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Abstract

File swarming (or file sharing) is one of the most importanglagations in P2P networks. In
this paper, we propose a stochastic framework to analyze swWhrming system under real-
istic setting: constraints in upload/download capacijlaboration among peers and incen-
tive for chunk exchange. We first extend the results in thgponwsystem [18] by providing
a tighter performance bound. Then we generalize the cowgiam by considering peers
with limited upload and download capacity. We illustrate lst-piece problenand show
the effectiveness of using forward error-correction (FEQJe and/or multiple requests to
improve the performance. Lastly, we propose a frameworkntdyae an incentive-based
file swarming system. The stochastic framework we proposesea/e as a basis for other
researchers to analyze and design more advanced featuilessafarming systems.
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1 Introduction

In recent years, peer-to-peer (P2P) networks have emesgachew paradigm for
creating network applications. Recent network measuré&nteve shown that P2P
file-sharing applications constitute a large percentaga®hetwork traffic. Also,
P2P networks have a significant impact on the way new netwamkces are de-
signed. Unlike the traditional client-server computinggeagm, P2P networks al-
low individual user (or peer) to play the role of a client aedver at the same time.
Therefore, peers in a P2P network can help other peers ireéikeling, file lookup,
as well as file transfer.

File swarming (or file sharing) is one of the most importanplagations in P2P
networks. In general, a file swarming application has a gaadbbility property
due to its collaborative mechanism, which can be intuijie{plained as follows:
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a file is first partitioned into many disjoichunks Each peer can get these chunks
either from a server, or from other peers holding those chuhkt it does not
already have. Each peer offers upload service to other paedsin return, each
peer tries to obtain a missing chunk so as to maximize itstyald serve others
hence also the service it will receive. By coupling the sesaach peer can receive
to its contribution to others, file swarming applicationsssfully make each peer
to play a role of a server and a client at the same time. Thexefs the number
of peers increases, the service capacity of the whole syisiaeases as well. File
swarming application is implemented in peer-to-peer filersiyg networks such as
eDonkey, KaZaA, and it is the core functionality of the paWitTorrent (BT) [1]
protocol.

The work by the authors in [24] suggest that file swarmingesyst(e.g., BT net-
works) is efficient in the sense that as the demand for thenfdeeases, the service
capacity increases as well. However, it is not completeljeustood which aspects
of the system are critical to maintain the scalability pmtyp€elhe authors in [21]
use a fluid model to represent the BT file swarming protocol derive a coarse
approximation of the average file downloading time. Regeattoupon model [18]
is proposed to represent a generic file swarming system. Uthes analyze the
system under the large population regime and show the filensiwg system sta-
bilizes around a finite equilibrium point and is indeed effiti The results provide
further support to the claim of [24], and that the systemqens well under the
flash crowd scenario, even when the rarest first chunk sefepblicy is replaced
by some random coupon selection policies. However, streagraptions are made
in [18], in particular, the authors assume that peers hdirgtmupload capacity (or
relatively large as compare with the download capacity).

The aim of this paper is to provide a deeper understandirfetble swarming pro-
tocols and the efficiency of BitTorrent-like file sharing ®rs. We propose a simple
density dependent jump Markov procéssnodel the dynamics of a file swarming
system, and we investigate the performance of the systeer @odstraints on up-
load capacity, download capacity, peer selection poligreguding random chunk
selection and coordinated matching). The contributiorsunfwork are

e We generalize some of the results in the coupon system [Bpaovide a tighter
bound for performance measures such as the average file @zund) time.

e We consider thdast-piece problenand analytically show the improvement in
performance when a file swarming system uses the forward eowection
(FEC) [22] coding technique for file sharing.

e We relax the unlimited upload capacity assumption in [18jfalgze the file
swarming system under a more realistic setting and prosgimptotic bounds
on the average file downloading time.

e \We propose a stochastic model for an incentive-based filensivg system with
coordinated matching, wherein chunk exchange is only atbwhen both peers
are deemed to be useful to each other.



Extensive simulations are carried out to validate our n®dad to illustrate some
interesting design guidelines.

The balance of this paper is as follows. In Section 2, we prtessgeneric model for
a file swarming system. In Section 3, we present an analyticalel of an altruis-
tic file swarming system wherein each peer has unlimited ain@ur sufficiently
large amount) of upload capacity and derive performancesareasuch as the av-
erage file downloading time. In Section 4, we present the inodan altruistic
file swarming system with limited upload and download cafyatm Section 5, an
analytical model of an incentive-based file swarming systepresented and we
derive various important performance measures. Extessgivelations and the re-
lated results are given in Section 6. Related work is giveé®aation 7 and Section
8 concludes.

2 Model Description

Let us consider a peer-to-peer file swarming system thailaisés a given fileF
to a number of peers. The file is divided inkd equal size chunks, th#&" chunk
is denoted ag;, andF = C; UCy U ---UCgk, WithC; N C; = ( fori # j. To
download the fileF, a peer needs to download &l chunks from other peers in
this P2P file swarming system. L&ty be the set of chunks that pedrpossesses.
PeerA maintains abitmapto denote which chunks they possess. Whenever peer
A finishes the downloading of a new chunk, it will update itsri@p. Peerd can
upload chunlC,, to others only after it has completely download&gd New peers
arrive to this system according to a Poisson process witlvarage rate\. Using
the BitTorrent’s terminology, a peer that has at least ongsimg chunk ofF is
called aleecher while a peer that has alt” unique chunks of* is called aseeder
Note that, unlike the BitTorrent system which has at leasts@eder to start the file
distribution and serve the leechers, we assume that everly aerived peer will
initially obtain one chunk from a server before entering thystem . This initial
chunk is randomly chosen by the server with equal probgbilitk” for chunks
C:...Ck. When a peer finishes downloading &ll chunks, the peer will depart
immediately.

