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Abstract

We study a computer system which accepts parallel programs which can be modeled us-
ing the fork-join computational paradigm. The system under study has K homogeneous
servers, each having an infinite capacity queue. Jobs arrive to the system according to a
general interarrival process with mean arrival rate X. Upon arrival, the job is split into
K independent tasks t;,1 <1i < K and task t; is assigned to the i'" server. Each task re-
quires a mean service time of 1/u. Fach server uses the First-Come-First-Serve (FCFS)
scheduling discipline to service its tasks. A job is complete upon the completion of its
last task. This kind of queueing model has no known closed form solution in the general
(K > 2) case. Rather than complete modification of the arrival and service distributions
to obtain bounds on job response time on a fork-join queueing model as reported in pre-
vious literature, we show that by modifying the arrival and service distributions at some
imbedded points in time, we can obtain better performance bounds. We also provide an ef-
ficient algorithm that can compute upper and lower bounds on the expected response time
of jobs in a fork-join queueing model. The methodology presented allows one to tradeoff
the tightness of the bounds and computational cost. Examples are presented which show
the excellent relative accuracy achievable with modest computational cost.



1 Introduction

With the advent of multiprocessing technology, parallel programming languages [14,
26] and parallel programming environments [5, 11], there is an increasing interest in
understanding and modeling the performance of parallel programs. In this paper, we
propose a methodology to evaluate the performance of parallel programs which have a
fork-join control structure on a parallel machine.

We model this kind of parallel program as follows. Assume the computing system
has K homogeneous servers each with an infinite capacity queue. A parallel program (or
job) with general interarrival distribution arrives to this parallel computing system with
mean arrival rate A. Upon arrival, the job splits into K independent tasks ¢;,1 <1 < K
and task ¢; is assigned to the i* server which requires a mean service time of 1/u. Each
server uses the First-Come-First-Serve (FCFS) scheduling discipline to service its tasks.
When a task is finished and if there are any tasks of the same job still in service, the
finished task will wait in the synchronization area. The job is considered complete (and
it departs from the system) when all its tasks have completed their service. This kind of
parallel program paradigm arises in many application areas. For example, in a parallel
database machine with a shared-nothing architecture [29], a complex query is partitioned
so that there is a local query on each processing nodes. Another example is a computer
vision system where an image is fed to a multiprocessor system, each processor does
ray-tracing calculations for a portion of the rays. The final frame is ready for display
when all processors have finished their ray-tracing operations.

Performance evaluation of this type of fork-join parallel program is difficult because:

e the arrival processes to the servers are correlated so the model cannot be decom-
posed.

e since each server has infinite queueing capacity, the state space of the system is
multi-dimensional and infinite in each dimension.

e there is no known closed-form solution.

e it is impossible to use numerical methods directly since the state space of the
problem is infinite.

We start with a brief review of the published literature on the analysis of fork-join
queueing models. First, exact analysis is possible when the system is significantly sim-
plified, for example, if we assume the job arrival process is Poisson with tasks having
exponential service time distribution and the number of servers is equal to two. The



exact analysis for this system can be found in [9, 10, 24]. Nelson and Tantawi [24] also
proposed a scaling approximation technique for A > 2 homogeneous exponential servers.
Recently, an extension to this approximation approach was developed by Makowski and
Verma [22]. A more general model is considered in [1, 2, 3] where arrival and service
processes are general. An upper bound is obtained by assuming K mutually independent
G1/G/1 parallel queuing systems while the lower bound assumes D/G/1 parallel queue-
ing systems. The tightness of these bounds is not investigated. Heidelberger and Trivedi
[12] developed an approximate solution with bounds for a queueing network with jobs
having computation graphs with a fork phase only (i.e., no synchronization of the comple-
tion of the tasks). In [13], the model is extended to contain a fork and join node and two
approximation techniques are presented: one is based on a decomposition approach and
other is based on an iterative solution method. Stability conditions for fork-join queue-
ing networks were investigated by Konstantopoulos and Walrand [17] while the mean job
response time was studied in [4] but the tightness of the bounds was not investigated.
In [6], bounds on job response time were derived based on two-server models. Lastly,
models have been investigated for programs exhibiting parallel fork-join structures that
are executed on multiple servers sharing a single queue [18, 25, 30].

Rather than complete modification of the arrival and service distributions to obtain
bounds on the mean job response time as reported in previous literature, we show that
by modifying the arrival and service distributions at some imbedded points in time, we
can obtain better performance bounds. We also provide an efficient algorithm that can
compute upper and lower bounds on the expected response time of jobs. This methodol-
ogy allows one to tradeoff the tightness of the bounds and computational cost. Examples
are presented which show the excellent relative accuracy achievable with modest compu-
tational cost. Therefore, by providing much tighter as well as computable bounds, our
results are distinguished from previous work on this problem.

The organization of the paper is as follows. In Section 2, we formally define the
parallel program with fork-join paradigm that we are analyzing. In Sections 3 and 4, we
present modified models; one gives an upper bound for mean job response time and the
other provides a lower bound on job response time. We will illustrate how these modified
models have a structure which yields an efficient numerical solution. Also, we will prove
that these models do provide bounds and we will also present the algorithmic approach
to computing these bounds. In Section 5, we present an application with some numerical
examples. These examples illustrate how do we apply the model to compute the expected
job response time for a parallel workstation cluster computing environment. Conclusions
are given in Section 6.



2 Model Description

We consider a queueing system which consists of K identical servers each having
an infinite capacity queue. The parallel program is modeled as an external job with
interarrival distribution being a series-parallel phase type distribution where each phase
is exponentially distributed [16]. The mean arrival rate of external jobs is denoted by A.
Upon arrival, a job forks into K tasks, namely ¢;,1 < ¢ < K. Task ¢;, which is assumed to
have a k-stage Erlang distribution with mean service time requirement of 1/, is assigned
to the i** processor. Each processor is modeled as a single server with infinite queueing
capacity and FCFS scheduling discipline. The system model is depicted in Figure 1. The
stability condition for this kind of queueing system is [22]:

A< p (1)

which is the local stability condition for each server in the system. A job leaves the system
as soon as all its tasks are completed. For a partially completed job, the completed tasks
are forced to wait in the synchronization area. A job completes and departs when its
last component task has been completed. We are interested in the expected job response
time which we denote by 7.

job _
arrival job
departure
A @\ synchronization

darea

service area

Figure 1: Parallel Program with Fork-Join Model.

Since the interarrival arrival process is a series-parallel phase type distribution, let
there be R > 1 parallel phases and for phase i, it has r; > 1 series stages. we can
construct a Markov model, M, for this queueing system with state space description as:

N = ([a7b]7[N17p1]7"'7[NK7pK]) for bSvaLSTEM N22070§p2§k



where [a, b] indicates the state of the series-parallel phase type distribution of the in-
terarrival process!, N; is the number of tasks in the waiting queue of the :** server, p;
indicates the servicing stage of the task in the i-th server. By convention, p; = 0 when
there is no task being serviced at server i. Given a state s, we can find the number
of tasks waiting in the synchronization area as follows. Let Z\AfZ = N; + I{p; > 0}. NZ
is the number of tasks in the i-th server since N; is the number of waiting tasks at
the i'* server and 1{p; > 0} indicates whether there is any task in service at the 7"
server. Define N* = maX(Nl, ceey NK). Then the number of tasks that are waiting in the
synchronization area is:

SRV - N (2)

The unique steady state probability vector for this continuous-time discrete state (CTDS)
Markov model M satisfies the following system of linear equations:

7G =0 and Te=1 (3)
where 7 is the K-dimensional steady state probability vector, e denotes an appropriately
dimensioned column vector of 1’s and (i is the transition rate matrix. having the following
transition structure.

