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Abstract. Due to recent advances in network, storage andand the actual content of that object.) Recent works con-
data compression technologies, video-on-demand (VOD) sesider video-on-demand (VOD) architectures which can sup-
vice has become economically feasible. It is a challengingport variable display bandwidths. For example in [7-9], the
task to design a video storage server that can efficiently serauthors propose novel techniques for supporting variable dis-
vice a large number of concurrent requests on demand. Onglay bandwidth for a disk-based storage architecture and for
approach to accomplishing this task is to reduce the I/O dea hierarchical storage architecture.
mand to the VOD server through data- and resource-sharing Part of the challenge of designing efficient VOD servers
techniques. One form of data sharing is ieeam-merging is due to the large storage and bandwidth requirements of
approach proposed in [5]. In this paper, we formalize a video objects. For example, a 120-min MPEG-| video re-
static version of the stream-merging problem, derive an upquires 1.5 Mbits/s of display bandwidth and 1.3 GB of stor-
per bound on the I/O demand of static stream merging, anége [6]. However, the quality of MPEG-I video is at best
propose efficient heuristic algorithms for both static and dy-VHS quality and is certainly lower quality than broadcast
namic versions of the stream-merging problem. television. Higher quality compressed video, such as MPEG-
Il or compressed HTDV video [1], requires display band-

Key words: Multimedia storage systems — Video-on-demandwidths of 4 to 20 Mbits/s. The storage requirements of video
— Stream merging — I/O stream sharing — Complexity objects usually precludes them from being stored in main
memory. Video objects have to be stored on magnetic disks
or tertiary storage devices such as robotic tape libraries. A
video object is displayed by scheduling an I/O stream where
) the data is read from an appropriate storage device or a set
1 Introduction of storage devices and delivered to a display unit.

. . . . There are many approaches to improving the efficiency
Recent advances in networking technologies gnd vast imat 4 vOD storage system: these include improvements in
provements of storage systems have made it feasible tga3 ayout techniques, disk-scheduling algorithms, etc. In
provide multimedia on-demand services, such as news disp;g paper we concentrate on the the deliverypopular
tribution, advertisement, library information systems, andobjects in a VOD system. That is, we expect there to be a
movies-on-demand. Consequently, the area of multimedigyey in the distribution of access frequencies of the video
storage systems has received a great deal of attention in ﬂl?ojects. Moreover, we expect that a small subset of objects

past few years. would be accessed very frequently, and the rest of the ob-

Early research works [2,10,12] concentrated on the StUd{scts would be accessed infrequently; such an access pattern
of multimedia storage systems which support the retrieval olyq1d, for instance, be accurate for a movie server where

multimedia objects apeakdisplay bandwidths (bits/s); for 5 small subset of popular movies (perhaps for that week) is
example, assuming that the display bandwidth of the 0b¢cessed simultaneously by many users. In such a system, it
ject is fixed atB;spiay Mbps throughout the duration of g yery Jikely that the 1/O bandwidth is the critical resource
the display, the storage server retrieves that object usinghich contributes to a large fraction of the system response

Baispiay Mbps of disk I/O bandwidth. This approach may time. We define system response time as the time between
be applicable for video objects whose average display band; yequest's arrival to the storage server and the time when

width requirements are close to their peak display bandwidtRye can start streaming the bits of the requested video from
requirements. (The variance of a video object's bandwidthye gisk storage system to the network. Although disk stor-
requirement is a function of the compression technique usegge costs are decreasing rapidly, bandwidth costs are not

* Current address:Department of Computer Science at University of decreasing nearly as quickly; this is partly G!ue to the .faCt
Maryland, College Park, MD 20742, USA; e-mail: leana@cs.umd.edu  that most storage improvements are due to increases in the
Correspondence ta.. Golubchik




30

number of tracks per inch, rather than the number of bits peFor instance, when the movie “Amadeus” was shown on
track (and, the number of bits per track plus the revolutionstelevision, its duration was altered by 3%.