Similar to [18], we assume that this P2P file swarming is stbih the sense that
uploading (or downloading) a single chunk takes one slagtifine file distribution
process in each time slot can be described as follow. At tiggnbeng of every
time slot, a peer, sayl, will selectrn > 1 other peers in the system and fetches
their bitmaps. Note that, the parameteand the way it chooses thesepeers will
greatly affect the system performance, and we will furtmeestigate this in later
sections. Since the bitmap information can be greatly cesyad, the transfer time

I This assumption is similar to the one made in [18]



of a bitmap is negligible compared to the transfer time ofanth Let peei3 be one
of thesem peers. Upon receiving its bitmap, peéican determine whether peBr

is useful (i.e. peeB possesses at least one missing chunk of deer 5 \ Fa #

(). If no peer among these selected peers is useful to pekrthen peer will take

no action but remain idle in the current time slot; otheryjseerA will randomly
select one of the useful peers to request a useful chunk fenldad. Assume the
selected peer i, then peerd will request one chunk which is uniformly chosen
from the set of chunks possessed by pgemnd are missing in peet (i.e. a chunk
Cr C Fp \ Fa). Note that this can be viewed ashnd chunk selection poligy
in contrast to thearest first policyin the BitTorrent protocol by which peet
will select the chunk among g \ F4 with the fewest number of copies among its
neighbors [4]. As a result, pe@& may receivenultipledownloading requests. Base
on the upload capacity constraint and service rule, peetll choose one or more
requests to satisfy (we will elaborate this in later sedjomhe transfer time of this
chunk will take one time slot. At the end of a time slot, theqass repeats.

—_— >
request for useful chunk tranfer of chunk

(a) (b) (c)

Fig. 1. A simple illustration of a transfer dynamic within e@ntime slot with
F=CUCy---UCs

Figure 1 illustrates the P2P file sharing model with= 2. We have six peers:
A,B,C, D, E andF. The file has five chunks and the shaded boxes represent the
chunks that peers possess. For example, geeasC;, C; andC,. In Figure 1(a),
peer A (peerB) requests bitmaps from peétand D (peer D and F') and these
peers reply with their respective bitmaps. Peedetermines that peer' is not
useful while peeD is useful. Peel3, on the other hand, determines that both peer
D andF are useful. Both peers select one peer for a chunk transfigfigare 1(b)
shows that both peet and B chooseD for the chunk transfer. Pedp receives
two transfer requests, it randomly picks one peer to serthignexample, and it
chooses peed. Figure 1(c) shows that peér transfersC; which is requested by
A. At the end of a time slot, peet obtainsC; while peerB wastes one time slot.

The above model is in fact, quite general. For example, whenaonsiders the
case thatn = 1 (or each peer just randomly chooses one peer to fetch thajpjtm
and that there is no constraint on peers’ upload capaciy) this becomes the
model studied in the coupon replication system [18]. In thisk, we generalize



their model and study the performance of the system when 1, which means
that each peer can first fetch multiple bitmaps from diffépers but can choose
at most one peer to request chunk transfer. Surprisingtyy asimple modification
can improve the performance of the system to achieve a néanad@verage file
downloading time. Furthermore, we also relax the assumpfdarge or infinite
upload capacity in [18]. This is in fact a very important skeggause for the current
Internet, the bottleneck is usually not at the network careréther at the network
edge, and the upload capacity of an end host is indeed lirfetgd ADSL system,
cable system). Therefore, this capacity constraint maéi fact a more realis-
tic representation for file swarming systems. In this uptiokvnlink constrained
system, we study two different uploading policies.

(1) Altruistic Uploading ServiceUnder this policy, a peer will provide upload
service to other peers regardless of whether these peeephavided upload
service or not to other peers. In other word, this is a perfetiaborative
system and it is similar to the “optimistic unchoking” feedun the BitTorrent
protocol.

(2) Incentive Uploading ServicdJnder this policy, a peer follows a given in-
centive mechanism similar to the “tit-for-tat” feature dse the BitTorrent
protocol to decide on uploading.

Although our system model is a simple representation of smrakstic P2P file
swarming system (e.g., BitTorrent), it has already captunany essential features
such as theollaborativeupload and download, as well as incentive-based chunk
exchange in P2P file swarming systems. In later sections,ilvdexive the perfor-
mance of such system, and show why and how it can achieve gotmmance.

3 Altruistic File Swarming System with Constraint in Download Capacity

In this section, we consider the file swarming system whech gaer has a con-
straint in the download capacity and we plas® upper bound restrictioon the
upload capacity. So at every time slot, each peer will firgttactn > 1 other
peers randomly in the system to get their bitmaps. If more tree peer are useful,
it will randomly choose one to request a useful chunk. It isgildle that a peer
may get many downloading requests. Since we assume thatigheo restriction
on uploading bandwidth, all requests will be satisfied. Athee to the abundance
of uploading bandwidth, there is no need to enforce incemntiechanism for data
transfer. Lastly, it is important to note that when = 1, this corresponds to the
model described in coupon replication system [18].



3.1 Model Formulation

First we assume that all types of chunks in the system aremmiy distributed.
This assumption can be guaranteed by the random chunkiselgdlicy(as de-
scribed in Section 2). We classify peers into different gypecording to the num-
ber of chunks it possesses. A peer holdinghunks is called a typeé peer, for
1=1,2,..., K — 1 (1 # K because a peer will immediately depart from the sys-
tem when it finishes downloading all chunks). After receiving a new chunk, a
type: peer will become a type+1) peer. Letp; ; denote the probability that a type

J peerB is useful to a type peerA. When: < j, itis clear thatp, ; = 1; When
i>j,we havep; ; = 1 — Prob{Fp C F4}. Thus

1 1<i<)<K-—-1,
Dij= ] (1)

gj 1<j<i<K-1. (CY is the binomial coefficient)
K

Lety,(¢) denote the number of tygepeers in the system at timeThe total number
of peers in the system at timés y(t) = >%7!y;(¢). When a type peer randomly
picks another peer and requests its bitmap, the probathktlythis selected peer is

useful isq;(t) = X35 pijy; () /y(1), i =1,2,... . K — 1.

Given the system stale (t) = {y;(t) }icq1,..., k-1, itis easy to verify thatY (¢) )0

is a Markov process taking its values#f ~*(Z# ! is a K — 1 dimensions vector
with non-negative integer entities). Denoting hythe unit vector ofZ~! whose
i-coordinate equal$, and with all other coordinates equal to zero, the non-zero
transition rates of this Markov process are, forial {1, ..., K — 1},

Y —Y +¢ with rate )\,
Y —Y —e 46y withratey, (1—(1—¢)™), ie{l,....K -2}
Y —Y —ex with rateyx 1 (1 — (1 — gx_1)™).

We analyze the system under a large population asymptafimes Note that this
is adensity dependent jump Markov procgk$]. It converges to the solution of the
differential equations

dy(t) ) A=) [1— (1= q ()" i=1, 2
Ay () 1= (=g ()" =) 1~ (1= qs()™] i=2,.., K 1.

for some initial conditioriy” (0).



