Computing Bounds on Steady State Availability of
Repairable Computer Systems

JOHN C. S. LUI AND RICHARD R. MUNTZ

Unwersuty of Califorrua ar Los Angeles, Los Angeles, Califorma

Abstract. One of the most important performance measures for computer system designers is
system availability. Most often, Markov models are used 1 representing systems for dependabil-
ity /availability analysis. Due to complex interactions between components and complex repair
policies, the Markov model often has an uregular structure, and closed-form solutions are
extremely difficulty to obtamn. Also, a_realistic system model often has an unmanageably large
state space and it quickly becomes impractical to even generate the entire transition rate matrix.
In this paper, we present a methodology that can (i) bound the system steady state availability and
al the same time, (i1) drastically reduce the state space of the model that must be solved. The
bounding algorithm is iterative and generates a part of the transition matrix at each step. At each
step, tighter bounds on system availability are obtained. The algorithm also allows the size of the
submodel, to be solved at each step, to be chosen so as to accommodate memory limitations. This
general bounding methodology provides an efficient way to evaluate dependability models with
very large state spaces without ever generating the entire transition rate matrix.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance—stochastic unalysis;
reliabtlity

General Terms' Algorithms, Availability, Theory
Additional Key Words and Phrases: Bounds, Markov models, stationary probabilities

1. Introduction

Computer systems are widely used in many applications (e.g., air traffic control
and banking applications) in which dependability is crucial, and system depend-
ability analysis has long been an active area of research. Techniques, such as
combinatoric analysis, Markov or semi-Markov analysis and simulation, have
all been used in dependability analysis.' In recent years, tools based on these

"For Markov or semi-Markov analysis, see de Souza e Silva and Gail [1989], Geist and Trivedi
[1985], Goyal et al. [1986], Heidelberger and Goyal [1987], and Trivedi [1982]. For simulation, see
Conway and Goyal [1987] and Lewis and Bohm [1984].

Thic research was supported by the National Science Foundation (NSF) under contract CCR
92-15064.

Authors’ address: 3277A Boelter Hall, Computer Science Department, University of California at
Los Angeles, Los Angeles, CA 90024.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and 1ts date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or
specific permission.

© 1994 ACM 0004-5411 /94 /0700-0676 $03.50

Journal of the Association for Computing Machinery, Vol 41, No. 4, July 1994, pp 676-707

Steady State Availability Bounds of Repairable Computer Systems 677

techniques have been built to aid system designers in evaluating and comparing
different architectures during the design process.*

There are two major types of dependability measures that are of interest.
The first type concerns transient measures, for example, distribution of the
number of times the system fails in a certain mode by time ¢ This type of
measure is especially appropriate for mission-oriented systems (e.g., spacecraft
computers). The second type concerns steady state dependability measures,
such as steady state availability. These measures are appropriate for systems
with lifetimes that are long enough to span many failure and repair cycles (e.g.,
database management systems or telephone systems). Methods to solve tran-
sient dependability measures of repairable computer systems have been re-
ported in [de Sousa e Silva and Gail, 1986; 1989]. In this paper, we concentrate
on steady state availability.

Markov models are most widely used in analyzing system dependability
because of their generality as well as their ability to represent complex
interactions among components (e.g., dependent failure rates, complex repair
policies, etc.). Because of these complex interactions between components,
closed-form solutions are extremely difficult, if not impossible, to obtain.
Therefore, numerical solution techniques are often used in analyzing the
Markov model. One of the most pervasive limitations of numerical techniques
is the inability to handle large models. For models of realistic systems, the state
space requirements often vastly exceed the memory and the storage capacity of
current (or future) systems [Stewart and Goyal, 1985]. Although approxima-
tions (e.g., state space truncation) can be applied to solve the cardinality
problem, the errors introduced are difficult to quantify. In this paper, we
present a methodology for computing steady state availability that can drasti-
cally reduce the state space cardinality and at the same time provide error
bounds.

The results recently reported in [Lui and Muntz, 1991; Muntz et al., 1989]
provide methods for computing bounds on the steady state availability of
repairable systems. In [Muntz et al., 1989], a “one-step” algorithm is proposed
that requires the user to make an a priori decision concerning the portion of
the state transition matrix to be generated, and the steady state availability
bounds are computed based on this submodel. In [Lui and Muntz, 1991], a
“multi-step” algorithm is proposed that allows stepwise generation of portions
of the state transition matrix, such that at each step, we can achieve progres-
sively tighter bounds on the steady state availability.

It is important to note that although each successive application of the
algorithm in [Lui and Muntz, 1991] can tighten the availability bounds, the
spread between the bounds has a non-zero limiting value, that is, the bounds
cannot be made arbitrarily tight by using the multi-step bounding algorithm. In
this paper, we present a general bounding methodology that augments the
previous results by providing an iterative procedure to refine the bounds to an
arbitrary precision.

After any step in the iterative computation, we have generated lower bounds
for the stationary state probabilities for a subset of the states of the model. The
lower bounds on the state probabilities are used to compute upper and lower

*See Carrasco and Figueras [1986]. Costes et al. [1981]. Goyal et al. [1986), Makam and Avizienis
[1982], and Trivedi et al. [1984].

678 J. C. S. LUL AND R. R. MUNTZ

bounds on the steady state availability. The algorithm we present in this paper
can then proceed in two ways: (i) another set of states can be explored and
lower bounds for their state probabilities can be computed or (ii) the lower
bounds on the state probabilities which have been previously computed can be
refined, that is, we can obtain improved lower bounds on these state probabili-
ties. We refer to the former as a forward generation step and the latter as a
bound spread reduction or backward step. A decision procedure to determine
whether to apply a forward step or a backward step is introduced and discussed
in a later section.

In Section 2, we introduce the model and the notation. We describe the
“one-step” algorithm in Section 3. In Section 4, the “multi-step” bounding
algorithm is presented. The bound spread reduction algorithm is presented in
Section 5, and Section 6 describes a decision procedure to determine whether
to generate more of the transition rate matrix and apply the multi-step
bounding algorithm or to apply the bound spread reduction algorithm to refine
the bounds for previously generated states. Up to this point in the exposition,
we make certain simplifying assumptions about the set of states the compose
the submodel at each step in the iteration. Section 7 describes an extension
that removes these assumptions and thereby further extends the results in [Lui
and Muntz, 1991; Muntz et al., 1989]. An example is discussed in Section 8, and
the conclusion is given in Section 9.

2. Markov Model and Assumptions

Consider a Markov model of a repairable computer system with state space 5.
Let R(i) be the reward rate associated with state i, i €.%. Let % be the
expected reward rate of the Markov model. We can express % as:

=Y w(i)R(i), (1)

e

where (i) is the steady state probability of state i. The system steady state
availability, S, is a special case of this expected reward rate function where:

N_[1 i iee
= ’ 2
R {o it ies @

where @ is the set of states in which the system is “operational” and % is the
set of states in which the system has “failed”.

Let N be the number of components in the system being modeled. We can
partition the state space % as follows:

F={FUF U - UF}

where & contains exactly the states with i failed components. Figure 1
represents the transition rate matrix Q of the model in which Q, | denotes the
submatrix of transitions from & to Z.

In this paper, we make two assumptions concerning the availability model.

(1) the underlying Markov process is irreducible, and
(2) the underlying Markov process has a block Hessenberg structure, that is,
Q, ,=0forj<i-1

Steady State Availability Bounds of Repairable Computer Systems 679

[Qoo Qo1 Qo2 Qon]
Qo Qu Qun e Q~
0 Qa Q2
G- 0 0 Qs Qa3
- . 0 Qi Qu
L 0 0 QN,N—I QNN]

F1G. 1. Transition matrix G.

The second assumption implies that the probability of two or more compo-
nents becoming operational in an interval of length Az is o(A¢). It is important
to note that this assumption does not preclude multiple repair facilities or
other common features of dependability models. Also note that a model in
which a dormant component becomes active due to the repair of a second
component does not violate the assumption. We simply do not consider such a
dormant component as failed in the definition of the state partitions.

3. One-Step Bounding Algorithm

In this section, we describe a one-step bounding algorithm, as reported in
[Muntz et al., 1989]. This one-step algorithm will be used as the initial step in
the general procedure to be presented later. In [Muntz et al, 1989], several
variations of the basic one-step bounding algorithm are described. Here, we
will only summarize the one version of the algorithm that is used in developing
the results of this paper.

Since computer systems are designed with high availability in mind, it is
reasonable to expect that most of the components are operational most of the
time. With this in mind, we partition the state space . as follow:

F={2 U},
where
& =A{Fyo1 Uiy - Fyh.
The idea we exploit in this section is to represent the transition rates between
states in & exactly and represent the behavior of states in .e/ approximately via
aggregation [Courtois, 1977]. The intent is that |2| < |«/.
Let 7, denote the stationary state probabilities for states in 2. Suppose

that we could determine a vector 7’ such that 7’ < #,,.° Then, we can express
bounds on the steady state system availability ., in terms of 7' as follows:

Y #(DRG) <8, < ¥ w(RG) + (1 . w'(i)) 3)
e =2 =7

*For two vectors x and y, the notation xfy means that x,0y, for all corresponding elements.

680 J. C. S. LUl AND R. R. MUNTZ
where

for operational states

R(i) = .
() 0 for non-operational states.

