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Abstract

File swarming (or file sharing) is one of the most important applications in P2P networks. In
this paper, we propose a stochastic framework to analyze a file swarming system under real-
istic setting: constraints in upload/download capacity, collaboration among peers and incen-
tive for chunk exchange. We first extend the results in the coupon system [18] by providing
a tighter performance bound. Then we generalize the coupon system by considering peers
with limited upload and download capacity. We illustrate the last-piece problemand show
the effectiveness of using forward error-correction (FEC)code and/or multiple requests to
improve the performance. Lastly, we propose a framework to analyze an incentive-based
file swarming system. The stochastic framework we propose can serve as a basis for other
researchers to analyze and design more advanced features offile swarming systems.
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1 Introduction

In recent years, peer-to-peer (P2P) networks have emerged as a new paradigm for
creating network applications. Recent network measurements have shown that P2P
file-sharing applications constitute a large percentage ofthe network traffic. Also,
P2P networks have a significant impact on the way new network services are de-
signed. Unlike the traditional client-server computing paradigm, P2P networks al-
low individual user (or peer) to play the role of a client and server at the same time.
Therefore, peers in a P2P network can help other peers in file searching, file lookup,
as well as file transfer.

File swarming (or file sharing) is one of the most important applications in P2P
networks. In general, a file swarming application has a good scalability property
due to its collaborative mechanism, which can be intuitively explained as follows:
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a file is first partitioned into many disjointchunks. Each peer can get these chunks
either from a server, or from other peers holding those chunks that it does not
already have. Each peer offers upload service to other peers, and in return, each
peer tries to obtain a missing chunk so as to maximize its ability to serve others
hence also the service it will receive. By coupling the service each peer can receive
to its contribution to others, file swarming applications successfully make each peer
to play a role of a server and a client at the same time. Therefore, as the number
of peers increases, the service capacity of the whole systemincreases as well. File
swarming application is implemented in peer-to-peer file sharing networks such as
eDonkey, KaZaA, and it is the core functionality of the popular BitTorrent (BT) [1]
protocol.

The work by the authors in [24] suggest that file swarming systems (e.g., BT net-
works) is efficient in the sense that as the demand for the file increases, the service
capacity increases as well. However, it is not completely understood which aspects
of the system are critical to maintain the scalability property. The authors in [21]
use a fluid model to represent the BT file swarming protocol andderive a coarse
approximation of the average file downloading time. Recently, a coupon model [18]
is proposed to represent a generic file swarming system. The authors analyze the
system under the large population regime and show the file swarming system sta-
bilizes around a finite equilibrium point and is indeed efficient. The results provide
further support to the claim of [24], and that the system performs well under the
flash crowd scenario, even when the rarest first chunk selection policy is replaced
by some random coupon selection policies. However, strong assumptions are made
in [18], in particular, the authors assume that peers have infinite upload capacity (or
relatively large as compare with the download capacity).

The aim of this paper is to provide a deeper understanding to the file swarming pro-
tocols and the efficiency of BitTorrent-like file sharing system. We propose a simple
density dependent jump Markov processto model the dynamics of a file swarming
system, and we investigate the performance of the system under constraints on up-
load capacity, download capacity, peer selection policies(including random chunk
selection and coordinated matching). The contributions ofour work are

• We generalize some of the results in the coupon system [18] and provide a tighter
bound for performance measures such as the average file downloading time.

• We consider thelast-piece problemand analytically show the improvement in
performance when a file swarming system uses the forward error correction
(FEC) [22] coding technique for file sharing.

• We relax the unlimited upload capacity assumption in [18], analyze the file
swarming system under a more realistic setting and provide asymptotic bounds
on the average file downloading time.

• We propose a stochastic model for an incentive-based file swarming system with
coordinated matching, wherein chunk exchange is only allowed when both peers
are deemed to be useful to each other.
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Extensive simulations are carried out to validate our models and to illustrate some
interesting design guidelines.

The balance of this paper is as follows. In Section 2, we present a generic model for
a file swarming system. In Section 3, we present an analyticalmodel of an altruis-
tic file swarming system wherein each peer has unlimited amount (or sufficiently
large amount) of upload capacity and derive performance measure such as the av-
erage file downloading time. In Section 4, we present the model of an altruistic
file swarming system with limited upload and download capacity. In Section 5, an
analytical model of an incentive-based file swarming systemis presented and we
derive various important performance measures. Extensivesimulations and the re-
lated results are given in Section 6. Related work is given inSection 7 and Section
8 concludes.

2 Model Description

Let us consider a peer-to-peer file swarming system that distributes a given fileF
to a number of peers. The file is divided intoK equal size chunks, theith chunk
is denoted asCi, andF = C1 ∪ C2 ∪ · · · ∪ CK , with Ci ∩ Cj = ∅ for i 6= j. To
download the fileF , a peer needs to download allK chunks from other peers in
this P2P file swarming system. LetFA be the set of chunks that peerA possesses.
PeerA maintains abitmap to denote which chunks they possess. Whenever peer
A finishes the downloading of a new chunk, it will update its bitmap. PeerA can
upload chunkCk to others only after it has completely downloadedCk. New peers
arrive to this system according to a Poisson process with an average rateλ. Using
the BitTorrent’s terminology, a peer that has at least one missing chunk ofF is
called aleecher, while a peer that has allK unique chunks ofF is called aseeder.
Note that, unlike the BitTorrent system which has at least one seeder to start the file
distribution and serve the leechers, we assume that every newly arrived peer will
initially obtain one chunk from a server before entering this system1 . This initial
chunk is randomly chosen by the server with equal probability 1/K for chunks
C1 . . . CK . When a peer finishes downloading allK chunks, the peer will depart
immediately.

Similar to [18], we assume that this P2P file swarming is slotted in the sense that
uploading (or downloading) a single chunk takes one slot time. The file distribution
process in each time slot can be described as follow. At the beginning of every
time slot, a peer, sayA, will selectm ≥ 1 other peers in the system and fetches
their bitmaps. Note that, the parameterm and the way it chooses thesem peers will
greatly affect the system performance, and we will further investigate this in later
sections. Since the bitmap information can be greatly compressed, the transfer time

1 This assumption is similar to the one made in [18]
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of a bitmap is negligible compared to the transfer time of a chunk. Let peerB be one
of thesem peers. Upon receiving its bitmap, peerA can determine whether peerB
is useful (i.e. peerB possesses at least one missing chunk of peerA, orFB \FA 6=
∅). If no peer among thesem selected peers is useful to peerA, then peerA will take
no action but remain idle in the current time slot; otherwise, peerA will randomly
select one of the useful peers to request a useful chunk for download. Assume the
selected peer isB, then peerA will request one chunk which is uniformly chosen
from the set of chunks possessed by peerB and are missing in peerA (i.e. a chunk
Ck ⊂ FB \ FA). Note that this can be viewed as ablind chunk selection policy,
in contrast to therarest first policyin the BitTorrent protocol by which peerA
will select the chunk amongFB \ FA with the fewest number of copies among its
neighbors [4]. As a result, peerB may receivemultipledownloading requests. Base
on the upload capacity constraint and service rule, peerB will choose one or more
requests to satisfy (we will elaborate this in later sections). The transfer time of this
chunk will take one time slot. At the end of a time slot, the process repeats.
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Fig. 1. A simple illustration of a transfer dynamic within one time slot with
F = C1 ∪ C2 · · · ∪ C5