If the event is a transition in the phase of the interarrival distribution?:

([a7b]7[N17p1]7"'7[Ni7p2']7"'7[NI\"7pK]) — g[{a—l_176}]>7)\[N17p1]7"'7[Ni7pi]7"'7[NI\"7pK])
a < ThrAg
([a7b]7[N17p1]7"'7[Ni7p2']7"'7[NI\"7pK]) — ([176]75([N17p1])7"'75([N17pi])7"'75([NIX'7PK]))
Ha =r}l{ =c}A,

where £ is function of choosing a new series distribution out of totally R parallel distri-
butions and

oo ={ " 102G

If the event is a departure from the i server, the elements of the rate matrix have the
following values.

([a7b]7[Nlapl]a"'7[Ni7pi]a"'7[NI\’7pK]) — ([a7b]7[Nlapl]a"'7[Ni7pi—I_1]7"'7[Nfﬁ"apfﬁ"])
Wpi < k}kp

([aabL[N17p1]7"'7[Niapi]r"?[NI\’apK]) — ([aabL[thl]r"v[Ni_171]7"'7[N1ﬁ'7p1\'])
Hpi = k}I{N; > 0} ku

([aabL[N17p1]7"'7[Niapi]r"?[NI\’apK]) — ([aabL[N17p1]7"'7[070]7"'7[NK7PK])
Lp: = K}1{N, = 0}k

ITf the arrival process is Poisson and task service times are exponential, the state space description
(N1, ..., Ng) will be suffice where Nj; is the number of tasks in the i-th server.

2We assume that the arrival process for stage [a, b] has rate of A\, and the mean arrival rate of external
jobs is A.




Given the probability steady state vector, the expected job response time can be
computed by:
T Expected number of tasks in the system Y csm(s)f(s) 4)

arrival rate of tasks KA

where § is the state space of the Markov model M, 7(s) is the steady state probability
of state s and f(s) expresses that total number of tasks in the system given the state is
state s. The function f(s) can be expressed as:

K . K .
fls) = Z:NHFZ:(N*—ND
— KN (5)

The above model does not possess a known closed form solution, and it is not possible
to solve the problem numerically due to its infinite state space cardinality. The method-
ology we choose to solve this model is as follow. We first construct two models that can
closely bound the performance (in our case, the performance measure is the expected job
response time), then we show that these modified models can be evaluated efficiently by
numerical methods.

Before we go on to the next section, let us describe briefly the intuition behind the
construction of the models that provide the upper and lower bounds on the expected
job response time. It is reasonable to argue that the distribution of stationary state
probabilities for the model M are skewed, that is, the probability mass is concentrated
in some relatively small subset of the state space, rather than distributed uniformly over
the entire state space. The reasoning is that when job arrives into the system, it adds
load uniformly to all K servers, therefore a job arrival will not increase the difference in
the waiting queue length between different servers of the system. On the other hand,
since the system is homogeneous, all servers are servicing their workload at the same rate,
therefore, the probability of having a large difference in the waiting queue length among
all servers should be relatively small. For example, for a 4-server system with Poisson
arrivals and exponential service times, the steady state probability for state (8,8,8,8)
should have a higher state probability than state (29,1, 1,1). This insight suggests that
we should, in any modified model, represent the exact behavior (transition rates) for the
most popular states of the original model M. Note that the number of states in the most
popular subset will be a function of the accuracy demanded and the computational cost
one is willing to pay. When the modified system leaves these popular states, we modify
the behavior of the system in such a manner that we can:

1. prove the modified model provides a bound (either upper or lower) for the original
model and,



2. solve the modified system efficiently.

In the next section, we will describe the upper bound model and in the following section,
the lower bound model will be presented.

3 Upper Bound Model M"

In this section, we first describe the behavior of the upper bound model M", then
we prove that M" indeed provides an upper bound for the expected job response time
for model M. We also develop a computational procedure for efficiently evaluating the
expected job response time for model M*. As in the original model, the upper bound
model M* has K parallel servers. A job arrives to the system according to a general
arrival process with mean rate A. Upon arrival, a job splits into K tasks (each having
a k-stage Erlang distribution with mean 1/u) and task ¢; is assigned to the i** server of
the system. Each server will service tasks in a FCFS order. Again, a job departs from
the system when its last task is completed.

In additional to the above description, the upper bound model M™ has two additional
parameters, they are:

Definition 1 Let d be a predefined threshold setting in the upper bound model M*. We
require that at any instant in time, the difference in the number of waiting foreground
tasks® in any two queues is less than or equal to d.

Remarks: In M", we force task departures to observe the following rule. When a task
tries to depart from the service area, if its departure would cause the difference between
the longest and shortest queue of waiting foreground tasks to exceed d, then this task
is not allowed to depart but must remain in service and repeat its last stage of service.
Note that we only need to check this condition at a task departure instant. Task arrival
instants will never increase the difference in the waiting queue lengths. An important
point is that since the job response time is a function of its last departing task, disallowing
a task departure due to violation of the d threshold implies we are delaying the departure
of a task that would have to wait in the synchronization area anyway (since the task is in
one of the shortest queues). The delay of completion of a task can, intuitively, only delay
the completion of some jobs and therefore, we suspect, should give a good upper bound
on the mean job response time. We present the formal proof in the next subsection.

3definitions of foreground tasks and background tasks will be defined formally later.



With the restriction on the difference of the waiting queue length, then we have
reduced the state space but it is still infinite. The next definition (and associated modifi-
cation to the model) is used to impose a regular, repeating structure to the model which
will then allow an effective solution procedure.

Definition 2 Let C be a K -dimensional vector, C = (C,...,C), where C is a predefined
trigger threshold for the upper bound model M*. If a job arrives and finds that there are
already C waiting foreground tasks in any server, the system will suspend all tasks (except
tasks from the current arriving job) and put them into background queues. A new busy
cycle begins with the current arriving job.

Remarks: A busy cycle starts when an arriving job causes the trigger threshold to be
exceeded (or when the arrival finds the system is idle) and the newly arriving job starts
the new busy cycle. The busy cycle ends when the foreground queues all all empty. When
a busy cycle ends, the last suspended set of tasks (if any) are put into the foreground
queues. Note that busy cycles are nested, that is during a busy cycle, an external job
can arrive and trigger another busy cycle. When a busy cycle ends, only the set of
tasks suspended at the initiation of that busy period is released for service. Therefore,
a foreground task is defined to be any task which arrived during the currently active
busy period. As mentioned above, the purpose of the trigger threshold C is to create a
transition structure that yields efficient numerical solution.

