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ABSTRACT
Internet service providers (ISPs) depend on one another to
provide global network services. However, the profit-seeking
nature of the ISPs leads to selfish behaviors that result in
inefficiencies and disputes in the network. This concern is
at the heart of the "network neutrality" debate, which also
asks for an appropriate compensation structure that satisfies
all types of ISPs. Our previous work showed in a general
network model that the Shapley value has several desirable
properties, and that if applied as the revenue model, selfish
ISPs would yield globally optimal routing and interconnect-
ing decisions.

In this paper, we use a more detailed and realistic network
model with three classes of ISPs: content, transit, and eye-
ball. This additional detail enables us to delve much deeper
into the implications of a Shapley settlement mechanism.
We derive closed-form Shapley values for more structured
ISP topologies and develop a dynamic programming proce-
dure to compute the Shapley revenues under more diverse
Internet topologies. We also identify the implications on the
bilateral compensation between ISPs and the pricing struc-
tures for differentiated services. In practice, these results
provide guidelines for solving disputes between ISPs and for
establishing regulatory protocols for differentiated services
and the industry.
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The Internet is operated by thousands of interconnected
ISPs, with each ISP interested in maximizing its own profit.
Rather than operating independently, each ISP requires the
cooperation of other ISPs in order to provide Internet ser-
vices. However, without an appropriate profit sharing mech-
anism, profit-seeking objectives often induce various selfish
behaviors in routing [21] and interconnecting [6], degener-
ating the performance of the network. For example, Level
3 unilaterally terminated its “settlement free” peering rela-
tionship with Cogent on October 5, 2005. This disruption
resulted in at least 15% of the Internet to be unreachable for
the users who utilized either Level 3 or Cogent for Inter-
net access. Although both companies restored peering con-
nections several days later with a new on-going negotiation,
Level 3’s move against Cogent exhibited an escalation of the
tension that necessitates a new settlement for ISPs.

Compared to the traditional settlement models [1, 9] in
telecommunication, the Internet architecture has exhibited
a more versatile and dynamic structure. The most prevalent
settlements a decade ago were in the form of bilateral negoti-
ations, with both parties creating either a customer/provider
or a zero-dollar peering relationship [9]. Today, because of
the heterogeneity in ISPs, simple peering agreements are not
always satisfactory to all parties involved, and paid peering
[5] has naturally emerged as the preferred form of settlement
among the heterogeneous ISPs. Nevertheless, the questions
like “which ISP should pay which ISP?” and ”how much
should ISPs pay each other?” are still unsolved. These open
questions are also closely related to the network neutrality
[3, 25, 7] debate, which argues the appropriateness of pro-
viding service/price differentiations in the Internet.

Our previous work [12] explored the application of Shap-
ley value [24, 20], a well-known economic concept origi-
nated from coalition games [19, 4, 10], to a general network
setting. We proved that if profits were shared as prescribed
by the Shapley value mechanism, not only would the set of
desirable properties inherent to the Shapley solution exist,
but also that the selfish behaviors of the ISPs would yield
globally optimal routing and interconnecting decisions.

In this paper, we explore the Shapley value revenue dis-
tribution in a detailed Internet model and its implications on



the stability of prevalent bilateral settlements and the pricing
structure for differentiated services in the Internet. Faratin
et al. [5] view today’s Internet as containing two classes of
ISPs: content and eyeball. Content ISPs specialize in pro-
viding hosting and network access for end-customers and
commercial companies that offer content, such as Google,
Yahoo, and YouTube. Eyeball ISPs, such as AT&T and Ver-
izon, specialize in delivery to hundreds of thousands of end-
customers, i.e., supporting the last-mile connectivity. Our
previous work [13] explored the Shapley value revenue dis-
tribution based on this Content-Eyeball (CE) model. This
paper significantly extends and generalizes the results from
the CE model (Theorem 1). We start with the CE model and
extend it to include a third class of ISPs: transit ISPs. Tran-
sit ISPs model the Tier-1 ISPs, such as Level 3 and Cogent,
which provide transit services for other ISPs and naturally
form a full-mesh topology to provide the universal accessi-
bility of the Internet. Our new results are:

• We obtain closed-form Shapley value solutions for ISPs
in the Content-Transit-Eyeball (CTE) models under bi-
partite topologies (Theorem 2).

• We generalize the closed-form Shapley solution for mul-
tiple contents/regions environments where “inelastic”
components can be decomposed linearly (Theorem 31).

• We derive a dynamic programming procedure to calcu-
late the Shapley value for ISPs under general Internet
topologies. This procedure can progressively build up
the Shapley values for ISPs along with the develop-
ment of the network structure (Theorem 4).

• We show that the aggregate revenue can be decom-
posed by content-side payments and eyeball-side pay-
ments, each of which can be distributed as a Shapley
value revenue of a canonical subsystem to each ISP
that contributed in the coalition.

• Through the Shapley value solution, we explain 1) why
the zero-dollar peering and customer/provider bilateral
agreements can be stable in the early stage of the Inter-
net, 2) why paid-peering has emerged recently, and 3)
why an unconventional reverse customer/provider re-
lationship should exist in order for the bilateral agree-
ments to be stable.

• Instead of supporting or disproving service differentia-
tions in the network neutrality debate, we try to answer
the question what the appropriate pricing structure is
for differentiated services that are proven to be bene-
ficial to the society. Based on the Shapley value solu-
tion, we discuss the implied compensation structures
for potential applications of differentiated services.

We believe that these results provide guidelines for ISPs to
settle bilateral disputes, for regulatory institutions to design
1All results in [13] can be considered as special cases of a multiple
contents/regions environment with only content and eyeball ISPs.

pricing regulations, and for developers to negotiate and co-
operate to provide differentiated services on top of the cur-
rent Internet.