Figure 1 illustrates the P2P file sharing model withm = 2. We have six peers:
A, B, C, D, E andF . The file has five chunks and the shaded boxes represent the
chunks that peers possess. For example, peerA hasC1, C3 andC4. In Figure 1(a),
peerA (peerB) requests bitmaps from peerC andD (peerD andF ) and these
peers reply with their respective bitmaps. PeerA determines that peerC is not
useful while peerD is useful. PeerB, on the other hand, determines that both peer
D andF are useful. Both peers select one peer for a chunk transfer and Figure 1(b)
shows that both peerA andB chooseD for the chunk transfer. PeerD receives
two transfer requests, it randomly picks one peer to serve inthis example, and it
chooses peerA. Figure 1(c) shows that peerD transfersC5 which is requested by
A. At the end of a time slot, peerA obtainsC5 while peerB wastes one time slot.

The above model is in fact, quite general. For example, when one considers the
case thatm = 1 (or each peer just randomly chooses one peer to fetch the bitmap),
and that there is no constraint on peers’ upload capacity, then this becomes the
model studied in the coupon replication system [18]. In thiswork, we generalize
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their model and study the performance of the system whenm ≥ 1, which means
that each peer can first fetch multiple bitmaps from different peers but can choose
at most one peer to request chunk transfer. Surprisingly, such a simple modification
can improve the performance of the system to achieve a near optimal average file
downloading time. Furthermore, we also relax the assumption of large or infinite
upload capacity in [18]. This is in fact a very important stepbecause for the current
Internet, the bottleneck is usually not at the network core but rather at the network
edge, and the upload capacity of an end host is indeed limited(e.g., ADSL system,
cable system). Therefore, this capacity constraint model is in fact a more realis-
tic representation for file swarming systems. In this uplink/downlink constrained
system, we study two different uploading policies.

(1) Altruistic Uploading Service:Under this policy, a peer will provide upload
service to other peers regardless of whether these peers have provided upload
service or not to other peers. In other word, this is a perfectcollaborative
system and it is similar to the “optimistic unchoking” feature in the BitTorrent
protocol.

(2) Incentive Uploading Service:Under this policy, a peer follows a given in-
centive mechanism similar to the “tit-for-tat” feature used in the BitTorrent
protocol to decide on uploading.

Although our system model is a simple representation of somerealistic P2P file
swarming system (e.g., BitTorrent), it has already captured many essential features
such as thecollaborativeupload and download, as well as incentive-based chunk
exchange in P2P file swarming systems. In later sections, we will derive the perfor-
mance of such system, and show why and how it can achieve good performance.

3 Altruistic File Swarming System with Constraint in Download Capacity

In this section, we consider the file swarming system where each peer has a con-
straint in the download capacity and we placeno upper bound restrictionon the
upload capacity. So at every time slot, each peer will first contactm ≥ 1 other
peers randomly in the system to get their bitmaps. If more than one peer are useful,
it will randomly choose one to request a useful chunk. It is possible that a peer
may get many downloading requests. Since we assume that there is no restriction
on uploading bandwidth, all requests will be satisfied. Also, due to the abundance
of uploading bandwidth, there is no need to enforce incentive mechanism for data
transfer. Lastly, it is important to note that whenm = 1, this corresponds to the
model described in coupon replication system [18].

5



3.1 Model Formulation

First we assume that all types of chunks in the system are uniformly distributed.
This assumption can be guaranteed by the random chunk selection policy(as de-
scribed in Section 2). We classify peers into different types according to the num-
ber of chunks it possesses. A peer holdingi chunks is called a typei peer, for
i = 1, 2, . . . , K − 1 (i 6= K because a peer will immediately depart from the sys-
tem when it finishes downloading allK chunks). After receiving a new chunk, a
typei peer will become a type(i+1) peer. Letpi,j denote the probability that a type
j peerB is useful to a typei peerA. Wheni < j, it is clear thatpi,j = 1; When
i ≥ j, we havepi,j = 1 − Prob{FB ⊆ FA}. Thus

pi,j =











1 1 ≤ i < j ≤ K − 1,

1 − Cj

i

Cj

K

1 ≤ j ≤ i ≤ K − 1. (Cy
x is the binomial coefficient)

(1)

Let yi(t) denote the number of typei peers in the system at timet. The total number
of peers in the system at timet is y(t) =

∑K−1
i=1 yi(t). When a typei peer randomly

picks another peer and requests its bitmap, the probabilitythat this selected peer is
useful isqi(t) =

∑K−1
j=1 pi,jyj(t)/y(t), i = 1, 2, . . . , K − 1.

Given the system stateY (t) = {yi(t)}i∈{1,...,K−1}, it is easy to verify that(Y (t))t≥0

is a Markov process taking its values inZK−1
+ (ZK−1

+ is aK − 1 dimensions vector
with non-negative integer entities). Denoting byei the unit vector ofZK−1

+ whose
i-coordinate equals1, and with all other coordinates equal to zero, the non-zero
transition rates of this Markov process are, for alli ∈ {1, ..., K − 1},

Y −→Y + e1 with rateλ,

Y −→Y − ei + ei+1 with rateyi (1 − (1 − qi)
m), i ∈ {1, . . . , K − 2}

Y −→Y − eK−1 with rateyK−1 (1 − (1 − qK−1)
m).

We analyze the system under a large population asymptotic regime. Note that this
is adensity dependent jump Markov process[14]. It converges to the solution of the
differential equations

dyi(t)

dt
=











λ − y1(t) [1 − (1 − q1(t))
m] i = 1,

yi−1(t) [1−(1−qi−1(t))
m]−yi(t) [1−(1−qi(t))

m] i=2,. . ., K−1.
(2)

for some initial conditionY (0).
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3.2 Steady State Analysis

In this section, we derive the average file downloading time for the above P2P
file swarming system. We also extend our analysis to a file swarming system that
provides forward error correction (FEC) service.

3.2.1 Altruistic File Swarming Without FEC

In this section we focus on the steady state performance and its equilibrium point.
An equilibrium point is the point̂Y = (y1, y2, . . . , yK−1) such that ifY (t) = Ŷ ,
thenY (t′) = Ŷ for all t′ ≥ t. The necessary and sufficient condition forŶ to be an
equilibrium point isdyi(t)

dt
= 0, for 1 ≤ i ≤ K−1. Apply these conditions to Eq. (2),

we have the following equations at the equilibrium pointŶ : λ = yi(1− (1− qi)
m),

i = 1, 2, . . . , K − 1.