An interpretation of the above expression is that 1 — ¥, ., #'(i) is the fraction
of time that is not explicitly accounted for by the lower bound state probabili-
ties for states in &. The bounds are obtained by assuming that, in this fraction
of time, the system is either always operational (upper bound) or always failed
(lower bound).

In the remainder of this section we show how to efficiently obtain a tight
lower bound vector, 7'. There are two main ideas that are exploited to obtain
this lower bound. The first involves the notion of state cloning that was
introduced in [Muntz et al., 1989] and will be described next. In addition to
state cloning, the concept of state aggregation [Courtois, 1977] is adapted to
obtain an efficient solution. These ideas are now developed in more detail.

3.1. StaTE CLONING. In [Muntz et al., 1989}, the concept of state cloning is
introduced which is a modification of the original model. The modified model,
with the help of aggregation. can be exploited to obtain bounds. In the
following, we summarize the use of state cloning.

Given a model with the transition rate matrix G, as illustrated in Figure 1,
we form the following partition of the state space.

go = {Z)}
g ={7 UFH U - UF}
Gy = {F o] U, U s UG

The transition rate matrix can then be conformally partitioned and represented
as:

Gy Gu Gp
G=|Gy G G, (4)
0 G, Gy

in which G, , contains the rates for transitions from states in %, to states in £,.

Figure 2 illustrates the concept of state cloning in which the states of &, are
replicated. Applying the technique of state cloning to the states in &, the
states of 2 are replicated and we refer to the two sets of states as £, and
21, The transition rate matrix G of the modified model is given by

Go Gy 0 Gy
G - Gy Gn 0 Gy

Gy 0 |Gy Gyl

0 0 | Gy Gy

where the ordering of the states in &, %,,,%,,.,%,.

Each state in £ maps to a corresponding state in £, and also to a state in
£, An interpretation of cloning is as follows: Assume the system starts in %,.
As components fail and are repaired, the process remains in £, and &}, until

Steady State Availability Bounds of Repairable Computer Systems 681

for the first time there are K + 1 or more failed components. At this point, the
process enters a state in %,. When the number of failed components again
falls to K, the process enters £7,. The system then evolves in &, and £}, until
the next time it enters Z,.

It is convenient to 1ntroduce a bit of notation at this point that will make it
easier to express the relationship between the stationary state probability
vectors for two Markov chains. Let & be any subset of states for a Markov
chain with transition probability matrix G. The stationary state probability
vector for states in & is denoted by 7y . In the special case that & is the
entire state space we denote the stationary state probability vector by ;.

We return now to the main line of development. From the construction of G’
from G, it is easy to show that the steady state probability vectors for the two
Markov chains are related as stated in the following Lemma.

LeEMMA 3.1. Let G and G’ be as defined above. Let & =%, U &, and
=%,V 7. Then my g < Ty -

PROOF. If [my s Ty 160 Tor 0o Ty s) I8 the solution of ;.G =0
and Y.7;.(i) = 1, then m; = [W?U/G s Tg G0+ e 16 Mg, 68 the solution
of m;G = 0 and Lm;(i) = 1

It follows that r,, ,; = 75 , and, since 7 > 0, that To /60 < Ty /G-
The lemma follows dlrectly from these observations. 0O

From the above lemma, it follows that if we could efficiently obtain a
solution for mg, ¢ and 7, . then we would have the lower bound we need.
Of course, the matrix G’ is larger than the original matrix G, so solving G’
directly is not an improvement. We now show that due to (a) the original model
being block Hessenberg and (b) the manner in which state cloning altered the
model, we will be able to use aggregation to reduce the size of the model that
has to be solved and still maintain lower bounds on the steady state probabili-
ties for states in 9.

3.2. STATE AGGREGATION AND TRANSITION RATE Bounps. let &), =
UK F where Z/, 1 <i <K, is the subset of states of £/, in which there are
exactly i failed components. For each Z,i > K + 1 form onc aggregate state
and for each &/,1 < i < K form one aggregate state. Then the transition rate
matrix G”, is deplcted in Figure 3 where the r, | elements represent transition
rates between aggregate states. Note that the submatrices Gl ,» K<j<N
have smgle columns and the submatrices G, and G, K <j <N are 1 X 1
matrices since %, contains only a singleton state. Assummg that exact aggrega-
tion [Courtois, 1977 1982] is used to compute the transition rates out of the
aggregate states then:

T 60 = T G 3

where @' =%, U 27,

Of course, the described construction of " assumed exact aggregation that,
in general, requires having a knowledge of the conditional state probabilities
for each subset of states being aggregated. We now show that bounds, rather
than exact values, for the aggregate transition rates will suffice to obtain

bounds on 7, ez

682 J. C. S. LUl AND R. R. MUNTZ

FiG. 2. Relationship of G and G'. a

G
[Goo G| O - 0 Gown e Gon]
G Gn 0 s 0 G1 k41 s Gin
Ty110 0 ® e Ty TUK41 L TUN
G” = 0 0 Torys L] s TR +1 e TN
0 0 0 ryp o0 Takp T T3'N
L 0 0 0 0 0 0 TN N-1 @ |

FiG. 3. Form of transition matrix after aggregation.

Consider a Markov process with generator G” as depicted in Figure 3.
Construct a generator matrix G” from G” by replacing the non-zero aggregate
failure rates (i.e., r,, with j > i) by upper bounds and the aggregate repair
rates (i.e., r,, with j =/ — 1) with non-zero lower bounds (see Figure 4). The
Markov chain remains irreducible and the following theorem relates g ,gn
and 7 G-

THEOREM 3.1. 75 ,gn < g /.

Proor. This is a simple application of Lemma 2 that is given in the
Appendix. O

3.3. SUMMARY. In summary, the one-step bounding algorithm can be de-
scribed as follows:

procedure one-step bounding algorithm
begin
Pick K such that the transition rates in & can be represented exactly;
Generate the matrix G” as in Figure 3 (except for the aggregate transition rates).
Generate upper and lower bound aggregate transition rates to form the matrix G” as in
Figure 4.
Solve the model:
Based on the computed (lower bound) probabilities for states in &, compute the upper
and lower bounds on S, from Eq. 3;
end

Steady State Availability Bounds of Repairable Computer Systems 683

[Goo Goy | 0 0 Gowpr -+ Gon]
G G |0 0 Gigpr - Gin
— 0 | e --- ..
0 0 |- o + _—:: i Fig. 4. Form of rate matrix after
bounding transition rates.
0 010 - + +
0 010 0 0 0 - * |

4. Multi-Step Bounding Algorithm

In the “one-step” bounding algorithm described in the previous section, the
dimension of the submatrix G, 4 is specified a priori and once the steady state
availability bounds have been calculated, there is no method provided for
further tightening of the bounds. In this section, we describe a multi-step
bounding algorithm [Lui and Muntz, 1991], which allows the bounds to be
tightened by investing more time in computation. The multi-step algorithm
allows incremental generation of more of the transition rate matrix, that is, at
each step a new portion of the matrix is generated. Further, at each step the
results from the previous steps are used to form a transition rate matrix whose
solution provides lower bounds on the stationary state probabilities for an
additional set of states. This allows incremental improvement of the bounds on
system availability.

We introduce the following notation for the multi-step bounding algorithm:

2, = the set of states which are generated in the ith step of the bounding
procedure and for which lower bounds on the stationary state proba-
bilities are to be calculated.

@, = clone states for the states in ,.
@/ = set of states in &; with exactly j failed components.
c/ = aggregate state corresponding to %/

2! ={2,VU---VUg _,U% U--UZ_,.

d = aggregate state corresponding to @’

&, = the complement of {Z' U} (i.e., the portion of the state space that
is unexplored.)

a, = aggregate state for all the states in ./ that have exactly j failed
components.

L, = integer associated with the ith step that denotes the minimum num-
ber of failed components for states in Z,.

H = integer associated with the ith step that denotes the maximum num-

ber of failed components for states in 2,.
Q. o = transition rate matrix containing transition rates between states in 9,.
9:/ "= transition rate vector from states in Z, to state j.
R, 5 = row vector of transition rates from aggregate state d' to states in 2,
R, & = row vector of transition rates from aggregate state d' to states in %,.

T transition rate from aggregate state i to aggregate state j.

At the ith step of the “multi-step” bounding algorithm, there are three
disjoint sets of states. They are: &/, 2,, and . During the ith step of the
algorithm, 9, is composed of all the states that have between L, and H, failed
components. Figure 5 illustrates this partitioning of the state space in terms of
the transition matrix G.

Il

684 J. C. S. LUI AND R. R. MUNTZ

Qoo Qop, Qpa
FiG. 5. Rate matrix G. Initial matrix. Qv Qpop, Qp.a
0 Qup, Qaa

To illustrate how the multi-step bounding algorithm provides lower-bound
state probabilities for states in &2, we describe a sequence of transformations
of the rate matrix G such that for each state space transformation, state
probabilities for states in &, in the original model are individually bounded
from below by the state probabilities for &, in the transformed model. During
this sequence of state space transformations, we use the basic aggregation /dis-
aggregation technique described in [Courtois, 1988]. Of course, just as in the
one-step bounds procedure, exact aggregation is not actually required in the
computation of the steady state system availability bounds. We merely use the
existence of an exact aggregation in the intermediate steps of the development.
In the end, we only need bounds on transition rates out of the aggregate states.