per minute determine the bandwidth capability of a disk).  There are two approaches to actually constructing the al-
One way to improve the system response time for deliverytered stream of frames to be transmitted to a display station.
of popular objects is to carefully manage the 1/0O bandwidthThey are as follows:

of the VOD server and “share” it among requests for the ) i )

same object. The following approaches to reducing the ag-— Online approachthe altered version of the object can

gregate I/O bandwidth requirements of popular objects have be created online or on the fly. An I/O stream retrieves
been proposed in the past: the original object, which is then time expanded or com-

pressed by the serveiThe “derived” object is transmit-
ted to the display unit. In this case, the /0O bandwidth
required varies with the display rate used. There are two
possible disadvantages of the online alteration: (1) the
data layout on disks is often tuned to one delivery band-
width, and having to support multiple bandwidths can
complicate scheduling and/or require additional buffer
storage, and (2) specialized hardware may be required
to be able to produce the altered version in real time.
Offline approachthe altered version of the video can be
created offline and stored on the disk in addition to the
original version. An I/O stream retrieves an appropriate
version of the object (be it original, time expanded, or
time compressed), which is then directly transmitted to
the display unit. An obvious disadvantage of this ap-
proach is the additional disk storage required.

Batching, buffering, and stream merging can serve aynether we use the online or offline approach, the stream-
group of requests, for the same object, using a single I/Gnerging technique requires the capability of transmitting a
stream. Stream merging differs from batching in that ityideo object at several different display rates. There are mul-
groups requests dynamically, while displays are in progressjpje ways of attacking this problem, for instance, by using
so that no additional Ia_tency is gxperienced by the user. O"[‘echniques similar to the ones proposed in [7-9]. Note that
the other hand, batching requires that the displays of rethe getails of supporting multiple display rates depend on
quests of the same group start at the same time and hengge particular VOD server architecture used. We do not con-
contributes to additional delays in the system. Note that, thejger a specific architecture here since we are interested in
reduction in I/O bandwidth demand due to stream merginggeveloping a general technique for reducing /O bandwidth
is not quite as high as in the case of batching, since it takegemand using stream merging. Therefore, in this paper, we
some time to merge the streams (and no I/O bandwidth savyo not address the details of supporting multiple display
ings are accomplished during that time). Thus, the trade-of{5tes.
between the two approaches is in balancing the latency for |, [5], the authors proposed several heuristic merging
starting service of a request and the amount of I/O bandwidtfbo”cieS and analyzed the subsequent performance improve-
saved. It is important to point out that all three approachesnents using analytical models. However, many questions
can be combined, as mentioned in [5]. _ about the stream-merging approach remain unanswered, for

In this paper, we concentrate on the stream-merging aPaxample, determining an optimal stream-merging policy, as
proach because of its effectiveness as reported in [5]. Firsiye|| as the maximum (or minimum) achievable performance
we briefly elaborate on ;he motivation and feasibility of this improvements of the approach. We intend to address some of
approach; a more detailed and more formal description ofnese questions in this paper. The contributions of this work
stream merging is given in Sect. 2. The stream-merging apare as follows: (1) we formalize a version of the stream-
proach is motivated by the fact that it is possible to time merging problem and derive an upper bound on its 1/O de-
compress or time expand a video object by a small percentmand, and (2) we propose two novel stream-merging algo-
age (e.g., 5%) without it being perceptible by the user, i.e., itithms, which result in significant 1/0 demand reductions.
is possible to alter the duration of an object’s display with-  The organization of the paper is as follows. In Sect. 2,
out affecting its (perceptible) quality. Similarly, the duration \ye formalize thestatic version of the stream-merging prob-
of an audio object can be altered, for instance, using techrem and describe théynamicversion of the stream-merging
nigues such as audio pitch correction. Ample evidence exist§r0b|em_ In Sect.3, we propose a heuristic algorithm for
to support the above-stated claims. In [5], the authors give &p|ying the static stream-merging problem and derive the
detailed explanation of the feasibility of such video and au-properties of optimal solutions of the static stream-merging
dio alteration techniques. In the interests of brevity, we 0n|yproblem as well as the maximum 1/O demand for merg-
give a brief example here and refer the reader to [5] for 8ing n streams. We propose a novel dynamic stream-merging
more detailed explanation. Consider, for instance, airing Ofalgorithm, Equal-Split, in Sect.4. Section 5 presents per-
movies on television. It is common practice in the television
industry to time compress a movie for the purpose of in- 1 e give a more precise definition of “time expansion” and “time com-
creasing the number of commercial advertisements showmression” of video objects in Sect. 2.