2. SHAPLEY VALUE AND PROPERTIES
Here, we briefly introduce the concept of Shapley value

and its use under our ISP revenue distribution context. We
follow the notations in [12]. We consider a network system
comprised of a set of ISPs denoted as N . N = |N | denotes
the number of ISPs in the network. We call any nonempty
subset S ⊆ N a coalition of the ISPs. Each coalition can
be thought of as a sub-network that might be able to pro-
vide partial services to their customers. We denote v as the
worth function, which measures the monetary payments pro-
duced by the sub-networks formed by all coalitions. In other
words, for any coalition S, v(S) defines the revenue gen-
erated by the sub-network formed by the set of ISPs S. In
particular, v measures the aggregate payments obtained by
ISPs in a coalition as

v(S) =
∑
i∈S

Pi(S), (1)

where Pi(S) is the end-payment collected by ISP i in coali-
tion S. Thus, the network system is defined as the pair
(N , v). Through the worth function v, we can measure the
contribution of an ISP to a group of ISPs as the following.

Definition 1. The marginal contribution of ISP i to a coali-
tion S ⊆ N\{i} is defined as ∆i(v,S) = v(S∪{i})−v(S).
Proposed by Lloyd Shapley [24, 20], the Shapley value serves
as an appropriate mechanism for ISPs to share revenues.

Definition 2. The Shapley value ϕ is defined by

ϕi(N , v) =
1
N !

∑
π∈Π

∆i(v, S(π, i)) ∀ i ∈ N , (2)

where Π is the set of all N ! orderings of N and S(π, i) is
the set of players preceding i in the ordering π.
The Shapley value of an ISP i can be interpreted as the ex-
pected marginal contribution ∆i(v,S) where S is the set of
ISPs preceding i in a uniformly distributed random ordering.
The Shapley value depends only on the values {v(S) : S ⊆
N}, and satisfies a bunch of desirable efficiency and fairness
properties [12].

We showed in [12] that the Shapley value mechanism also
induces Nash equilibria that are globally optimal for routing
and interconnecting. However, the calculation of the Shap-
ley value involves an exponential time complexity. In this
paper, we focus on the calculation of the Shapley value rev-
enues for ISPs and the implications derived from the Shapley
solution. We assume that routing costs are negligible com-
pared to the revenue obtained from providing services. Nev-
ertheless, our framework can always be extended to include
an orthogonal direction of routing decisions and costs.

3. NETWORK MODEL



Faratin et al. [5] categorize ISPs as two basic types: con-
tent ISPs and eyeball ISPs. We extend this categorization
by including a third type: transit ISPs. The set of ISPs is
defined as N = C ∪ T ∪ B, where C = {C1, · · · , C|C|} de-
notes the set of content ISPs, T = {T1, · · · , T|T |} denotes
the set of transit ISPs, and B = {B1, · · · , B|B|} denotes
the set of eyeball ISPs. We denote Q as the set of contents
provided by the set of content ISP C. Each content ISP Ci
provides a subset of the contents Qi ⊆ Q. The intersection
of any Qi and Qi′ might not be empty, meaning Ci and Ci′
can provide duplicate contents. We denote R as the set of
regions covered by the set of eyeball ISP B to provide Inter-
net services to end-customers. Each eyeball ISP Bj covers a
subset of the regions Rj ⊆ R. We assume that each region
r ∈ R has a fixed end-customer population of sizeXr. Each
end-customer chooses one of the eyeball ISPs covering the
region for service; therefore, each eyeball ISP Bj attracts
and serves a portion xrj (equals zero if Bj does not cover
region r, i.e. r /∈ Rj) of the total population in region r.
We assume that each content or eyeball ISP is connected to
one (single-homing) or multiple (multi-homing) transit ISPs;
while, transit ISPs connect with one another, forming a full-
mesh topology. We denote CPi as the content-side payment
from content providers to ISP Ci and BPj as the eyeball-
side payment from end-customers to ISP Bj .

Figure 1: The Content-Transit-Eyeball ISP model.

Figure 1 illustrates a scenario with |C| = |B| = 3, |T | = 4,
Q = {1, 2}, and R = {1, 2}. The contents provided by
three content ISPs are Q1 = {1, 2}, Q2 = {2} and Q3 =
{1} respectively. Eyeball B1 and B3 covers region R1 and
R2 respectively, i.e. R1 = {1}, R3 = {2}, and B2 covers
both regions, i.e. R2 = {1, 2}.

The justification of our network model to represent the
Internet ISP structure is supported by the study from the Co-
operative Association for Internet Data Analysis (CAIDA)
[16]. Their study shows that the average distance of AS-
level topology is less than 4, and 62% of AS paths are 3-hop
paths. This suggests that the most frequent path patterns are
described in our Content-Transit-Eyeball model: data source
originates from content ISPs, going through either one or
two transit ISPs and reaches eyeball ISPs. The full-mesh

topology of transit ISPs is also true for Tier-1 ISPs to pro-
vide universal accessibility of the Internet in reality [5].

3.1 Revenue Model
We define each eyeball-side payment BPj as follows.

BPj =
∑
r∈Rj

αrx
r
j ∀ Bj ∈ B, (3)

where αr is the monthly charge in region r. The eyeball-
side payment is basically the aggregate service charges from
end-customers served by ISP Bj in different regions. We
assume that the monthly charge might be different in dis-
tinct regions due to various economic and living conditions;
however, within the same region, we assume that the mar-
ket is competitive so that eyeball ISPs charge the same price
for users. We also define each content-side payment CPi as
follows.

CPi =
∑
q∈Qi

βqρ
q
i ∀ Ci ∈ C, (4)

where βq is the average per customer revenue generated by
uploading content q, and ρqi is the aggregate amount of end-
customers that might request content q from content ISP
Ci. Content-side payments are paid by content-providers
who run business through the Internet. Content ISPs receive
payment by disseminating business information, e.g. prod-
uct information and advertisements, for content-providers.
In practice, βq relates to two factors. First, βq measures
the popularity of content q. When the content is popular,
larger percentage (higher download frequency) of the cus-
tomer size ρqi will download it, generating more revenue for
the content ISPs. Second, βq measures the revenue for de-
livering per-unit information of content q. The higher the
importance of the content to the provider, the higher the rev-
enue paid by them. For example, Ebay or Amazon might
pay more for products information browsed by customers,
which potentially generates profits for them.

The above BPj and CPi are defined on general customer
distribution {xrj : r ∈ R, j ∈ B} and content demand distri-
bution {ρqi : q ∈ Q, i ∈ C}. Before describing both distribu-
tions, we first define two similar variables as follows:

hq =
|C|∑
i=1

1{q∈Qi} ∀q ∈ Q, and hr =
|B|∑
j=1

1{r∈Rj} ∀r ∈ R.