Figure 6 depicts the rate matrix G, which results from the first transforma-
tion of . G, corresponds to the cloning of the states in 2, and the set of
cloned states is denoted by & . Note that in the rate matrix G, the submatrix
Qs & 18 equal to Qg ,. A similar transformation was described in the
previous section and based on that discussion, it is clear that:

if (75,6, 75 ;60 Te ,6» T yG,] 18 the solution of 7w, G| = 0 and

Y (i) =1,

then [7g 6,75 6, + Te ;6 Ty,] is the solution of m;G =0 and
ragi) = 1.

Since 7¢ ,, = 0, the following relationship holds:
To,,6, = Ta /G (6)

Figure 7 depicts the next transformation. In this transformation, G, is
formed from G, by applying exact aggregation to the states in &', Let d’ be
the state that represents the aggregation of all states in 2'. Because exact
aggregation is assumed, we have the following relationship:

T5./G. = T,/G, D

G, in Figure 8 is the result of the next transformation on G,. G, has a
structure similar to that of G, except that the transitions from d' to states in
2, and €, are modified. The submatrices R, and Rjy.. in G; and R, in
G, are required to satisfy the following constraints:

Ryg =0
Rie =0
R/d'@, + R,d’z;/, = Rd'@l- (8)

A probabilistic interpretation is that the original transitions from d’ to states
in 2, are “split” so that part remains to the corresponding state in &, and part
goes to the corresponding clone state in #.

Based on the definition of G5, we have the following theorem:

THEOREM 4.1. To /6, < To /G,

Steady State Availability Bounds of Repairable Computer Systems 685

oo Qop, 0 Qpa
Qoo Qpp, 0 Qpua
Qoo 0 Qee, Qpoa

0 0 Qup, Qaa

Fic. 6. Rate matrix G,. Introduction of clone states.

e Rup, 0 Rya

@p.e @D, 0 Qp.a Fic. 7. Rate matrix G,. After exact aggregation of the
Gpe 0 Qee Qpoa states in 9.
0 Qup, Qua

] R;"D, ;'Cx Rd'A -|
@pa Qoop, 0 @pa
G 0 Qee, @pa

J Fic. 8. Rate matrix G4. Modified rates from state d’.
0 0 Qup, Qua

Proor. First, the following equations are easily seen to hold:

Ty G, = T)Gy

To,/G, T Ta,6, ™ Ta 6, T Ta /G,
TwrGy, = Tw/G,y

The flow conservation equation for states in &, corresponding to G, and G,
are:

—1
T /G, = wd’/Gqu’,@(_QQE/))
779,/03:774/6 (Q@)

Observe that since (—Qg ;) is a non-singular M-matrix [Varga, 1962}, it’s
inverse is a non-negative matrix and since R s9, = Ry, it follows immediately
that 7, ¢ > 7, 6. O

Theorem 4.1 holds for any vectors R, and R which satisfy Eq. (8). In
particular, we now define G, by selecting specific values for these vectors. The
following provides a deﬁmtlon of a particular value for R, ,, which is
computable at the ith step.

Ry o = [WQ’I]MI”TQ’QQ’,Q
> [wLd + (1 -] 7,00 5 =Ry (9)
where:

7, = exact steady state probability vector for states in 2’
.+ = lower bound steady state probability vector for states in &' (which we
have computed in previous steps).
a = sum of the lower bound state probabilities for all those states we have
generated thus far.
1 = column vector of 1's.

g
|

686 J. C. S. LUI AND R. R. MUNTZ

We also set Ry o = R, 5 — Ry 5. Of course, R, ., is not known so that
this can only be done in the abstract. (After the next transforrnatlon we will
show that the exact value for R, , does not have to be known to obtain
bounds.) It follows from the definition of G, that To scn < Tg /G,

In the next transformation, exact aggregatlon is applled to the states in &

4
and . One aggregate state is formed for each subset #’ in @, and ¥ in .
The result of this transformation is the rate matrix G, as depicted in Figure 9.
Note that the relative ordering of the state d' and the set of states &, has been
permuted. This will make it a bit simpler to describe the next transformation.
Since exact aggregation is assumed in forming G,, the following relationship

holds:
7791/(;4 = 7T9,/G’3' (10)

In the next transformation G, is constructed from G, by replacing some of
the aggregate transition rates by upper bounds and some by lower bounds.
Specifically, (see Figure 10) the transition rates from state d' to the aggregate

states ¢/,..., ¢/ and to the aggregate states a’, ..., a, are replaced by upper
bounds. Similarly the aggregate “repair rates”, r’ ™', rl,..., Ty el o
Tay o vctiss-oTu o, AT€ replaced by lower bounds. (How to compute bounds is

discussed below.) The relationship between G, and G satisfies the require-
ments of Lemma 2 in the Appendix and therefore we have

T2,/Gs = T9,/Gy (11)

In the sequence of model transformations that has been described, each
yields a lower bound on the stationary state probabilities for states in 2,
compared with the previous model and therefore:

To /G, < To /G- (12)

In terms of state space cardinality, clearly G5 has a much reduced state
space compared with that of G. The remaining question is how to provide
bounds for the transition rates indicated in Figure 10.

Preliminary to computing bounds for the transition rates r, ,, L, <j < H,,
let us define the following:

@) = states in &, with exactly j failed components.
v, o, = tramsition rate vector from state d’ to states in Z.
Qo o, = transition rate matrix from states 2’ to states in /.
Foaxli, J)= maximum entry in vector Qo o1
a = sum of the lower bound state probabilities for all those states we

have generated thus far.

The rate from aggregate state d’ to aggregate state c/,r, ., is easily seen to
satisfy the relationship:

Far et < min{sum of all failure rates,
[721] " [Qup o1 + (1 = @)r] — Ry 7,1} (13)

which provides an upper bound for transition rates from state d’ to each of the
aggregate states ¢/, L, <j < H,. Bounds on the transition rates from d' to the

Steady State Availability Bounds of Repairable Computer Systems 687
Qo.p, Qpa| 0 0 0 QDoam 1 @Diamss QDoan |
Rd',D; * Td',C,L' Td’,C,L'“ Td’,C,H' rd'vaH.ﬂ 7’d’,a;1,+2 Td'an
0...0 TCIL' ! ¢ rclL’ ,clL'+1 TCIL‘ ,ctH’ ch" JOH, 41 rch' VOH, 42 rc'L' an
0...0 Tt el ¢ A TC.L'H,GH.H TC‘L’H,'IH,H CTl e,
0... .

0 0 TctL‘+2,C'L'+1 e ch“”,ch‘ Tc{“‘“,a;;,“ TQL’+2~&H,+2 T’C'L,+2‘an
0 ° T H, T H,
€, OH,+1 ¢ »9n
0.. 0 0 0 TaH,+1yC,H' ° Tag, 410,42 " Tag, 4180
0 0 0 0 0 T'aHz+2,aHz+1 o raHl+2,ﬂn
0 0 0 O 0 0 raH'+3,aHt+z TEH,+3yan
10...0 0 0 0 0 0 0 0 .
Fi1G. 9. Rate matrix G,. Exact aggregation of states in €, and ..

[@p,p, Q|0 0 0| @pany @riagye QD Ay |
Ry p,] + + + + + +
0...0 o + + + + +
0...0 0 — e + + + +

0 — o + + +
0...0 0 ---0 . + +
0...0 0 0 0 - L + +
0 0 0 0 - ° +
0 0 0 0 — U +
1 0...0 0 0 0 0 0 0 0 S — o |
FiG. 10. Rate matrix G5. Replacement of transition rates with bounds.

aggregate states a,, H, < k < N, have an analogous expression in which the
appropriate submatrix is substituted for Qg ., that is, the submatrix contain-
ing the transition rates from 2, to %/* (the set of states in ./ with k failed
components). The required bounds on the rates out of the remaining aggregate
states can be found as described in the section on the one-step bounds.

The multi-step bounding algorithm can be summarized as follows:

procedure
begin

multi-step bounding algorithm

Aggregate all states in 2 to a single state;

Decide on the dimension of &, and generate the transition rates for states in &,;

Generate upper and lower bound aggregate transition rates using Eqs. (9) and (13) for the
rates out of d’ and simple bounds for the rates out of the other aggregate states, that
is, minimum repair rate for lower bounds and sum of failure rates for upper

bounds.

688 J. C. S. LUI AND R. R. MUNTZ

Solve the model;
Based on the lower bound state probability vectors for &, and &, compute the improved
bounds on system availability ., using Eq. 3;
end

5. Bound Spread Reduction

In the previous two sections, we have described a one-step and a multi-step
procedure for bounding the steady state availability of a repairable computer
system. The multi-step bounding algorithm provides only a partial answer to
further tightening of the system availability bounds. It is not a complete
solution because errors are introduced at each step that are never recovered in
later steps. The implication is that the bound spread will not approach zero
using the procedures that we have developed thus far. At each step of the
multi-step procedure, there are two components to the bound spread that are
introduced and which are not later reduced by further steps. The two compo-
nents are:

(1) in considering the clone states, # to have reward of 0 or 1 in the
evaluation of the availability bounds

(2) in the difference between the lower bounds and the actual values of the
stationary state probabilities of the “detailed states™ in &,

The contribution to the bound spread by components (1) and (2) are not
reduced by successive applications of the multi-step algorithm. In this section,
we show how we can reduce these errors and obtain tighter bounds by
re-evaluating previously calculated bounds for state probabilities. The bound
spread reduction algorithm we propose is iterative in nature. We first reduce
the error associated with clone states by obtaining lower bounds on their
stationary state probabilities. Once we obtain these lower bound state probabil-
ities, an improved estimate of the transition rates out of the aggregate clone
states can be computed. With these improved transition rates, we can reduce
the error in the stationary state probabilities of the “detailed states” 2. An
important point is that the bound spread reduction algorithm does not require
generation of more of the transition matrix (it does require reusing previously
generated portions of the transition rate matrix). In Section 5.1, we present the
approach to reducing the error associated with clone states and in Section 5.2,
we present the approach to obtaining improved lower bound state probabilities
for the “detailed states”, &r.