3.2 Steady State Analysis

In this section, we derive the average file downloading timethe above P2P
file swarming system. We also extend our analysis to a file reivay system that
provides forward error correction (FEC) service.

3.2.1 Altruistic File Swarming Without FEC

In this section we focus on the steady state performancetseduilibrium pomt
An equilibrium point is the poink” = (y1, 4, ..., yx—1) Such that ifY (t) = Y,
thenY (¢') = Y forall ¢’ > t. The necessary and sufficient condition¥6tto be an
equilibrium point is=£.~ dy‘(t) =0,forl <i < K—1.Apply these conditions to Eq. (2),
we have the foIIowmg equations at the equilibrium pdifith = yi(1—(1—gq)™),
i=1,2,...,K —1.

Let T; be the average sojourn time for typeeers, that is, the average time for a
type: peer to receive a new chunk and become t§ipe 1). One can derive this
measure from the equilibrium poidf = (y1,--.,yKx—1) by using Little’s theorem
[13]: AT; = y;. DefineT = Y-''T; as the average file downloading time in
the P2P file swarming system, we hay¢y = T;/T'. Finally, one can obtain the
following equations at the equilibrium poidf:

1 K-1 T
and ¢ = ) ?jpm, fori=1,2..,K—-1, (3)

=
1—(1—g)m j=1

One can observe thdt of Eq. (3) does not depend on So even when the arrival
rate\ is large and the number of peers in the system becomes vge), llwe aver-
age sojourn timd’; (and alsdl’) will not be affected in the steady state. This is an
important observation since this indicates that the filerevieg system has a good
scaling property: when one increases the arrival rate, ¢én@pnance will not de-
grade. Sincd; is the average sojourn time for typ@eers, i.e. it takes on average,
T; unit of time slots to download the next chunk when a peer hotdhainks, let us
explore the relationships among thgs at the steady state.

Lemmal The sojourn time is an increasing sequence i.&€ 773 < Tp < -+ <
Ty 1.

Proof: According to Eq. (3) we have, < 1. Therefore, one can conclude that
T, > 1fori=1,..., K — 1. According to Eq. (1), when > ¢, p; ; < py g holds

for j = 1,...,K — 1 andp;; < py; holds for somej. Soq; = Y1 o <

Yt Tpl ; = qi. Thus, we havd; > T, wheni > i'. |



Lemma 2 The upper and lower bounds 6f are

) e T T

whereK is the number of chunks iff and Hy is the K** harmonic number.

Proof: The sequencét; = 1;/T} is increasing and the sequengg = p; ;} in
non-decreasing. From Chebyshev’s sum inequality, we have

e (ED)(E) - £

7j=1

1 i ) -
=1- (K — 1> (K i 1) (“Concrete Mathematics” [10], p174.)

One can apply it to Eg. (3) and obtain the upper bound;as claimed. For the
lower bound ofT;, let us first derive an upper boundtf which is

o l-1—g)m =1 = KK-i)-1
(K_1>2 KQ 1K 1 1 B
= =K-2+H K™).

K Ki_1 + Hi + O( )

=1

We can apply it to Eqg. (3) to obtain an upper bound;cds

B TN (O e 1
qz'_l_;(T) (c;() <=2l (K—2+HK+O(K1))

Jj=1

=1 (K—21+ HK) (K—ii+1) +O(K™).

With this upper bound of;, one can substitute it to Eq. (3) to obtain the lower
bound ofT; as claimed. [ |

Remark: The importance of the above two lemmas is that one can use tinem
understand thel&st-piecé problem in P2P file swarming systems. i.e. how long it
takes for a peer to receive the last few chunks of the file singets increasingly
more difficult to find other peers that can help.

To illustrate this issue, let us consider the upper and |dveemds of7; for a file
with K = 50 chunks. The scenario is illustrated in Fig.2(a) and Fig).Z(here are
two important observations. First, one can observe thaipiper and lower bounds
are indeedvery tight which implies that we can usg to give a very accurate
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Fig. 2. lllustration on the last-piece problem: boundgpfor m = 1,2 andm > 1 with
FEC.K = 50 chunks

measure of the average file downloading tilhe&econdly, one can observe that the
sojourn timeg/; are very close ta fori << K — 1, but when; approache# — 1,
Fig. 2(a) (and Fig. 2(b)) shows that both bounds appr@deipproach .4) quickly.
The increasing downloading time, especially for the last &éhunks, depicts the
last-piece problem. Intuitively, the reason for this peshlis that it becomes more
and more difficult for a peer to find other peers which are Usefpecially when
the peer is very close to finish downloading the whole file. He8y, one can amend
this problem, at least to a certain degree, by simply chayiie parametet.. One
can observe that whem = 1 (as shown in Fig. 2(a)), it costs 2 time slots on
average to download the last chunk but when- 2 (as shown in Fig. 2(b)), it only
costs 1.4 time slots to obtain the last chunk. The reasoratsthenm = 2, peers
can ask for more peers for bitmaps and thereby increase #reelto find useful
peers. Givenn, we can derive the bounds 6ffrom Lemma 2.

Theorem 1 Whenm = 1, the average downloading timé = K — 2 + Hi +

0(5).

Proof: In the proof of Lemma 2, we have obtain€d< K — 2+ Hy + O(K™!).
For the lower bound of, let us denoted = K — 2 4+ Hy, then

-1 K-1

T=3%T,> l(l Z. )+O(K_1)

i=1 1=

A K+1%11 log K log? K
(K—1+% _.)+O<og ):K_2+HK+O<OgK )
j,

—
—_
|

T A+1 K
Combining the upper and lower bounds, Theorem 1 can be shewiaianed. =

Remark: Note that whenn = 1, the system corresponds to thepen and flat
case of the coupon system [18], in which the authors give geupoundl” <
K+O(VK). However, the result in Theorem 1 stafes- K —2+ Hx+0 (%)
We know thatf  is the K** harmonic numbet x = log K +~+O(K '), where
v = 0.5772... is theEuler-Mascheroni constanThus7T = K + log K + O(1).
Therefore, we obtain a tighter bound than [18].



Similarly, we can derive the lower and upper boundg drom Lemma 2 when
m > 2. Due to the lack of space, we only show the derivation of theeupound
in the following theorem.