These two variables define the number of content ISPs that
provide content q and the number of eyeball ISPs that cover
region r respectively. Notice that with ISP arrival or depar-
ture, these variables change accordingly.

3.2 Demand Assumptions
We assume that the inter-region customer demand is in-

elastic and the intra-region customer demand is elastic. By
“inelastic”, we mean the total demand in each region r is
the fixed population Xr, regardless the number of eyeball
ISPs covering the region (as long as hr > 0). In practice,
it models the situation that the customers in a certain region



cannot physically choose ISPs from other regions, even if
the choices of local ISPs are limited. However, by “elastic”,
we mean that customers are not sticky to a certain eyeball
ISP within a region. When a new eyeball ISP comes into a
region, hr increases by one and customers from the original
ISPs may shift to the new ISP. Similarly, when an eyeball
ISP leaves a region, its customers will choose the remaining
ISPs evenly. In both cases, the total customer size of a region
is fixed.

We also assume that any end-customer will download a
particular content q from any of content ISPs that provide the
content. Conceptually, we can imagine that the same con-
tent provided by multiple content ISPs as an “elastic” con-
tent where users can choose which ISP to download from.
Similarly, different content can be thought of as “inelastic”
where users have to download a certain content specifically
from the group of content ISPs that provide it.

3.3 Conservation of Revenue
In general, the total amount of revenue generated by the

whole network is a constant:

v(N ) =
|B|∑
j=1

BPj+
|C|∑
i=1

CPi =
∑
r∈R

(
αr+

∑
q∈Q

βq

)
Xr. (5)

However, the whole network might have revenue loss if the
network is segmented so that some customer cannot reach
all content provided by all content ISPs. Figure 2 illus-

Figure 2: A segmented network results revenue loss.

trates an example where customers, attached to one of the
eyeball ISPs, can only access one of the content ISPs. The
content-side revenue will be less than

∑
q∈Q βq(

∑
r∈RXr).

However, if the two transit ISPs are connected, the total rev-
enue will follow Equation (5). In this paper, we assume the
condition of Equation (5) holds whenever there is topologi-
cal changes in the network (i.e. interconnection change and
ISP arrival/departure). The justification of this assumption
is that, in practice, the set of transit ISPs are made up of
Tier-I ISPs that always connect to each other forming a full
mesh [5, 16]. Therefore, v(N ) really defines the total rev-
enue generated by the Internet.

4. SHAPLEY REVENUE DISTRIBUTION
In this section, we progressively develop the Shapley value

revenue distribution for ISPs under different models. We
start with a single-content/single-region scenario with a well-
connected topology. We first consider a model with only

content and eyeball ISPs. After that, we extend the result
to include transit ISPs. Then, we extend the result for a
multiple-content/multiple-region model. Finally, we explore
more general Internet topologies with previous models.

(a) Content-Eyeball (CE) Model (b) CTE Model

(c) Multiple Contents/Regions (d) General Topology

Figure 3: Progressively developed models.

Figure 3 illustrates the four models we are going to dis-
cuss in the following subsections.

4.1 Content-Eyeball (CE) Model
The Content-Eyeball (CE) model follows from Faratin et

al. [5]. We focus on single-content/single-region for the time
being, assuming that every content ISP provides the same
content q and every eyeball ISP covers the same region r.
As illustrated in Figure 3(a), we also focus on the topology
where content and eyeball ISPs form a complete bipartite
graph. We have |N | = |C|+ |B| and v(N ) = (αr + βq)Xr.
We define ϕBj and ϕCi as the Shapley value revenue dis-
tributed to Bj and Ci respectively, and φB =

∑
Bj∈B ϕBj

and φC =
∑
Ci∈C ϕCi as the aggregate Shapley value for

the group of eyeball and content ISPs respectively. Due to
the space limitation, the proofs of theorems are omitted but
are available in the technical report [14].

Theorem 1 (SHAPLEY VALUE FOR CE MODEL). We con-
sider a set of content ISPs, C, providing one content and a
set of eyeball ISPs, B, covering one region. Under the CE
model with a complete bipartite graph topology, the Shapley
value revenues for each ISP are the following:

ϕBj
(|B|, |C|) =

|C|
|B||N |

v(N ) ∀ Bj ∈ B,

ϕCi(|B|, |C|) =
|B|
|C||N |

v(N ) ∀ Ci ∈ C.

Theorem 1 shows that an ISP’s Shapley value is inversely
proportional to the number of ISPs of the same type, and



proportional to the number of ISPs of the opposite type. In
particular, the aggregate Shapley value revenue of both types
of ISPs are inverse proportional to the number of ISPs of
each type, i.e. φC : φB = |B| : |C|.

Corollary 1 (MARGINAL REVENUE). Suppose any con-
tent ISP de-peers with all eyeball ISPs, i.e. removing some
Ci ∈ C from C. We define C′ = C\{Ci} as the set of remain-
ing content ISPs. The marginal aggregate revenue for the set
of eyeball ISPs is defined as

∆φB = φB(|B|, |C′|)− φB(|B|, |C|).

This marginal aggregate revenue satisfies:

∆φB = − |B|φB
|C|(|N | − 1)

= − |B|v(N )
|N |(|N | − 1)

.

Corollary 1 measures the marginal revenue loss for the set of
eyeball ISPs from losing one of content ISPs. Because the
Shapley revenue in Theorem 1 is symmetric between content
and eyeball ISPs, we can derive similar marginal revenue re-
sult by considering any de-peering of an eyeball ISP as well.
When |C| = 1, Corollary 1 tells that the marginal revenue
for the group of eyeball ISPs is −φB, which indicates that if
the only content ISP leaves the system, all eyeball ISPs are
going to lose all their revenue. When |B| = 1, Corollary 1
tells that ∆φB = − 1

|C|2φB, which mean that by disconnect-
ing to an additional content ISP, this eyeball ISP is going to
lose 1/|C|2 of its original revenue. The CE model gives a
good sense of the Shapley value revenue among ISPs before
the model is getting more complicated. However, we will
see that more detailed models show similar revenue-sharing
features as the basic model.