3.1 Proof that M’ provides an upper bound on expected job
response time

In this section, we will prove that the model M* provides an upper bound on the
expected job response time*. The approach is to show that M* gives an upper bound on
the number of tasks in the system at any given point in time using sample path analysis
[19]. In the case that the model exhibits stationary behavior, we apply Equation (4) to
obtain the expected job response time.

To establish the upper bound, let us define the notion of sub-task. Since each task has
a service time which is a random variable with a k-stage Erlang distribution, whenever a
task arrives to a server, it generates k sub-tasks to that server. To prove the upper bound,
let us concentrate on the time instants when certain events occur. There are two kinds
of events of interest, namely, job arrivals and sub-task departures. In the latter case, it

4The proof for the bounding process is applicable for a general arrival process. In a later section, we
will define the class of arrival processes we can handle with our computational algorithm.



is useful to think of each server as continuously serving customers. Hence a service event
at server k occurs as a Poisson process with parameter & (note that a service event
is also a departure event only when there is a sub-task in the server). For the original
model M, let us define N/; = (Ni1, -, Nik) to be the joint queue lengths of sub-tasks
immediately after the :** event. Let Ay denote the initial queue lengths. We have the

following evolution equations. If the (i + 1) event is a job arrival, then,

Nijig = Ny+k  1<I<K (6)

If the (i + 1) event is a sub-task service event at the j'* server, then the joint queue

length will be:
_ M,ly [ 7é j7
Nt = { (Nij =1)F, =3 ")

For the upper bound model M™, we define a binary valued random variable Y; that
takes on the value 0 if a sub-task is not allowed to depart and the value 1 if a sub-task
is allowed to depart at the i'" event (provided that it is a service event). Note that the
random variable Y; for the original model M is always equal to 1 while for the upper
bound model, ¥; can be 0 or 1 depending on the situation. Specifically, Y; will take on
value of 0 when:

1. the sub-task departure would violate the threshold constraint d and,

2. departure of background sub-tasks (or equivalently, tasks) is not allowed due to
unfinished foreground sub-tasks.

Let A(¢) be the joint queue lengths for all types of sub-tasks (active and background)
in the upper bound model M™. We have the following evolution equations at the time of
arrival and service events. If the (i + 1) event corresponds to an job arrival,

g = No+k I1<I<K (8)

If it is a task service event at server j,
U — i?l? ! # .]:7 (9)
b ('A/zu] - Yi+1)+a [=j.

Definition 3 Let X and Y be a vector of real values of random variables. We say 'Y
is stochastically larger than X, written as X <4'Y iff
E[h(X)] < E[R(Y)]

for all increasing functions h.



Theorem 1 If N (0) <, N“(0), then N(t) <q N“(1).

Proof: Couple the initial joint queue length of sub-tasks such that A/(0) < AN*(0). Con-
dition on the initial joint queue length, arrival event instants and service event instants.
The proof is by induction on all event times to establish the deterministic relationship:

N, <N¥E >0
where < is taken to mean componentwise.
For i = 0, N(0) < N*(0).

For the induction step, assume that A; < A'¥ holds for i = k. For i = k + 1, if the
i'" event is a job arrival, the inequality obviously holds since both models never reject
any task arrival. If the 7** event is a service event, since Y; is less than or equal to 1 for
model M*, the relationship holds also. Therefore we have N (¢) < A“(t). By removing
the conditioning on initial joint queue length of sub-tasks, arrival event times and service

event times, we have:

N(t) < J\f“(t), for t>0

Corollary 1 IfN(0) <, N*(0), then T < T* where T (T") is the expected job response
time for model M (M").

Proof: Let N(t) and IN"(t) be the joint queue lengths in model M and M* at time ¢.
We have:

N(t) = ([NB)/k], ... [Nk (t)/k])
NU(t) = ([NY()/k], - INE@) /K]

Based on Theorem 1, we have N (¢) <, N“(¢). Since [N;(t)/k] < [N*(t)/k], we have
N(t) <a NU(t). Now, let N = limyo, N(¢) and N" = lim,o N“(t). Since the
function f define in Equation (5) is an increasing function, then based on Equation (4),
we have:

T<T"



3.2 Computational procedure for upper bound model AM*

In this section, we discuss the computational procedure to obtain the expected re-
sponse time for the upper bound model M*. Note that in the proof that M does yield
an upper bound for the mean response time, the interarrival time distribution of jobs
can be general. In this section, the class of interarrival process that we can handle in our
computational algorithm for the upper bound model M* is more restrictive.

Let 7 denote the random variable equal to the interarrival time distribution of a job
to the fork-join queueing system and A*(s) denotes its Laplace Transform. The class of
interarrival distributions we allow has the form:

A%(s) i =
s) = o
=1 ’ 15 A

R
for0<ozj<1,2aj:1and Aij >0 (10)

i=1

such that —%3(5”5:0 = AL, This class of series-parallel distributions includes such com-
mon distributions like exponential, Erlang, hyperexponential, . .., etc. Figure 2 illustrates
this class of series-parallel distribution where each stage represents an exponentially dis-
tributed random variable 7;; with parameter A;;.

Figure 2: Series-parallel distribution for the interarrival time distribution in M™.

To describe the computational procedure for the upper bound model M*, it is impor-
tant that we first describe the state space of the upper bound model. First, let us define
the following:

Definition 4 Given parameters K, d, C, external job interarrival process and the tasks
service time distribution, let Sy be an ordered list of states for foreground tasks in the

10



upper bound model M* such that any additional job arrival will cause the system to switch
to a new busy cycle.

Example 1: If the arrival process is Poisson, and task service time is exponentially

distributed, K = 3, d = 2, C = (5,5,5), then

St = {(3,3,5),(3,4,5),(3,5,3),(3,5,4),(3,5,5),(4,3,5),
(4,4,5),(4,5,3),(4,5,4),(4,5,5),(5,3,3),(5,3,4),
(5,3,5),(5,4,3),(5,4,4),(5,4,5),(5,5,3),(5,5,4),(5,5,5)}

Example 2: If the job arrival process and the task service times are two-stage Erlang,

K=2,d=2,C =(3,3), then

S = (L[] 3,1), (1L [T, 11,3, 2]), (2, [1, 2], [3, 1), (2, [1, 2], [3, 2]),
(1, 11,2, [3,1]), (1, [1, 2], 3, 2]), (2, [1, 2], [3,1]), (2, [1, 2], [3, 2]),
(1,2, 13, [3,1]), (1, 2,11, 3, 2]), (2, [2, 1, [3,1]), (2, 2, 1], [3, 2]),
(1,12,2], [3,1]), (1, [2, 2], [3,2]), (2, 2, 2], [3,1]), (2, [2, 2], [3, 2]),
(1,13, 13, [1,1]), (1, [3, 1], [1,2]), (2, [3, 1, [, 1]), (2, [3, 1], [1, 2]),
(1,3, 13, [2,1]), (1, [3, 1], [2,2]), (2, [3, 1], [2,1]), (2, [3, 1], [2, 2]),
(1,3, 13, [3,11), (1, [3, 1], 13, 2), (2, [3, 1, [3, 1]), (2, [3, 11, [3, 2]),
(1,13,2], [1,1]), (1,3, 2], [1,2]), (2,3, 2], [1,1]), (2, [3, 2], [1, 2]),
(1,13,2], [2,1]), (1,3, 2], [2,2]), (2, 3, 2], [2,1]), (2, [3, 2], [2, 2]),
(1,13,2], [3,1]), (1,3, 2], 13, 2), (2, 3,2, [3,1]), (2, [3, 2], [3, 2]) }

Definition 5 Let B be the cardinality of the set of trigger states Sy, or B = |Sy.
Definition 6 Let Sy;(i) be the i'" element in Sy, where 0 <i < B — 1.