Let Ti be the average sojourn time for typei peers, that is, the average time for a
type i peer to receive a new chunk and become type(i + 1). One can derive this
measure from the equilibrium point̂Y = (y1, . . . , yK−1) by using Little’s theorem
[13]: λTi = yi. DefineT =

∑K−1
j=1 Tj as the average file downloading time in

the P2P file swarming system, we haveyi/y = Ti/T . Finally, one can obtain the
following equations at the equilibrium point̂Y :

Ti =
1

1 − (1 − qi)m
and qi =

K−1
∑

j=1

Tj

T
pi,j, for i = 1, 2, ..., K − 1, (3)

One can observe thatTi of Eq. (3) does not depend onλ. So even when the arrival
rateλ is large and the number of peers in the system becomes very large, the aver-
age sojourn timeTi (and alsoT ) will not be affected in the steady state. This is an
important observation since this indicates that the file swarming system has a good
scaling property: when one increases the arrival rate, the performance will not de-
grade. SinceTi is the average sojourn time for typei peers, i.e. it takes on average,
Ti unit of time slots to download the next chunk when a peer holdsi chunks, let us
explore the relationships among theTi’s at the steady state.

Lemma 1 The sojourn time is an increasing sequence, i.e.1 ≤ T1 < T2 < · · · <
TK−1.

Proof: According to Eq. (3) we haveqi ≤ 1. Therefore, one can conclude that
Ti ≥ 1 for i = 1, . . . , K − 1. According to Eq. (1), wheni > i′, pi,j ≤ pi′,j holds
for j = 1, . . . , K − 1 andpi,j < pi′,j holds for somej. Soqi =

∑K−1
j=1

Tj

T
pi,j <

∑K−1
j=1

Tj

T
pi′,j = qi′ . Thus, we haveTi > Ti′ wheni > i′.
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Lemma 2 The upper and lower bounds ofTi are

1

1 −
[(

1
K−2+HK

) (

i
K−i+1

)]m + O(K−2) < Ti <
1

1 −
[(

1
K−1

) (

i
K−i+1

)]m ,

whereK is the number of chunks inF andHK is theKth harmonic number.

Proof: The sequence{tj = Tj/T} is increasing and the sequence{aj = pi,j} in
non-decreasing. From Chebyshev’s sum inequality, we have

qi >
1

K − 1





K−1
∑

j=1

Tj

T









K−1
∑

j=1

pi,j



 =
1

K − 1



K − 1 −
i
∑

j=1

Cj
i

Cj
K





= 1 −
(

1

K − 1

)(

i

K − i + 1

)

(“Concrete Mathematics” [10], p174.)

One can apply it to Eq. (3) and obtain the upper bound ofTi as claimed. For the
lower bound ofTi, let us first derive an upper bound ofT , which is

T =
K−1
∑

i=1

1

1 − (1 − qi)m
≤

K−1
∑

i=1

1

qi
<

K−1
∑

i=1

(K − 1)(K − i + 1)

K(K − i) − 1

=
(K − 1)2

K
+

K2 − 1

K

K−1
∑

i=1

1

Ki − 1
= K − 2 + HK + O(K−1).

We can apply it to Eq. (3) to obtain an upper bound ofqi as

qi = 1 −
i
∑

j=1

(

Tj

T

)

(

Cj
i

Cj
K

)

< 1 −
i
∑

j=1

Cj
i

Cj
K

(

1

K − 2 + HK + O(K−1)

)

= 1 −
(

1

K − 2 + HK

)(

i

K − i + 1

)

+ O(K−2).

With this upper bound ofqi, one can substitute it to Eq. (3) to obtain the lower
bound ofTi as claimed.

Remark: The importance of the above two lemmas is that one can use themto
understand the “last-piece” problem in P2P file swarming systems. i.e. how long it
takes for a peer to receive the last few chunks of the file sinceit gets increasingly
more difficult to find other peers that can help.

To illustrate this issue, let us consider the upper and lowerbounds ofTi for a file
with K = 50 chunks. The scenario is illustrated in Fig.2(a) and Fig. 2(b). There are
two important observations. First, one can observe that theupper and lower bounds
are indeedvery tight, which implies that we can useTi to give a very accurate
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Fig. 2. Illustration on the last-piece problem: bounds ofTi for m = 1, 2 andm ≥ 1 with
FEC.K = 50 chunks

measure of the average file downloading timeT . Secondly, one can observe that the
sojourn timesTi are very close to1 for i << K − 1, but wheni approachesK − 1,
Fig. 2(a) (and Fig. 2(b)) shows that both bounds approach2 (approach1.4) quickly.
The increasing downloading time, especially for the last few chunks, depicts the
last-piece problem. Intuitively, the reason for this problem is that it becomes more
and more difficult for a peer to find other peers which are useful, especially when
the peer is very close to finish downloading the whole file. However, one can amend
this problem, at least to a certain degree, by simply changing the parameterm. One
can observe that whenm = 1 (as shown in Fig. 2(a)), it costs 2 time slots on
average to download the last chunk but whenm = 2 (as shown in Fig. 2(b)), it only
costs 1.4 time slots to obtain the last chunk. The reason is that whenm = 2, peers
can ask for more peers for bitmaps and thereby increase the chance to find useful
peers. Givenm, we can derive the bounds ofT from Lemma 2.

Theorem 1 Whenm = 1, the average downloading timeT = K − 2 + HK +

O
(

log2 K
K

)

.

Proof: In the proof of Lemma 2, we have obtainedT < K − 2 + HK + O(K−1).
For the lower bound ofT , let us denoteA = K − 2 + HK , then

T =
K−1
∑

i=1

Ti >
K−1
∑

i=1

1

1 − 1
A

(

i
K−i+1

) + O(K−1)

=
A

A + 1



K−1+
K + 1

A + 1

K−1
∑

j=1

1

j



+O

(

log K

K

)

=K−2+HK+O

(

log2 K

K

)

.

Combining the upper and lower bounds, Theorem 1 can be shown as claimed.

Remark: Note that whenm = 1, the system corresponds to the “open and flat”
case of the coupon system [18], in which the authors give an upper boundT <

K+O(
√

K). However, the result in Theorem 1 statesT = K−2+HK+O
(

log2 K
K

)

.

We know thatHK is theKth harmonic number,HK = log K +γ+O(K−1), where
γ = 0.5772... is theEuler-Mascheroni constant. ThusT = K + log K + O(1).
Therefore, we obtain a tighter bound than [18].
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Similarly, we can derive the lower and upper bounds ofT from Lemma 2 when
m ≥ 2. Due to the lack of space, we only show the derivation of the upper bound
in the following theorem.

Theorem 2 Whenm ≥ 2, the average downloading timeT < K + O
(

log K
K

)

.

Proof:

T <
K−1
∑

i=1

1

1 −
[(

1
K−1

) (

i
K−i+1

)]2 = K − 1 +
K−1
∑

i=1

[(

1
K−1

) (

i
K−i+1

)]2

1 −
[(

1
K−1

) (

i
K−i+1

)]2

< K − 1 +
4

3

K−1
∑

i=1

[(

1

K − 1

)(

i

K − i + 1

)]2

= K − 1 +
4

3(K − 1)2

K−1
∑

i=1

[

(K + 1)2

(K − i + 1)2
− 2(K + 1)

K − i + 1
+ 1

]

≤K − 1 +
4

3
(ζ(2) − 1) + O

(

log K

K

)

< K + O

(

log K

K

)

.