5.1. BOUND SPREAD REDUCTION FOR THE CLONE STATES. Until now, we
have assigned a reward of 0 or 1 to all aggregate clone states in the computa-
tion of the system availability bounds. In this way, we never had to be
concerned with the state probabilities for individual clone states in . To
reduce this source of error, we would like to obtain a lower bound for the state
probability of each individual clone state and incorporate this information into
the bounds. To do this, we make use of the fact that the clone states #, have
exactly the same transition structure as the detailed states, &,. Since this
portion of the transition rate matrix is already generated, we can use it to
compute a lower bound on the state probabilities of the individual clone states.

Assume that at the i + Ist step of the multi-step procedure, we have already
obtained lower bounds on the state probabilities for all states in &, , and we

Steady State Availability Bounds of Repairable Computer Systems 689

now want to find lower bounds on the steady state probabilities for the clone
states in &,. Let us define the following notation:

Te = steady state probability vector for the clone states in %,

gL = steady state probability vector for the detailed states in &, with
exactly L, | failed components.

Qg1+, &, = portion of the transition rate matrix corresponding to transition
from states in 2,54 to states in Z..

From flow conservation we have:
Te ng + Tt I?LIQQ’IH %, 0 (14)

The first term holds because QQ o, = Qu &. In the previous step (of the
multi-step procedure), we have obtained lower bounds on the state probabili-
ties m5..... We now show that by applying an iterative solution method (e.g.,
Jacobi or Gauss—Seidel Iterative method [Varga, 1962]), we obtain a lower
bound on the state probabilities of the clone states. In the remainder of this
section, we formulate the iterative procedure using the Gauss—Seidel iterative
method. Note that 7., ., is constant in this algorithm (the lower bound state
probabilities obtained ‘from the previous bounding step). We show that the
iterative procedure:

(1) converges and converges to a unique solution,

(2) converges from below,

(3) converges monotonically,

(4) the solution (fixed point) is a lower bound on the exact state probabilities
of the clone states.

These characteristics are especially interesting because they indicate that the
iterative process can be ferminated at any step and the current values are
guaranteed to be lower bounds on the state probabilities of the clone states.
Once the lower-bound state probabilities of the clone states are known, we can
obtain tighter system availability bounds.

Let us rewrite Eq. (14) as:

_Q9 2,7 Qj 1+1{7T§ Liy1s (15)

which has the form of a linear system Ax = b (with x = 7y). Note that each
diagonal element of A is the absolute value of the transition rate out of the
associated clone state and the off diagonal elements are the “negated” transi-
tion rates from one clone state to another clone state. Let A = [D, — L, — U,]
where D, is a diagonal matrix and L, and U, are lower and upper triangular
matrices, respectively. The Gauss—Seidel iteration can be written as*:

x® = [, — L) U, |x* " + (D, ~ L) 'b
with
x® =9 (16)
A necessary and sufficient condition for the above iterative process to converge
to a unique solution is for the spectral radius p[(D, — L,) 'U,] to be less

than 1 [Burden and Faires, 1989]. Since A and (D, — L,) are nonsingular
M-matrices, their inverses are nonnegative matrices, and (D, — L,) and U,

*In order to guarantee the claimed characteristics, an initial vector of zeros is chosen. There exist
other initial vectors that can speed up the convergence rate but the zero vector is the only known
lower bound vector the first time we apply this procedure.

690 J. C. S. LUI AND R. R. MUNTZ

form a regular splitting of the matrix A [Varga, 1962]. Hence, the spectral
radius, p[(D, — L,) 'U,], is less than 1. Therefore the iterative process does
converge to a unique solution. In the following, we show that the iterative
procedure also has the other claimed characteristics. To show the convergence
characteristics of our algorithm, we need the following theorem from [Berman
and Plemmons, 1979]:

THEOREM 5.1. Consider a linear system Ax = b and the iterative formula
xF+D = g 4 C

Let A = M — N with A and M being nonsingular and H > 0 where H = M~'N.
If there exists x' such that x'V < xV is computed from the iterative formula, then:

@ <xM< s <xW < A D
COROLLARY 5.1. The proposed iterative procedure converges monotonically.

ProOOFR. The result follows directly by making the following associations
with the terms in Theorem 5.1.

M: (DA_LA)

N =1,

C=M,-L) 'b

x = 0. O

LEMMA 5.1. The fixed point x* of the proposed iterative procedure is a lower
bound on the exact state probabilities of the clone states.

PrOOF. Let x’ be the exact state probability vector for the clone states. We
have to show that x’ — x* > 0. Let b’ be a row vector containing the exact
rates into the clone states from states in Z/%;'. Then:

Ax* =D
Ax' =1
b'—b=>0

The above inequality holds because we computed b from lower bound state
probabilities for states in @,L+1. It is easily seen that:

X —x*=A"p —A'b
=A"'(b —Db) =0
Since(—b)>0and A™' > 0. O

To summarize, the algorithm for tightening the bounds on the clone states in
%, is as follows’:

procedure Bound Spread Reduction for &,
begin
Let 70 = 0;
do '
apply the iterative procedure embodied in Eq. (16);
while (specified tolerance is not satisfied)
end

*We are actually computing tighter lower bounds on the states in %, but we refer to this as
“bound spread reduction” since tighter bounds on the state probabilities for %, lead directly to
tighter system availability bounds.

Steady State Availability Bounds of Repairable Computer Systems 691

5.2. BOUND SPREAD REDUCTION FOR THE DETAILED STATES. Recall that in
computing lower bounds for the state probabilities of the detailed states 2, we
used upper bound failure rates (e.g., sum of the failure rates) and lower bound
repair rates (e.g., minimum repair rate) for the aggregates. Using the proce-
dure described in Section 5.1, we obtain improved lower bounds for the
stationary state probabilities of the clone states. In this section, we show that
these lower bounds on the clone state probabilities can be used to generate
tighter bounds on the aggregate transition rates out of the clone states and
thereby obtain improved lower bounds for the state probabilities of the
detailed states, &,.

Let us define the following notation:

r(cl, cf) = transition rate from the clone aggregate ¢/ to clone aggregate c’.

a = sum of the lower bound state probabilities for all states generated
thus far.

Tt = lower bound state probability vector for clone states in & with
exactly & failed components.

Fmex = maximum entry in vector Qg gnl.

Since we already have a lower bound for the state probability of each clone
state, improved lower bounds on the “repair rates” between the aggregates can
be obtained as follows:

r(ck, k1) = max{minirnum repair rate, [m .1 + (1 — a)] 717T%IAQ9’A‘911\—11}.
(17)

Similarly, an improved upper bound on the failure rate from aggregate c* to
aggregate c;" is as follows:

r(ck cm

[2

)+ = min{sum of all failure rates,

(7Tg[l\1)~1[W%le_@lkwglml + (1 - [l)l”rlnka';l]}. (18)

Equations (17) and (18) follow easily from considering the conditional transi-
tion rates between aggregate based on upper and lower bounds on the
conditional state probabilities. For example, in Eq. (17):

[Wg[kl + (1 — a)]_l’nglk

is a lower bound on the conditional state probability vector for states in &*.
To summarize, the bound spread reduction algorithm for states in 2, is as
follows:

procedure Bound Spread Reduction for 2,
begin
Based on the rate matrix G5 in Section 4,
for each pair (¢, ¢/ ') where ¢/, ¢/~ ! € &, compute the improved clone aggregate repair
rate r(c’,c{~") using Bq. (17);
for each transition from a state ¢« to aggregate state d', compute the improved clone
aggregate repair rate r(cl, d') using Eq. (17);
for each pair (c/, clk) where ¢/, ckF e %,, compute the improved clone aggregate failure
rate r(c/, c¥) using Eq. (18);
compute an improved lower bound on the state probabilities by solving G5 with the
improved bounds on the aggregate transition rates

end

692 J. C. S. LUI AND R. R. MUNTZ

5.3. BounD SPREAD REDUCTION ALGORITHM. The above bound spread
reduction procedure will give us improved lower bounds on the state probabili-
ties for detailed states in &, and clone states in &, corresponding to step ¢ of
the bounding process. We can repeat the bound spread reduction procedure
for detailed states and clone states corresponding to steps i — 1,i — 2,...,1 of
the bounding process. Since we then obtain improved bounds for states in 2,
we can go forward again and apply the multi-step bounding procedure to
obtain tighter lower bounds for states corresponding to steps 2,3,...,i + 1.
The complete bound spread reduction procedure can therefore be stated as
follows:

procedure Bound Spread Reduction Procedure
begin
set [= the index of the last forward step.
forj=i—1toldo
begin
Apply the algorithm in Section 5.1 to tighten the bounds for clone states in &;
Apply the algorithm in Section 5.2 to tighter lower bounds for states in &7;
end
for j =1to i do
begin
Apply the multi-step bounding algorithm described in Section 4 to obtain tighter lower
bounds for states in &;
end
end

Clearly, the bound spread reduction procedure can be applied repeatedly to
obtain tighter availability bounds. Also, each time we apply the bound spread
reduction algorithm to improve the lower bounds on the stationary state
probabilities for the clone states, the initial vector for the clone state probabili-
ties can be set to the estimated fixed point solution vector from the previous
bound spread reduction algorithm. Since this estimated fixed-point solution
vector is a lower bound for the exact solution vector, by using it as a starting
vector, we not only reduce the number of iterations but also preserve the
monotonicity characteristics we claimed for the algorithm. In the following, we
show that by using the estimated fixed-point solution vector from the previous
bound spread reduction procedure, we preserve the monotonic convergence
characteristic.