Using example 1 listed above, we have:
B = 19, Stt(O) = (3,3,5),,87575(18) = (5,5,5)
Using example 2 listed above, we have:

B = 40; Stt(o) = (17 [17 1]7 [37 1])7 Tt 7Stt(39) = (27 [37 2]7 [37 2])

Definition 7 Let S¥;, 1 > 0,0 < j < B — 1, be the set of states for the upper bound
model M* such that (1) system is in the 1" (where i > 0) nested level of busy cycles,

11



(2) the difference in the waiting queue length between foreground tasks among different
servers is less than or equal to d and, (3) the system entered the i'* nested busy cycle
from the (1 — 1) busy cycle through the trigger state Sy:(j mod B) C Si_1j/ms where v
is an integer divide operator.

Transitions between states in S}, behave like the original model M except :

o if a task departure from the server would cause the difference between the longest
and shortest queue of waiting foreground to exceed d, then this task is not allowed
to depart but must remain in service and repeat its last stage of service.

e If a new job arrives and the system is in one of the trigger states, for example Sy (1),
then a new busy cycle begins with this newly arrive job and the system enters state

(17 [07 k]v R [07 k]) in zy-l—l,jB-l—l'

e Upon completion of the last foreground job in Si;, the previously suspended set of
tasks is released for service. That is, the system will make a transition back to one
of the trigger states in S, . p.

With this definition, we can see that the state space of the upper bound model M™"
can be organized as a tree such that each node of the tree represents the set of states
Si; of all possible waiting queue lengths for active tasks. Each state in the model has
four components, namely (1) a stack of return states® (sy,...,s;) where i is the depth of
the node in the tree and, (2) the stage of the interarrival distribution, (3) the waiting
queue lengths of active tasks at each servers and (4) the stage of service for each task
in service. All states in the same node of the tree have the same first component, i.e,
the same stack of return states. Figure 3 illustrates the case where the arrival process
is Poisson and task service times are exponentially distributed, K = 2,d = 2,C = 5,

S = {(3,5),(4,5),(5,3),(5,4),(5,5)}.

As stated above, upon departure of the last foreground job in S}., there will be a

2,77
transition back to one of the trigger states in 5;, ;5. At this point, we change the
arrival process so that we can have an efficient algorithm for solving the upper bound
model M". First, we define random variables 7;; based on the notation used in Equation

(10) :

Ty
Tej = an forl<j<Rand1<Ek<r; (11)
=k

5In the actual state representation, we do not need to represent the stack of return states since they
can be derived from the relative position within the tree.

12



(39) (45) (53) (54) (52

stack of
return states u
Sl,o 53 1,0 SLll'Z Su’
(63710 1
(35) (45) (53) (5,4) 55 35) (4,5) (5.3) (5,4) (55)

stack of 5,3)(4,5
return state;\/ (539

35) (45) (53)(5.4) (5.5)

Figure 3: State Space Partition for Upper Bound Model M™.

with the corresponding Laplace transform:

We can now express the Laplace transform of the job interarrival time 7 as:
R ~
A(s) = 3 o A7(s)
J=1

We also define 7,,,, to be an exponentially distributed random variable with parameter
Amaz such that:

A = max A, ;
max 1<;<R rij

The Laplace transform of 7,4, is A} () = (;\%) The following theorem relates 7
and 7,4z

13



Theorem 2 7,,,, <s 4 T.

Proof: First we show 7, <5 74; for 1 <j < Rand 1 <k <r;. Since

F, .. (x) = etme” for x > 0 and
FTTN(;L‘) = ¢ Mya® for x > 0,

we have F, (z) < F,, ;(z) for all z > 0, therefore 7,4, <4 7, ;. Since
=
Thy = Thy + 0+ Tryj forl1<j<Rand 1 <k<ry

and 7;; are non-negative random variables, it is easy to see that 7,4, <g 73 for1 < j3 < R
and 1 <k <r;. The interarrival time random variable 7, can be expressed as

R
T = Z Oé]'le
i=1
Because < relationship is preserved under linear combination [28]. Therefore:

R R
Tmazr = Z Q5 Tmax <st Z aj%lj =T (12)

Let Z be a random variable that takes on value 0 or 1. Define

. s Prob(Z = 0)
Tmaz = Tmaz Prob(Z =1)

Corollary 2 7., <& 7.

Proof: Since
Prob(Z = 1)1 4+ Prob(Z = 0)7yae <st Prob(Z = 1)7 + Prob(Z = 0)r

therefore,
Tmax Sst T
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Let np = {np(t),t > 0} and let ng = {ng(t),t > 0} denote the stochastic processes
defined as the number of tasks in the queueing system with interarrival distribution F;

max

and (G, respectively. We want to show that
na(t) <s np(t) for t >0

In preparation for this proof, we need the following lemma about coupling between ran-
dom variables [28]:

Lemma 1 If F and G are probability distributions such that F(a) < G(a) for all a, then
there exist random variables X and Y having distributions F' and G respectively such that

Py >X}=1

Theorem 3 {ng(t),t > 0} <y {np(t),t > 0}.

Proof: To prove the above statement, we constrain the system such that (1) the service
times of tasks are exponential and, (2) there is no a prior knowledge of service time for the
scheduling discipline. Now only observe the process when there is an arrival. We use the
coupling argument as follows. Let X, X,,... be independent and distributed according
to G.. Then the process generated by X, called it ng;, has the same distribution as ng.
Now generate independent random variables Y7, Y5, ... having distribution of F;___ such

that ¥; < X;. Then the process generated by interarrival time Y;, called it n}., has the
same probability distribution as ng. Since Y; < X; for all 7, it follows that

nyp(t) < ng(t) for all ¢
np(t) < ng(t) for all ¢+ and
ng <& NG (13)

The significance of Theorem 2, Corollary 2 and Theorem 3 is as follow. At some
imbedded times, we can modify the interarrival distribution according to Theorem 2 such
that we have an upper bound on the number of tasks in the system. These imbedded
times are chosen to be the times at which all the foreground tasks in the model are
finished and the system switches to the last suspended set of tasks, which are now to be
the foreground tasks. Therefore, we have the interarrival process as specified in Equation
(10) except when a suspended set of tasks are activated. When this occurs, the next
arrival occurs is an exponential time distribution with rate A,,,,. Following this arrival,
the original interarrival process is again in effect.