Remark: Since it is necessary to require at leastK − 1 time slots to finish the
downloading of the whole fileF , we can conclude by fetching multiple bitmaps
(settingm ≥ 2), the average downloading time is near optimal. To see this,one
can compare it with the result in Theorem 1, which states thatit takes at least
K+log(K)+O(1) time slots to finish the downloading, and we remove thelog(K)
term by getting more than one bitmap. Settingm = 2 is sufficient for achieving the
near optimal performance. This result is encouraging and insightful, it shows that
due to the diversity of chunks held and the altruistic uploading for every peer, a
“simple-design” can achieve very good performance.

3.2.2 Altruistic File Swarming with FEC

We have seen that by fetching bitmaps from multiple peers, the system performance
can reach near optimal levels. Here, we provide analternative approachto reach
the near optimal performance by using theforward error correction(FEC) coding
technique [22]. Given a fileF , one can encode the originalK chunks toQ =
(1 + α)K chunks with erasure codes before the distribution process.Any peer can
reconstruct the original fileF after it receivesany K distinct chunks of theseQ
chunks. This technique makes it unnecessary to download the“last” chunk and
will ease the last-piece problem, making the system more efficient. To make this
claim formally, we have the following theorem:

Theorem 3 For m ≥ 1, using FEC with redundancy rate ofα > 0, the average
downloading timeTFEC < K − 2 + (1 + α) log 1+α

α
+ O(K−1).
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Proof: Note that FEC makespi,j = 1 − Cj
i /C

j
Q when1 ≤ j ≤ i ≤ K − 1 and

all other equations remain the same. Similarly to the proof of Lemma 2, one can

derive thatTi <
[

1 −
(

1
K−1

) (

i
Q−i+1

)]−1
. So

TFEC <
K−1
∑

i=1

1

1 −
(

1
K−1

) (

i
Q−i+1

) =
K − 1

K

K−1
∑

i=1



1 +
1

K(Q−i+1)
Q+1

− 1





=
(K − 1)2

K
+

(K − 1)(Q + 1)

K2

Q−1
∑

j=Q−K+1

1

j
+ O(K−1)

=K − 2 + (1 + α) log
1 + α

α
+ O(K−1).

Remark: Compared with Theorem 1, the harmonic termHK is replaced with the
term (1 + α) log 1+α

α
. Note that, whenα = 0.1 (i.e. 10% redundancy), this term

is less than2.7. Thus given a particular redundancy rateα, TFEC is bounded by
K − 1 plus a small constant. So by using FEC codes, even if a peer only contacts
one other peer for bitmap (i.e.m = 1), the average downloading timeT can still
approach the near optimal value.

Gkantsidis et al. [9] declare that traditional P2P content distribution software as
BitTorrent usually suffers from last-piece problem and it could be settled by the
network coding technique they propose. In our model we have seen that there exists
last-piece problem as Fig. 2(a) and Fig. 2(b) shown. It takesabout2 time slots in
average to download the last piece. To illustrate how FEC affects the last-piece
problem, let us consider the upper bound ofTi for a file with K = 50 chunks
again. By settingα = 0.1 (i.e. 10% redundancy), we show the upper bound of
Ti in Fig. 2(c). This bound holds for allm ≥ 1. From Fig. 2(c), one can observe
that the last-piece problem can be eased if we use FEC technique to generate a
few redundant chunks. This observation is helpful for the advanced P2P content
distribution system design in the future.

4 Altruistic File Swarming System with Download and Upload Constraints

In this section, we consider the file swarming system where each peer has a limited
bandwidth on the download and upload capacity. Note that this is a more realis-
tic setting than the unlimited upload bandwidth assumptionin Section 3 and the
coupon replication system [18]. This is a very important point since the current In-
ternet, the bottleneck is not at the network core but rather at the edge, and usually
the upload capacity of a host is indeed limited (e.g., ADSL orcable system). To
simplify our analysis, we only consider the casem = 1 (i.e. in each time slot, peer
A will first contactoneother peer randomly in the system to obtain its bitmap). If
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this peer can help peerA, peerA will request a useful chunk. It is possible that a
peer may get multiple requests for chunk. Due to the upload capacity constraint,
this peer will only randomly pick one peer to upload. If peerA is chosen, then peer
A can download one useful chunk within the current time slot. Otherwise, peerA
will remain idle for the current time slot.

4.1 Model Formulation

As in Section 3, letpi,j denote the probability that a typej peer is useful to the type
i peer,yi(t) denote the number of typei peers in the system at timet. The total
number of peers in the system at timet is y(t) =

∑K−1
i=1 yi(t). When a typej peer

is requested by another peer for its bitmap, the probabilitythat this request comes
from a typei peer isyi(t)/y(t). Thus, the probability that the typej peer is useful
to a peer who contacts it isβj(t) =

∑K−1
i=1 pi,jyi(t)/y(t).

Assume that peerA contacts peerB andB is of typej. PeerA finds thatB is useful
and sendsB a request for a chunk. Let us consider the probability thatA will be
chosen byB for service. To derive this probability, we consider how many other
peers contactedB for its bitmap. Since there arey−2 peers (ignoringA andB) in
the system selecting others to contact andB is contacted by a particular peer with
probability1/(y − 1) (each peer does not contact itself). Thus the number of peers
that contactedB, denoted by the random variableR, is the number of successes in a
sequence ofy−2 independent Bernoulli trials, orR ∼ Bernoulli(y−2, 1

y−1
). Since

y−2 is large and(y−2)/(y−1) ∼ 1, R can be approximated as a Poisson random
variable with mean1, thusR has a probability mass function offR(k) = e−1/k!,
for k ∈ {0, 1, . . .}.

AssumeR = r (i.e. peerB was contacted byr peers for its bitmap). The probability
that peerB is useful to a peer inR is βj(t). ThusB receivesk requests for chunk
with probabilityCk

r βk
j (t)(1 − βj(t))

r−k for k ≤ r. WhenA contactsB, findsB is
useful and also sendsB a request for chunk, the probability thatA is chosen byB
for service is

αj,r(t) =
r
∑

k=0

Ck
r βk

j (t)(1 − βj(t))
r−k 1

k + 1
=

1 − (1 − βj(t))
r+1

(r + 1)βj(t)
.

The system can be modeled as a Markov processY (t) = {yi(t)}i∈{1,...,K−1}. Again,
it is easy to verify that(Y (t))t≥0 is a Markov process taking its values inZK−1

+ .
The non-zero transition rates of this Markov process, for all i ∈ {1, . . . , K − 1} is

Y −→Y + e1 with rateλ,
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Y −→Y − ei + ei+1 with rateyi

K−1
∑

j=1

[

yj

y
pi,j

∞
∑

r=0

e−1

r!
αj,r

]

, i ∈ {1, . . . , K − 2}

Y −→Y − eK−1 with rateyK−1

K−1
∑

j=1

[

yj

y
pK−1,j

∞
∑

r=0

e−1

r!
αj,r

]

.