COROLLARY 5.2. Using the estimated fixed point solution vector from the
previous bound spread reduction procedure, the monotonic convergence character-
istic is preserved.

PROOF. Let us define the following

b =the vector of conditional rates from &, to ¢, computed using the
lower bound state probabilities Tty

g1 =the vector of new lower bound state probabilities computed in the last
step of the bound spread reduction procedure, where /1, > ToLy

b, = the vector of conditional rates from &, to &, computed using /, Lt

In the previous step of the bound spread reduction procedure, we obtained
improved lower bounds for the detailed states 2, ,. This implies that we have
improved lower bounds for the stationary state probabilities of states with L, ,

Steady State Availability Bounds of Repairable Computer Systemnis 693

failed components, wg’zml. Based on these improved lower bounds, we can
obtain a new vector b,, which can be expressed as:

b, =b + b,
where
b, =0

Let x¥ = x where % is the estimated fixed point solution from the previous
iterative procedure. Since ¥ is a lower bound state probability vector for the
clone states, x' can be expressed as (see Eq. (16)):

x = [(D, — L) U]g+ 0, — L) b+ (D, - L) b

in which x! > %. Note that the sum of the first two terms on the right-hand side
must be greater than X by Theorem 5.1. The last term is nonnegative and
therefore x'V > %. Applying Theorem 5.1, the result follows. O

Lastly, we estimate the cost of the bound spread reduction procedure after
the kth step of the bounding process. The cost of one iteration of the bound
spread reduction procedure is:

k
0(y k,|.64|) w
j=1
where k, is a constant multiplier which is a function of the number of nonzero
entries in the matrix &, and the number of iterations for the algorithm to
converge. In [Stewart and Goyal, 1985] it is reported that the number of
iterations often ranges between 20 and 100. In our case, since the starting
probability vector is the estimated fixed point solution vector computed from
the previous step, in successive steps the number of iterations required for a
specified tolerance can be expected to be significantly reduced in most cases.
Although the bound spread reduction algorithm can be applied repeatedly,
there are diminishing returns in successive iterations. It is of interest then to
estimate when it is better to repeat the bound spread reduction algorithm and
when it is better to generate more of the transition rate matrix corresponding
to unexplored states. This issue is discussed in the next section.

6. Decision Criteria for Backward Iteration or Forward Generation

Although tighter availability bounds can be obtained either by going forward
(i.., by generating more of the transition rate matrix) and applying the
multi-step bounding algorithm or by going backward (i.e., reducing the errors
accumulated in the previous steps) and applying the bound spread reduction
algorithm, the computational cost and potential gain for these two choices can
be quite different. For the multi-step bounding algorithm, we have to consider
the following:

—computational cost of state generation,

—storage cost of the newly generated transition matrix,

—computational cost of evaluating steady-state probabilities for the detailed
states.

694 I. C. S. LUI AND R. R. MUNTZ

For the bound spread reduction algorithm, all the transition matrices used
are generated in the previous steps. Therefore, the only cost is the computation
cost of the bound spread reduction process and the cost of retrieving transition
matrices from secondary storage, if they do not all fit in main memory
concurrently.

In order to decide which algorithm to apply, we have to also compare their
respective potential gains. We define the potential gain as the fractional
improvement in the spread between the upper and lower availability bounds.
For the bound spread reduction algorithm, the potential gain comes from
improved bounds on the detailed states and clone states. In the forward
direction, the potential gain comes from the ability to obtain lower bounds for
additional states. Although we can apply the bound spread reduction algorithm
repeatedly to reduce the errors, the potential gain for each successive applica-
tion exhibits diminishing returns. On the other hand, going forward will require
generating more of the transition rate matrix. But since the distribution of
state probabilities is skewed, these newly generated states may not make a
significant contribution to bound reduction.

Based on the above discussion, we see that the problem of making an
optimal decision is not trivial. One important requirement for the decision
algorithm is that its computation cost should be much less than that of the
multi-step bounding or the bound spread reduction algorithms themselves.
Since we always obtain improved bounds regardless of the decision, the worst
possible effect is some inefficiency. Although finding an optimal decision
algorithm is an interesting theoretical issue, we conjecture that truly optimal
decision algorithm will be very costly to implement and finding the optimal
decision algorithm is beyond the scope of this paper. Nevertheless, a decision
algorithm is required to implement the complete bounding methodology. The
heuristic decision algorithm we present is not meant to be optimal in any sense.
It is a simple, common sense heuristic that we have found to work well in
practice. In the following, we described this heuristic decision criteria.

Let us define the following notation:

s;(i) = difference between the upper and lower bounds on availability after
the ith application of the forward-step algorithm.

s,(i) = difference between the upper- and lower-bound availability after the
ith application of the bound spread reduction algorithm.

s. = current difference between the upper and lower bounds on availability.

qy = estimated gain if the multi-step bounding algorithm is applied (forward
step).

g, = estimated gain if the bound spread reduction algorithm is applied

(backward step).

In deciding whether to apply the forward step algorithm for the (i + 1)st time,
we estimate the gain g; as follows:

s.(i—1) —s5,()
o L6050

sp(i — 1) S (19)

with the first term representing the fractional potential gain from the previous
application of the forward step algorithm. In essence. g estimates that, if the

Steady State Availability Bounds of Repairable Computer Systems 695

multi-step algorithm is applied, the gain will be the same fraction of the bound
spread as was achieved by the previous step.

The estimated gain for going backward after the jth application of the bound
spread reduction bounding algorithm, g, is as follows:

(-1 —s,(j
g = Lo ,) S}’(msc for j>1 (20)
s,(j— 1D

with s,(0) = s,. The first term represents the fractional potential gain for the
previous iteration of the bound spread reduction algorithm and g, estimates
that another iteration of the bound spread reduction algorithm will reduce the
bound spread by the same fraction as the previous iteration.

In the following, we propose a simple heuristic for deciding the next step in
the procedure. The algorithm is applied after each forward step. Note that one
(backward) bound spread reduction is always applied before a decision is made.

procedure decision algorithm
begin
Apply the bound spread reduction algorithm described in Section 5.3 for one iteration;
Compute g; and gj;
while (g} <'g;)
begin
Apply bound spread reduction algorithm described in Section 5.3 once;
Compute g; and g,
end
Apply the multi-step algorithm from Section 4
end

In essence, the decision algorithm is biased toward reducing the accumulated
errors from the previous steps. By doing this, it also avoids the state generation
cost and the storage cost of the multi-step bounding algorithm. The decision
algorithm cost is clearly trivial. A detailed example in Section 8 illustrates the
application and effectiveness of the heuristic.

6.1. GLOBAL BOUNDING ALGORITHM. The global algorithm is as follows:

procedure Global Bounding Algorithm
begin

i=1;

Based on the one-step algorithm described in Section 3, generate lower bounds on the
stationary state probabilities for states in &, through &, and compute the system
availability bounds;

if (system availability bound is tight enough)

stop
while (system availability bound not tight enough) do
begin
i=i+1
Based on the multi-step algorithm described in Section 4, generate the portion of the
rate matrix corresponding to & to &, (with L, = H,_; + 1) and compute the
system availability bounds;
if (system availability bound is tight enough)
stop
Apply Bound Spread Reduction algorithm described in 5.3 and compute the system
availability bounds;

696 J. C. S. LUI AND R. R. MUNTZ

if (system availability bound is tight enough)
stop:
compute gy and g;;
while (g} < g)
begin
Apply Bound Spread Reduction algorithm described in 5.3 and compute the system
availability bounds;
if (system availability bound is tight enough)
stop;
recompute gr and g,
end
end
end

Thus, the global bounding algorithm provides a method for piecewise gener-
ation of the transition matrix such that at each step, tighter system availability
bounds can be obtained. One important note is that the algorithm can be
terminated at any phase depending on the tightness of bounds required. This is
due to the fact that at all times, we have bounds on the system availability.

7. Partial State Generation

In the previous sections, we developed an algorithm to compute bounds on the
steady state availability bounds of repairable computer systems. The algorithm
assumes a rate matrix generation process in which it is feasible to generate
portions of the matrix in chunks which correspond to sets of states of the form
U /L, 7 for some L and H. However it may be that |7 can be too large to be
solved in one step (e.g., for a model of a system with 100 components,
|%,,] > 10%). When this situation occurs, &, will have to be a proper subset of
states in .% for some i. In this section, we extend the algorithm so that it can
accommodate this generality.

Assume we want to compute lower bounds for the state probabilities of
states in {&#, U, U -+ F} using the one-step bounding algorithm. Let G in
Figure 1 be the original transition rate matrix. After applying cloning to all
states in {F, U -+ U F.}, we obtain the transition rate matrix G, as depicted in
Figure 11.

Assume that due to memory limitations, we can handle the portion of the
rate matrix corresponding to @ ={%, U - U%._, USF.}, where & is a
proper subset of & . Let %] = {9, — %/} where the corresponding transition
rate matrix &, is depicted in Figure 12.