Theorem 2 Whenm > 2, the average downloading tinffe< K + O (loiK).

Pr oof:

. B Sl (6.1 €:= 23]

=R [(K%j) ()] B () ()]
<K—1+§ ; KK:) (K—Z¢+1ﬂ
=K -1+ 3(K4— 1)2 & [([éfiji)ly N [2(([52++1)1 11
<K—1+—(C(2)—1)+O<10§(K) <K+O<IO§(K>' .

Remark: Since it is necessary to require at le&St— 1 time slots to finish the
downloading of the whole fileF, we can conclude by fetching multiple bitmaps
(settingm > 2), the average downloading time is near optimal. To see ¢ms,
can compare it with the result in Theorem 1, which states ithitkes at least
K +log(K)+0O(1) time slots to finish the downloading, and we removeltigé¢K)
term by getting more than one bitmap. Setting= 2 is sufficient for achieving the
near optimal performance. This result is encouraging asigitful, it shows that
due to the diversity of chunks held and the altruistic uplogdor every peer, a
“simple-design” can achieve very good performance.

3.2.2 Altruistic File Swarming with FEC

We have seen that by fetching bitmaps from multiple peeessyistem performance
can reach near optimal levels. Here, we providelernative approachio reach
the near optimal performance by using tbheward error correction(FEC) coding
technique [22]. Given a fileF, one can encode the origin&l chunks toQ) =
(1 + «) K chunks with erasure codes before the distribution prodesspeer can
reconstruct the original fileF after it receivesany K distinct chunks of thes&
chunks. This technique makes it unnecessary to downloadak® chunk and
will ease the last-piece problem, making the system morei&ffi. To make this
claim formally, we have the following theorem:

Theorem 3 For m > 1, using FEC with redundancy rate of > 0, the average
downloading tim&rpc < K — 2+ (1 + o) log 2 + O(K1).

10



Proof: Note that FEC makes;; = 1 — C//C}, whenl < j < i < K — 1 and
all other equations remain the same. Similarly to the prddfemma 2, one can

derive thatl} < [1— (#5) (Q_im)}_l. So

1

K—1 1 K —1KE2L 1
TFEC<Z_211_(1)< p ): K Z<1+m)

K-1) \Q—ir1 ? Q+1
K-1? (K-1D)Q+1) & 1
K K i=Q-K+1J
1+ o 1
=K -2+ (1+a)log +O(K™). |

«

Remark: Compared with Theorem 1, the harmonic teffy is replaced with the
term (1 + «a) log “fTa Note that, wherv = 0.1 (i.e. 10% redundancy), this term
is less thar.7. Thus given a particular redundancy rate7 ¢ is bounded by
K — 1 plus a small constant. So by using FEC codes, even if a pegrcontacts
one other peer for bitmap (i.e2 = 1), the average downloading tin¥é can still
approach the near optimal value.

Gkantsidis et al. [9] declare that traditional P2P contastrithution software as
BitTorrent usually suffers from last-piece problem andatl be settled by the
network coding technique they propose. In our model we hagge that there exists
last-piece problem as Fig. 2(a) and Fig. 2(b) shown. It talesit2 time slots in
average to download the last piece. To illustrate how FEEctdfthe last-piece
problem, let us consider the upper boundZgffor a file with K’ = 50 chunks
again. By settingyx = 0.1 (i.e. 10% redundancy), we show the upper bound of
T; in Fig. 2(c). This bound holds for ath > 1. From Fig. 2(c), one can observe
that the last-piece problem can be eased if we use FEC teahtiggenerate a
few redundant chunks. This observation is helpful for theaaded P2P content
distribution system design in the future.

4 Altruistic File Swarming System with Download and Upload Constraints

In this section, we consider the file swarming system whech paer has a limited
bandwidth on the download and upload capacity. Note thatitha more realis-
tic setting than the unlimited upload bandwidth assumpitio8ection 3 and the
coupon replication system [18]. This is a very importantpsince the current In-
ternet, the bottleneck is not at the network core but rathdreaedge, and usually
the upload capacity of a host is indeed limited (e.g., ADSlcable system). To
simplify our analysis, we only consider the case= 1 (i.e. in each time slot, peer
A will first contactoneother peer randomly in the system to obtain its bitmap). If

11



this peer can help peet, peerA will request a useful chunk. It is possible that a
peer may get multiple requests for chunk. Due to the uplopaaty constraint,
this peer will only randomly pick one peer to upload. If pekis chosen, then peer
A can download one useful chunk within the current time slohe@vise, pee!
will remain idle for the current time slot.

4.1 Mode Formulation

As in Section 3, lep; ; denote the probability that a typepeer is useful to the type
i peer,y;(t) denote the number of typepeers in the system at time The total
number of peers in the system at timis y(t) = %' ;(t). When a typej peer
is requested by another peer for its bitmap, the probatihiy this request comes
from a typei peer isy;(t)/y(t). Thus, the probability that the tygepeer is useful

to a peer who contacts it j& (t) = 57" pijui(t) /y(t).

Assume that peet contacts peeB andB is of typej. PeerA finds thatB is useful
and sends3 a request for a chunk. Let us consider the probability thatill be
chosen byB for service. To derive this probability, we consider how mather
peers contactef for its bitmap. Since there age-2 peers (ignoringd andB) in

the system selecting others to contact &b contacted by a particular peer with
probability1/(y — 1) (each peer does not contact itself). Thus the number of peers
that contacted, denoted by the random varialdke is the number of successesin a
sequence of — 2 independent Bernoulli trials, d¢ ~ Bernoulli(y —2, y%l). Since
y—2islargeandy —2)/(y—1) ~ 1, R can be approximated as a Poisson random
variable with meari, thus R has a probability mass function ¢f;(k) = e /k!,
fork € {0,1,...}.

AssumeR = r (i.e. peerB was contacted by peers for its bitmap). The probability
that peerB is useful to a peer iR is 5;(t). ThusB receivesk requests for chunk
with probability C} 87 (t)(1 — ;(t))"~* for k < r. WhenA contactsB, finds B is
useful and also sends a request for chunk, the probability thatis chosen byB
for service is

aalt) = Y- CHBHO(1 - Bi(0)

1 1-(1-g@)"
= E+1  (r+1)B(t)

5,0)

The system can be modeled as a Markov prode8s = {v;(?) }icq1,...x—1}- Again,

.....

it is easy to verify thatY (¢))>, is @ Markov process taking its values #f* .
The non-zero transition rates of this Markov process, for al{1,..., K — 1} is

Y —Y +¢ with rate )\,

12
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K-
Y —Y —e¢; +e; .1 with ratey; Z [ puz a]r],ze{l K -2}

K-
Y —Y —ex 4 with rateyx_1 Z [ Pr- uz 1

For a large population asymptotic regime, this density ddpat jump Markov
process converges to the solution of the system of diffexlesuations

with some initial conditiory” (0).