For a large population asymptotic regime, this density dependent jump Markov
process converges to the solution of the system of differential equations

dy1(t)

dt
= λ − y1(t)

K−1
∑

j=1

[

yj(t)

y(t)
p1,j

∞
∑

r=0

e−1

r!
αj,r(t)

]

,

dyi(t)

dt
= yi−1(t)

K−1
∑

j=1

[

yj(t)

y(t)
pi−1,j

∞
∑

r=0

e−1

r!
αj,r(t)

]

−

yi(t)
K−1
∑

j=1

[

yj(t)

y(t)
pi,j

∞
∑

r=0

e−1

r!
αj,r(t)

]

, i = 2, . . . , K − 1.

with some initial conditionY (0).

4.2 Steady State Analysis

We focus on the steady state performance and we are interested in its equilibrium
point. In other words, the operating point whereindyi/dt = 0 for 1 ≤ i ≤ K − 1.
DefineTi as the sojourn time for typei peer. It follows from Little’s theorem that
λTi = yi. Let the average file downloading time beT =

∑K−1
j=1 Tj , one can obtain

the following equations at the equilibrium point:

1

Ti
=

K−1
∑

j=1

(Tj

T
pi,j

∞
∑

r=0

e−1

r!
αj,r

)

, i = 1, 2, ..., K − 1 (4)

where

αj,r =
1 − (1 − βj)

r+1

(r + 1)βj
and βj =

K−1
∑

i=1

Ti

T
pi,j , j = 1, 2, ..., K − 1.

In Section 3, we have shown that a file swarming system that hasonly download
capacity constraint is very efficient. With both download and upload capacity con-
straints, the performance of the system will not be as good. In this section, we seek
to derive the bounds ofTi (and therebyT ) to gain insight on how the upload ca-
pacity constraint can affect the system performance. Let usfirst state the upper and
lower bounds of the sojourn timeTi.
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Theorem 4 The sojourn timesTi satisfies

1

1 − e−1
+ O

(

log K

K

)

< Ti <
[

1

1 − e−1

]





1

1 −
(

1
K−1

) (

i
K−i+1

)



 .

Proof: Becauseβj < 1, r ≥ 0, we haveαj,r ≥ 1/(r + 1). From Eq. (4), we use the
same technique in proofing the lower bound ofqi in Lemma 2:

1

Ti

≥
K−1
∑

j=1

(

Tj

T
pi,j

∞
∑

r=0

e−1

r!

1

r + 1

)

= (1 − e−1)
K−1
∑

j=1

Tj

T
pi,j

>
[

1 − e−1
]

[

1 −
(

1

K − 1

)(

i

K − i + 1

)]

.

Therefore, the upper bound ofTi is obtained. For the lower bound ofTi, we have
αj,r ≤ [1 + r(1 − βj)]/(r + 1) becauseβj < 1 andr ≥ 0. Thus

1

Ti
≤

K−1
∑

j=1

[

Tj

T

∞
∑

r=0

e−1

r!

1 + r(1 − βj)

r + 1

]

=1−e−1
K−1
∑

j=1

Tj

T
βj <1− e−1

K − 1

K−1
∑

j=1

βj .

One can obtain an upper bound on the summation term as

K−1
∑

j=1

βj =
K−1
∑

i=1

Ti

T

(

K − 1 − i

K − i + 1

)

= K − K + 1

T

K−1
∑

i=1

Ti

K − i + 1

> K − K + 1

K − 1

K−1
∑

i=1

1

(K − i + 1)(1 − e−1)
[

1 −
(

1
K−1

) (

i
K−i+1

)]

= K − HK

1 − e−1
+ O

(

log K

K

)

.

Finally, the lower bound ofTi can be obtained as

1

Ti
< 1 − e−1

K − 1

K−1
∑

j=1

βj < 1 − e−1 + O

(

log K

K

)

.

Figure 3 illustrates the upper and lower bounds ofTi for a file withK = 50 chunks
andm = 1. Notice that the lower bound ofTi is rather loose since it is not related
to the indexi. Nevertheless, the spread of the bounds is tight for most values ofTi.
Another observation is that for small values ofi, Ti is not close to1 any more as in
the case of Section 3, but rather, close to1/(1−e−1). This performance degradation
is contributed by the constraint on the upload capacity. In other words, if one limits
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Fig. 3. Numerical results illustrated for the bounds ofTi for m = 1 whenK = 50

the number of chunks that a peer can upload each time slot, it takes longer, on
average, to obtain the file. Lastly, with the upper and lower bounds ofTi, one can
derive the average downloading timeT .

Theorem 5 The average downloading timeT satisfies

K

1 − e−1
+ O(log K) < T <

1

1 − e−1
(K − 2 + HK) + O(K−1)

Proof: Given the upper bound ofTi, one can use the approach similar to Lemma 2
to derive thatT =

∑K−1
i=1 Ti < (K −2+HK)/(1−e−1)+O(K−1). With the lower

bound ofTi, we have

T =
K−1
∑

i=1

Ti > (K − 1)

[

1

1 − e−1
+ O

(

log K

K

)]

=
K

1 − e−1
+ O(log K).

Compared with Theorem 1, the average downloading time has been scaled up by
a factor of1/(1 − e−1) whenK is large. It is interesting to explore whether using
FEC can improve the performance of the system. We have the following result.

Lemma 3 When one uses FEC in this system, the bounds ofTi as specified in
Theorem 4 and the average downloading timeT as specified in Theorem 5 will
remain the same.

Proof: Similar to Section 3.2.2, FEC will increase the value ofpi,j and other equa-
tions remain the same. Thus the upper bound ofTi in Theorem 4 still hold. Notice
that we just replacedpi,j by 1 in the proof of the lower bound ofTi in Theorem 4.
And pi,j ≤ 1 still holds even with FEC, thus the lower bound ofTi in Theorem 4
still holds too. We know that Theorem 5 is derived from 4 directly, thus the bounds
in Theorem 5 also remain the same.

Lemma 3 implies that FEC could not improve the performance very much. It can be
explained as follows. The random peer selection policy may cause request collision
since a peer may receive multiple chunk requests but can onlyserve one peer. Other
peers requesting chunk from the same peer will waste their time slot.
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5 Incentive File Swarming via Coordinated Matching

From Theorem 5, one can observe that when there are both upload/download capac-
ity constraints on cooperative peers and peers use a random peer selection policy,
the average downloading timeT = K

1−e−1 + O(log K), where the coefficient of the
termK is 1

1−e−1 ≈ 1.58. The system performance degrades as compared with the
file swarming system without upload capacity constraint where the coefficient of
term K is 1. The performance degradation can be explained as follows: the ran-
dom peer selection may cause request collision since a peer may receive multiple
chunk requests but can only serve one request. Therefore, some peers may waste
the download opportunity and remain idle for a time slot. Forthe case of unlimited
upload capacity, all requests can be satisfied, hence, the performance is better.

One may ask, in the system with both download and upload capacity constraints,
can the system still achieve good performance by using peer selection algorithms
other than the random policy? In the following, we show that by running a maximal
matching algorithm (usually regard as an “easy problem” with efficient polynomial
algorithm) at the beginning of every time slot, one can significantly improve the
system performance. Also, we show that with built-in incentive mechanisms, this
approach can also provide very good performance.

