/O bandwidth, (2) total avail-
able disk-storage space, and (3) total available buffer space.
(We will not consider the characteristics of the tertiary de-
vice in this paper.) These parameters, in conjunction with
the data layout and scheduling schemes, determine the cost
of the server, as well as the quality of service it can offer.
Although quality of service is a somewhat vague term, the
latency in servicing a video request is one useful measure.
In general, the more video streams a system can support si-
multaneously, the lower the average latency is for starting
the service of a new request (at least for the disk-resident
objects).

There are several basic architectures that can be used for
constructing a video-on-demand server (Berson et al. 1994;
Ozden et al. 1994; Tobagi et al. 1993). The distinctions be-
tween these architectures can be largely attributed to the data
layout and scheduling techniques used. Let us consider one
such system, in which the workload can be described by
A=A, A2, ..., Ak), where \; is the arrival rate of requests
for object ¢ and K is the total number of objects available on
the storage server (including the non-disk-resident objects).
Informally, we expect a skewed distribution of access fre-
quencies with a relatively small subset of objects accessed
very frequently, and the rest of the objects exhibiting fairly
small access rates. (For instance, a movie server would have
such characteristics, where a small subset of popular movies
(for that week, perhaps) is accessed simultaneously by rela-
tively many users. Furthermore, we assume that the change
in access frequency is relatively slow, e.g., the set of popular
movies should not change more often than once per week.)
In such a system, it is fair to assume that there is at least suf-
ficient disk storage to hold the popular objects. Moreover, it
is very likely that I/O bandwidth is the critical resource that
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Fig. 2. Data sharing
Fig. 3. Conveyor belt analogy

contributes to increases in latency. One way to reduce the
latency is simply to purchase more disks. A more interesting
and more economical approach might be either to attempt
to improve the data layout and scheduling techniques or to
reduce the I/O demand of each request in service by sharing
data among requests for the same object.

There are several approaches to reducing the /O demand
on the storage server by sharing, or, in effect, increasing the
number of user requests that can be served simultaneously.
For example (Fig.2):

1. Batching. Requests are delayed for up to 7} time units in
hopes that more requests, for the same object 7 will ar-
rive during the batching interval, and the entire group is
serviced with a single I/0 stream. In Fig. 2a, two displays
are serviced by a single /O stream that begins delivery
after the arrival of the second request. Of course, a draw-
back of this approach is the additional latency created in
the system.
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2. Bridging. The temporal “gaps” between successive re-
quests are closed by the use of buffer space, i.e., data
read for a leading stream are held in buffers, and trailing
requests are serviced from the buffer rather than by is-
suing another /O stream. In Fig. 2b, the second display
is serviced from the buffer space. A drawback of this
approach is the need for additional buffer space.

3. Adaptive piggybacking. The display rates of requests in
progress, for the same object, are adjusted until their
corresponding 1/O streams can be “merged” into one.
In Fig. 2c, two displays are initially serviced by two in-
dividual 1/O streams, which eventually “merge” into a
single I/O stream.

In this paper, we concentrate on adaptive piggybacking. It is
a more innovative approach and, to the best of our knowl-
edge, has not been studied (or even proposed) before. Some
work on batching (Dan et al. 1994a,b; Ozden et al. 1994,
Yu et al. 1995) and bridging (Dan et al. 1995; Kamath et al.
1994, 1995) does exist.

An adaptive piggybacking procedure is defined to be a
policy for altering display rates of requests in progress (for
the same object), for the purpose of “merging” their respec-
tive I/O streams into a single stream that can serve the en-
tire group of merged requests. The idea is similar to that of
batching, with one notable exception. The grouping is done
dynamically and while the displays are in progress, i.e., no
latency is experienced by the user. Note that, the reduction
in the I/O demand is not quite as large as in the case of
batching, since some time must pass before the streams can
merge. (The display adjustment must be gradual (or slow)
enough to insure that it is not noticeable to the user. We
assume that altering the quality of the display as perceived
by an “average” user is not an acceptable solution.) Thus,
the trade-off between these two techniques is between the
latency for starting the service of a request and the amount
of I/O bandwidth saved. These techniques are not mutually
exclusive; in this paper, we present results of using adaptive
piggybacking in conjunction with batching.

Consider an analogy of servicing video requests for a
particular movie to a collection of bugs sitting on a mov-
ing conveyor belt (Fig. 3). The conveyor belt represents one
particular movie. Its length corresponds to the duration of
the movie display, and the rate at which the conveyor moves
corresponds to the normal display rate of the movie (e.g.,
30 frames/s for American television). Each bug represents
a single I/O stream, servicing one or (as we shall see later)
more display requests for that movie. The position of the
bug on the conveyor belt represents the part of the movie
being displayed by the corresponding I/O stream. If a bug
chooses to remain still on the conveyor belt, then the cor-
responding stream displays the movie at the normal rate.
If the bug chooses to crawl forward at some speed, then
the corresponding movie is displayed at a slightly higher
rate. Similarly, if the bug chooses to crawl backwards at
some speed, then the corresponding movie is displayed at a
slightly lower rate.

We elaborate on the technicalities involved in altering
display rates in Sect. 2. For the remainder of this section we
assume that display rates can be altered and concentrate on
the possible benefits of this approach. These benefits are as

follows. If two bugs, one crawling forward and one crawling
backward, can “merge’ at time ¢, before either one falls off
the conveyor belt, then starting at time ¢ the system can sup-
port both displays with only a single I/O stream. (Clearly,
there is a problem of providing VCR functionality. Dan et at.
(1994a) and Dey-Sircar (1994) solved a similar problem in
the context of batching. Their solution of reserving channels
for this purpose can be used here as well. Furthermore, adap-
tive piggybacking has one additional benefit. After obtaining
a reserved channel and resuming display, we can again at-
tempt merging. If we are successful, the reserved channel can
be returned and reused by another stream.) Now, consider
for the moment bug ¢ in Fig.3, which must make a deci-
sion, namely, whether to crawl forward toward bug j and
piggyback on its I/O stream or to crawl backward toward
bug k and, instead, piggyback on its stream. If 7 crawls for-
ward, it takes less time to merge. However, after the merge,
a smaller portion of the movie remains to be displayed, and
hence the benefits of merging are not as great. In contrast, if
1 crawls backward toward £, it takes longer to merge. How-
ever, greater benefits might be reaped from this merger, if it
can be achieved at an earlier portion of the conveyor belt.