15



Due to the routing of task arrivals, the constraint on tasks departures and the modi-
fication of interarrival time distribution as indicated in Corollary 2 at points where the
system switches from Si'; to S, ,, we can show that the only transition from set S ,
to set S, is actually to one state in S};. Further, transitions from S¥ , , to SY'; can only
go to one state in S{;. This unique transition structure, as we will show later, allows
us to efficiently solve the model via ezact aggregation [7]. After we aggregate each set
of states, S}';, into a single state s}, the aggregated model has a tree structure, which

implies the aggregated process is time reversible [15] and the steady state probability
solution to this aggregated process can be derived easily.

We are now in a position to describe the computational procedure to obtain the
expected response time for the upper bound model M™. Let stfwsffm be the transition
rate matrix from states in S}; to states in S}’ . Based on the tree structure of the
transitions between states as depicted in Figure 3, a brief description of how to obtain
T is as follow:

L. compute the conditional state probability given that the system is in set S}',.
2. aggregate each S, into a single state s},
3. compute the transition rates between aggregate states.

4. given the conditional state probabilities of S, and aggregate state probabilities
s¥., by applying Equation (4) and Equation (5), we can find the T, the expected
job response time for the upper bound model M™.

Remarks: In computing the conditional probabilities given the system is in S}, observe

that the transition from its parents Si , , is to one state in SY; and the transitions from
each of its children S}, ; are through exactly one state in S}, respectively.

In order to justify the procedure for computing the conditional steady state probabil-
ities for states in S}*; given that the system is in set S};, we need the follow lemma from

¥/ 1,47
[8, 23, 20]:

Lemma 2 Given an irreducible Markov process with state space S = AUB and transition

rate matriz:
Qaa Qan
@B,4 (BB

where Q; ; is the transition rate sub-matrixz from partition v to partition 5. If Qp .4 has all
zero entries except for some non-zero entries in the i-th column, the conditional steady
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state probability vector, given that the system is in partition A, is the solution to the
following system of linear equations:

—

7T|A[QAA‘|‘QAB€€} = 0
Fae = 1

I("b

where €] is a row vector with a 0 in each component, except for the i-th component which

has the value 1.

The implication of the above lemma is that there is one state in A by which A is entered
(from B), then we can compute the conditional state probability of system in A without
knowing the transition structure,()p . The following theorem shows that how we can
apply Lemma 2 to compute the conditional state probability vector given system is in

u

Theorem 4 Let M be a Markov process with rate matriz st‘ps?]’ which is equal to
st‘ysz'“] except for the following modifications: Y

1. A transition to the parent set of states S}, , is changed to a transition to the initial
state of SY). (which is the state where SY) is entered from St | ,.)

2. Fach transitions to a child in set S}, is changed to a transition to state s, where
state s 1s the transition from S¥,,, to S..

The steady state probability vector for the Markov process with rate matriz QSZ}SZ‘J is the
conditional state probability vector given the system is in set SY'.. c

Proof: Without loss of generality, we show how to compute the conditional state prob-
abilities given that the system is in S},. Let us partition the rate matrix of the model

M as follow:

[ Qspysp, Qspon - Qsy g, QS%’S
QTl,S;{O Qo O 0 0
: 0 0 0
QTB,S;{O 0 : Qrp 1y 0
L QS/T’S%,O 0 0 0 QS'T,S'T |

where T;,1 < i < B is the i** sub-tree under Sf,o and T" is :

’

T

— 5o - UT
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and S is the state space of the upper bound model M*. Note that transition matrices
QT',S% and QT;‘,S{ﬂOa for + > 1 are transition rate matrices with one non-zero column
vector, this implies that there is only one way to enter S} through its parent and only
one way via its children. By Lemma 2, the modification (1) provides the conditional state
probabilities vector given the system is in S}‘; and all its children. Now applying Lemma
2 repeatedly for each subtree of S}, we obtain the conditional state probabilities given
that the system is in S}, [

Due to the way we define our busy cycles, transition rate matrices (Js» s« are the
6,377,

same for ¢ > 1. This implies we only need to solve two models, QS&WS&O and Qgiwgfo,
to obtain all the conditional state probabilities. Once we obtain the conditional state
probabilities for partition S};, we can aggregate each partition [7] into a single state,
which we denote as s} ;. After aggregation, the state transition structure forms a tree as

depicted in Figure 4 where A\¥', 0 < i < B—1 can be derived from the conditional steady

2, (i+1)B-1

Figure 4: Aggregated Process for upper bound model M*.

state probabilities of ngovsgo and A, 0 <1 < B—1 can be derived from the conditional
steady state probabilities of QSI‘O’S%. Let W be the set of states in S}, ¢ > 1, such that

b ) ZYj’
there are transitions from W back to the parent of Si;. Then we have:

)\f' = ﬁ'(a) for a € Sy where Syt C 5§, 0<i< B—-1,1<7<R (14)
Trii !
1
A = 7(a) for a € §;; where S C S}, 0<i < B—1,1<j5< R (15)
Trii ’
ve = Y #(s)kp (16)
sew
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where 7'(a) and #(a) are the steady state probability for Markov processes with rate
matrix Qse se and Qsu s» respectively.

Let 7*(7,7) be the steady state probability for the aggregate state s¥.. For this
aggregated process, we can write the local balance equations [16]:

A
n*(l,7) = =*(0,0)— 0<:i<B-1
Uy
)\
T (k,j) = m(k—1,j/B)-ineds) E>1,0<j<B"—1
Normalizing all local balance equations, we have:
2 B—1B-1 3B—1B—1B-1
Uy 1=0 Yy 1=0 7=0 Vu 1=0 j=0 k=0

Define \* = Y8212 and A* = 2B A%, we have:

Y A (A i
= ) ()5 () -
]/u I/u V'u, Vu V’u

~0.0) = —z()]

vy 5\

. Vu_)\u*
70,00 = T (17)

Let 7*(i) be the steady state probabilities for all nodes at the ' level of the aggregated
process. m*(1) can be expressed as:

(i) = Bilyr*(i,j) _ A_ﬂ()\“)(’/u_—)f)\u) i>1 (18)

1
i vy \ Uy vy + AU

To compute the job response time 1™ for the upper bound model, which is based on
Equation (4), let us define r§ to be the expected number of tasks given the system is in
So0, Ty to be the expected number of foreground tasks® given the system is in Si; for
i > 1 and ri(7) to be the expected number of background tasks given the system is in S,
for 1 > 1. Therefore, given the rate matrix QS&WS&O and Qsﬁj,g&, we can compute r%

and r. The number of background tasks (which includes the completed tasks associated

6Note that r§ is the same for Si'; for ¢ > 1.
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with the jobs that are placed in the background) given that the system is in i** level of
busy cycle is equal to i K(C + 1). Therefore, the total expected number of tasks in the
upper bound model M* is

N* = 7(0,0) f0+2 ( ) 7(0,0) [iK(C +1) + 1]

ul

= 7 (O,O)TIO—I—ZW (O,O)rfg(J(Z) + —7*(0,0)K(C + 1) _0< ) [t +1]

u

) LAY RO+ ),
= 77(0,0) [rfo + Vuf_ e + (e = )\u*)Q ]

Vy — A rEAY T ANYK(C+ D,
= _ u 1
(Vu + )\u' _ )\u*) lrfo + Vy — u* + (Vu _ )\u*)Q ( 9)

The expected job response time for upper bound model M*™ is

™ =

Uy — A A MK (C+ 1)%] (20)

[K)\ (v + AV — )\“*)] [Tfo + Uy — AY* (vy — )\“*)2

4 Lower Bound Model

In this section, we first describe the behavior of the lower bound model M!, then
we prove that M' indeed provides a lower bound for the expected job response time for
the model M. We also develop a computational procedure for efficiently calculating the
expected job response time for model M'.