4.2 Content-Transit-Eyeball (CTE) Model
The Content-Transit-Eyeball (CTE) model, as illustrated

in Figure 3(b), extend the CE model by introducing a set of
transit ISPs in between the content and eyeball ISPs. Again,
the topology between two connecting classes of ISPs are as-
sumed to be a complete bipartite graph. Although the transit
ISPs are supposed to form a full-mesh, the CTE model does
not put any constraint on the interconnections between any
pair of transit ISPs. Because any content ISP can be reached
by any eyeball ISP via exactly one of the transit ISPs, inter-
connecting links between transit ISPs are “dummy” in this
topology in that, their presence does not affect the Shap-
ley revenue of any ISP. Later, we will extend our model to
general Internet topologies where transit ISPs do require to
form a full mesh and eyeball ISPs might need to go through
multiple transit ISPs to reach certain content ISPs. Here,
the total number of ISPs in the network becomes |N | =
|C| + |T | + |B|. Similarly, we define ϕTk

as the Shapley
value revenue of Tk, and φT =

∑
Tk∈T ϕTk

as the aggre-
gate Shapley value for the group of transit ISPs.

Theorem 2 (SHAPLEY VALUE FOR CTE MODEL). We
consider a network with a set of content ISPs C, a set of eye-
ball ISPs B and a set of transit ISPs T . Both content and

eyeball ISPs are connected to the transit ISPs by a complete
bipartite graph. Assume all content ISPs provide a single
content and all eyeball ISPs cover a single region. The Shap-
ley value revenue for each ISP is in the following form:

ϕBj
(|B|, |T |, |C|) = ϕB(|B|, |T |, |C|)v(N ) ∀ Bj ∈ B,

ϕTk
(|B|, |T |, |C|) = ϕT (|B|, |T |, |C|)v(N ) ∀ Tk ∈ T ,

ϕCi(|B|, |T |, |C|) = ϕC(|B|, |T |, |C|)v(N ) ∀ Ci ∈ C,

where the normalized Shapley values ϕB , ϕT and ϕC are:

ϕB(|B|, |T |, |C|) =
1
|N |

|T |∑
t=1

|C|∑
c=1

(
|T |
t

)(
|C|
c

)(
|N | − 1
t+ c

)−1

,

ϕT (|B|, |T |, |C|) =
1
|N |

|B|∑
b=1

|C|∑
c=1

(
|B|
b

)(
|C|
c

)(
|N | − 1
b+ c

)−1

,

ϕC(|B|, |T |, |C|) =
1
|N |

|B|∑
b=1

|T |∑
t=1

(
|B|
b

)(
|T |
t

)(
|N | − 1
b+ t

)−1

.

The normalized Shapley values ϕB , ϕT and ϕC in Theorem
2 can be considered as the percentage share of the total rev-
enue v(N ) for each ISP. Theorem 2 shows that ϕB , ϕT and
ϕC are symmetric (which is also true for the CE model), in
the sense that they can be represented by the same function
with arguments shuffled:

ϕB(b, t, c) =
1
|N |

t∑
t′=1

c∑
c′=1

(
t

t′

)(
c

c′

)(
b− 1 + t+ c

t′ + c′

)−1

= ϕT (t, b, c) = ϕC(c, t, b).

To understand this symmetric property of the normalized
Shapley values function, we can think the importance of the
group of transit ISPs is the same as that of either the group of
content ISPs or the eyeball ISPs, because without the transit
ISPs, the network is totally disconnected and cannot gener-
ate any revenue.

Figure 4 plots the aggregate Shapley value revenue of the
set of transit ISPs, φT , against different sizes of the eyeball
and the content ISPs. We normalize v(N ) to be 1. On the
x-axis, we vary the size of the content ISPs, |C|. On each
plotted curve, the size of the transit ISPs |T | is a constant.
With the change of |C|, the size of the eyeball ISPs changes
accordingly to satisfy the relation |B| = |T | − |C|. Effec-
tively, when we increase the number of content ISPs, we
decrease the number of eyeball ISPs and keep the number of
transit ISPs the same as the sum of both content and eyeball
ISPs. We plot the value of φT for 2 ≤ |T | ≤ 8. From Figure
4, we can make two observations. First, similar to the result
of the CE model, the ratio of φC : φT : φB is fixed when
the ratio |C| : |T | : |B| is fixed. In other words, we have the
scaling effect of the normalized Shapley value function as:

ϕB(b, t, c) = kϕB(kb, kt, kc) ∀ k = 1, 2, 3, · · · .



Figure 4: Aggregate Shapley value of transit ISPs.

For example, when we have only one ISP for each type, each
ISP obtains one-third of the total revenue, i.e. ϕB(1, 1, 1) =
1/3. The aggregate Shapley for each group of ISP will keep
the same, i.e. φB = v(N )/3 , as long as the sizes of the
groups of ISPs increase proportionally. If they do not in-
crease proportionally, we have the second observation. Even
the number of transit ISPs keeps a constant as the sum other
ISPs, its aggregate Shapley value changes as the sizes of con-
tent and eyeball ISPs vary. Each curve exhibits a reverted U-
shape, where φT reaches its maximum when |B| = |C|. This
result also coincides our intuition. When |B| = 1 or |C| = 1,
the only eyeball or content ISP becomes crucial and shares a
great amount of the total revenue. When the number of eye-
ball and content ISPs are evenly distributed, i.e. |B| = |C|,
the impact of any of them leaving the system is minimized,
which, at the same time, maximizes the value of transit ISPs.

4.3 Multiple Contents and Regions Model
In this section, we extend our previous result for multiple

contents and multiple regions. The conservation of revenue
in Equation (5) represents the aggregate revenue as summa-
tion of individual ISPs’ revenue. Another way of decom-
posing the aggregate revenue is to separate different revenue
sources from where the revenues are generated. We define
BPr = αrXr as the aggregate eyeball-side revenue gener-
ated in region r, and CP rq = βqXr as the aggregate content-
side revenue generated by providing content q in region r.
As a result, we can decompose the total revenue in the net-
work v(N ) as follows.

v(N ) =
|R|∑
r=1

BPr +
|Q|∑
q=1

|R|∑
r=1

CP rq . (6)

Intuitively, since any eyeball ISP in region r contributes to
the eyeball-side revenue BPr and any content ISP providing
content q contributes to the content-side revenue CP rq for
all region r, these ISPs should get a fair share of the specific

revenue they contributed to generate.