— Batching the storage server polls the request queue pe-
riodically and serves requests, for the same object, that
have accumulated in the queue, using a single I/O stream,
e.g., [3].

— Buffering two or more successive requests for the same
object can be served by temporarily holding the data,
retrieved by a single 1/0 stream, in the main memory
buffers, where the first request is serviced using the I/O
stream and successive requests are serviced from the”
main memory buffers, e.g., [4,11].

— Adaptive piggybacking or stream mergintpe display
rates of requests in progress (for the same object) are dy-
namically adjusted until their corresponding I/O streams
can be “merged” into one [5].
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formance analysis of algorithm Equal-Split. In Sect.6 we  Let S,, be the normal display rate in frames per second
compare performance of several dynamic stream-mergingfps). LetA, andA_ be the maximum fraction of the normal
algorithms. Our conclusions are given in Sect. 7. display rate by which a stream can be sped up or slowed
down, respectively, i.e., a stream is constrained to output at
a display rate between @ A_)S,, and (1 +A,)S,, frames

per second (fps). The display rate of a request is defined
as the display rate of a stream. For convenience of further
discussion, we introduce the following definitions.

The stream-merging approach [5] initiates an I/O stream (or_ . , .

simply stream) for each request. Then, the display rates oP€finition 1. The playback point of a stream at time ,
the streams, corresponding to requests for the same objedt: (), iS the current position (in seconds) in the object’s dis-
are adjusted until the streams output the same data at tHlay of streams at timet.

same time. At this point the 1/O streams are merged intoDefinition 2 Two streams are said to be *
a single stream and the corresponding requests share t
single I/O stream.

We assume that the storage server transmits frames to the Note that two streams can be merged into a single stream
display units at a constant frame rate, e.g., the NTSC stanyhen they are synchronized (at this point, system resources
dard requires that the display units display at 30 frames petan be saved). Our goal is to design a general algorithm for
second (fps). The stream-merging approach is viable if theynchronizing streams in an optimal way for VOD systéms
storage server catime compres®r time expandsome se-  The amount of system resources required by each stream is a
quence of original object frames. For example, we can timeunction of the system architecture, i.e., communication pro-
expand a sequence of original object frames by adding ongscols used, storage and retrieval methods used, etc. Since
additional frame to every 19 original object frames. Then, awe are concerned with the de”very of popu|ar ObjeCtS, it
display unit displays 3& 2 = 28.5 original object frames s reasonable to assume that I/O demand is the critical re-
per second. Similarly, we can time compress a sequencgource. Note that, the stream-merging approach should be
of original object frames by removing frames. A sequenceapplicable to reducing demand on other system resources,
of original object frames is time compressed if the displaye.g., the communication network bandwidth. However, the
time of this sequence is somehow shortened as comparespecific tradeoffs associated with applying this approach to
to its normal display time. Similarly, a sequence of original another resource may differ from those we consider here, in
object frames is time expanded if the display time of thethe context of IO bandwidth demand.
sequence is longer than its normal display time. More for-  |n this paper, we consider two possible versions of the
mally, time expansion and time compression can be definedtream-merging problem, namely: (1) thitic version and

2 Problem definition

synchronized”, if
h;')?ayback points of the streams are the same.

as follows. Letfi,..., fr be a sequence of original object (2) thedynamicversion. In both cases, our goal is to merge
frames. Letf,..., f,, be a sequence of frames which are streams corresponding to requests for the same object, in
derived fromf, ..., fx and are fed to the display unit. The order to reduce the aggregate 1/0O bandwidth demand on