5.1 Without Incentive Mechanism

We assume at the beginning of each time slot, every peer will run some distributed
maximal matching algorithm[11], or gets the help from some central server, so that
peerA will find peerB as its neighbor while peerB will also findA as its neighbor.
If the matching process isindependentof the chunks held by each peer, then given
peerA, the probability that peerB is of typei is yi/y whereyi is the number of
type i peers andy is the total number of peers in the system. At the current time
slot, peerA can only communicate with peerB and vice versa and the matched
peers can upload and download at most one chunk per time slot.

Let us first study the system without incentive mechanism. When peerA and peer
B are matched, peerA will help peerB if and only if peerA is useful to peerB
(i.e.FA \ FB 6= ∅); similarly peerB will help peerA if and only if FB \ FA 6= ∅.
Since the selection of neighbor is independent of peers’ type, we get the differential
equations for the number of typei peers as

dyi(t)

dt
=











λ − y1
∑K−1

j=1
yj(t)

y(t)
p1,j i = 1

yi−1(t)
∑K−1

j=1
yj(t)

y(t)
pi−1,j − yi(t)

∑K−1
j=1

yj(t)

y(t)
pi,j i = 2, . . . , K − 1.

(5)
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One can find that, Eq. (5) is equivalent to the differential equations given in Eq.
(2) where peers have unlimited upload capacity andm = 1. Thus, the asymptotic
bounds given in Theorem 1 still holds for this model, which implies T = K +
log(K) + O(1)

Remark: Both the download and upload capacity are one chunk per time slot, each
peer has the same constraints as that in Section 4. However, we have better perfor-
mance when matching is used instead of the random peer selection. The random
peer selection may cause request collision (i.e. a peer may receive multiple chunk
requests but it can only serve one request due to its upload capacity), so the down-
load capacities of the unserved peers are wasted. But if peers are matched at the
beginning of each time slot, then the performance is greatlyimproved, approaching
the performance of the random peer selection withunlimitedupload capacity.

5.2 With Incentive Mechanism

Let us study the system with coordinated matching but with anincentive mech-
anism. Namely, given a pair of neighboring peers: peerA and peerB, both of
them will perform chunk transferiff both of them are useful to each other (i.e.,
FA \ FB 6= ∅ andFB \ FA 6= ∅). In this case, peerA andB will obtain one
new chunk from each other in the current time slot. We use thismodel to capture
the “tit-for-tat” incentive mechanism in the BT protocol. With this mechanism, the
probability that a typei peer can exchange chunk with a typej peer is

p
′

i,j =











1 − Cj

i

Cj

K

1 ≤ j ≤ i ≤ K − 1,

1 − Ci
j

Ci
K

1 ≤ i < j ≤ K − 1.
(6)

Let us first state some important properties ofp
′

i,j .

Lemma 4 p′i,j has the following properties: (1)p′i,j = p′j,i; (2) p′i,j = p′K−j,K−i and
(3) p′i,j is an increasing function ofj whenj ≤ i, andp′i,j is a decreasing function
of j whenj ≥ i.

Proof: The proof of property (1) is trivial. To prove property (2),we consider the
following three cases:

• Case 1: 1 ≤ j ≤ i: we havep′i,j = 1 − Cj
i /C

j
K = 1 − CK−i

K−j/C
i
K . j ≤ i implies

K − i ≤ K − j, therefore,p′K−j,K−i = 1 − CK−i
K−j/C

K−i
K = 1 − CK−i

K−j/C
i
K . So

we getp′i,j = p′K−j,K−i

• Case 2: i < j ≤ K − 1: We havep′i,j = p′j,i = p′K−i,K−j = p′K−j,K−i.

To prove property (3), let us consider the following cases:
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• Case 1: 1 ≤ j′ < j ≤ i ≤ K − 1:

p′i,j−p′i,j′ =

(

1− Cj
i

Cj
K

)

−


1−Cj′

i

Cj′

K



=

(

1−CK−i
K−j

Ci
K

)

−
(

1−CK−i
K−j′

Ci
K

)

>0

• Case 2: i ≤ j′ < j ≤ K − 1: SinceK − j < K − j′ ≤ K − i, we have

p′i,j − p′i,j′ = p′K−i,K−j − p′K−i,K−j′ < 0.

To simplify our notation, let us denotewi,j = p′i,j + p′i,K−j (i, j = 1, . . . , K − 1). It
is easy to show thatwi,j = wi,K−j = wK−i,j = wj,i.

Lemma 5 For a giveni, wi,j is an increasing (or decreasing) function ofj for
j ≤ K/2 (for j ≥ K/2).

Proof: Consideri ≤ K/2 first, in this case,

(1) j ≤ i, we have

wi,j − wi,j−1 = p′i,j + p′i,K−j − (p′i,j−1 + p′i,K−j+1)

= (p′i,j − p′i,j−1) + (p′i,K−j − p′i,K−j+1) > 0.

(2) i < j ≤ K/2, we have

wi,j − wi,j−1 =

(

1− Ci
j

Ci
K

+1−Ci
K−j

Ci
K

)

−
(

1−Ci
j−1

Ci
K

+ 1 − Ci
K−j+1

Ci
K

)

=
1

Ci
K

[

Ci−1
K−j − Ci−1

j−1

]

> 0.

Combine case (1) and (2), we know wheni ≤ K/2, wi,j is increasing ifj ≤ K/2.
Sincewi,j = wi,K−j, wi,j is decreasing ifj ≥ K/2. Becausewi,j = wK−i,j, the
above results hold fori > K/2.

Lemma 6 Ti = TK−i.

Proof: We take a reverse view in the steady state so that (1) we regardthe departure
as arrival; (2) if peer A’s storage isFA, we just imagine there is no peer A but its
complementary peer̄A with storageFĀ = F \ FA. So originallyTi is the average
time for peer A to stay in typei(i.e. with i chunks), but now the average time for
peerĀ to stay in type(K−i): T ′

i = TK−i. From Lemma 4 we knowp′i,j = p′K−i,K−j.
So the “reversed system” is identical to the original systemwhich impliesT ′

i = Ti.
Thus we getTi = TK−i.
Similar to the steady state analysis in previous section, wehave the equations for
Ti:
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1

Ti
=

K−1
∑

j=1

Tj

T
p′i,j, i = 1, 2, . . . , K − 1, (7)

whereT =
∑K−1

i=1 Ti.

Lemma 7 For i ≤ K/2, Ti is a decreasing sequence:2>T1 >T2 >. . .>T⌊K/2⌋.

Proof: Let 1 ≤ i′ < i ≤ ⌊K/2⌋. Base on Lemma 6, we have

1

Ti
=

K−1
∑

j=1

Tj

T
p′i,j =

1

2

K−1
∑

j=1

Tj

T
(p′i,j + p′i,K−j) =

1

2

K−1
∑

j=1

Tj

T
wi,j.

Similarly, 1
Ti′

= 1
2

∑K−1
j=1

Tj

T
wi′,j . From Lemma 5 andwi,j = wj,i, we have

1

Ti
− 1

Ti′
=

K−1
∑

j=1

Tj

T
(wi,j − wi′,j) =

K−1
∑

j=1

Tj

T
(wj,i − wj,i′) > 0.

ThusTi < Ti′, and the upper bound ofT1 is

T1 =
2

∑K−1
j=1

Tj

T
w1,j

<
2

∑K−1
j=1

Tj

T
w1,1

=
2

w1,1
= 2.