The lower bound model M' is modeled as having K parallel servers. A job arrives
to the system according to a general arrival process” with mean rate A. Upon arrival, a
job splits into K tasks and task ¢;, 1 <1 < K, has a k-stage Erlang distribution with
mean 1/p, and is assigned to the i'* server of the system. Each server will service its
assigned tasks in a FCFS order. Again, a job departs from the system when its last task
is completed. Similar to the upper bound model M™, we have a threshold d, which places
a constraint on the maximum difference in foreground waiting queue lengths. There is
also a threshold trigger C, such that if a job arrives and finds that there are already C
foreground waiting tasks in any server, a new busy cycle begins with this newly arrived
job. The busy cycle ends when all servers complete all tasks which arrive in the current
busy cycle. Again, the definition of a busy cycle implies nested busy cycles, i.e., during

“In later section, we will define the class of arrival processes we can handle in the computational
algorithm for the lower bound model M!. The proof for the bounding process, however, is applicable for
general arrival process.
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a busy cycle, a job arrival can trigger the start of a new busy cycle. When a busy cycle
ends, only the set of tasks suspended at the initiation of that busy cycle is released for
service.

The lower bound model operates as follows:

o If a task departure would violate the threshold d, it remains in the server for
another phase of service (e.g: for k-stage Erlang, the task remains in the last stage
of service) and we force a foreground task departure from one of the longest queues.

e When the system has some background tasks waiting and there are K or less
foreground tasks in the system, any task departure will force all other foreground
tasks to depart from the system.

e When the system has some background tasks waiting and there are more than K
foreground tasks, if a foreground task departure would create an idle server (e.g:
there is no more foreground tasks for that particular server while there are still
some foreground tasks in other servers), the task remains in the server for another
phase of service and we force a task departure from one of the longest foreground
task queues instead.

Informally, since a job’s response time is a function of the last task’s departure, the
constraint on threshold d can force a job to complete earlier and thereby obtain a lower
bound response time. The second and third departure constraints described above not
only result in a lower bound on the job response time but combined with the trigger
threshold C, this will create a tree structured transition diagram for M' and we can use
an approach similar to that developed in the last section to efficiently compute the job
response time of M.

4.1 Proof for lower bound on expected job response time

In this section, we will prove that the model M! provides a lower bound on the expected
job response time. We will use the concept of majorization [21] in the proof so we first
review some basic facts about majorization.

Definition 8 X is said to majorize Y (written X <Y ) iff
koo ko
X < XY, k=1,...,K—1,
(=1 (=1
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K K
X = Y v (21)
(=1 =1

where X| ()A/l) is the [—largest component of X (Y'). If we replace the equality in (21)
by

K . K .
2 XY,

we obtain a weaker ordering. In this case we say that Y weakly majorizes X (written

X <, Y).

The following lemma states some properties regarding operations that can be per-
formed on X and Y such that weak majorization is preserved.

Lemma 3 Let X,Y € IN® such that X <, Y, then

A

Lo(X, o X X+ 1 X)) <o (Y, Y+ 1, Y, YR,
forl <k<I<K

A A

2. (Xp, (Ko =D X LX) <w (Vi Y (=D)L YR,
forl <k<I<K

Proof. The proof follows in a straightforward manner from the definition of “<,,”. The
reader is referred to [21] for a detailed proof. |

In the following definition, we introduce the concept of a Schur-convex function, which
will be useful in applying stochastic comparison based on majorization.

Definition 9 A function ¢ : IN® — IR is said to be Schur-convex iff

H(X)<HY), VYX,Y €IN® such that X <Y .

Definition 10 If X,Y € IN® are random variables, then we say X is smaller than'Y
in the sense of Schur-convex order (written X <;.. Y ) iff

H(X) <5t &(Y), YV Schur-convez ¢.

If the class of functions is restricted to be increasing Schur-convez, then we say that X
is smaller than'Y in the sense of increasing Schur-convex order (X <;s. Y ).
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From [21], we have a property of these orderings as expressed in the following lemma.

Lemma 4 Let X,Y € IN® be vector valued random variable’s such that:
X §SC$ Y (X Siscz Y)

There exist two random variable’s X and Y such that:

X=4X,Y=,Y and X <Y (X =<,Y)

almost surely.

With this lemma, we can couple the behavior of models M and M' so that we can
concentrate on comparing deterministic vectors. Letting IN () (IN'(¢)) be the joint queue
length for the model M (M') at time ¢t. We have the following theorem:

Theorem 5 If N'(0) <iee N(0), then N'(t) <isex N(t) for V¢ >0

Proof: Using Lemma 4, we first couple the initial queue length of these two models such
that Nl(()) <w IN(0). Now condition on the arrival times so that we can examine the
two systems with exactly the same arrival sample path. For each server, we associate
a service event process which is a Poisson process with parameter kyu, where k is the
number of stages for the task service Erlang distribution. Whenever a service event
occurs associated with a server, a departure occurs if there is one or more customer in
the queue at the time of the event. Note that the coupling of the service event times at
the different servers is only possible if the service times at the servers are all mutually
independent sequences of i.i.d exponential random variables with the same parameter®.

Let {t;}22, be the sequence of times at which arrivals or service events occur (o = 0).
We will establish the relation Nl(t) ~<w IN (1) by induction on the event times.

Basis step. This follows from the coupling of the initial queue lengths.

Inductive step. Assume that Nl(t) <w N(t) for t < t;. We will establish that
Nl(ti) <w N (t;). Now there are several cases:

Arrival Fvent. If the event is a job arrival, since it adds k& sub-tasks to each server,
the N'(t;) <., IN(t;) relationship is preserved (this is easily seen as a generalization of
Lemma 3).

Service Fvent. There are several cases:

8This is the origin of the restriction of service time to Erlangian service variables.
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o Normal task departure: If a service event occurs at the i** server and both systems,
M and M', allow this departure (i.e., the :"* server is busy in both systems), <,, is
clearly preserved by Lemma 3, Property 1.

o Constraint on threshold d: 1f the lower bound model M' disallows the task depar-
ture from the 7** server and forces a task departure from the longest queue due to
threshold d constraint, then Property 2 of Lemma 3 can be applied to see that the
< relationship is preserved.

o Constraint on task departures when there are background tasks: In the lower bound
model M', we have the constraint that if there are background tasks, we disallow
any task departure which will create an idle server, by replacing the original depar-
ture with either a departure of a foreground task from the longest queue or a flush
of all foreground tasks. In either cases, we see that by Property 2 of Lemma 3, the
=< relationship is preserved.