In this paper, we consider several merging policies and
evaluate them with respect to reduction in I/O bandwidth uti-
lization. In general, the following parameters can be used to
improve the number of simultaneous requests that a system
can serve: (1) delay time for batching, (2) merging policy
for adaptive piggybacking, (3) buffer allocation policy, and
(4) display-rate altering techniques. Reduction in the I/0
bandwidth consumed by the aggregate requests for a movie
is considered to be the main goal of these policies. While
other resources are affected, disk bandwidth is likely to be
the most important and costly. This will remain so for the
foreseeable future since disk capacity is increasing at a faster
rate than disk bandwidth.

The remainder of the paper is organized as follows. In
Sect.2, we describe the feasibility of supporting multiple
display rates. In Sect. 3, we briefly state the batching policy
assumed in the remainder of this paper. In Sect.4, we de-
scribe several adaptive piggybacking policies. Performance
analysis of these policies can be found in Sect. 5, and the dis-
cussion of results can be found in Sect. 6. Our conclusions
and directions for future work are given in Sect. 7.

2 Altering video display rates

Adaptive piggybacking is a viable technique for reducing
I/0O demand on a video storage server and consequently im-
proving the response time of the system, if the storage server
can dynamically alter the display rate of a request, or, rather,
dynamically time compress or time expand some portion of
an object’s display. In this section we discuss how this can
be done. Although not discussed here, the necessary time ad-
justments can be performed on the audio portion of an object
as well, using techniques such as audio pitch correction. (We
remind the reader that the word “video” (or “movie™) in this
context usually includes audio channels also.) For instance,
when the movie Amadeus was transferred from film to tele-
vision, it was “time compressed” by 3% (personal commu-
nication — R. Igo and B. Carpenter, Ampex). Clearly, the
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rate of this adjustment must be chosen accordingly to insure
the necessary synchronization (Rubin 1991) with the video
portion of the object.

We make the basic assumption that the display units be-
ing fed by the storage server conform to the National Tele-
vision Standards Committee (NTSC) standard and display
at a rate of 30frames/s. Therefore, any time expansion or
contraction must be done at the storage server. The effective
display rate can be slowed down by adding additional frames
to the video since the display occurs at a fixed rate. For ex-
ample, if one additional frame is added for every ten of the
original frames, the effective display rate (original frames/s)
will be 30 x %. Similarly, by removing frames the effective
display rate can be increased. There is ample evidence that
effective display rates that are 5% of the nominal rate can
be achieved in such a way that it is not perceivable by the
viewer. For example:

— A movie shot on film is transferred to video using
a telecine machine that adapts to the 30frames/s re-
quired for the video from the 24 frames/s that is stan-
dard for films. This is done with a 3-2 pulldown algo-
rithm (Ohanian 1993; Rubin 1991), that for every four
movie frames, creates five video frames. Two of the five
frames produced are interpolations of a pair of the origi-
nal frames. A similar type of interpolation could be used
in our application.

— Ampex makes a product called Zeus(TM) (product de-
scription) that can be used to produce high quality video
that has been time compressed or expanded by up to 8%.
According to the product literature it can accomplish this
without bounce or blur.

— Personal contacts within the the video editing industry
have assured us that alterations of the actual display rate
in the 2-3% range (personal communication — C. Shott,
Lightwors USA and Digital Images) or expansion and
contraction (through interpolation) in the 8% range (per-
sonal communication — R. Igo and B. Carpenter, Am-
pex) can be accomplished without being noticeable to
the viewer.

There are two approaches to providing the altered stream
of frames to be transmitted to the display stations.

— The altered version of the video can be created on-line. In
this case, the I/O bandwidth required from the disk varies
with the effective display rate. There are two possible
disadvantages of the on-line alteration: (1) the layout of
the data on disk is often tuned to one delivery bandwidth,
and having to support multiple bandwidths can compli-
cate scheduling and/or require additional buffer storage;
and (2) supporting on-the-fly modification may require
the expense of specialized hardware to keep up with the
demand.

— The altered version of the video is created off-line and
stored on disk with the original version. The obvious dis-
advantage of this approach is the additional disk storage
required.

Based on the preceeding discussion, in the remainder of
this paper, we assume that we can alter the effective display
rate by +5% without sacrificing video quality, and we con-
sider both the on-line generation approach to providing the
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altered stream of frames and the off-line approach. In either
case we assume that when frames are inserted, the additional
frames are some interpolation of existing frames (not simply
duplicates). Similarly, when a frame is deleted, the preceding
and succeeding frames are altered to reduce the abruptness
of the change (e.g., each becomes an interpolation of the
original and the deleted frame). For the off-line approach,
we include additional considerations in the scheduling poli-
cies for limiting the amount of additional disk space required
for storing replicates of a video.

3 Batching

One way to reduce the /O demand (Mb/s) on the storage
server is to batch requests, for the same object, into a sin-
gle 1/0 request to the storage server. The trade-off for the
batching approach is the amount of latency experienced by a
request versus the corresponding reduction in I/O demand on
the storage server. Here, we concentrate on controlling uti-
lization, and more specifically, on controlling utilization of
the /O subsystem. For reasonably busy systems (the only
really interesting case), the lower the utilization of a sys-
tem, the lower is its response time for servicing requests.
There are several ways to batch requests into a single I/O
stream. (We briefly discuss batching policies here and in the
remainder of the paper assume that the policy of batching
by timeout, as described below, is used.)

In this section, we study (1) batching by size and (2)
batching by time out. (Note that the following are simple
batching policies introduced mainly for the purpose of ex-
ploring the possibilities of combining batching with adap-
tive piggybacking. Combinations of these batching policies,
as well as many other variations on batching, are possi-
ble. Some of them have already been studied by Dan et al.
(1994a, b) and Ozden et al. (1994); since batching is not the
focus of this paper, we do not pursue these any further.) For
the remainder of this section, we assume that the request-
arrival process for a particular object 7, is Poisson with rate
Aj.

3.1 Batching by size

Let B; be the predefined batching size, and let A; be the
arrival rate of requests for object j. The system initiates
an 1/0 stream only when B; such requests accumulate in
the system. Let E[NN,] be the expected reduction (due to
batching) in the number of I/O streams issued. Then:

E[N]']=Bj~—| (1)
Let L; be a random variable denoting the latency experi-

enced by each request for object j. Then the expected la-
tency is:

B
1 << B, —1
BlL) =Y 2
7B i=1 Ay
B, 1
= X 2
o, 2)

Although this policy reduces the /O demand on the storage
server, it can result in long delays for requests, particularly
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for low-to-moderate arrival rates. (Depending on the net-
work characteristics, it might be wise to batch by size, since
this can result in lower network traffic; however, we do not
consider network characteristics in this paper, and therefore
will assume batching by timeout (described next) in the re-
mainder of the paper.)