In order to compute lower bounds for the state probabilities of states in the
set @, we traneform the rate matrix G, to G, (depicted in Figure 13). This
transformation has the following probabilistic interpretation. Whenever there
is a transition from state j in &, to state k in %, this is made a transition from
state j in 9, to state k in %% instead. Since we apply cloning to states in
{# U - UF}, there is a natural one-to-one mapping from any state in &, to
its clone state.

As in previous sections, let TG, be the vector of stationary probabilities of
states in &7 with rate matrix G,. The following theorem shows that the solution
of the transformed matrix provides lower bounds for the state probabilities of
states in 9.

Steady State Availability Bounds of Repairable Computer Systems 697

[Qoo Qo1+ Qox-1 Qox | 0 0 0 Qon-1 Qon]
Qo Qu + Qi1 Qx| 0 0 0 Q1 v Q1N
0 @u - Qix-1 Qax i O 0 0 Q2N—1 QN
: P : : 0 0 0 . : :
0 0 -« Qxr-1 Qur| 0 - 0 0 v QrN-1 QA
Qlo 0 o 0 O Qll o Ql,[\'vl Ql,l\' o QI,JV—I (JI,N
0 0 . 0 0 Q21 o QZ‘I\'—I Qz,l\‘ o QZ,N—I Qz.N
0 0o - 0 0 0 Qrr-1 Qrr |~ @Qrna Qr.N
o 0 - 0 0 0o - 0 Qrirr | Qrsrvot @rprn
L 0 0 - 0 0 0 - 0 0 © Qunor Qnw
FiG. 11. Transition matrix G,.
_QOD QO] o QO.I\'—'I QUJ\” QO.]\”’ O 0 O 0 O o QU,N*l QOH’V]
Qo Qu -~ Grnr Qurr | Qur | 0 - 0 0 0 Qrv1 Qi
0 Qu - Qorn-1 Qaxi| Qx| 0 - 0 0 0 <« Qanvot Qaa
0 0 - Qrray Qronr| 0 0 - 0 0 0 - Qrin-t Qron
0 0 ~Qrvxa 0 |Quogn| 0 - 0 0 0 v QN1 Qren
G 0 - 0 0 0 |Qu - Qirn—1 Qurn Qine |- Ginvaa GinN
0 0 0 0 0 Qo Qax-1 Qoarx Qany |- Qanoa QN
H : : 0 o : : : " : :
0 0 0 0 0 0 - Qrr—1 Qrrr 0 © Qrov-r Qo
0 0 0 0 0 0 - Qrrvi-a 0 Qroprn |- Qronvoy Qurw
0 0 0 0 0 0 - 0 Qre1r Qrytnnl @ryin—i Qrarn
L0 0 - 0 0 0o |0 - o 0 0 |+ Qvaot Qnw |

FiG. 12. Transition matrix G,.

Qoo Qo1 -~ Qor-1 Qoxrr| 0 - 0 0 Qorr |+ Qon-1 Qon |
QIO Qll o Ql,[\’—l Ql,]\" " Ql,]\”’ N Ql,N—l Ql,N
0 Qan - Qar-1 Qox| 0 - 0 0 Qarr |+ Qan-1 Qan

<
o
<o

0 0 - Quuxa Qo 0 - 0 0 0 ~ Qriyvoar Quow
Qo 0 - 0 0 |Qu -~ Qirx—r Qe Qune |- Qinoy Gy

6 0 - 0 0 |Qa Qarn—1 Qaxr Qerr |- Qaenvoy Qan

0 0 - 0 0 0 « Qnir-1 Qi 0 - Qrina1 QrN
0 0 - 0 0 |0 «Qrixs 0 Quowe |- Qronver Qrow
o 0 - 0 0 0 - 0 Qri1i Qriinm| Qrein-1 OK+1N
0 0 - 0 0 |0 - 0 0 0 |- Qw1 Qnw

F1G. 13. Transition matrix G;.

698 J. C. S. LUI AND R. R. MUNTZ
THEOREM 7.1. 7, 6. < 75 ¢,
Proor. First, we define the following set of states:
D ={F U UF VT,
d =%,
D' =9 - d,

G = Fy — .
It is easy to observe that the following equations hold:
Tws6.7 Mgy,

3% /G, =0
The flow conservation equation for states in 2’ for both G, and G, are:
-1
To 6, = (M0)6, Quer + 7oy ,6,Q0510)~ Qoo™
-1
T)Gy = (Wd’/G3Qd/9’)[_Q9’Q’] .

Since (= Qg) is an M-matrix, it’s inverse is a nonnegative matrix, therefore
77'9,/03 < WQ/G;’ O

We can now transform G, to G, (depicted in Figure 14) by exact aggrega-
tion. We aggregate all the states in & for i > K and all clone states according
to number of failed components. Since we apply exact aggregation, we have
To/G6, = Ta/Gy

At this point, we can apply Theorem 3.1 and replace the aggregate transition
rates by appropriate bounds. The final transition rate matrix, G5 is given in
Figure 15. It is easy to see that 7, ;< 7, and therefore TG, < Mo /G-
With this modification, we overcome the partial state generation problem, and
we also maintain the block Hessenberg property.

For the multi-step bounding algorithm, we may encounter either of the
following two situations:

(1) we can generate all the &7 from the previous step and perhaps some states
with more failures,
(2) we can only generate a proper subset of S7.

At the ith step, we can apply basically the same transformations we used in
the one-step bounding algorithm discussed earlier in this section. The modifi-
cation are:

(1) Let & be the states in . that are not in &,. All transitions from 9, to
any states in ¢ are modified to become transitions to the corresponding
clone states.

(2) Computer upper and lower bound transition rates for the aggregate and
the clone states.

It is easy to show that this modification provides a transition rate matrix
whose solution vector provides lower bound steady state probabilities for the
states in 9,.

For the bound spread reduction process, we see that to refine the errors for
clone states that have K or less failures, we have to have lower bounds for the

Steady State Availability Bounds of Repairable Computer Systems 699

Qoo Qor ~ Qor-1 Qos | 0 - 0 Qoxn | Qon-t Qon]
Qu @u - Qirxor Gigr | 0 - 0 Qurn |~ CQinat @i

0 Qun + Qg Qaxr |0 - 0 Qarr | Qan-1 Qan

0 0 - Qrx-1 Qur | 0 - 0 0 - Qron-1 Qron
r'to 0 . 0 0 ® - TLR-1 TR . T1,N-1 ™I.N

0 0 - 0 0 Tl v T K-1 T2k | T2N-1 TN

0 0o - 0 0 0 - rrra1 ® © TK'N-1 TKN

0 0 - 0 0 0 - 0 TK+LK | TR+1L,N-1 TK+1.N

0 0 - 0 0 0 - 0 0 - TNN-1 .

FiG. 14. Transition matrix G;.

[Qoo Qo1 Qoxrx-1 Qonr | 0 0 Qorn|~ Qon-1 Qon]
Qlo Qll . Q],I\'—l Ql,K’ 0 ‘ 0 Ql,]\"' ot Ql,N—-l Ql,N
0 Qu - Qoxa Qo [0 0 Qorn|~ Qan Q2w
0 0 - Qunir-1 Qur |0 -~ 0 0 |- Qrna Qrin
— 0 .. 0 0 e - + + . + +
0 0 . 0 0 - - 4+ + . + +
0 0 - 0 0 0o - — ° .- + +
0 0o - 0 0 0 - 0 — . + +
L0 0 - o o lo -0 o |- - . |

FiG. 15. Transition matrix Gs.

state probabilities for all the states with K + 1 failures. We can obtain lower
bounds on the state probabilities for the states with K + 1 failures using the
multi-step algorithm. Once we have the lower bounds on the state probabilities
for the states with K + 1 failures, the iterative refinement process described in
Section 5 can be applied.

8. Example

In this section, we present an example to illustrate the application of the
bounding algorithm. The example is a heterogeneous distributed database
system as depicted in Figure 16. The components of this system are: two
front-ends, four databases, and four processing subsystems each consisting of a
switch, a memory and two processors. Components may fail and be repaired
according to the rates given in Table 1. If either processor of subsystem A or B
fails, it has a 0.05 probability of contaminating both database A and database
B. (To contaminate the database means to leave it in a inconsistent state, and
in this case the database is considered to have “failed”. Repair of the data-
base requires the execution of a recovery procedure.) If either processor of

700

J. C. S. LUI AND R. R. MUNTZ

front-end

processor A-1

memory A
switch A

processor A-2

processor B-1

awitch B

processor B-2

processor C-1

processor C-2

memory B memory C
switch C }-I

processor D-1)

processor D-2

8 8 8 9

database A database B databasa C database D
F1G. 16. A fault-tolerant heterogeneous distributed database system.
TABLE 1. FAILURE AND REPAIR RATES (PER HOUR)
Components Mean Failure Rate Mean Repair Rate
Front-end A 1,/4000 2.1
Front-end B 1,/8000 2.0
Processor A-1 1,500 2.5
Processor A-2 1 /400 2.0
Switch A 1/750 2.7
Memory A 1/750 2.5
Processor B-1 1,450 23
Processor B-2 1/450 1.8
Switch B 1/625 2.6
Memory B 1/750 24
Processor C-1 1/600 2.3
Processor C-2 1,/450 1.7
Switch C 1/625 2.6
Memory C 1,600 24
Processor D-1 1/450 2.1
Processor D-2 1/450 1.5
Switch D 1,/600 2.1
Memory D 1,/600 2.5
Database A 1,/5500 25
Database B 1,/5000 22
Database C 1,/5000 25
Database D 1,/4500 23