This completes the induction step and thus we have N'(t) <, N(t), t > 0. By the
definition of weak majorization (<, ), this implies that f(N'(t)) < f(N(¢)) for any
increasing Shur-convex function f(¢). Removing the conditioning on the arrival times
and service times, we have

N'(t) <isee N(t) V>0

Corollary 3 if NI(O) <isex IN(0), then N'(t) <, N(t), fort > 0.

Proof: This follows from the preceding theorem and the fact that the function f defined
in Equation (5) is a Shur-convex function. |

4.2 Computational procedure for lower bound model M’

In this section, we discuss the computational procedure for obtaining the expected re-
sponse time for the lower bound model M'. We first describe the class of arrival process
we allow in our computational algorithm for the upper bound model M.

Let 7 denote the random variable equal to the interarrival time of jobs to the system
and let A*(s) denote the Laplace transform of its distribution. We consider a series-
parallel stages distribution where each stage represents an exponentially distributed ran-
dom variable 7;; with parameter A;;. Without loss of generality, the class of interarrival
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distributions has the following form:

R T )\2 R
A (s) = Do [ —2 for0<a; <1,Y a;=1,0;>0 (22)

7=1 =1 s+ )\i] 7=1
and r, < r for2<i<R (23)
Ait <A for 2<j<Rand 1 <1< (24)

such that —dA;S(S) |s=o = A™!. Note that because of Equations (23) and (24), the class of
distributions allowed is more restrictive than the interarrival distribution of the upper
bound model M™. But even with these constraints, this class of interarrival distributions
can accommodate a large class of distributions such as exponential, Erlang, hyperexpo-
nential, ..., etc. Figure 5 illustrates this type of series-parallel distribution.

Figure 5: Series-parallel distribution for M.

To describe the computational procedure for the lower bound model M', it is impor-
tant that we first describe the state space of the lower bound model. First, let us define
the following:

Definition 11 Let Sf ,1> 0,0 <j < B'—1, be the set of states in the lower bound
model M' where Sl . contains all states that are (1) in the i'* (where i > 0) nested level
of busy cycles, (2) the difference in the waiting queue lengths of foreground tasks among
different servers is less than or equal to d, and (3) the i'" nested busy cycle was entered
from the (i — 1) nested busy cycle through the trigger state Si;(j mod B) € S!_, /B

Transitions between states in Sz{,j behaves like the original model M except :
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e For task departures that would violate the threshold d, the task has to remain in
the server for another phase of service and the system forces a foreground task
departure from one of the longest queue.

e If a foreground task departure would create an idle server (e.g., there are no more
foreground tasks for that particular server), the task has to remain in the server
for another phase of service and the system forces a task departure from one of the
longest foreground task queues.

o [f the system has some background tasks waiting and there are K or less foreground
tasks in the system, any task departure will force all foreground tasks to depart
from the server.

e If a new job arrives and the system is in one of the trigger states, for example Sy (1),
then a new busy cycle begins with this newly arrived job and the system enters

state (17 [07 k]7 Ty [07 k]) in Szg-l—l,jB-l—l'

e Upon completion of the last foreground job in Sf,j’ the previously suspended set of
tasks is released for service. That is, the system will make a transition back to one

of the trigger states in Szg—l,j/B‘

With this definition, we can see again that the state space of the lower bound model
can be organized as a tree with each node of the tree containing the states in Sij. Figure
6 illustrates the lower bound model M' for Poisson arrival, exponential service time and
K =2,d=2,C =5. Also note that although the definition of Si]- and S, are similar,

the internal transition structures are different.

As stated above, upon departure of the last foreground job in S! .. there will be a

2,77
transition back to one of the trigger states in Szg—l,j/B‘ At this point, similar to what

was done in the upper bound model M", we change the arrival process so that we can
have an efficient algorithm for solving the lower bound model. First, we define random
variables 7y; as:

Ty
Tej = an forl<j<Rand 1<k <r; (25)
=k

and the Laplace transform of 7; as:

-T2

ik \S T Ay

We can also express A*(s) as:
R A
A'(s) = D o Afy(s)
7=1
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Figure 6: State Space Partition for Lower Bound Model M'.

We have the following observation:
Theorem 6 7 < 7.

Proof: Based on Equation (24), we have
Aij > it for 2<j<Rand 1 <:i<r,

therefore
Aij <st i for 2<j< Rand 1 <i<r,

We then have the following observations:

Ty Ty
ZT}C]' < ZTM for 2<j<Rand 1 <:<r,
Ty
7A'1j <st ETM <ot Ti1 for 2<; <R
k=1

R R
T=Y ajfi; <4 ) ajfu=1tn
i=1 i=1
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Let Z be a random variable that takes on value of 0 or 1. Define

ax _ { 7 Prob(Z =1)

~ | A1 Prob(Z =0)
Corollary 4 7 <, 7*.

Proof: Since
Prob(Z = 1)1 4+ Prob(Z = 0)7 < Prob(Z = 1)7 + Prob(Z = 0)71;

therefore,

Let n; = {n;(t),t > 0},7 = 1,2, denote the process defined by the number of tasks at
a server when the interarrival distribution is GG; and F;« respectively. We want to show
that
{na2(t),t > 0} <g {ni(t),t > 0}.

Corollary 5 {nz(t),t > 0} <y {ni(t),t > 0}.

Proof: The proof is similar to Theorem 3 and therefore is omitted in the interest of
space. |

The significance of Theorems 6, Corollary 4 and Corollary 5 is that at some imbedded
time, we can modify the interarrival distribution according to Theorem 6 and we can
have a lower bound on the number of tasks in the system. These imbedded times are
defined to be the times when all the foreground tasks are completed and the system is
switching to the last suspended set of tasks (which then becomes the foreground tasks).
When this occurs, the next job arrival occurs with an interarrival time 7y;. After this
arrival, the original interarrival process is again in effect.

The approach to compute the expected job response time T for the lower bound
model M' is similar to the approach we took in obtaining the 7% in M*, that is:

.. .. . . . l
1. compute the conditional state probability given that the system is in set .5; ..
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2. aggregate each Si]- into a single state 35-7]-
3. compute the transition rates between aggregate states.

4. given the conditional state probabilities of Sf,j and aggregate state probabilities
Si}ﬁ applying Equation (4) and Equation (5), we can find the T, the expected job
response time for lower bound model M'.

First, we show how to obtain the conditional state probability given that the system
is in set Sij.

Theorem 7 Consider a Markov process with rate matriz QS; gt , which s equal to
6,377,
Qg g except for the following modification:
2,7

2,77
1. A transition to the parent set of states, Sf—m: s changed to a transition to the
initial state, which s the state where Sf_Lk is entered.