sequence of original frames is time expandedhif> k; it the system. In the static case, we consider a single group
is time compressed if» < k. (The two possible approaches of streams such that the membership of the group is fixed
to producing time-expanded or time-compressed versions ofhroughout the stream-merging process, i.e., No new streams
an object are discussed in Sect. 1.) can be initiated (which would correspond to an arrival of a
We define the display rate alteration ratio of an 1/O new request) and no stream can be terminated (which would
stream as follows. If the I/O stream is a sequence of conseccorrespond to an end of an object’s display). Thus, in the
utive original object frames, then the display rate alterationstatic merging problem, synchronization decisions can be
ratio of the 1/O stream is equal to 1. If the I/O stream is made under a “complete information” assumption. The dy-
a stream of frames derived from original consecutive objecthamic case differs from the static case in that new streams
frames, then the display rate alteration ratio of the I/O streantan be initiated and existing streams can be terminated. As
is equal to the number of consecutive original object framesa result, synchronization decisions have to be made “on the
required to derive one frame of the I/O stream. For examplefly”, without having full information about future arrivals.

if the frames of an I/O stream are derived by removing lMore forma”y' the static and dynamic merging prob|em5
out of every 21 original consecutive object frames, then thecan be defined as follows:

display rate alteration ratio of that I/O stream is equal to

2% =1.05. 1. Static stream-merging problentiven a set of streams
The display rate of an I/O stream is defined as the number ~ of a video object, which has an infinite display time, and
of frames output per second the display rate alteration the corresponding playback points of these streams, find

ratio of the I/O stream. Therefore, the display rate of an ~ an optimum way to merge them into a single stream,

I/O stream is a measure of how fast the I/O stream gets Where the objective is to minimize the total I/O cost (in

through the content of the “original” video. Theffective bits) incurred during the synchronization process

display rateof a display unit is defined as the display rate ————— . o

of the I/0 stream being transmitted to the display unit. Note For the remainder of the paper, we use the terms “synchronizing” and
. ’ “merging” interchangeably.

that the frames of an 1/O stream may be time expanded Or 3 The assumption of infinite display time of a video object is used to

cor_npressed before FransmiSSion to the Qisplay unit, if theyrevent any stream termination due to reaching the end of an object’s
online approach to display rate alteration is used. display. In later sections, we will show that one way to solve the dynamic
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2. Dynamic stream-merging problerfihe problem of min-  Definition 4. A synchronization tre& is a tree in which the
imizing the 1/0 cost (in bits) of retrieving data through root node represents the final stream resulting from synchro-
merging of streams corresponding to requests for thenization ofn (original) streams, the leaf nodes represent the

same object in a VOD system in which n (original) streamssgy, . . ., s, and each internal node rep-
— a new stream of a video object can be initiated dueresents a stream derived from the synchronization of its child
to a request arrival, nodes (streams).
— a stream can terminate due to reaching the end of an
object’s display, and Let Cs(¢) be the I/O bandwidth demand (in bits/s) of
— the request arrival process is stochastic. streams at timet. If streams has been discarded at time

due to merging with another stream, thép(t’) = 0 V¢’ > t.
In the remainder of this section and in Sect.3, we con-Then, we can define the cost of a synchronization tree as
centrate on the static stream-merging problem. Before profollows.
ceeding to characterize the stream-merging problem further
and describing our algorithms, we make the following ob- Definition 5. The cost of a synchronization tré€, corre-
servation about the display rate adjustment decisions. Théponding to a set of, (original) streams{s,...,s,}, is
sooner merging (in an object’s display) occurs, the more I/0defined as
bandwidth can be conserved and used by the storage sys- n  .p
tem to serve other requests. Hence, we limit our algorithms.os¢(7) = Z/ Cs,(t) dt
to consider the slowest display rat&,,;, = (L — A_)S,, = 0
the normal display rateS,,, and the fastest display rate, . . . L
Simax = (1 +A4)S,,; the corresponding 1/O bandwidths are where P is the time required for the synchronization.
Chmin, Cn, and C,,.., respectively. The relative values of
Chmin, Cn, andC,,,4, depend on the display rate alteration
technique used. We restrict the rest of the discussion in thi
paper to the class of display rate alteration approaches whe

VS € [Smin, Smasl, Cmin < the 1/O bandwidth corre-  pefinition 6. A synchronization tre@ is said to be optimal

sponding to display rat8” < Ci.qq. _ if cost(T") > cost(T) ¥V synchronization tree®’ with leaves
Suppose we would like to synchronizestreams corre- ¢, 5 .