Theorem 6 Using the incentive mechanism stated above, the bounds on the aver-
age downloading timeT are

K − 4 + 2HK + O

(

log K

K

)

≤ T ≤ K − 2 + 4HK + O

(

log K

K

)

.

Proof: Base on Lemma 5, Lemma 6 and Lemma 7, we have

1

Ti

=
K−1
∑

j=1

Tj

T
p′i,j =

1

2

K−1
∑

j=1

Tj

T
wi,j ≤

1

K − 1

K−1
∑

j=1

Tj

T
·

K−1
∑

j=1

p′i,j =
1

K − 1

K−1
∑

j=1

p′i,j

=
1

K − 1





i
∑

j=1

(

1 − Cj
i

Cj
K

)

+
K−1
∑

j=i+1

(

1 − Ci
j

Ci
K

)





= 1 − 1

K − 1

[

i

K − i + 1
+

K − i

i + 1
− 1

Ci
K

]

.

Therefore, we obtain the lower bound ofT as
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T=
K−1
∑

i=1

Ti≥
K−1
∑

i=1

1

1− 1
K−1

[ i
K−i+1

+ K−i
i+1

− 1
Ci

K

]
>

K−1
∑

i=1

1

1− 1
K−1

[ i
K−i+1

+ K−i
i+1

−1]

=
K−1
∑

i=1

[

K − 1

K + 2
+

K2 − 1

K2 + 2K

(

1

i
+

1

K − i

)

]

=K−4+2HK+O

(

log K

K

)

.

According to Eq. (7) and Lemma 7, we have

1

Ti
=

i
∑

j=1

Tj

T

(

1− Cj
i

Cj
K

)

+
K−1
∑

j=i+1

Tj

T

(

1− Ci
j

Ci
K

)

=1−




i
∑

j=1

Tj

T

Cj
i

Cj
K

+
K−1
∑

j=i+1

Tj

T

Ci
j

Ci
K





> 1 − T1

T





i
∑

j=1

Cj
i

Cj
K

+
K−1
∑

j=i+1

Ci
j

Ci
K



 > 1 − 2

K − 1

(

i

K − i + 1
+

K − i

i + 1

)

.

Thus fori = 3 . . .K − 3 (assumingK ≥ 5), we have

Ti <
1

1 − 2
K−1

( i
K−i+1

+ K−i
i+1

)
=

(K − 1)(K − i + 1)(i + 1)

K2i − K2 − Ki2 + 3Ki − 3i2 − 2K − 1

<
(K − 1)(K − i + 1)(i + 1)

K2i − K2 − Ki2 + K
=

K − 1

K
+

2(K − 1)

K − 2

(

1

K − i − 1
+

1

i − 1

)

.

Thus the upper bound ofT is

T =
K−1
∑

i=1

Ti < 4T1 +
K−3
∑

i=3

[

K − 1

K
+

2(K − 1)

K − 2

(

1

K − i − 1
+

1

i − 1

)

]

< 8 +
(K − 1)(K − 5)

K
+

4(K − 1)

K − 2
(HK−4 − 1) + O(K−1)

=K + 4HK − 2 + O

(

log K

K

)

.

Remark: Given the upper and lower bounds in Theorem 6, one can conclude that
when incentive mechanism is employed to enhance fairness, the performance of
the file swarming system still achieves better than the random peer selection pol-
icy in Section 5 wherein no fairness is guaranteed and free riders can benefit from
peers’ altruistic service. Therefore, it is important for asystem to help peers avoid
waste of download capacity (request collision). Under the assistance of peer match-
ing mechanism (such as coordinated matching presented) even if the uploading and
download capacity is tightly constrained, the system can still provide good perfor-
mance with a fairness guarantee.
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6 Simulation

In this section, we carry out simulations to (1) validate ouranalytical results and
(2) obtain other performance measures such as probability distribution of file down-
loading time. Unless we state otherwise, the arrival process of peers is a Poisson
process withλ = 2.0. Since the system is slotted, peers arrive at time slott will ob-
tain the initial chunk and will start participating in the file swarming process in the
beginning of time slott + 1. The file that will be shared by all peers hasK = 200
chunks. We also have results forK = 500, but due to the lack of space we mainly
discuss the caseK = 200.

Experiment 1: The goal of this experiment is to validate the analytical results in
Section 3 and to illustrate theprobability density functionof the file download time.
For this experiment, we setm = 1 or equivalently, this corresponds to the coupon
model [18].
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Fig. 4.Ti andT for m = 1, constraint on download capacity only

Fig. 4(a) presents the average sojourn timeTi for a file with K = 200 chunks.
We compare the simulation results and the analytical results2 . This indicates that
our analytical result is very accurate. Fig. 4(b) illustratesTi under similar setting
but we enable the FEC with 10% redundancy (i.e.,α = 0.1). One can conclude
that the analytical model is again very accurate and that using FEC can resolve the
last-piece problem. Fig. 4(c)-(d) illustrate the probability density function for the
average file downloading timeT , with and without using FEC, forK = 200 and

2 For the analytical results, since the spread of the bounds isvery tight, we simply plot the
upper bound ofTi
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500 respectively. WhenK = 200 (K = 500) without using FEC, the analytical
average file downloading time isT = 203.88 (T = 504.79), and the simulation
average file downloading time isT = 204.11 (T = 504.99). WhenK = 200
(K = 500) and FEC is enabled, the analytical average file downloadingtime is
T = 200.64 (T = 500.64) while simulation average file downloading time isT =
200.72 (T = 500.64). We can observe that by using FEC, not only one can reduce
the averageT but also the variance ofT .

Experiment 2: This experiment is to validate the results in Section 3 whenm > 1.
According to our analysis, there is not much difference betweenm = 2 andm > 2
since the average downloading timeT will be bounded byK. For this experiment,
we setm = 2. Fig.5(a) presents the average sojourn timeTi without FEC. The
simulation results are similar to the analytical results again. Comparing Fig. 5(a)
and Fig. 4(a), one can find that last-piece problem is not so severe form = 2.
Ti raises only for the last five chunks. If we deploy FEC (α = 0.1) together with
m = 2, the last-piece problem can be resolved and this is illustrated in Fig. 5(b).
Notice that we only give out a loose upper bound ofTi in Fig. 5(b), which is also
the upper bound of the system without FEC in Fig. 5(a). Now we examine the
probability density function ofT in Fig. 5(c). Without FEC, 50% peers finished in
K −1 time slots and 80% peers finished in less than or equal toK time slots. After
we enable the FEC withα = 0.1, 96% peers finished inK − 1 time slots and all
finished in less than or equal toK time slots. One can conclude that the average
downloading timeT is close to the optimal value of199 (or K−1), and the variance
of T is also reduced. WhenK = 200 (K = 500) and without FEC, our analysis
gives an upper bound of the average downloading timeT ≤ 200 (T ≤ 500), and
the simulation isT = 199.83 (T = 499.78). After using FEC withα = 0.1, the
analytical upper bound ofT still holds, while the simulation givesT = 199.04
(T = 499.01).