2. Fach transition to a child in set Sf-l—l,l ts changed to the return state from the child
in set Szg-l—l,l'

The steady state probability vector for the Markov process with rate matriz Qsz_ gt 1s the
2,377,

conditional state probability vector given the system is in set Sf,j'

Proof: The proof is similar to the proof in Theorem 4. |

With the above theorem, we can aggregate each set of states Sij as a single state
35»7]-. After aggregation, the state space is depicted in Figure 7. The transitions between
aggregates states can be computed as follow:

A= 7 (a)A fora € SywhereSy C S5,,0 <i< B—1(26)

)\ﬁ.* = @(a)A fora € Sy where Sy C SLO,O <i:<B-1 (27)

v = T(s)p (28)
sew

where U be the set of states in S!

27]7

to parents of Sij' #'(a) and #(a) are the steady state probability for Markov processes

2 > 1, such that there are transitions from ¥ back

with rate matrix Qsé LSt and Qsi LS respectively.
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2, (i+1)B-1

Figure 7: Aggregated Process for lower bound model M.

Let 7%(0,0) be the steady state solution for the aggregated state 3670. It is equal to:

* Vi — )\l* ‘
7(0,0) = m (29)

To compute for the expected job response time T for the lower bound model M',
let rﬂ; be the expected number of tasks given the system is in Séo, rf be the expected
number of foreground tasks given the system is in Sl for i > 1 and, r!(2) be the expected

number of background tasks given the system is in S ; fori > 1. Therefore, given the rate
matrix Qséo si, and QS; gl , we can compute rfo and rét. The number of background
,0770, 6,377,

tasks given the system is in :** level of busy cycle is equal to 1K C. Therefore, the total
number of tasks in the lower bound model M' is:

— A\ riAT VKO
I e A l 30
(Vz T — )\z*) lrfo + U — A + (1 — A2 (30)
and the expected job response time 7" for the lower bound model M! is:
_ )= rk AV MNKCuy
7= Yy ! f 31
lm(ul + A — )\l*)] [rfo G (v — A%)? (31)

5 Applications and Numerical Examples

In this section, we present two examples in order to illustrate the applicability of the
bounding algorithm.
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Let us consider a computer vision system implemented in a homogeneous workstation
cluster under the Parallel Virtual Machines (PVM) environment [27]. An image will
arrive to the computer vision control manager, which will then assign a portion of the
image to each workstation for computation. Each workstation will in turn perform some
ray-tracing calculation for its part of the image and the total image is ready for display
when all workstations have finished their ray-tracing operations. This type of application
can be mapped to the fork-join paradigm and the environment is illustrated in Figure 8.

workstation workstation workstation workstation
1 2 5 6

Interconnection
network

computer vision
control and

display manager

Figure 8: Computer Vision Program in Workstation Cluster Environment.

Assume that there are 6 workstations ready for ray-tracing operations The job arrival
distribution is Poisson and the service time distribution of each task is exponential with
rate equal to 1.0. We vary the utilization of the system from 0.1 to 0.9 by changing the
arrival rate. Table 1 gives the upper and lower bound of the expected job response time.

Percentage error is defined to be gz;g; x 100%.

The second scenario we illustrate is the same system with 6 servers but the job arrival
process is a Erlang—2 distribution. The service time distribution of tasks are exponential
with rate 1.0. Again, we vary the input rate so the utilization of the system can varies
from 0.1 to 0.9. Table 2 illustrates the upper and lower bound for the expected job
response time.

The third system we illustrate is similar to the second system except the arrival
process is Poisson with rate A but the service time distribution is Erlang—2 distribution.
Table 3 illustrates the upper and lower bound for the expected job response time.

For the last example, we want to illustrate the tradeoff between computational cost
and accuracy of the bounds. Let us consider the system where the job arrival process
is Poisson and the task service time is Erlang—2 distribution. By fixing the system
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utilization at 0.7 and increasing the number of states generated, we see the improvement
of the bounds on the mean response time. The results are illustrated in Table 4

System A T'" | Spread of | C | d States Percentage
Utilization Bounds Generated Error
0.1 2.64 | 2.67 0.03 8 |5 1218 0.56 %
0.2 291 | 2.96 0.05 8 |5 1218 0.85 %
0.3 3.26 | 3.32 0.06 8 |5 1218 0.91 %
0.4 3.73 | 3.81 0.08 8 |6 1848 1.06 %
0.5 4.35 | 4.45 0.10 8 |6 1848 1.14 %
0.6 5.31 | 5.44 0.13 9 |7 3300 1.21 %
0.7 7.00 | 7.20 0.20 9 |7 3300 1.41 %
0.8 10.21 | 10.52 0.31 10 | 7 4092 1.49 %
0.9 19.80 | 20.33 0.63 11 |8 6864 1.57 %

Table 1: Poisson Arrival and Exponential Service Time.

System A T' | Spread of | C | d States Percentage
Utilization Bounds Generated Error
0.1 2.50 | 2.52 0.02 6 |4 924 0.40 %
0.2 2.65 | 2.68 0.03 6 |4 924 0.56 %
0.3 2.92 | 2.97 0.05 6 |4 924 0.85 %
0.4 3.21 | 3.30 0.09 6|5 1428 1.38 %
0.5 3.74 | 3.85 0.11 6|5 1428 1.45 %
0.6 4.58 | 4.72 0.14 6|5 1428 1.50 %
0.7 5.70 | 5.89 0.19 715 1932 1.64 %
0.8 8.40 | 8.70 0.30 715 1932 1.75 %
0.9 16.22 | 16.87 0.65 816 3696 1.96 %

Table 2: 2-stage Erlang Arrival and Exponential Service Time.

6 Conclusion

Fork-Join queueing is one of the basic parallel computational models building blocks.
Due to correlation among servers and infinite queueing capacities for each server, no
closed-form solution exists for the general case. The problem cannot be solved by direct
numerical computation due to its infinite state space. In this paper, we propose an
algorithm to obtain the upper and lower bound of the expected response time of a job.
The algorithm also provides the flexibility to tradeoff computational resources and tighter
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System A T' | Spread of | C | d States Percentage
Utilization Bounds Generated Error
0.1 2.14 | 2.16 0.02 6 |4 5440 0.46 %
0.2 231 | 2.34 0.03 6 |4 5440 0.65 %
0.3 2.53 | 2.57 0.04 6 |4 5440 0.78 %
0.4 2.82 | 2.87 0.05 6 |4 5440 0.88 %
0.5 3.29 | 3.37 0.08 6|5 8568 1.20 %
0.6 3.90 | 4.00 0.10 6|5 8568 1.52 %
0.7 4.90 | 5.07 0.17 715 11592 1.72 %
0.8 7.01 | 7.27 0.26 716 16632 1.82 %
0.9 14.70 | 15.29 0.59 8 | 7 30096 1.97 %

Table 3: Poisson Arrival and 2-stage Erlang Service Time.

C|d States Response Time Response Time | Spread of | Percentage
Generated | Upper Bound(7*) | Lower Bound(7") | Bounds Errors
715 11592 4.80 5.25 0.44 4.38 %
716 16632 4.90 5.07 0.17 1.72 %
8|7 30096 4.97 5.05 0.08 0.80 %

Table 4: Computational Cost vs. Accuracy.

and C; to obtain specified error bounds.
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