Theorem 3 (MULTIPLE CONTENTS/REGIONS MODEL).
We consider a network with a set of content ISPs C, a set of
eyeball ISPs B and a set of transit ISPs T . Each content
ISP Ci provides a set of contents Qi ⊂ Q and each eyeball
ISP Bj covers a set of regions Rj ⊂ R. Both content and
eyeball ISPs are connected to the transit ISPs by a complete
bipartite graph. The Shapley value revenue for each ISP is
in the following form:

ϕBj
=
∑
r∈Rj

[
ϕB(hr, |T |, |C|)BPr+

∑
q∈Q

ϕB(hr, |T |, hq)CP rq
]
,

ϕTk
=
∑
r∈R

[
ϕT (hr, |T |, |C|)BPr+

∑
q∈Q

ϕT (hr, |T |, hq)CP rq
]
,

ϕCi =
∑
r∈R

[
ϕC(hr, |T |, |C|)BPr+

∑
q∈Qi

ϕC(hr, |T |, hq)CP rq
]
.

Theorem 3 shows that in a multiple contents/regions envi-
ronment, the Shapley value revenue can be expressed as sep-
arable Shapley components of specific content-side and eyeball-
side revenues. In particular, the eyeball-side revenue BPr is
not shared by the eyeball ISPs that are not covering region r
and the content-side revenue CP rq is not shared by the con-
tent ISPs that are not providing content q. Each separated
revenue is distributed among ISPs according to Theorem 2,
using the normalized Shapley value functions ϕB , ϕT and
ϕC . This result is a consequence of the linearity property of
the Shapley value [12], which can be applied to more general
topologies of the network.

4.4 Extension to General Internet Topology
In this subsection, we consider more general topologies of

the network than the complete bipartite connections between
ISPs before. Because transit ISPs model the Tier-1 ISPs in
the Internet, we focus on the topologies where transit ISPs
form a full mesh. However, most of the results apply to more
general topologies.

To evaluate the Shapley value revenue for ISPs in a gen-
eral topology, we first decompose the aggregate revenue ac-
cording to Equation (6) in a similar manner as in Theorem 3.
For each component of the aggregate revenue (i.e. a content-
side revenue CP rq or an eyeball-side revenue BPr), a sub-
system can be derived to distribute it. For example, the sys-
tem in Figure 3(d) can be decomposed to six subsystems in
Figure 5. To construct the subsystems in Figure 5, we only
include the eyeball ISPs in region r for BPr and content
ISPs that provide content q for CP rq . Because the topology
is not a complete bipartite graph, some of the transit ISPs
do not contribute for certain component of the total revenue.
We need to eliminate these dummy transit ISPs as depicted
in dotted circles in Figure 5.

Definition 3. An ISP i is dummy if ∆i(v,S) = 0 for every
S ⊆ N\{i}.



Figure 5: The decomposition of Shapley values.

The remaining problem is to solve the Shapley revenue dis-
tribution for each of the decomposed subsystems in Figure 5.
Theorem 2 gives the closed-form solution for complete bi-
partite topologies. Although topological differences vary the
Shapley revenues, we can evaluate the Shapley values via a
dynamic programming procedure, if the system is canonical.

Definition 4. A system (N , v) is canonical, if v(S) is either
0 or v(N ) for every S ⊆ N .
In a canonical system, the total revenue v(N ) can be either
wholly earned or lost by any coalition S ⊆ N . This implies
that when any ISP leaves the system, the resulting topol-
ogy does not segment the network as in Figure 2, otherwise
partial revenue will be lost and 0 < v(S) < v(N ), which
violates the canonical property. By having a full-mesh of the
group of transit ISPs, each of the decomposed subsystems is
indeed a canonical system. As a result, any coalition S can
obtain either the whole decomposed revenue or nothing.

Definition 5. An ISP i is called a veto ISP, if i belongs to
all S with v(S) > 0.
Every veto ISP is essential for generating the revenue. If
any veto ISP leaves the system, the worth of the remaining
coalition becomes zero in a canonical system. For exam-
ple, transit ISP T1 is a veto ISP for the eyeball-side revenue
BP1, because all eyeball ISPs have to go through it to ob-
tain contents for customers. Now, we are ready to describe
the dynamic programming procedure to solve the Shapley
revenue for each of the decomposed canonical systems.

Theorem 4 (DYNAMIC PROGRAMMING EVALUATION).
For any canonical system (N , v), we define {(S, v) : S ⊂

N} as the set of subsystems formed by any coalition S of
ISPs and ϕi(S, v) as the Shapley value of ISP i in the sub-
system (S, v). The Shapley value revenue ϕi(N , v) for any
ISP i ∈ N can be expressed as a function of the Shapley val-
ues from the subsystems {(S, v) : S ⊂ N , |S| = |N | − 1}
as:

ϕi(N , v) =
1
|N |

[∑
j 6=i

ϕi(N\{j}, v) + v(N )1{i is veto}
]
.

Theorem 4 shows that the Shapley values of a canonical sys-
tem (N , v) can be represented by the Shapley values of its
subsystems (S, v) that have one less cardinality of the num-
ber of ISPs. This result implies that we can build the Shapley
values using a bottom-up dynamic programming approach
that progressively calculates the Shapley values of the sub-
systems to form the Shapley values of the original canonical
system. In practice, this procedure can also help calculate
the Shapley value of a progressively developing system. For
example, if all prior Shapley values are available, a new sys-
tem with an ISP joining in can be calculated directly from
the recursion equation in Theorem 4. Moreover, Theorem
2 can also be helpful in practice when a subsystem (S, v)
happens to have a complete bipartite topology.

4.5 Connectivity Effects on Shapley Revenues
Figure 4 compares the aggregate Shapley value for each

group of ISPs, when the number of ISPs in each group changes.
Here, we fix the number of ISPs in each group and explore
how the aggregate values of each group of ISPs change when
the interconnecting topology changes.