Experiment 3: This experiment is to validate the altruistic system with download
and upload capacity constraints in Section 4. We considerm = 1 in our analysis
thus we setm = 1 in this simulation. Fig.6(a) presents the average sojourn time
Ti without FEC. The simulation results and the analytical results match very well,
i.e. our theoretical upper bound is very tight. Comparing Fig. 6(a) and Fig. 6(b),
we observe that FEC eases the last-piece problem, but most ofTi remain the same
and they cannot approach to1 even with FEC. The reason is that the performance
degradation is due to the request collision but not the last-piece problem. Also note
that when we have upload and download capacity constraints,the variance onT
is significant larger than the previous experiments. This can by confirmed by Fig.
6(c), the downloading timeT varies in a wide range, from275 to 375, and using
FEC does not reduce the variance very much. WhenK = 200 (K = 500) and
without FEC, our analytical bound of the average downloading time isT ≤ 322.53
(T ≤ 798.56), while the simulation givesT = 319.99 (T = 793.67). With FEC,
the upper bound still holds, and the simulation result isT = 316.06 (T = 791.01),
these show that using FEC in this type of system cannot improveT very much.
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Fig. 5.Ti andT for m = 2, constraint on download capacity only
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Fig. 6.Ti andT for m = 1, constraint on upload and download capacity

Experiment 4: This experiment is to validate the coordinated matching system
with incentive mechanism as described in Section 5. Fig.7(a) presents the average
sojourn timeTi without FEC. One can observe that the gap between the simula-
tion results and our analytical upper bound is small. Also, one can observe both
the last-piece problemandfirst-piece problem3 in our analytical bound and sim-

3 This problem is reported as first block problem in [15] by measurement study as the slow
startup due to choking.
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ulation result. Thefirst-piece problemcan be explained as follows. When a peer
has very few chunks, it can hardly help other peers. Due to theincentive mecha-
nism, it is difficult for this peer to obtain service from others. We can observe that
FEC does well in easing the last-piece problem, but is not so good at easing the
first-piece problem, as Fig. 7(b) has indicated. From Fig. 7(c) and 7(d), one can ob-
serve that the average and variance of file downloading time can be reduced when
FEC is deployed. Another important observation is that whenFEC is deployed, the
performance measures ofT (both for the average and variance) are significantly
improved as compared with the results in Experiment 3 wherein both systems are
under the upload and download capacity constraints. WhenK = 200 (K = 500)
and without FEC, our analysis gives an upper bound of the average downloading
time T ≤ 221.50 (T ≤ 525.17), and the simulation isT = 211.78 (T = 513.10).
After using he FEC withα = 0.1, the analytical upper bound ofT still holds,
and the simulation givesT = 203.90 (T = 503.77). This validates our analytical
models.
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Fig. 7.Ti andT for coordinated matching, incentive mechanism, with constraint on upload
and download capacity

7 Related Work

There are numerous empirical studies on the BT protocol, forinstance, [2,5,12,15,
20]. Izal et al. [12] present the traffic information on peersbehavior collected during
a five-month period. Pouwelse et al. [20] study the availability, the integrity, the
flash crowd effect and the download performance from a trace which was collected
for eight months. Erman et al. [5] study the session interarrival times, sizes and
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durations and propose to use the hyper-exponential distribution to model the session
interarrivals, and use the log-normal distribution to fit session durations and sizes.
Legout et al. [15] evaluate the two core components of BitTorrent: choking and the
rarest first algorithm and claim that they are enough to guarantee the efficiency and
viability. Bindal et al. [2] report great variability of downloading time and claim that
instead of network bandwidth,“close neighbor set”(i.e. those peers in a stable data-
exchange relationship) is the major contributing factor for the variability. However,
a major limitation of these empirical studies is that the data collected is usually
from a local view (i.e. the tracker log or a modified client), and the behavior is very
time-dependent. Therefore, it is not an easy task to understand the efficiency of the
BT protocol simply based on empirical studies.

There are also several analytical studies of BT protocol. Yang et al. [24] study the
service capacity of BT protocols. Their result indicates the service capacity of BT
protocols increases exponentially at the beginning and scales well with the num-
ber of peers, thus providing fast downloading independent of demand rate. Qiu et
al. [21] extend the coarse-grain Markovian model in [24] by providing an analytical
solution to a fluid model in steady state which shows high scalability and stability
of BT protocols. Our work differs from [21,24] in that we provide a detailed prob-
abilistic model to capture the peers’ diversity (in terms ofdownloading progress)
and show the change of downloading speed during the whole session. We also an-
alyze the peer selection and chunk selection which are not considered in [21, 24].
Fan et al. [7] also generalize Qiu’s model by dividing peers into three types accord-
ing to number of chunks they hold. Our work extends the numberof types from
3 to K − 1 so as to capture the system more accurately. Under the assumption
that “uplink is the only constraint”, Mundinger et al. [19] propose a determinis-
tic scheduling algorithm to achieve the optimal makespan which requires global
knowledge. Sanghavi et al. [23] also propose a gossip-like randomized algorithm
requiring only local knowledge. Both studies in [19] and [23] are orthogonal to
ours as they only consider the “closed system” where no new peer will arrive dur-
ing the file dissemination while we consider an “open system”which new peers
are joining in according to Poisson process. The work that isclosely related to our
study is [18]. In that paper, the authors provide a detailed probabilistic model to
investigate the stability and effectiveness of a peer-to-peer file swarming system.
Their results state that even by the “random chunk selection” policy, the system
throughout is still asymptotically optimal. Our paper improves and extends the re-
sult in [18] by providing tighter asymptotic bounds and relaxing its assumption of
unlimited upload capacity. Moreover, we study the peer selection by both random
selection and coordinated matching policies. Gaeta et al. [8] also use a probabilistic
model to study the large-scale P2P network but they are focusing on searching strat-
egy. There are some other analytical studies in fairness of BT besides performance
modeling. In [3,16,17], the authors present a mathematicalanalysis on service dif-
ferentiation in resource allocation for P2P networks. In [6], the authors present a
mathematical framework to study the tradeoff between performance and fairness in
BT-like systems. In [25], authors present the first analytical model of BT-like sys-
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tems and quantify the tradeoff between scalability and QoS support for multimedia
streaming applications.

8 Conclusion

In this paper, we propose a probabilistic model which generalizes the model in [18]
to capture the basic properties of a file swarming system. Under the same as-
sumption as [18](i.e. unlimited upload capacity), we first improve its asymptotic
bound of the average downloading time. Then we provide two different approaches,
namely fetching multiple bitmaps and using FEC code, to helpthe system achieve
nearly optimal performance. Besides showing that FEC code can also remedy the
last-piece problem, we also remove the assumption of “unlimited upload capacity”
and analyze the performance under the random peer selectionalgorithm. Since the
performance deteriorates due to request collision, we propose a matching scheme
to improve the performance. We show that under the coordinated matching, if peers
are altruistic the system performance can achieve as good asthe system with unlim-
ited upload capacity. Even when the system deploys certain incentive mechanism
(tit-for-tat), the average downloading time is still good.The result suggests that the
performance of a peer-to-peer file swarming system does not depend critically on
altruistic peers, but rather due to the diversity of peers stored data so the system can
achieve good performance.
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