4.2 Steady State Analysis

We focus on the steady state performance and we are intéiests equilibrium
point In other words, the operating point whereip /dt = 0for1 <: < K — 1.
DefineT; as the sojourn time for typepeer. It follows from Little’s theorem that
\T; = y;. Let the average file downloading time Be= ZK T}, one can obtain
the following equations at the equilibrium point:

1 K-1 T [e's) 6_1 »
—— ‘ (szz,J270éj,r), 221’2,...7[(—1 (4)
v =1 r=0
where
1—(1—p;)* K-l _
ir = and = —— =1,2,..K—1.
“ (r+1)3; B ; =Pij ]

In Section 3, we have shown that a file swarming system thabhlgsdownload
capacity constraint is very efficient. With both download aipload capacity con-
straints, the performance of the system will not be as goothis section, we seek
to derive the bounds df; (and therebyl") to gain insight on how the upload ca-
pacity constraint can affect the system performance. Létststate the upper and
lower bounds of the sojourn tinig.
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Theorem 4 The sojourn time§; satisfies

1_16_1+0<1o§(K><Ti<{1_16_1} [M(ﬁl)( Z_ )]

K—i+1

Proof: Because’; < 1,r > 0, we haver;, > 1/(r + 1). From Eq. (4), we use the
same technique in proofing the lower bound;oh Lemma 2:

1 K-1 T. 00 671 1 B KﬁlT‘
> (]p ):(1_61)2%;%

J=1

>E1—e—1} [1—<K1_1> (K—ii+1)]'

Therefore, the upper bound @f is obtained. For the lower bound ©f, we have
aj, <[l+7r(1l—g;)]/(r+1)becaused; < 1 andr > 0. Thus

1 ST et i+r(1-5)) K1 et K
/A N S A LRl — .
lTZr! rl ‘ ;Tﬁﬂ w12

r=0 j=1

One can obtain an upper bound on the summation term as

K—1 K—-1m . K—1 _
5 = 2(K—1—+):K—K+lz T
= = T K—-i1+4+1 T = K-i+1

K+15%2 1
>K —
K-135 (K—i+)1-e)[1- (&) ()]

HK lOgK
=K — O )
1—6—1jL < K )

Finally, the lower bound of; can be obtained as

1 e”! K2l log K
—<1- <l—-e'40 . N
TR S P <K>

Figure 3 illustrates the upper and lower bound dbr a file with X' = 50 chunks
andm = 1. Notice that the lower bound &f; is rather loose since it is not related
to the index.. Nevertheless, the spread of the bounds is tight for mosegabfT;.
Another observation is that for small valuesipT; is not close td any more as in
the case of Section 3, but rather, closé t6l —e~!). This performance degradation
is contributed by the constraint on the upload capacitytteiowords, if one limits

14
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Fig. 3. Numerical results illustrated for the bounds/pfor m = 1 whenK = 50

the number of chunks that a peer can upload each time slatkestlonger, on
average, to obtain the file. Lastly, with the upper and lowsrrus of7;, one can
derive the average downloading tirfie

Theorem 5 The average downloading tinfésatisfies

+O0(logK) < T < (K -2+ Hg)+O(K™)

1—e! 1—e!

Proof: Given the upper bound &f;, one can use the approach similar to Lemma 2
to derive thal’ = X' T, < (K — 2+ Hg) /(1 — e~ 1)+ O(K~1). With the lower
bound ofT}, we have

1 log K K
T:_ TZ->(K—1)[1_6_1+O<O§( )]:1_6_1+O(10g[(). |

Compared with Theorem 1, the average downloading time has ealed up by
a factor of1/(1 — e~!) when K is large. It is interesting to explore whether using
FEC can improve the performance of the system. We have tlosviag result.

Lemma3 When one uses FEC in this system, the bounds; @fs specified in
Theorem 4 and the average downloading tifhes specified in Theorem 5 will
remain the same.

Proof: Similar to Section 3.2.2, FEC will increase the valugofand other equa-
tions remain the same. Thus the upper bound;oh Theorem 4 still hold. Notice
that we just replaceg; ; by 1 in the proof of the lower bound df; in Theorem 4.
And p; ; < 1 still holds even with FEC, thus the lower boundXfin Theorem 4
still holds too. We know that Theorem 5 is derived from 4 dile¢hus the bounds
in Theorem 5 also remain the same. |

Lemma 3 implies that FEC could not improve the performanecg reich. It can be
explained as follows. The random peer selection policy naage request collision
since a peer may receive multiple chunk requests but carsenlg one peer. Other
peers requesting chunk from the same peer will waste timeg silot.

15



5 Incentive File Swarming via Coordinated Matching

From Theorem 5, one can observe that when there are bothdigévenload capac-

ity constraints on cooperative peers and peers use a randenselection policy,

the average downloadlng time= — _1 + O(log K), where the coefficient of the
term K is .—= ~ 1.58. The system performance degrades as compared with the
file swarming system without upload capacity constraintnehtbe coefficient of
term K is 1. The performance degradation can be explained as folldvesran-
dom peer selection may cause request collision since a p@greneive multiple
chunk requests but can only serve one request. Therefares peers may waste
the download opportunity and remain idle for a time slot. #hercase of unlimited
upload capacity, all requests can be satisfied, hence, tfempance is better.

One may ask, in the system with both download and upload dgEamnstraints,

can the system still achieve good performance by using mecteon algorithms
other than the random policy? In the following, we show thatunning a maximal

matching algorithm (usually regard as an “easy problemhwiticient polynomial

algorithm) at the beginning of every time slot, one can digantly improve the

system performance. Also, we show that with built-in inocetnechanisms, this
approach can also provide very good performance.

5.1 Without Incentive Mechanism

We assume at the beginning of each time slot, every peerumlsome distributed
maximal matching algorithrfL 1], or gets the help from some central server, so that
peerA will find peer B as its neighbor while peds will also find A as its neighbor.