(a) Focused connection (b) Uniform connection

Figure 6: Two extreme ways to interconnect.

Figure 6 illustrates Shapley value distribution for ISPs when
|C| = |T | = |B| = 3 and each content or eyeball ISP only
connects to one transit ISP. We can see that the Shapley val-
ues differ drastically, depending on how the content and eye-
ball ISPs are connected to the transit ISPs. Figure 6(a) shows
the case when all content ISPs are connected to T1 and all
eyeball ISPs are connected to T3. Although T2 becomes a
dummy ISP, the group of transit ISPs possesses 83% of the
total revenue. Figure 6(b) shows the case when all content
and eyeball ISPs are connected to transit ISPs uniformly. In
contrast, the group of transit ISPs only obtain 42%, half of
the previous share, of the total revenue.



Figure 7 illustrates how the values of φB,φT and φC change
reacting to the interconnecting link changes. Along the X-
axis, we vary the degree of connectivity to the transit ISPs.

(a) ISP groups with |C| = 7, |T | = 4, |B| = 10.

(b) ISP groups with |C| = 4, |T | = 7, |B| = 10.

(c) ISP groups with |C| = 4, |T | = 10, |B| = 7.

Figure 7: The Shapley value revenue for group of ISPs.

We start from the complete bipartite topology where each
content and eyeball ISPs connect to all |T | transit ISPs. Then,
we gradually decrease the number of transit ISPs each con-
tent and eyeball ISP connects to. We plot two types of con-
nection topologies.

1. Focused (solid lines): For any degree of connectivity
k, content ISPs connect on the first k transit ISPs and
eyeball ISPs connect to the last k transit ISPs (as in
Figure 6(a)).

2. Uniform (dotted lines): Content and eyeball ISPs con-
nect to transit ISPs in a round-robin manner, where
each transit ISP connects approximately the same num-
ber of content and eyeball ISPs (as in Figure 6(b)).

We observe that the value of the transit ISPs, φT , increases
and both φC and φB decrease in general when the degree of
connectivity decreases. Given any fixed degree of connectiv-
ity, φT is large when content and eyeball ISPs are focused on
different transit ISPs, and is small when content and eyeball
ISPs are connected uniformly. This general trend can be un-
derstood by considering the effective number of transit ISPs
in the topology. Under the Focused topology, for example
when k = 1, there are only two effective transit ISPs and
other transit ISPs become dummy. Therefore, we can imag-
ine the effective size of the transit ISPs as |T | = 2, which
results the large φT value for transit ISPs. In an extreme
case in Figure 7(a) when |T | is small relative to |C| and |B|,
the value of φT might decrease a little bit when links are
connected uniformly. Intuitively, under this scenario, the ef-
fective number of transit ISPs does not change much when
the degree of connectivity decreases, because there are more
content and eyeball ISPs than transit ISPs. Unlike the sym-
metric property shown on complete bipartite topologies, the
degree of connectivity and the way how content and eyeball
ISPs connect to transit ISPs strongly affect the value φT .

5. IMPLICATIONS
In the previous section, we developed the Shapley revenue

distribution for ISPs under general Internet topologies. Al-
though the Shapley value solution inherits multiple desirable
property, the actual revenue distribution in the Internet might
deviate from the Shapley value due to the inefficient bilateral
agreements between ISPs. In this section, we discuss the im-
plications derived from the Shapley value solution that may
guide the establishment of bilateral agreements and the pric-
ing structure for differentiated services. We start from a brief
discussion of the stability of the Shapley value solution.

5.1 Stability
Stability concerns whether ISPs can form a coalition to

earn more revenue than the aggregate Shapley revenue. If
so, ISPs do not have incentives to cooperate all together and
may deviate from the Shapley revenue distribution. Mathe-
matically, the stability condition requires:∑

i∈S
ϕi(N , v) ≥ v(S) ∀S ⊆ N . (7)



The above inequality requires the aggregate Shapley value of
any coalition to be greater than or equal to the worth of the
coalition; otherwise, the coalition will not cooperate with
other ISPs under the Shapley value mechanism. All solu-
tions that satisfy the above inequality are said to be in the
core [19]. The Shapley value is known to be in the core [23]
of a system if its worth function v is convex.

Definition 6. A worth function v is convex if for all coali-
tion S and S ′, v(S) + v(S ′) ≤ v(S ∪ S ′) + v(S ∩ S ′).
Particularly, Lloyd Shapley proved that the marginal con-
tributions ∆i(v, S(π, i)) defined in Equation (2) form the
vertices of the core of a convex system [23]. The Shapley
value, which is the average of vertices of the core, is located
at the center of the core. Figure 8 illustrates the core (solid

Figure 8: The core of a two-ISP example.

line segment) of a two-ISP example. The x-axis and y-axis
represent the revenue distributed to ISP 1 and 2 respectively.
The two vertices correspond to two marginal contributions:
∆1({2}) and ∆2({1}). The Shapley solution is located in
the middle of the core. Notice that if ISP 1 gets less than a,
it will not cooperate; if it gets more than c− b, ISP 2 will not
cooperate, because ISP 2’s gain is less than b. The convexity
condition is pretty loose, because in reality, cooperation nor-
mally achieves higher values to the bigger coalition than the
sum of individual values, i.e. v(S)+v(S ′) ≤ v(S∪S ′). No-
tice that some systems naturally have an empty core, which
means there does not exist any solution for Inequality (7).