Steady State Availability Bounds of Repairable Computer Systems 701
TABLE II. UpPER AND LOWER BOUNDS ON STEADY STATE AVAILABILITY OF THE
DATABASE SYSTEM

Availability Spread in
Step Algorithm (Upper Bound Availability
Number Applied Lower Bound) Bounds

1 one-step 0.986456955373 0.013543044282
0.999999999655

2 multi-step 0.990023127431 0.009976869598
(one application) 0.999999999029

3 bound spread reduction 0.999995763421 0.000004224222
(applied twice) 0.999999987643

4 multi-step 0.999999246581 0.000000728630
(one application) 0.999999975211

5 bound spread reduction 0.999999952345 0.000000000627
(applied twice) 0.999999952972

subsystem C or D fails, it has a 0.05 probability of contaminating both database
C and database D. Components are repaired by a single repair facility that
gives preemptive priority to components in the order: front-ends, databases,
switches, memories, processor set 1, and, lastly, processor set 2. (Ties are
broken by random selection.) The database system is considered operational if
at least one front-end is operational, at least one database is operational, and
at least one processing subsystem is operational. A processing subsystem is
operational if the switch, the memory and at least one processor are opera-
tional. Also, this system is in active breakdown mode, meaning that components
fail even when the system is nonoperational.

In Table II, we present the bounds on steady state availability for several
steps of the bounding procedure. We note that in each step, the bounds are
significantly tightened. In Step (1), we apply the one-step bounding algorithm
with detailed states that have 0 to 2 failed components. The Markov chain that
has to be solved in this step has 276 states. In Step (2), we apply the multi-step
bounding algorithm for detailed states that have between 3 and 4 failed
components. In this step, we have to solve a model with 8,876 states. In Step
(3), we apply the bound spread reduction algorithm described in Section 5.3 for
states that have between 0 and 4 failed components. In Step (4), we apply the
multi-step bounding algorithm with detailed states that have between 5 and 6
failed components. The number of states in the model at this step is 100,966. In
Step (5), we apply the bound spread reduction algorithm for states that have
between 1 and 6 failed components.

In Table III and Table 1V, we illustrate the individual contributions to the
bound spread reduction by the clone states and detailed states when the bound
spread reduction algorithm is applied. This data shows that most of the
improvement comes from recouping some of the unclaimed reward of the
clone states. As expected, the majority of the gain comes from obtaining lower
bounds on the clone states when the bound spread reduction is applied for the
first time.

702 J. C. S. LUI AND R. R. MUNTZ

TABLE III. CONTRIBUTION BY CLONES STATES AND DETAIL STATES IN STEP (3)

total reduction of bound spread in step 3 9.9726 X 1077
contribution by clone states &, U #, 8.2304 x 10~
contribution by detailed states 2, U --- U9, 1.7422 x 1073

TABLE IV. CONTRIBUTION BY CLONES STATES AND DETAILED STATES IN STEP (5)

total reduction of bound spread in step 5 7.2800 x 1077
contribution by clone states &, U &, 5.0818 x 107*
contribution by clone states &5 U &, 5.8400 x 1077

contribution by detailed states &/, U --- U2, 3.5391 x 107°

contribution by detailed states @5 U2, 7.3522 x 107"

contribution by detailed states & U, 1.6122 X 107%

TABLE V. DECISION ALGORITHM ILLUSTRATION

Resulting Resulting
Spread in Spread in
Algorithm Avaijlability Algorithm Availability
g5 A Applied Bounds Applied Bounds
— — bound spread 5.6821 X 107% multi-step 9.9764 x 1077
reduction bounding

1.4962 X 107% 5.6788 X 107° bound spread 4.2242 X 10~ multistep 4.4781 x 107°
reduction bounding

11126 x 107% 1.0838 x 107° multi-step 7.2863 X 1077 bound spread 3.7822 X 10~°
reduction reduction

Table V shows details of the reduction in the spread of the availability
bounds in Step (3) of the global algorithm. The first two columns show the
estimated gain in each direction, the third and fourth columns show the spread
in the availability bounds if we follow the decision algorithm. The last two
columns show the spread in the availability bounds if the decision algorithm is
not followed (this is recorded just to illustrate what would have happened if the
opposite decision was made.) In the first row, we observe that by applying the
bound spread reduction algorithm, the spread in the availability bounds is
significantly reduced compared to the spread in the availability bounds if the
multi-step bounding (or forward) algorithm is applied. In the second row, since
the estimated gain gj is greater than g, we apply the bound spread reduction
algorithm again. The reduction in the spread of the availability bounds is
comparable in either direction, but since the cost of forward generation is
higher, it pays to apply the bound spread reduction algorithm. In the last row
(which corresponds to Step (4) of the global algorithm), since the estimated

Steady State Availability Bounds of Repairable Computer Systems 703

gain g; is greater than g;, we apply the multi-step bounding algorithm, and we
obtain a significant reduction in the spread of the availability bounds.

9. Conclusion

We have developed a methodology for computing bounds on the steady state
availability of repairable computer systems. The method provides an efficient
computational procedure to overcome the large state space problem in evaluat-
ing steady state availability of realistic systems. We showed that by modifying
the original model, bounds can be obtained by solving a sequence of smaller
models, each of which has a state space cardinality chosen to be small enough
to match memory limitations. The method also supports trading off tightness of
the bounds against computational effort.

The development in the paper is couched in terms of models of repairable
computer systems and determination of bounds on availability. However, the
methods appear to have promise for other applications. The important prop-
erty of availability models that is used is that the equilibrium state probabilities
are concentrated in very few states. It is reasonable to expect that this same
property will hold for example, in models of probabilistic protocol evaluation
[Dimitrijevic and Chen, 1988; Maxemchuk and Sabnani, 1987] and load balanc-
ing. In the case of load balancing, the routing policy is designed to balance the
load on the resources in the system. Thus, we expect that a large number of
possible states will have “small” probability since the scheduler will be biasing
the system toward a small number of preferred states. Research into such
applications is ongoing.

Appendix

LEMMA A.l. Let G be the generator matrix for an irreducible Markov chain
with the upper Hessenberg form as illustrated in Figure 17. Let G' be a matrix with
the same structure as G, but where 0 < g, ,_, <g,, andg, >g, for 0 <i<
j < N. G is illustrated in Figure 18, where the non-zero lower bound rates are
denoted by “—"" and the upper bound rates are denoted by “+”. Then m, s <
Ty, G-

Proor. The proof is by contradiction.

Assume that 7, > 7. Consider the flow balance equations, for each
Markov chain, which equate the flow between the set of states numbered 0 to
i — 1 and the set of states numbered i to N.

i—-1 N

7T1/Gg1,t—l = Z Z Tr}/Gg].z (Al)
J=0 k=i
-1 N

7Tt/G’gz’,zfl = Z Z W//G’g;,z (Az)
J=0 k=1

It is a simple induction argument using the above equations to show that if,

T 6> TG f(?r Jj <i,then m, o > w, . But then, from the assumption that
Mo, > Moy, it follows that
N N
YT e > LT G (A.3)
j=0 j=0

This is impossible since both sums must equal 1. We conclude that it is not
possible for ,, o > 7,5, and the lemma is proved. O

704 J. C. S. LUL AND R. R. MUNTZ

® Jo1 go2 Yo3 JoN
gio ® gGi2 4gi3 g1N

0 g21 e g23

FiG. 17. Trausition matrix G. G =
0 0 g3 L]
| 0 0 gN.N-1 L
[e + + +]
- ¢ 4+ + +
o 0 - ° +
Fi1G. 18. Transition matrix G'. G =
0 0 — e
| 0 0 — e |
o - [Guu Guy
| Gva Gyy
Guu Guy
O s gUOruk 0 ° ngy'Ul ngv'U2 gUO 13 gUO‘L'I\’;,
= 0 0 0 Gy v L4 Guiv0 Guyus Yoy Iy
0 vz, 4 Gy, v
0 0 932 e
L 00 0 0 Yory wrey—1)]

Fi1G. 19. Transition matrix G.

LEmMMA A.2. Let G be the generator matrix for an irreducible Markov chain as
ilustrated in Figure 19. Let the state space be partitioned into two subsets, % and
77, As illustrated in Figure 19, the generator matrix is conformally partitioned. Let
the states in % be denoted uy,u,,...,u x, and the states in 7' be denoted
Ugs Uys- oo, Ug - As illustrated in Figure 19 G~ » has all zero entries except for one
non-zero transmon rate from v to sone state u w % Also, G-, has the upper
Hessenberg form.

Let G’ be defined as equal to G except that (see Figure 20):

0< g;'“,uA = gL‘”“Ll;\
0< giz AN =< gl‘,w,,l
e, = 8o,

’
Gy =G,y

K. =zj>i=0

Then, 7y, < 7y,

Steady State Availability Bounds of Repairable Computer Systems 705

o+ + o+
Gy (= Guu) :
+ o + o4
' GII,{Z(GEIV
« = {Gvu Gy -0 01 Tt t
' 0 0 0] — o + + +
- o 4+
0 0 — e
0 0 0 0 — o

FiG. 20. Transition matrix G'.