3.2 Batching by timeout

Another policy we consider is batching by timeout. The
timer is set when a request arrives to the storage server
and there exists no other outstanding request for the same
object j. The system issues an I/O request to the storage
server T time units after the initiation of the timer. Any
request, for the same object, arriving during these 7 time
units is batched and serviced when the timer expires. Let V;
be a random variable denoting the number of I/O streams
saved due to batching, and let pj, be the probability of k
arrivals during time 7). Since the arrival process is Poisson,
we have:

E[N;] = AT, (3)

To evaluate the expected latency experienced by each re-
quest, we can view the system as an M/G/1 queue with a
constant setup time (where the setup time is the duration of
the timer 7;) and a deterministic service time distribution
with a mean of zero. The expected latency for this type of
a system can be found in Takagi (1991):

q Tj(2+)\jTj)
ElLi1= 20+ M\Ty)

Since E[N;] = \;T}, the /O demand on the secondary stor-
age can be reduced tremendously under moderate-to-high
request arrival rates. This is also a reasonable policy for
movie-on-demand applications because each request for ob-
ject j does not experience more than 7 units of delay due
to batching. Figure 4 illustrates the expected latency for the
two batching policies described in this section.

“4)

4 Adaptive piggybacking

We now describe several adaptive piggybacking policies.
Consider a storage system, where for each request for an
object there exists a display stream and a corresponding 1/0O
stream. The processing nodes use the I/O streams to retrieve
the necessary data from disks, possibly modify the data in
some manner, and then use the display streams to trans-
mit the data through the network to the appropriate display
stations. For example, in Fig.5, we service display streams
1 and 2 with the corresponding I/O streams 1 and 2. We
can reduce the I/0 demand on the storage server by using
a single 1/0 stream to service several display streams cor-
responding to requests for the same object. For example, in
Fig. 5, display streams 3 and 4 correspond to requests for the
same object and are serviced using a single [/O stream, 3. As
stated in Sect. I, this can be done in a static manner, i.e., by
batching requests (see Sect. 3) and in a dynamic or adaptive
manner; adaptive piggybacking is the topic of this section.
(Note that, depending on the network characteristics, it may
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be wiser to delay “splitting” display streams 3 and 4 (Fig. 5)
until the last possible moment, i.e., transmit them through
the network as a single stream for as long as possible to ob-
tain a similar reduction in the network bandwidth demand as
we would in the I/0 bandwidth demand; however, we do not
consider network characteristics or alternative transmission
policies in this paper any further.)

A dynamic approach initiates an I/O stream, for each dis-
play stream, on-demand, and then allows one display stream
to adaptively piggyback on the I/O stream of another dis-
play stream for the same object. We can also view this as
a dynamic merging of two 1/O streams into one. Before the
merge, there are two I/O streams, each serving one (or more)
display stream(s), where the display streams correspond to
two temporally separated displays of the same object. After
the merge, there is only one I/O stream, which can ser-
vice both display streams. Furthermore, the corresponding
displays are then “in synch”. As described in Sect. 1, this
merging can be accomplished by adjusting the display rates
of the requests to close the temporal gap between the dis-
plays. Although adaptive piggybacking and batching are not
mutually exclusive techniques, for ease of exposition, in this
section we concentrate on adaptive piggybacking policies
only. (The results of using adaptive piggybacking policies
in conjuction with batching policies are reported in Sect. 6.)

Our goal in this paper is to investigate the benefits,
namely, the reduction in I/0O bandwidth utilization, attributable
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to adaptive piggybacking rather than due to a particular stor-
age server architecture. Therefore, we do not specify data
layout and/or scheduling schemes. Furthermore, in the fol-
lowing development we do not make assumptions about
which method is used to achieve different display rates. In-
stead, in the following derivation, we associate an /O cost
with each I/O stream, where the cost is a function of the
corresponding display rate. In other words, the I/O cost for
servicing a slow- (or a fast-) rate display can differ from the
/O cost for servicing a normal-rate display. For instance,
the speed up (or slow down) can be achieved by replicat-
ing data, in which case, the total number of bytes read from
disks may differ, depending on the display rate of a stream.
If, on the other hand, dropping (or duplication) of frames
is used, then the total number of bytes read from disks re-
mains the same, regardless of the display rate of a stream.
(Note that, there could be costs other than I/O bandwidth as-
sociated with reading data at higher or lower rates, such as
additional buffering space and scheduling complexity. For
instance, one might consider using only two alternate dis-
play rates (e.g., normal and fast) to reduce the scheduling
complexity. However, since we do not consider a specific
architecture, we will not evaluate such costs in this paper.)

We can view the duration of the object’s display as a
continuous line of finite length and consider the problem
of adaptive piggybacking as a decision problem. Given the
global state of the system, i.e., the position, relative to the
beginning of the display, of each display stream in progress,
we must choose a display rate for each of the requests, such
that the total average I/O demand on the system is mini-
mized. (We take minimization of the average I/O demand
as the objective. Such reductions, if small, would not nec-
essarily be a good measure of how latency is decreased.
However we will show that large reductions are obtainable,
and therefore the reduction in I/O bandwidth requirements
will translate directly to latency reduction.) Since merging
is only possible for I/O streams corresponding to displays of
the same object, we can consider each group of requests for
the same object separately. For the remainder of this section,
we consider requests for a particular, single object only.

We begin by deriving the general conditions under which
1/O streams i and j can be merged in a way that reduces the
total /O demand on the storage server. Initially, we assume
that merging can occur at any time during the object dis-
play. This assumption is removed at the end of this section.
We define the following notation (Fig. 6). for derivation pur-
poses:

S,; = The display speed (in frames/s) of display
stream k if no attempt to merge is made, where
ke {ij}

S, = The adjusted display speed (in frames/s) of dis-
play stream k if merging attempts are made,
where k € {i.j}.

S; = The display speed (in frames/s) of display
stream k after merging, where k € {i.j}.

pa; = The total number of frames in a video object.

pr = The current position in an object’s display (in

frames) of 1/O stream k, where k € {i.7}.
= The position (in frames) in an object’s display
where 1/O streams ¢ and j merge.

])777

145

The 1/O bandwidth (in bits/s) of the I/O stream
corresponding to display stream k, with a dis-
play speed of Sk

The /O bandwidth (in bits/s) of the /O stream
corresponding to display stream k with a dis-
play speed of Sk.

The I/O bandwidth (in bits/s) of the 1/O stream
corresponding to display stream k, with a dis-
play speed of Sj.

The distance (in frames) between I/O streams
i and j, which is equal to p; — p;.