5.2 Implications for Bilateral Agreements
The Shapley value solution suggests a value chain illus-

trated in Figure 9. End-payments flow into the network ei-
ther from the content-side or the eyeball-side. Each group
of ISPs retains a proportion, i.e. the Shapley revenue of the
group, of the revenue and forwards the remaining along the
network. In practice, ISPs negotiate bilateral settlements.
Huston [9] concluded that the zero-dollar peering and the
customer/provider relationships were the only stable models
for the Internet at the ’90s. The effective revenue distribu-
tion resulted from these bilateral agreements probably devi-
ate from that of the Shapley value distribution. We ask why
these bilateral agreements were stable and how close they

Figure 9: The value chain to implement Shapley revenue.

were to the Shapley solution. Figure 10 illustrates the sce-

Figure 10: Traditional ISP structure with homogeneous
local ISPs and transit ISPs.

nario when local ISPs were still homogeneous and the end-
to-end traffic patterns exhibited symmetry at the ’90s. We
can imagine that local ISPs were not specialized to be con-
tent or eyeball ISPs. They obtain end-payment both from
content-providers and end-customers. In the Shapley value
framework, ISPs need to exchange different payments. Each
local ISP will forward more money to transit ISPs than they
receive from transit ISPs. Effectively, the net money ex-
change would be from local ISPs to transit ISPs. Due to the
symmetric traffic pattern, the net money exchange between
transit ISPs would be close to zero. This result coincides
with zero-dollar peering and the customer/provider relation-
ships established from bilateral agreements. Although the
exact revenue distribution might deviate from the Shapley
value solution, we conjecture that the resulting revenue dis-
tribution was close enough to the Shapley value solution so
that it was in the core, and thus stable.

Faratin et al. [5] observed that due to the erosion of homo-
geneity of ISPs, specialized ISPs (content and eyeball) have
emerged as well as a new type of bilateral agreement: paid-
peering. Paid-peering is identical to zero-dollar peering in
terms of traffic forwarding, except that one party needs to
pay another. By applying the Shapley revenue distribution to
the Content-Transit-Eyeball model, we find the justification
of the existence of paid-peering between transit ISPs. Figure



Figure 11: Shapley value implied money exchange.

11 illustrates a scenario where the content ISPs connect to a
set of Content-side Transit (CT) ISPs and eyeball ISPs con-
nect to a set of Eyeball-side Transit (BT) ISPs. Assume that
the eyeball-side payments are relatively small compared to
the content-side payments, because BP s are based on fixed
monthly payments from end-customers and CP s are grow-
ing with the Internet-related businesses. After netting the
exchange of payments along the value chain in Figure 9, we
show the net bilateral money flows that result the Shapley
value solution in Figure 11. We observe that content ISPs
obtain content-side payments and pay CT ISPs. This is the
same customer/provider relationship as before. However,
the zero-dollar peering relationship does not happen between
all pairs of transit ISPs. Notice that CT ISPs need to forward
the content-side value towards the eyeball-side, which turn
out to be the paid-peering relationship emerged with hetero-
geneous ISPs. One unconventional observation is that, eye-
ball ISPs need to receive compensations from content-side
through BT ISPs. This implies that transit ISPs should pay
eyeball ISPs, which creates a reverse customer/provider re-
lationship. In reality, this reverse customer/provider settle-
ment rarely happens, because transit ISPs do not pay their
customer ISPs. From these implied bilateral relationships,
we realize that the current practice of bilateral agreements
may probably reach a solution that deviates from the the-
oretic Shapley solution severely. Consequently, this rev-
enue solution locates outside the core, and thus is unsta-
ble. We conjecture that Level 3’s de-peering with Cogent
might be the result of failing to implement an appropriate
paid-peering agreement as implied by the Shapley solution.
Also, the failure to maintain the reverse customer/provider
relationship might be the reason that the incumbent last-mile
service-providers complain that they are not paid enough to
recover their investments. Consequently, they want to create
service differentiations to recoup extra profit. This naturally
leads to the debate of network neutrality.

5.3 Implications for Differentiated Services
The centerpiece of the network neutrality debate is the

necessity to impose potential regulatory enforcements, by
which telephony companies have been regulated, on the In-

ternet. The proponents [3, 25] criticized the discrimina-
tory behavior by ISPs, believing that it harms the produc-
tivity, innovation and end-to-end connectivity of the Inter-
net. However, the opponents [11] advocated that offering
premium service stimulates innovation on the edges of the
network. Musacchio et al. [18] show that different parame-
ters, e.g. advertising rate and end user price sensitivity, in-
fluence whether a neutral or non-neutral regime achieves a
higher social welfare.

As we discussed before, bilateral agreements that severely
deviate from the Shapley revenue distribution will cause un-
stable interconnections among ISPs. Similarly, even though
differentiated services can be shown to be beneficial to the
network and end users, without an appropriate revenue dis-
tribution mechanism, ISPs do not have the incentive to ar-
chitect the cooperative provisioning of such services. As a
generic revenue sharing mechanism, the Shapley value so-
lution can also be used for encouraging ISPs to participate
and fairly share extra revenue amongst participating ISPs.
Here, we illustrate two potential differentiated services and
the implied compensation structure for the supporting ISPs.

5.3.1 Supporting gaming services
The booming online gaming industry has brought huge

revenues. The current 4 billion worth of the global online
game market is expected to triple in the next five years ac-
cording to Strategy Analytics’s outlook for the market. ABI
Research predicts that the online game segment of the game
industry will grow by 95% each year until 2011, when it be-
comes the dominating force in the market. In order to sup-
port networked games with required low latency and accu-
rate synchronization, network providers need to provide dif-
ferentiated services for game-providers. However, an appro-
priate compensation structure is crucial for providing incen-
tives for network providers to establish such levels of quality
service to support game applications.

Figure 12: Compensation structure for game services.

Figure 12 shows the compensation structure implied by
the Shapley value solution for game services. By proving
gaming applications to players, game providers (dotted cir-
cles) obtain extra revenue and can be considered as eyeball
ISPs who serve end-users. Network providers (solid circles)
can be considered as transit ISPs, providing interconnections
between the customers from different game-providers. Due
to the symmetry of the network traffic pattern for network



games, the compensation structure is similar to the “cus-
tomer/provider and zero-dollar peering” structure in Figure
10: game providers need to compensate network providers
for supporting the new service and network providers con-
nect to one another with zero-dollar peering agreements.

5.3.2 Supporting financial services
Another potential application is financial services across

the Internet. Many financial applications require a low la-
tency to retrieve accurate realtime data, e.g. realtime stock or
option quotes; others require guaranteed network services,
e.g. trading transactions. High (or asymmetric) latencies
can make these applications extremely vulnerable, as a few
milliseconds here or there can translate to billions of dollars
with automated trading. Network security is another major
concern for providing secured financial transactions on the
network. In order to implement more robust and secure pro-
tocols across the Internet, cooperations among ISPs might
be needed to support low latency and to prevent malicious
attackers and information stealers.