If the matching process isdependenof the chunks held by each peer, then given
peer A, the probability that peeB is of typei is y;/y wherey; is the number of
type i peers and, is the total number of peers in the system. At the current time
slot, peerA can only communicate with peds and vice versa and the matched
peers can upload and download at most one chunk per time slot.

Let us first study the system without incentive mechanismekMfeerA and peer
B are matched, peet will help peerB if and only if peerA is useful to peeB
(i.e. Fa \ Fp # 0); similarly peerB will help peerA if and only if F5 \ Fa # 0.
Since the selection of neighbor is independent of peer€,tye get the differential
equations for the number of typgeers as

dyl-(t): A — ylZ]ngZ )pl,j i=1 5)
dt yz‘—l()ZKly](tp@ 1j — ()ZK”;@ piji=2,...,K—1.
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One can find that, Eq. (5) is equivalent to the differentialagpns given in Eq.
(2) where peers have unlimited upload capacity ane- 1. Thus, the asymptotic
bounds given in Theorem 1 still holds for this model, whiclplires 7 = K +
log(K) 4+ O(1)

Remark: Both the download and upload capacity are one chunk per twmheegich
peer has the same constraints as that in Section 4. Howewérave better perfor-
mance when matching is used instead of the random peerisalethe random
peer selection may cause request collision (i.e. a peer ewve multiple chunk
requests but it can only serve one request due to its uplqaatitg), so the down-
load capacities of the unserved peers are wasted. But i§ @germatched at the
beginning of each time slot, then the performance is greagbyoved, approaching
the performance of the random peer selection withmitedupload capacity.

5.2 With Incentive Mechanism

Let us study the system with coordinated matching but withnaentive mech-
anism. Namely, given a pair of neighboring peers: péeand peerB, both of
them will perform chunk transfeiff both of them are useful to each other (i.e.,
Fi\Fp # 0 andFg \ Fa # 0). In this case, peed and B will obtain one
new chunk from each other in the current time slot. We usertiudel to capture
the “tit-for-tat” incentive mechanism in the BT protocol. With this mechamishe
probability that a typeé peer can exchange chunk with a typpeer is

cd ) )
1— = 1< <1 <K -1,
D= Cic ==t (6)
i, ct o
1—041- 1<i<ji<K-1
K

Let us first state some important propertiesy;%f.

Lem/ma_14 pgv_j has the followi_ng propertie;: (];%,j = p;/-J-;.(Z) pij= p}(ﬂKﬂ- an_d
(3)‘pi7j is qn |n.creasmg function of when; < 4, andp; ; is a decreasing function
of j whenj > 4.

Proof: The proof of property (1) is trivial. To prove property (2)e consider the
following three cases:

e Caelil<j<iiwe havep] ; =1 — C’J‘/C%%K:,<1 —KC}I((:;/C}(. JIEZ implies
K —i< K —j,thereforepy ;, ,=1-Cr7;/Cg™" =1—-Cg_;/Ck. So

we getp; ; = Pk
e Case2ii<j< K—1:Wehavey, , =p}, = pg_ix ;= Pk_jx_i

To prove property (3), let us consider the following cases:
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e Cael: 1 <j<j<i<K-1:

j ' K- CE-i
o= (1-)- (- - (- ) (-t ) o
g C. C Ck Ck

e Case2:i<j ' <j<K-—1:SinceK —j < K —j < K —i,we have

/ / o ’
pivj _pi,j’ - pKfi,Kfj _pKfaK,j/ < 0 [ |

To simplify our notation, letus denote, ; = p; ; +p; c; (6,7 =1,..., K —1). It
is easy to show thabm- = Wi K—j = WK—jj = Wj;.

Lemma5 For a giveni, w; ; is an increasing (or decreasing) function pffor
j < K/2 (for j > K/2).

Proof: Consideri < K/2 first, in this case,

(1) 7 <1, we have

Wi,j — Wi j—1 :p;,j _'_p;,Kfj - (p;,jq +p;,K7j+1)
=(pij —Pij1) *+ Wix_j — Pir_ji1) > 0.
(2) i < j < K/2,we have
Ct Ch_ . C' Ci.
wij—wijo=|1—=F+1— Koj) _(1—2i=t g K-+l
’ ’ Ck Ck Cik Cli.
i1 i1

1
=

Combine case (1) and (2), we know wher K/2, w; ; is increasing ifj < K/2.
Sincew; ; = w; x_j, w; ; is decreasing iff > K /2. Becausev, ; = wgi_, j, the
above results hold far> K /2. n

Lemmab6 T, = Tx_,.

Proof: We take a reverse view in the steady state so that (1) we régacdeparture
as arrival; (2) if peer A's storage 8,4, we just imagine there is no peer A but its
complementary peet with storageF; = F \ F4. So originallyT; is the average
time for peer A to stay in typ&(i.e. with i chunks), but now the average time for
peerA to stay in typg K —i): T} = Tx_;. From Lemma 4 we know, ; = pi_; x_ ;.
So the “reversed system” is identical to the original systemch implies?; = T;.

Thus we getl; = Tk _;. [ |
Similar to the steady state analysis in previous sectionhawe the equations for
T
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(7)

ﬂ|ﬂ
I
IS
=
!

=3 |

whereT = K1 T,
Lemma7 Fori < K/2,T; is a decreasing sequence>T; >T5>...>T| k).

Proof: Let1 <i' < i < |K/2|. Base on Lemma 6, we have

1 -1 7‘.!] , 1 K-1 T 1 K-1 T
_i: - ?pz,jzégl T(pz]+sz ]) 521 Twi,j'
J= J= J=

Similarly, - 7, = ZK 1L #wy ;. From Lemma 5 and); ; = w; ;, we have

11 =T T

F — T = ?(w” W J Z ? wj,z' — U)jﬂ'/) > 0.