The distance (in frames) between the merge
point and the current position of j, which is
equal to py — Pj-

dpy =

Figure 6 represents the duration of an object’s display as
a continuous line of length pys. Each display stream, e.g.,
stream i, is identified by its position p; in the object’s dis-
play. The display stream is moving at a particular display
speed S;. To merge I/O streams ? and j, we must first en-
sure that S; > S;. Secondly, we can define the following
distance and cost constraints that can be used in any adaptive
piggybacking policy to identify merging opportunities, i.e.,
to determine, whether or not it is possible and cost-effective
to merge 1/O streams i and j. The cost constraint ensures
that the total /O demand (measured in bits read from the
disk) with merging is less than the total /O demand without
merging. This I/O cost constraint is:

dCZ dmCl dij (101\1 —d- dm - pz)cj*
—_ + =~ +

+
A s:
o (par —pi — DC
< (pm Sliﬂz)C'z . (pas g' ) . )
i J

(Since 1/0 stream 7 is merged with j, after the merge, only
the /O cost of stream j need be considered beyond the
merge point.) The above constraint is only meaningful when
the number of bits read from the disk is not independent
of the display rate, i.e., in our case, it is meaningful only
when replication is used. Otherwise, any merging prior to
the end of a display results in savings. Then Eq. 6 becomes
the only constraint, namely, the object length (or duration of
its display) is finite and hence requires the following distance
constraint:

pit+ d+dm<pm - (6)
Finally, the merge-time constraint is:
d+dy dm
= 7
R (7)

Let d, be the maximum d such that the /O cost condition in
Eq. 5 is satisfied. We obtain d, by using Eq. 7 to obtain d,,, =

SJ
d(&—&

dy =

) and then setting the equality in Eq. 5. Hence:
li(p,.\,~1’)l)(.7: n (par *{),)C;

(par—pi)C]

i J J

* g « o

Q — Cj + & + 5-/ Q + g — S_L
5 5T 5-5, )\s. TS TS
g -

. (8)
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Fig. 7. Scenario of the odd-even reduction policy

Let d> be the maximum d such that the distance constraint in
Eq. 6 is satisfied. Again, d» can be obtained by substituting
the expression for d,,, in Eq.6 and solving for equality:

(prr — p)(S; — 55)
S ’
Let d* be the maximum distance between two [/O streams

such that merging these two streams (at d,,) results in a
reduction of /0O demand on the storage server. Therefore:

d* = min(d1 y dz) . (10)

We can now apply this result to the various adaptive pig-
gybacking policies, which we describe next. Our goal is to
find adaptive piggybacking policies that have a significantly
lower expected /0 demand than that of the baseline policy.
(A baseline policy is one that does not use display adjust-
ment — each I/O stream is displayed at its normal display
rate.) Thus in the remainder of this section we present sev-
eral adaptive piggybacking or “merging” policies, which dif-
fer in how the stream merging decisions are made, as well
as in how many merges are attempted. These policies are
not intended to be “optimal”, but rather to be simple heuris-
tics, designed to investigate the possible benefits that can
be gained from adaptive piggybacking; these benefits are
discussed in Sect. 6.

We make the following observations about the display
adjustment decisions. Consider again the system state de-
piction in Fig.6. Clearly, the only stochastic events in the
system are the arrival points. Such events as merging of two
streams or end of a display are predictable. Hence, an op-
timal policy can evaluate all possible display rates, make
appropriate decisions with respect to minimizing the av-

dy = 9)
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Fig. 8. Scenario of the simple merging policy
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Fig. 9. Scenario of the greedy merging policy
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Fig. 10. Arrival of I/O streams after a delay

erage system I/O demand, and then not re-evaluate these
decisions until the next arrival point. However, this would
be computationally intensive and hence impractical. Instead,
we consider a class of (simpler) policies that make speed
adjustments when one of the following four types of events
occurs: (1) arrival, (2) merge, (3) dropoff, and (4) window
crossing. An arrival event corresponds to an initiation of a
new I/O stream. A merge event corresponds to the merge of
two 1/O streams, and a dropoff event corresponds to the end
of a display of an object — a “departure” of an 1/O stream.
A window-crossing event refers to passing the boundary of
a catch-up window, which is illustrated in Fig. 6. We define
a catch-up window, W, (p;), for policy p to be the maximum
possible distance between stream ¢ and stream j, ahead of
stream i, such that “profitable” merging is possible. W,(p;)
is computed relative to position p; in the display of an object.
We shall see shortly how the catch-up window is used in the
merging policies. W,(p;) can be computed using Eq. 10.

The sooner merging occurs in the object’s display, the
more resources (disk bandwidth, buffer space, etc.) can be
conserved and used by the storage system to service other
requests. Hence, in the remainder of this paper we shall
assume the maximum possible deviations from the normal
speed both, for the slower and faster than normal display
rates. In other words, we limit our policies to consider only
three possible display rates: (1) the slowest rate, Spin, (2)
the normal rate, S,,, and (3) the fastest rate, S,,q.. The
corresponding /O demands, or cost rates, are Cypin, Cns
and Craz.

level 3 S
level2 55 merge ... S
mer c _ ----------------- ——— .
level 1 87 ___ s - e -~ s,
|<— X+ |4——_2X____.| I 4x I

Fig. 11. Merging pattern for streams under the greedy policy



4.1 Baseline policy

This is the normal situation. When requests arrive, there is
no attempt to adjust the display rates, i.e., all requests are
assigned the normal display speed of S,, and there are no
merging events in the system. Note that the lack of merging
does not exclude the possibility of initial batching.

4.2 Odd-even reduction policy

A simple display rate adjustment policy that attempts to re-
duce 1/0 demand by at most 50% is the odd-even reduction
policy. The basic approach is to pair up consecutive arrivals
for merging whenever possible; the algorithm is given below.
Let us define W,.(0), measured relative to the beginning of
an object’s display (Fig.7), to be the catch-up window for
the odd-even reduction policy. The algorithm for odd-even
reduction is:

Algorithm odd-even reduction policy

Case: arrival of stream 1
If ((no stream, in front, is within W,.(0) frames) or
(stream immediately in front is moving at Sy,az))
Si = Smins
else
Si = Smaa;
Case: merge of ¢ and j
drop stream ¢;
Sj = Sn;
Case: window crossing, W,.(0) (by stream %)
If (Sl == Smm) and
(no stream behind, in W,.(0), moving at Syaz)
Si = Sn;
else
S; is unchanged;
end

In this merging policy, each original stream participates in
at most a single merge. Such simplicity in merging decisions
or such a “limited” form of merging could be advantageous
if the particular display adjustment technique used is com-
plex or resource consuming; an approach to “limiting” the
merges is discussed in Sect.4.5. The “slowing down” of a
new arrival (in this algorithm) is, of course, motivated by
the anticipation of future arrivals.