Figure 13: Implied compensation structure for financial
services.

Figure 13 shows the compensation structure implied by
the Shapley value solution for secure financial services. On
the top, the financial institutions (dotted circles) earn rev-
enue from customers by providing the online financial ser-
vices. They can be considered as the content providers who
obtain revenue by attracting business from customers’ abil-
ity to access to the Internet. Service providers (solid circles)
cooperatively implement secure protocols to maintain the in-
teraction between customers and financial institutions. ISPs
directly connect to customers are eyeball ISPs and interme-
diate ISPs are transit ISPs. Due to the asymmetric traffic
characteristic, the compensation structure is similar to the
one shown in Figure 11. Financial institutions compensate
transit ISPs as in a customer/provider relationship. Transit
ISPs need to compensate eyeball ISPs for the reverse cus-
tomer/provider relationship. Paid-peering relationship might
also exist if multiple levels of transit ISPs are in the network.

6. RELATED WORK
Our previous work [12] proposed a clean-slate revenue

distribution mechanism for ISPs, based on the Shapley value

in a general network setting. We showed that under the
Shapley value mechanism, selfish ISPs have incentives to
perform globally optimal routing and interconnecting deci-
sions to reach an equilibrium that maximizes both individ-
ual profit and global social welfare. Due to the multi-lateral
nature of the mechanism and the exponential complexity of
the Shapley value, how to implement and use the Shapley
value solution was an unsolved problem. Our first attempt
[13] to model a detailed Internet structure was limited to the
Content-Eyeball model introduced by Faratin et al. [5]. In
this paper, we extend our model to include a third class of
ISPs: the transit ISPs. We generalize all results in [13] as
special cases of a multiple contents/regions model (Theo-
rem 3). We explore the closed-form Shapley solution un-
der structured topologies and develop a dynamic program-
ming procedure to compute the Shapley solution for general
topologies.

Bailey [1] and Huston [9] started exploring the intercon-
nection settlements of the ISP in the ’90s. Huston [9] and
Frieden compared the existing Internet settlement models
with that of the telecommunication industry’s. Due to the
irregularity of the Internet structure, none of the traditional
telecommunication settlement model can be brought into the
Internet. Based on empirical evidences, Huston conjectured
that the zero-dollar peering and the customer/provider rela-
tionships were the only stable models for the Internet at the
time. Faratin et al.’s recent work on ISP settlement [5] ex-
hibits interconnection disputes in the Internet and observes
the emergence of paid-peering relationship between ISPs.
Our work explores the bilateral relationship implied by the
Shapley value solution. Our result validates that under the
symmetric traffic pattern and the homogeneity of the ISPs,
zero-dollar peering and the customer/provider relationships
can create a stable equilibrium that is close to the Shapley
value. Under the CTE model, the Shapley value solution
also validates existence of paid-peering relationship between
transit ISPs. Moreover, it also suggests that a reversed cus-
tomer/provider relationship should exist between transit and
eyeball ISPs. Our result explains the origin of failures of cur-
rent bilateral agreements, e.g. de-peering and the emergence
of network neutrality debate.

Gao [8] proposed a relationship-based model for ISPs and
categorized the interconnection relationship by provider-to-
customer, peer-to-peer and sibling-to-sibling links. How-
ever, Battista et al. [2] experimented on AS relationships
and observed violations of the valley-free property [8] from
BGP routing tables. Our work treats ISPs as cooperative en-
tities that form coalitions to share revenue. The reverse cus-
tomer/provider relationship implied from the Shapley value
solution under the CTE model can explain the violations of
valley-free property found in the AS-paths.

The network neutrality debate [25, 3, 7] started when dis-
criminatory practices, e.g. selectively dropping packets, were
found with broadband provider and cable operators. Crowcroft
[3] reviewed technical aspects of network neutrality and con-
cluded that network neutrality should not be engineered. Both
sides of the debate are concerned about whether differenti-



ated services should be provided in the Internet. Musacchio
et al. [18] derived different regions that network neutrality
can be good or bad to the whole network. Our work provides
an orthogonal thought about the differentiated services: the
appropriateness of providing differentiated services depend
on a suitable pricing structure for the ISPs that provide the
service. We propose that the Shapley solution can be used as
the pricing structure to encourage individual incentives and
increase social welfare.

Originated from microeconomics theory [17], game the-
ory [19] has been used to address pricing [22] and incen-
tive problems [15] in networking areas. Unlike the major-
ity of noncooperative game models, the Shapley value [20]
originates from coalition games [19] that model the cooper-
ative nature of groups. Eyal Winter’s survey [24] provides a
through investigation on the Shapley value and its properties.

7. CONCLUSION
In this paper, we explore the Shapley value solution for

a detailed Internet model with three classes of ISPs: con-
tent, transit and eyeball. We derive closed-form solutions
for structured topologies and a dynamic programming pro-
cedure to evaluation solutions under general topologies. In
particular, we prove that a complex system with multiple
revenue sources from different contents and regions can be
decomposed by their inelastic components of content-side
and eyeball-side revenues. Because the Shapley value of-
ten locates at the center of the core, which contains all sta-
ble revenue distribution solutions, we use the Shapley value
solution as a benchmark to validate the stability of bilateral
agreements used in the past and current Internet. We find that
because the symmetry of traffic flow and the homogeneity of
ISPs, traditional zero-dollar peering and customer/provider
relationship can create stable solutions that are close to the
Shapley value solution. However, when ISPs exhibit het-
erogeneity and traffic flows are mainly from content-side to
eyeball-side, the solutions from bilateral agreements severely
deviate from the Shapley value solution, which exhibits a
paid-peering relationship between transit ISPs and a reverse
customer/provider relationship between transit and eyeball
ISPs. We conjecture that many of the failures of bilateral
agreements are due to the lack of implementing these paid-
peering and reverse customer/provider relationship via bilat-
eral agreement. Finally, we propose to use the Shapley value
solution as the pricing structure for differentiated services so
that ISPs will be encouraged to fairly share newly brought
revenues and improve the Internet services. We believe that
these results can be useful for settling bilateral disputes and
for regulatory institutions to regulate the industry.
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