7 7 j=1 j=1
ThusT; < Ty, and the upper bound df, is
2 2 2
T, = = =2 N

Theorem 6 Using the incentive mechanism stated above, the boundseaavér-
age downloading tim&’ are

1
K—4+2HK+O<O

K log K
& >§T§K—2+4HK+O<Og )

K
Proof: Base on Lemma 5, Lemma 6 and Lemma 7, we have

1 K_lj—jj , 1K_17} 1 K-1 T -
i P s s < —— =J. AP — -
T. Z TpZ,J 2 Z Twz,]_ K—1 Z T pl,] K—1 me

¢ j=1 Jj=1 j=1 j=1
SE0-8) 508
i) £y (1-4
K-1 Ll C] j=i+1 CK

1 1 +K—i 1
K—-1|K—i+1 i+1 C%|’

=1—

Therefore, we obtain the lower boundbfas
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K-1 -1 1 K-1 1
TZ:TZZ i K—i > 1

1 z:ll K— [K z+1+i+1 cl i:ll K—[K ZAerlJrIz(Jrll 1]
Kl — K? -1 (1+ 1 )
= K+2 K2+2K 7 K —1

—K—4+2Hx+0 <1°gK> .
According to Eqg. (7) and Lemma 7, we have

1

K

+ =1 ]ZJrl
c; Ko 2 i K—i
>1—— + Ll >1— ( - + = )
(le] ZrlC}( K—-—1\K—-i+1 1+ 1

Thus fori =3 ... K — 3 (assumingk > 5), we have

17 (-G R (-4) (52 £ )

1 (K —1)(K —i+1)(i+1)
Ti < 2 i K—i\ 702, 2 5 : =
1— 2 (g + 550 K% — K2 — K+ 3Ki — 3 — 2K — 1
(K—1)(K—z’+l)(i+1)_K—1+2(K—1)( Lo )
K% - K- K+ K K K—-2 \K—i—1 i-1

Thus the upper bound @f is

& K3k -1 2K -1) 1 1
T=S" T, <4T
=i 1+§l K TTR=2 (K—¢—1+¢—1)]
(K —1)(K—5) 4(K—1) )
<8+ I + K _2 (HK—4 1)+O(K )
log K
:K+4HK—2+O<O§( ) "

Remark: Given the upper and lower bounds in Theorem 6, one can coathad

when incentive mechanism is employed to enhance fairneedrformance of
the file swarming system still achieves better than the rangeer selection pol-
icy in Section 5 wherein no fairness is guaranteed and foegican benefit from
peers’ altruistic service. Therefore, it is important fasystem to help peers avoid
waste of download capacity (request collision). Under 8sestiance of peer match-
ing mechanism (such as coordinated matching presenteqdl)fétie uploading and

download capacity is tightly constrained, the system céimpsbvide good perfor-
mance with a fairness guarantee.
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6 Simulation

In this section, we carry out simulations to (1) validate aoalytical results and
(2) obtain other performance measures such as probabgitydition of file down-
loading time. Unless we state otherwise, the arrival procggpeers is a Poisson
process with\ = 2.0. Since the system is slotted, peers arrive at timetsioli ob-
tain the initial chunk and will start participating in thegfiswarming process in the
beginning of time slot + 1. The file that will be shared by all peers h&s= 200
chunks. We also have results far = 500, but due to the lack of space we mainly
discuss the cask = 200.

Experiment 1. The goal of this experiment is to validate the analyticatltssin
Section 3 and to illustrate therobability density functioof the file download time.
For this experiment, we set = 1 or equivalently, this corresponds to the coupon
model [18].
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Fig. 4.T; andT for m = 1, constraint on download capacity only

Fig. 4(a) presents the average sojourn timdor a file with K = 200 chunks.
We compare the simulation results and the analytical resufhis indicates that
our analytical result is very accurate. Fig. 4(b) illustssf; under similar setting
but we enable the FEC with 10% redundancy (ice.= 0.1). One can conclude
that the analytical model is again very accurate and thagusEC can resolve the
last-piece problem. Fig. 4(c)-(d) illustrate the probipitiensity function for the
average file downloading timé, with and without using FEC, fok" = 200 and

2 For the analytical results, since the spread of the bounasrystight, we simply plot the
upper bound of;
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500 respectively. Wherik = 200 (K = 500) without using FEC, the analytical
average file downloading time 8 = 203.88 (T = 504.79), and the simulation
average file downloading time 5 = 204.11 (T = 504.99). When K = 200

(K = 500) and FEC is enabled, the analytical average file downloatimg is

T = 200.64 (T = 500.64) while simulation average file downloading timelis=
200.72 (T = 500.64). We can observe that by using FEC, not only one can reduce
the averagd’ but also the variance @f.

Experiment 2: This experiment is to validate the results in Section 3 wihen 1.
According to our analysis, there is not much difference leetwn = 2 andm > 2
since the average downloading timewill be bounded byK'. For this experiment,
we setm = 2. Fig.5(a) presents the average sojourn tifhevithout FEC. The
simulation results are similar to the analytical resultaiagComparing Fig. 5(a)
and Fig. 4(a), one can find that last-piece problem is not sersegorm = 2.

T; raises only for the last five chunks. If we deploy FE€ = 0.1) together with
m = 2, the last-piece problem can be resolved and this is illtesdran Fig. 5(b).
Notice that we only give out a loose upper bound/pfn Fig. 5(b), which is also
the upper bound of the system without FEC in Fig. 5(a). Now wan@ne the
probability density function of " in Fig. 5(c). Without FEC, 50% peers finished in
K — 1 time slots and 80% peers finished in less than or equé&l timne slots. After
we enable the FEC with = 0.1, 96% peers finished ik — 1 time slots and all
finished in less than or equal @ time slots. One can conclude that the average
downloading timél is close to the optimal value @99 (or K—1), and the variance
of T is also reduced. WheR = 200 (K = 500) and without FEC, our analysis
gives an upper bound of the average downloading tim€ 200 (7" < 500), and
the simulation isI" = 199.83 (T = 499.78). After using FEC witha = 0.1, the
analytical upper bound df’ still holds, while the simulation give$ = 199.04
(T = 499.01).