Figure 7 illustrates one possible scenario of this policy.
When an I/O stream d arrives to the system, I/O stream
¢ is still in the catch-up window W;.(0) “moving” at the
display speed of S,in. In this case, the display speed of
request d is set t0 Sp,q,. Likewise, when stream b arrives
to the system, I/O stream @ is within the catch-up window
W,.(0). Therefore, the display speed of b is set to Smaz- In
this scenario, I/O streams a and b merge into a single [/O
stream, and streams ¢ and d also merge into a single /O
stream.

W.,.(0) can be computed using Eq. 10, where the values
of d, and d, can be found, using Eqs. 8 and 9, respectively,
by simply setting p; = 0, Ci = Crrazs S = Smazs C; =
Cmins Sj = Smins Czl = C; =Ch, Sz/ = SJ/ = Sp, C: = Ch,
Sy = S,. Then we have:

| -
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[{).\1 C ]
S,
d] =
Crias + Simin Coiar 4 Cuiin __ Cu
Swiar Smar—Smin Snar Swiin Sy
(1
(12)

pA](SmuI - Smin)

d =
SHL(L.’I?

4.3 Simple merging policy

As in the case of the odd-even reduction policy, we first
define W,,,(0) to be the catch-up window for the simple
merging policy, measured relative to the beginning of an
object’s display (Fig.8). In addition, we define W7, (0) to
be the maximum merging window for the simple merging
policy, also measured relative to the beginning of an object’s
display (Fig. 8). W,(0) indicates the latest possible position
where two streams can merge, i.e., if ¢ arrives to the system
and finds j W, (0) frames ahead of it, then ¢ and j can still
merge. Moreover, they will merge at the right-hand bound-
ary of W2 (0) (Fig.8). The basic rationale behind the sim-
ple merging policy is to assign streams to “‘merging groups”,
where one stream, e.g., stream 7, initiates the group, and all
streams that arrive to the system while stream 4 is in W, (0)
eventually merge with stream ¢. The last stream will merge
“into the group” before leaving W (0). The algorithm for
the simple merging policy is:

Algorithm simple merging policy

Case: arrival of stream ¢
If no stream within W,,(0) is moving at S,,;n
Si = Smin:
else
Si = Sm,a:c;
Case: merge of ¢ and j
drop stream ¢;

Sj = Smins

Case: window crossing, W (0)
S; = Sns

end

The rationale for keeping the display speed at Sy, un-
til the right boundary of W (0) is crossed is to allow all
streams in the merging group to eventually merge. Unlike in
the odd-even reduction policy, in this merging policy, each
original stream could eventually merge with more than one
other (original) stream. However, this merge might occur in
a “later portion” of a video, as compared to the odd-even
case. We expect that the relative performance of these algo-
rithms will depend on the distribution of the arrival process.

Figure 8 illustrates one possible scenario under this pol-
icy. When 1/0 stream ¢ arrives to the system, 1/O stream a
has already moved outside of the catch-up window Wem(0).
Therefore, the display speed of I/O stream c is set (o Sinin.-
When stream b (streams d and e) arrives to the system,
stream a (stream c¢) is within the catch-up window W, (0).
Therefore, their display speeds are set to Spqz. In this sce-
nario, stream b eventually merges with stream a, and streams
d and e merge with stream c. All merges occur within
W (0).

ST
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Both 17,,(0) and W] (0), can be computed using
Eq. 10. The values of d, and d> can be found using Eqs. 8
and 9, respectively, by simply setting p; = 0, C; = Criga,
Si = Sniaws Cj = Cin, S; = Sin, C; = C; = Cp,

S = 5; =5, CF=C,, S; =5,. Then we have:

[l)]\l Cu :l
Sy
d] = C S C C C
[(Se) + (5t (G + G - 2]
(13)
(S’ma.T, - Smin)
and
W (0) = min(d,, dy) (15)
I/Vqr:n(o) =W, 0) + dp,
Sma.r
= M/s'm 0 - o . 16
( ( ) <S7naz - Smin) ( )

4.4 Greedy policy

If the request arrival rate to the system is moderate to high,
then it is advantageous to merge requests as early as pos-
sible, thereby reducing the I/O demand sooner. Both the
odd-even reduction and the simple merging policies attempt
to accomplish this. But, it is still possible to further merge
I/0 requests, which have accomplished some form of “early
merging”. The greedy policy attempts to merge 1/O requests
as many times as possible, during the entire duration of an
object’s display. Therefore, in addition to the initial catch-
up window W, (0), measured relative to the beginning of an
object’s display, we shall also use Wy(p;), a catch-up win-
dow measured relative to position p; in an object’s display.
The greedy policy uses this “current” catch-up window (de-
scribed below) as an indication of opportunity for further
merging.

The greedy policy works as follows. Upon arrival of a
request for the object, the speed adjustment is performed as
in the odd-even reduction policy. If, on crossing the catch-up
window, the stream determines that it has not yet been paired
up for merging, then it checks W, (W, (0)) for possibility of
merging with some stream in front. When merging occurs at
position p;, a new catch-up window W,(p;) is computed. If
there is no I/O request within this window, the speed of the
request is set to .S,,. If there are some requests within the
catch-up window W, (p;) and the I/O request immediately in
front has a display speed of .S, then that request’s speed is
set to Sy,in, and the speed of the request at position p; is set
10 Sinax- In algorithmic form, the greedy policy is described
as follows:

Algorithm greedy policy

Case: arrival of stream i
If ((no stream in front is within W,4(0) frames) or
(stream immediately in front has display speed S,,4.))
Si = Smin;
else
Si = S‘HL(I«I‘;

Case: merge of streams 7 and j
drop stream ¢;
compute W (p;), where p; is the position of stream j;
If ((no stream k with speed S, is immediately in front
within W (p;) frames)

i = Ons
else
Sk = Smin;
Sj = Smaz;

Case: window crossing, W,4(0) (by stream 7)

compute W, (p;);

If ((S1 == Sm,a.r) or
(S == Syaz, Where j is stream immediately

behind i in W,(0)))

S; 1s unchanged.;

else If (stream k with speed S,, immediately in front
is within W(p;))

Sk = Sm'in;

Si = Sma,x;
else

Si = Sn;

end

Clearly, we expect the greedy policy to perform better than
the odd-even or the simple-merge policies, since it attempts
merges during the entire duration of an object’s display. (On
the other hand, as already mentioned in Sect. 4.2, a greater
simplicity in merging decisions or a more limited form of
merging could be advantageous if the particular display ad-
Jjustment technique used is complex or resource consuming.)