® Gow Yo - e e Ya e,
Guoya L4 Guo,vi Quo,vz Quo,vs cee Guo v,
Guy,vo i Quivz Quiyvs s Qv v,
(7 = 0 0 Gy vy * Gy ,u3

0 0 0 q32 °

0 0 Gug,vmp .

FIG. 21. Trapsition matrix G,

Proor. For any vector x, let X denote the normalized version of x which is
scaled so that the sum of the elements is 1.

Since (1) there is only a single state, call it i, in 2 by which the system can
enter % from 77, and (2) G, , = G, ,, it follows that 7, ,, = 7, ,; [Courtois
and Semal, 1986].

Based on the equality of the conditional state probabilities for % and %, it
follows immediately that 7, < 7, if and only if 7, 1 < 7y 1.

Assuming that we know the conditional state probabilities for #, we can
aggregate the states in % in both G and G'. The aggregated transition rate
matrices are illustrated in Figureq 21 and 22. Let a denote the aggregate state.
We note that since 7y, ¢ = 7, ,c and G}, ,-> G, , it follows that g,“ >
8a,c, for 0 <j < K, and therefore the aggregate matrices satisfy the conditions
of Lemma 1. Applying Lemma A.1 we have 7, ¢, <, /G But since we
assumed exact aggregatlon Gy = TG 1 and 77)Gy = T s 1. 1t follows
that 7. 1 < 7, ,;1, and we are done.” [

ACKNOWLEDGMENTS. The authors wish to thank the anonymous referees for
their comments and suggestions that substantially improved the quality of this

paper.

706 J. C. S. LUI AND R. R. MUNTZ

o + + . 4]
- & + + 4+ +
0 — o + 4+ +
FiG. 22. Transition matrix G,,. G;gy - 70 0 - e +
0 0 — e
1 0 0 — e |
REFERENCES

NoTE: The following references are not cited in the text: [COURTOIS AND SEMAL 1984]; [KEMENY
AND SNELL, 1969} [NEUTS, 1981]; [Ross, 1983}, [TakaHASHI, 1972, 1975]; AND [VAaN Dk 1988,
1989].

BERMAN, A., AND PLEMMONS, R. J. 1979. Nonnegatwe Matrices in the Mathematical Sciences.
Academic Press, Orlando, Fla.

BURDEN, R. L., AND FAIRES, J. D. 1989. Numerical Analysis. PWS-KENT Publishing Company,
Boston, Mass.

CARRASCO, J. A., AND FIGUERAS, J. 1986. METFAC: Design and implementation of a software
toll for modeling and evaluation of complex fault-tolerant computing systems. In Proceedings of
the 16th Annual International Symposium on Fault-Tolerant Computing Systems (FTCS-16)
(Vienna, Austria. July). IEEE Computer Society Press, Washington, D.C.. pp. 424—429.

CoNwAaY, A. E., AND GoyaL, A. 1987. Monte Carlo simulation of computer system availability
and reliability models. In Proceedings of the 17th Annual International Symposium on Fault-
Tolerant Compunng Systems (FTCS-17) (June). IEEE Computer Society Press, Washington,
D.C.,, pp. 230-235.

Costes, A., DOUCET, J. E., LANDRAULT, C., AND LAPRIE, J. C. 1981. SURF: A program for
dependability evaluation of complex fault-tolerant computing systems. In Proceedings of the 11th
Annual International Symposium on Fault-Tolerant Computing Systems (FTCS-11). (June). IEEE,
Computer Society Press, Washington, D.C., pp. 72—78.

Courrots, P. 1. 1977, Decomposability—Queucing and Computer System Applications. Academic
Press, Orlando, Fla.

Courross, P. J. 1982, Error Minimization in Decomposable Stochastic Models. In Appled
Probability—Computer Science: The Interface Vol. I. R. L. Disney and T. Ott, eds. Birkhauser.

Courrois, P. J., AND SEMAL, P. 1984. Bounds for the positive eigenvectors of nonnegative
matrices and for their approximations by decomposition. J. ACM 31, 4 (Oct.), 804-825.

Courrors, P. J., AND SEMAL, P. 1986 Computable bounds for conditional steady-state probabili-
ties in large markov chains and queueing models. J. Select. Areas Commun. 4, 6 (Sept.),
926-937.

DE S0UZA E SiLva, E., AND GaIL, H. R. 1986. Calculating cumulative operational time distribu-
tions of repairable computer systems. IEEE Trans. Comput. (Special Issue on Fault Tolerant
Computing), C-35, 4 (Apr.), 322-332.

DE SOUZA E SILVA. E., AND Gair, H. R. 1989. Calculating availability and performability
measures of repairable computer systems using randomization. J. ACM 36, 1 Jan.), 171-193.

DIMITRUEVIC, D. D., AND CHEN, M. 1988. An integrated algorithm for probabilistic protocol
verification and evaluation. IBM Tech. Rep, RC 13001. T. J. Watson Research Center, IBM,
Yorktown Heights, N.Y.

Geist, R., aND Trivepl, K. S. 1985. Ultra-High Reliability Prediction for Fault-Tolerant
Computer Systems. IEEE Trans. Comput. C-32, 12 (Dec.), 1118-1127.

GovalL, A., CARTER, W. C., DE SOUZA E SILVA, E., LAVENBERG, S. S.. AND TrivVEDI, K. S. 1986.
The System Availability Estimator. In Proceedings of the 16th Annual International Symposium
on Fault-Tolerant Computing Systems (FTCS-16) (Vienna, Austria, (July). pp. 84—89.

GOYAL, A., LAVENBERG, S. S.. AND TRIVEDI, K. S. 1986. Probabilistic modeling of computer
system availability. Ann. Oper. Res. 8 (1986), 285-306.

HEIDELBERGER, AND GOYAL, A. 1987. Sensitivity Analysis of Contmuous Time Markov Chams
Using Uniformization. In Proceedings of the 2nd International Workshop on Applied Mathematics
and Performance /Rehability Models of Computer /Communication Systems (Rome, Italy, May)
North Holland, Amsterdam, The Netherlands.

Steady State Availability Bounds of Repairable Computer Systems 707

KEMENY, J. G., AND SNELL, J. L. 1960. Finite Markov Chains. Van Nostrand Company. Princeton,
N.J.

Lewis, E. E., aND BonwM, F. 1989. Monte Carlo simulation of Markov unreliability models. Nucl.
Eng. Des. 77, 1, 49-62.

Lui, I. C. S., AND MUNTZ, R. R. 1991. Evaluating Bounds on Steady State Availability from
Markov Models of Repairable Systems. In Numerical Solution of Markov Chains, William J.
Stewart, ed. Marcel Dekker, New York, pp. 435-454.

MAKAM, S. V., AND AVIZIENIS, A. 1982. ARIES 81: A reliability and life-cycle evaluation tool for
fault tolerant systems. In Proceedings of the 12th Annual International Symposium on Fault-
Tolerant Computing Systems (FTCS-12). (June), pp. 273-274.

MaxeMCHUK, N. F., AND SABNANI, K. 1987. Probabilistic verification of communication proto-
cols. In Protocol Specification, Testing and Verification, vol. VIL, H. Rubin and C. H. West, eds.
Elsevier, Amsterdam, The Netherlands, pp. 307-320.

MunTtz, R. R., DE SOUZA E SILVA, E., AND GOYAL, A. 1989. Bounding availability of repairable
computer systems. In Proceedings of 1989 ACM SIGMETRICS and PERFORMANCE 89
(Berkeley, Calif., May 23-26. ACM New York, pp. 29-38. (also in a special issue of IEEE-TC
on performance evaluation, Dec. 1989, pp. 19-30).

NEUTS, M. F. 1981. Matrix-geometric Solutions in Stochastic Models—An Algorithmic Approach.
Johns Hopkins University Press, Baltimore, Md.

Ross, S. M. 1983. Stochastic Processes. Wiley series in probability and mathematical statistics.
Wiley, New York.

STEWART, W. J., AND GOYAL, A. 1985. Matrix methods in large dependability models, IBM Res.
Rep. 11485 (Nov. 4, 1985). T. J. Watson Research Center, IBM, Yorktown Heights, N.Y.

TAKAHASHI, Y. 1972. Some problems for applications of Markov chains. Ph.D. dissertation,
Tokyo Institute of Technology, Tokyo, Japan, March.

TAKAHASHL, Y. 1975. A lumping method for numerical calculations of stationary distributions of
markov chains. Research Reports on Information Sciences, No. B-18. Tokyo Institute of
Technology, Tokyo, Japan, June.

TrIVEDL, K. S. 1982. Probability and Statistics with Reliability, Queuing and Computer Science
Applications. Prentice-Hall, Englewood Cliffs, N. I.

TrRIVEDL K. S., DUGAN, J. B., GEisT, R. R., AND SMOTHERMAN, M. K. 1984. Hybrid reliability
modeling of fault-tolerant computer systems. Comput. Elec. Eng., 11, 87-108.

vaN Duk, N. M. 1988. Simple bounds for queueing systems with breakdowns. Perf. Fval. 8,
117-128.

VAN DUK, N. M. 1989, The importance of bias-terms for error bounds and comparison results.
Tech. Rep. 1989-36. Free University, Amsterdam, The Netherlands.

VARGA, R. 1962. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, N.J.

RECEIVED APRIL 199(); REVISED NOVEMBER 1992; ACCEPTED MAY 1993

Journal of the Association for Computing Machinery, Vol 41, No. 4, July 1994