Experiment 3: This experiment is to validate the altruistic system withvdtoad
and upload capacity constraints in Section 4. We consider 1 in our analysis
thus we sein = 1 in this simulation. Fig.6(a) presents the average sojoune t
T; without FEC. The simulation results and the analytical itssunatch very well,
i.e. our theoretical upper bound is very tight. Comparing. léi(a) and Fig. 6(b),
we observe that FEC eases the last-piece problem, but mésteain the same
and they cannot approach teven with FEC. The reason is that the performance
degradation is due to the request collision but not thepaste problem. Also note
that when we have upload and download capacity constraisyariance o’
is significant larger than the previous experiments. Thislmaconfirmed by Fig.
6(c), the downloading tim&’ varies in a wide range, fror275 to 375, and using
FEC does not reduce the variance very much. WRen-= 200 (K = 500) and
without FEC, our analytical bound of the average downlogdime isT' < 322.53
(T < 798.56), while the simulation give§’ = 319.99 (T" = 793.67). With FEC,
the upper bound still holds, and the simulation result is 316.06 (7" = 791.01),
these show that using FEC in this type of system cannot inggfoxery much.
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Experiment 4. This experiment is to validate the coordinated matchingesys
with incentive mechanism as described in Section 5. Fijfi@sents the average
sojourn timeT; without FEC. One can observe that the gap between the simula-
tion results and our analytical upper bound is small. Alste oan observe both
the last-piece problenandfirst-piece problem in our analytical bound and sim-

3 This problem is reported as first block problem in [15] by mgasent study as the slow

startup due to choking.



ulation result. Thdirst-piece problentan be explained as follows. When a peer
has very few chunks, it can hardly help other peers. Due tonitentive mecha-
nism, it is difficult for this peer to obtain service from otheWe can observe that
FEC does well in easing the last-piece problem, but is notasml gt easing the
first-piece problemas Fig. 7(b) has indicated. From Fig. 7(c) and 7(d), one tan o
serve that the average and variance of file downloading tenebe reduced when
FEC is deployed. Another important observation is that WHEG is deployed, the
performance measures @f (both for the average and variance) are significantly
improved as compared with the results in Experiment 3 whdreth systems are
under the upload and download capacity constraints. Whtea 200 (K = 500)
and without FEC, our analysis gives an upper bound of theageedownloading
time T < 221.50 (T' < 525.17), and the simulation i = 211.78 (7" = 513.10).
After using he FEC withn = 0.1, the analytical upper bound @f still holds,
and the simulation give¥ = 203.90 (17" = 503.77). This validates our analytical
models.
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Fig. 7.T; andT for coordinated matching, incentive mechanism, with c@ist on upload
and download capacity

7 Related Work

There are numerous empirical studies on the BT protocoin&iance, [2,5,12,15,
20]. Izal et al. [12] present the traffic information on peeebavior collected during
a five-month period. Pouwelse et al. [20] study the avaiigbithe integrity, the

flash crowd effect and the download performance from a trdgehwvas collected
for eight months. Erman et al. [5] study the session intesa@rtimes, sizes and
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durations and propose to use the hyper-exponential disiitoto model the session
interarrivals, and use the log-normal distribution to fésen durations and sizes.
Legout et al. [15] evaluate the two core components of B choking and the
rarest first algorithm and claim that they are enough to quaesthe efficiency and
viability. Bindal et al. [2] report great variability of dawoading time and claim that
instead of network bandwidthglose neighbor set{i.e. those peers in a stable data-
exchange relationship) is the major contributing factoitte variability. However,
a major limitation of these empirical studies is that theadatllected is usually
from a local view (i.e. the tracker log or a modified client)dahe behavior is very
time-dependent. Therefore, it is not an easy task to urateighe efficiency of the
BT protocol simply based on empirical studies.

There are also several analytical studies of BT protocahg¥et al. [24] study the
service capacity of BT protocols. Their result indicates $lervice capacity of BT
protocols increases exponentially at the beginning ankksaeeell with the num-
ber of peers, thus providing fast downloading independédemand rate. Qiu et
al. [21] extend the coarse-grain Markovian model in [24] bgyiding an analytical
solution to a fluid model in steady state which shows highadibly and stability
of BT protocols. Our work differs from [21, 24] in that we piide a detailed prob-
abilistic model to capture the peers’ diversity (in termsdofvnloading progress)
and show the change of downloading speed during the whosgoses\Ve also an-
alyze the peer selection and chunk selection which are naidered in [21, 24].
Fan et al. [7] also generalize Qiu's model by dividing peats three types accord-
ing to number of chunks they hold. Our work extends the nunalbéypes from
3 to K — 1 so as to capture the system more accurately. Under the assamp
that “uplink is the only constraint”, Mundinger et al. [19igpose a determinis-
tic scheduling algorithm to achieve the optimal makesparchvhequires global
knowledge. Sanghavi et al. [23] also propose a gossip-dkeomized algorithm
requiring only local knowledge. Both studies in [19] and][2Be orthogonal to
ours as they only consider the “closed system” where no neww#l arrive dur-
ing the file dissemination while we consider an “open syst&rhich new peers
are joining in according to Poisson process. The work thelbisely related to our
study is [18]. In that paper, the authors provide a detailedabilistic model to
investigate the stability and effectiveness of a peeregergile swarming system.
Their results state that even by the “random chunk selétpoticy, the system
throughout is still asymptotically optimal. Our paper irapes and extends the re-
sult in [18] by providing tighter asymptotic bounds and ratg its assumption of
unlimited upload capacity. Moreover, we study the peercsigle by both random
selection and coordinated matching policies. Gaeta e8jphl$o use a probabilistic
model to study the large-scale P2P network but they are iiogas searching strat-
egy. There are some other analytical studies in fairnesg diésides performance
modeling. In [3,16, 17], the authors present a mathemaditallysis on service dif-
ferentiation in resource allocation for P2P networks. Ih {Be authors present a
mathematical framework to study the tradeoff between perémce and fairness in
BT-like systems. In [25], authors present the first anafjtrnodel of BT-like sys-
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tems and quantify the tradeoff between scalability and Qagfpaert for multimedia
streaming applications.

8 Conclusion

In this paper, we propose a probabilistic model which gdizasmthe model in [18]
to capture the basic properties of a file swarming system.eUtite same as-
sumption as [18](i.e. unlimited upload capacity), we firaprove its asymptotic
bound of the average downloading time. Then we provide tfferéint approaches,
namely fetching multiple bitmaps and using FEC code, to tedpsystem achieve
nearly optimal performance. Besides showing that FEC cadeatso remedy the
last-piece problem, we also remove the assumption of “utdofrupload capacity”
and analyze the performance under the random peer seladgiorthm. Since the
performance deteriorates due to request collision, weqe®@ matching scheme
to improve the performance. We show that under the cooreliivatatching, if peers
are altruistic the system performance can achieve as gabd agstem with unlim-
ited upload capacity. Even when the system deploys cenmaegntive mechanism
(tit-for-tat), the average downloading time is still goddhe result suggests that the
performance of a peer-to-peer file swarming system doesepmrai critically on
altruistic peers, but rather due to the diversity of peeyeest data so the system can
achieve good performance.
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