Figure 9 illustrates one possible scenario of this policy.
I/O streams b and d (not shown) have been already merged
with I/O streams a and ¢, respectively. This occurs in the first
catch-up window W (0). After the merging of I/O streams d
and ¢, I/O stream ¢ attempts to merge with I/O stream « in
catch-up window W (p;). At the same time, a newly arrived
I/O stream f attempts to merge with I/O stream e, which is
within its catch-up window W, (0).

Wy(p;) can be derived from Eq.10. The values of d,
and dy (now both functions of the i’s current position, p;)
can be found by simply setting C; = Crrazs S; = Simax
Cj = Crins Sj = Syin, C; = C; = Cp, S, = S, = 8y,

2

Cf =Cy, Sf =8,. Then we have:

[2(%\/1;‘131,)0” + chn}
d — n n
| =
Crax Simin Cmuz 4 Comin _ Chn
[(S) + (S—S) <b t S T S )}
(17)

p.-’kI(S wazr mz’n)

dy = “ : (18)

Smar.

4.5 Limited merging

At this point we remove the assumption that merging can oc-
cur at any time. If replication of data is necessary to perform
the display rate alteration, then we must consider another
parameter, namely, the amount of additional disk space that
would be necessary to store replicated data. As already men-
tioned, there is a tradeoff between the amount of additional
storage necessary to replicate data and the reduction in I/O



demand that can result. (Note that, we do not necessarily
have to store three different versions of an object, each cor-
responding to a different display rate. For instance, in the
simple merging policy, we only need the slow and the fast
versions while in the maximum merging window, W (0),
and only the normal version outside of the maximum merg-
ing window.) We can evaluate the above tradeoff by placing
an additional constraint on the merging policies, namely, the
constraint of a maximum merging point (in the display of an
object). In other words, we can control the amount of data
that must be replicated by allowing merging only if it can
occur within a specified amount of time or, rather, within
a certain distance (in frames) from the beginning of an ob-
ject’s display. We refer to this distance as p"%*. Consider
again Fig.6 and Egs.5-7 which describe the distance and
cost constraints that must be met to attempt merging of two
display streams. To control the amount of replication, we
enforce the additional constraint that the merge must occur
before p;®* rather than before pyy, i.e., Py, < p7%%. Thus,
Egs. 6 and 9 are replaced by Egs. 19 and 20, respectively, as
follows:

pi+d+dm<pp®” (19)

dy = me® = p)(S; — S;) ’

S
All other equations can remain unchanged. Of course, these
modifications must be carried through for all the adaptive
piggybacking policies described above. (Results of studies
of adaptive piggybacking in conjunction with batching, both
with and without a constraint on the maximum merging
point, are reported in Sect. 6; performance analysis of these
policies can be found in Sect.5.)

(20)

5 Performance analysis

In this section we present analytic solutions for computing
the I/O demand on a storage server that uses adaptive piggy-
backing policies in conjunction with batching. We define the
following notation (also see Fig. 10) used in the derivation
of this section. All computation is done with respect to a
particular multimedia object j. Unless otherwise stated, we
drop the subscript j for simplicity of illustration.

DM = number of frames in a movie.

T = batching delay time (deterministic).

A = mean arrival rate.

te = mean time between the end of one batching de-
lay interval and the beginning of the next one
(Fig. 10).

ta = random variable representing the time between

1/O stream initiation,

Wo(ps) = the catch-up window for policy p, relative to po-
sition p;.

W (pi) = the maximum merging window for policy p, rel-
ative to position p;.

BW, = the mean total I/O demand under policy p (bits/s).

The equations for W,(p;) and LV,’)7l(p1;) where p could be
the odd-even (oe), simple (sm), or greedy (g) policy, can be
found in Sect. 4; these equations already allow for the limited
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merging case which limits the maximum allowed merging
time.

First let us derive the density function of ¢,, which is the
interarrival time between two streams arriving to the storage
server. Since the request arrival process is Poisson with rate
A te = % Therefore, the density function of ¢, is:
fr. (@) = Ae Mo D fore>T. 21

Since the normal duration of a movie object is pa7/S,,,
the expected number of I/O streams, N, that the storage
server has to support is:

_(pu !
= <Sn) (f;oxfta(a:)dx>

5.1 Analysis of the baseline policy

p]\[/Sn

/A +T (22)

We begin with the analysis of the baseline policy, which
is very simple, since there are no merges and each stream
carries a fixed cost of C),. The expected bandwidth demand
is:

Pum/Sn
BWy,=NC, = ———C,.
The expected bandwidth demand without batching can be
obtained by setting 7" = 0.

5.2 Analysis of the odd-even reduction policy

The behavior of the odd-even policy is such that pairs of
consecutive I/O streams are statistically identical. We can
therefore analyze the mean I/0O demand for one such pair and
then compute the average I/O bandwidth by multiplying half
the rate of intensity of 1/O streams by the average demand
per pair. Under the odd-even policy, merges are possible
for certain ranges of interarrival times and batching delays.
Consider two consecutive streams s; and s, that arrive to
the system z time units apart (assume that s, is the lagging
stream). Assume for the moment that it is possible for these
streams to merge, and let ¢,, be the time it would take s,
and s, to merge, computed from the arrival time of s,. Let
ty be the time from the merge point of these two streams
until the end of the object’s display. Then:
TSmin

tm Sma;t - Smin (24)
_ Par — (im + w)sz’n
= 5 .

Note that merging is possible only if two streams arrive
within the catch-up window W,.(0). Therefore, the com-
bined /0 demand for streams s; and s», given that they
arrived x time units apart and that they can merge (i.e., that
z < Belly .

Dinin

BY 7;2 =({tmn+ x)Cmin +im Cmal' + thn (26)

ty (25)

The three costs correspond to the bandwidth demands of: (a)
the leading stream s, first moving at display speed S,,,;.; (b)
the trailing stream s,, first moving at display speed S,,q.:
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and (c) the remaining 1/0 demand, after merging, and con-
tinuing display at the speed of 5.

Similarly, if = > ‘(0’ , then the I/O demand of the pair
of streams is:

I/Voe(o) Par — HVoc(o)
S777,7,77 C’”v”” + Sn

The expression corresponds to each of the streams at first
having a display speed of S,,;; and, after moving beyond
the catch-up window, reseting the display speed to S,,. At
this point, we can compute BW,., the total mean bandwidth
demand in the system:

BW!™" =2 c.l . @

H oel)

Sy (BWI % * i, (@) dx

BW,. =

S‘

jgi,u.)(BW;;m « 3 s fy (@) da
+ TLTL M i (28)
Sn

5.3 Analysis of the simple merging policy

The analysis of the simple merging policy is similar to that
of the odd-even policy except that, instead of looking at
pairs of streams, we consider “merging groups” of streams,
i.e., groups of streams that eventually all merge together
(see Sect.4). Similarly to the odd-even policy, we note that
all “merging groups” are statistically identical. Hence we
can analyze the mean [/O demand for one such group and
compute the average I/O demand by multiplying the rate of
intensity of such groups by the 1/0 demand for each group.
Under the simple merging policy, merging is possible if,
upon initiation of a stream, there exists another stream within
the catch-up window W,,,(0), that is moving at speed Sy, in.
Let 3 be the number of streams, within the window W,,,(0)
that can (eventually) be merged. We call this set of streams
a “merging group”. We approximate 3 by:

LVs’m 0 Smi7z,
[3=max{LTL(+)1///\—+1J,2} . (29)

The first component corresponds to the number of streams
that can fall within window W,,(0). By setting 3 > 2, we
consider the (merging) effect when at least two streams are
available for merging.

Assume that all streams in a merging group are separated
by time x and that there are 3 merging streams within the
catch-up window W,,,(0). The second stream needs ¢,,, (or
51%) time units to catch up to the leading (first in
th’éuéroupﬁ stream, the third stream needs 2¢,, time units to
catch up, etc. The leading stream keeps the display speed
at Sy, until it reaches position W27 (0). Then the display
speed is reset to S,,. Therefore, the amount of time during

which the leading stream has a display speed of S, is:
=P WO
‘ S

The I/O demand for the merging group, given that the

streams are separated by time z and that merging is possible,
can be expressed as:

BI{ m — I/{ QVTI(O)

S

(30)

Cmi,n + C("j)fm (yma.zt + ZLf Cn (31 )

min

where C(3) = 3(3 — 1)/2. The cost terms correspond to the
cost of the leading stream moving at S,,;, and all other
streams, originally within the catch-up window W, (0),
moving at speed S, trying to catch-up. The last cost term
represents the remaining time after the last merge, when the
leading stream moves at speed .5,,.

If merging is not possible for a given interarrival time
2, then the 1/0 demand for the merging group is:

W) par — W3(0)

BWI" = * S Conin + Cn| . 32
s ) Sm?n ) STL ( )
The expected I/O demand for the simple merging policy is:
W ,n(())
Jr (BWE, x5+ fr, (1) da
BWsp, = P
S'n
fu () (BW ok Lok fta. (x)) dzx
+ Sinin ) (33)

Par
Sn

5.4 Analysis of the greedy policy

The performance analysis of the greedy policy is more com-
plex. Let us first refer to Fig. 11 and consider the merging
pattern. This figure depicts a system with eight streams. All
of them start out z time units apart, and eventually, all eight
streams can be merged into one. For the first-level merge
(Fig. 11), the system reduces the number of streams by half,
but all remaining streams (sy, $3, Ss, $7) are 2z time units
apart. After the second-level merge, only two streams re-
main, $; and ss, and they are 4z time units apart. With this
observation, let [ be the highest level of merges under the
greedy policy. The expression for [ is:

I =max {k: g(k) > 0} (34)

where

g(k) =Py — 2(]671)7_ |:Sn + (ﬁ) Smi'n:| (35)

and

W)
;= / min '/I:ftu (x) dm
T
(— A\ Woi— 5mmT>
= 1T+ 1 (Sm?ﬁn + )\M/YQ(O))(’ Smin
- A /\Smin

(36)

Given that the streams can go through [ levels of merges,
the leading stream, after the last merging point, will have ¢5
time units of display left, at a speed of S,,, where t; is:

Smm
te= Prr — T (1 + - S, i
! |: Smarr. - Smin e

!
. Sini l
_ZQJilT [Sn + <$> Smin:| I:—:| (37)
= S‘IYI.U.:L‘ - S’m‘in Sn

where the first term represents the remaining frames of the
object, after the last merging event, displayed at the speed
of S,,.



Given that the interarrival time between streams partic-
ipating in an [-level merge is x, and that there are [ > 2
levels of merges, the I/O demand is:

BI/‘/‘L(;H, — {(t'ﬂl, + ‘T)OVVI’HZ :{.1.771 C”l(lf} {ﬁ:‘
pi\[/*sn 2
i
S N tC N
o] 3] s 3] e
; { J par) L2 par/ Sl 2 (38)
where
B3y = 29707 |G (o2} (Coin + )|
Smaw - Smin ) v

39)

The first term in Eq. 38 represents the bandw1dth demand for
the first-level merge while pairing up = streams. The second
term represents the bandwidth demand for the second level,
etc., until the {*" level merge while pairing up 21 pairs.
(For level two and up, the leading stream first moves at
S, because it finishes merging earlier than the next pairs
of trailing streams. When the trailing streams finally finish
their merge, its display speed is reset from S, to Smins
while the trailing stream resulting from the merge attempts
to catch up at the speed of S,,4..) The third term represents
the bandwidth demand for the leading stream, moving at the
display speed of Sy, all the way until the end of the object’s
display.

If merges are not possible, given x, then the I/O demand
is:

[ ‘SV{,(v()) min T L —SVV!](O) Cn

BW™ = | = 5 N . (40)

Par /Sn

Unconditioning on the interarrival time z, we have:

Wa

min

BW, =/ (BW]" * fi,(x)) dx

T

/W o (BWJ™ x fi,(x)) dx . 41)

S

Finally, we constrain the bandwidth demand of the odd-even
policy to be the upper bound for the bandwidth demand of
the greedy policy:

BW, = min(BW,. BWs) . (42)

5.5 Validation of analytic results

In conclusion of this section, we validate our our analytic
results by comparing them to results obtained from simula-
tion. Comparisons of all three policies in conjunction with
batching by timeout are depicted in Figs. 12-14, in which
“delay” refers to the batching interval (in minutes) and each
curve represents the percentage improvement in I/O demand,
as compared to the baseline policy. The comparisons indi-
cate that the largest divergence from the simulation occurs
when the arrival rate is low. The analytic results match the
simulation closely when the arrival rate is moderate to high.
This is sufficient for our purposes since we are interested
in applying our techniques to video objects with relatively
high access rates, i.e., popular objects.
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6 Discussion of results

In this section we present results of studies of adaptive pig-
gybacking policies in conjunction with batching policies. To
avoid degradation in display quality, we assume that the ad-
justed rates Spin and Spq. are within 5% of the normal
display rate, S,. In the remainder of this discussion, we
use the the following values for the parameters presented in
Sect. 4:

Sinin = 28.5 frames/s
n = 30.0 frames/s
max = 31.5 frames/s
min = 1.425 Mbits/s
n 1.5 Mbits/s

maz = 1.575 Mbits/s

Batching by timeout is used as the batching policy in all re-
sults presented in this section. The delay time is varied be-
tween 0 and 10 min and the mean interarrival time (between
consecutive requests for the same movie) is varied between
0.5 and 10 min. In the following discussion, we consider the
total average I/O bandwidth demand on the storage server as
the measure of interest. More specifically, in each graph, we
present the percentage improvement of the various policies,
as compared to the baseline policy. For ease of exposition,
we initially assume no restrictions on the maximum allowed
merging time. At the end of this section, we consider the
effect of restricting merges to occur within a specified time
interval.

We first consider the effects of batching, i.e., the de-
crease in I/O demand on the storage server due to batch-
ing and the corresponding increase in the average latency
for starting the service of a request. This comparison is il-
lustrated in Fig. 15, in which the interarrival time is kept at
4 min and the batching delay is varied between 0 and 10 min.
This graph indicates that, as the batching delay increases, the
decrease in /O demand quickly shows diminishing returns
while the average latency, which grows almost linearly with
the batching delay (Eq.4), continues to grow.

Next, we compare the adaptive piggybacking policies,
but without batching. The results of this comparison are de-
picted in Fig. 16 as a percentage improvement over the base-
line policy, where the interarrival time is varied between 0.5
and 10 min. This graph indicates that the odd-even policy re-
sults in a significant reduction in /O demand. Recall that the
odd-even policy allows each I/O stream to participate in (at
most) a single merge, and hence it can result in (at most)
a 50% decrease in /O demand. For the cases presented in
Fig. 16, the reduction in I/O demand compared to the base-
line policy ranges from 47.92%, corresponding to a fairly
small interarrival time of 0.5 min to 20.92%, corresponding
to a fairly large interarrival time of 10min. Further reduc-
tion can be achieved by allowing each [/O stream to partic-
ipate in multiple merges, for instance, by using the greedy
policy. The results for the greedy policy (without batching)
are also illustrated in Fig. 16, where we achieve a further
reduction in I/O demand. Again, compared to the baseline
policy, the results for the greedy policy range from 81.0%
for the fairly small interarrival time of 0.5 min to 20.92% for
the fairly large interarrival time of 10 min. The results are
qualitatively similar when batching is used in conjunction
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with adaptive piggybacking. This is illustrated in Figs. 17a,
b which correspond to batching intervals of 2 and 5 min re-
spectively. (Clearly, as the batching interval increases, the
range of workloads over which these policies exhibit signif-
icantly different behavior decreases.)

Although a greater reduction in I/O demand is achieved
by the greedy policy, than by the odd-even policy, allowing
more than a single merge per I/O stream could be costly
in terms of other resources. For instance, if display rate al-
terations are done through replication of appropriate data,
then we can reduce the amount of replication needed to sup-
port adaptive piggybacking by constraining the merges to
occur before a specified maximum allowed merging time.
Therefore, in Fig. 18 we investigate the benefits of adap-
tive piggybacking under an additional constraint of a limited
merging time. In this figure, the percentage reduction in I/O
demand, as compared to the baseline policy, is depicted as a
function of the maximum allowed merging time (each curve
corresponds to a different interarrival time). We obtained the
results using the odd-even policy, without batching. Qual-
itatively similar results can be obtained for systems with
batching delays as well as other adaptive piggybacking poli-
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cies; however, in the interests of brevity, we do not illustrate

them here.

As expected, given fairly small interarrival times, most
of the reduction in I/O demand (Fig. 16), can be achieved
using relatively small maximum merging times. The implica-
tion is that, if replication of data is used to support merging,
then most of the benefits of “unrestricted” merging can be
achieved with relatively little increase in disk storage cost.
For instance, given an interarrival time of 0.5 min and a max-
imum merging time of 5min the reduction in I/O demand
is 31.1%, as compared to 47.92% with unlimited maximum
merging time. However, the corresponding increases in disk
storage for a 120-minute MPEG-I compressed video would
be =~ 56 MB for the 5-min maximum merging time, and
~ 1.35GB for the unlimited merging time. (In calculating
increases in storage space, in this section, we assume that
only one additional copy of the data would be necessary,
i.e., for any portion of an object, only two copies need to be
maintained (see Sect.4).) Of course, as the interarrival times
increase, so does the maximum merging time necessary to

obtain a “significant” reduction in I/O demand.

Lastly, one interesting issue to consider is why should
we not use the batching approach alone, which is a relatively
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simple technique to implement. Clearly, we can achieve
greater and greater improvements in I/0O bandwidth demand
by increasing the batching interval. One problem, of course,
is that increasing the batching interval also contributes to ad-
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Fig. 19. Batching vs. batching and merging

ditional latencies in the system. Thus, a better approach is to
combine techniques. In other words, use a small batching in-
terval to obtain some initial benefit from requests for the very
popular objects, and then accomplish the rest of the perfor-
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mance improvement through merging without creating addi-
tional latencies in the system. This is illustrated in Fig. 19,
in which we compare a baseline policy that uses batching
alone with the odd-even reduction policy that includes both
batching and merging. (In this figure we depict the “aver-
age bandwidth requirement” of the system, rather than the
“percentage improvement in bandwidth requirement”, as in
all other graphs in this section.) Here we can see that with
2min of batching plus merging we can achieve the same
performance as with over 4 min of batching alone.

7 Conclusions

On-demand video servers present some interesting perfor-
mance problems. Part of the effort is simply to understand
the constraints and goals well enough to appreciate what is
possible. In this paper we have considered a novel method
of reducing the 1/0O bandwidth required, while at the same
time providing a guaranteed maximum latency. We have ex-
ploited the fact that video-stream rates can be varied by small
amounts without perceptible degradation in video quality.
We have analyzed several heuristic policies. The results in-
dicate convincingly that small variations in the delivery rate
can enable enough merging of I/O streams that significant
reduction of 1/O bandwidth is realized.

Future work includes a search for better heuristics and an
optimal policy. More specifically, we would like to be able
to classify an optimal merging policy. Although it might
not be practical to implement such a policy, classifying it
would give us a better way of designing heuristics. For in-
stance, if an optimal policy were a threshold policy, then this
would “justify” the use of threshold-type heuristics. We have
presented an approach for combining batching and adaptive
piggybacking techniques. Future directions also include con-
siderations of bridging policies in conjunction with batch-
ing and adaptive piggybacking, for instance, by using buffer
space to accomplish merges earlier.
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