sponding to requests for the same video object.{lsgt. ..
...,Sn} be this set of streams. Without loss of generality,
we assume that (1yi, j if i < j, thenp,, (0) > ps,(0) (i.e.,

s1 is the leading stream ang, is the trailing stream), (2) the
synchronization of streams; ..., s, begins at timet = 0, . . . . .
and (3) if two streams; ands; are merged and < j, the In this section, we characterize the properties of an optimal

/0 resources used by; are released and the requests beingSynchronization tree as well as propose an efficient algo-
served bys; are served by;. rithm for solving the static stream-merging problem, based

For the purpose of solving the static stream synchro-on,the idea of constrqcting a sy.nchron_izati.on tree. We re-
nization problem, we are only interested in the differencesStrict the class of algorithms considered in this section, to the
between the playback points of the streams, where the obje@/90rithms with the following property: once a decision to
tive is to reduce the differences between the playback point§'€rge two streams has been made, their display rates remain
of all streams to zero, i.e., to come to a point where eacttnchanged until the completion of the merging process.
stream outputs the same video data at the same time. In the !N @n optimal synchronization tree, the leading stream
following definition, we introduce the concept of a relative 51 IS always slowed down by a fraction oh_ and the

playback point as a measure of the relative position of drailing streams,, is always sped up by a fraction df.. The
stream. synchronization process completes when the trailing stream

and the leading stream are synchronized. Hence, we have
Definition 3. The relative playback point of a streaspat  the following lemma.
timet, s, (t), is ps, (t) — t — ps,, (0).

As will become more apparent in Sect. 3, our goal of
olving the static stream-merging problem will translate into
er goal of constructing an optimum synchronization tree.

3 Complexity of static stream merging

Lemma 1. The time,P, to synchronize the set of streams

1 s 0) — Sn 0
Note that the relative playback point of streanthanges ~ {s1,---,5x} IS %-

when s; is sped up or slowed down. For example,sif
is sped up by 5% of the normal display rate, the relativeProof. At any timet € [0, P], the trailing streams,, has
playback point ofs; increases by 0.05 seconds per second.a display rate of (1 +A.)x the normal display rate, and
We can represent the process of synchronization othe leading stream; has a display rate of (1= A_)x the
streams by a synchronization tree, which can be defined agormal display rate. Hence, the trailing stream and the lead-
follows. ing stream move towards each other at a ratedef+ A_
seconds per each second of display. Therefore, it takes

stream-merging problem is by: (1) partitioning the streams of the samep — Ps;(0) = ps,, (0) nds t nchroniz Il the stream
video object into disjoint sets such that all the streams in each set can AcA_ seconds to synchronize a € streams.
be merged into a single stream without any stream terminations and (Zi. . L . .

applying a static stream-merging algorithm to merge the streams in eachk€Mma 2. An optimal synchronization tree is a binary tree.

set.
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Proof. From Definition 4, each internal node, including the by choosing one pair of nodes (to merge) at a time, starting
root of the tree, has at least two children. Suppose theravith the leaf nodes and working our way up. Then we would
exists an optimal cost tre@ which contains a node with haven — 1 possible pairs of streams from which to choose
three childrens,, s;, and s.. Without loss of generality, the first time,n — 2 possible pairs of streams from which
we assume that, () < r,,(t) < rs (¢). This situation is to choose the second time, and- i — 1 possible pairs of
illustrated in Fig. 1a. Let the display rates £f, s;, ands,. streams from which to choose thh time. Therefore, there
be S,, Sy, andS., respectively. Note that, > S, > S. > are ( — 1)! non-unique binary synchronization treeDue
Smin, Decause the three streams are merged at the same the inter-dependence between choices of pairs of streams
time. Let the 1/O bandwidths of,, s;, ands. be C,, Cy, to merge and a large number of possible ways to build a
andC,, respectively. LetP; be the time of synchronization synchronization tree, it would be difficult or impossible to
of streams inTy. The cost of subtred}, coverings,, sp, find an efficient algorithm which finds an optimal synchro-
ands. in Fig. 1a, is nization tree for all possible inputs. Thus, we concentrate on
simple heuristic algorithms.
Pi(Ca+ Ce) + PGy 'rFo simplify ourgdiscussion in the remainder of this sec-
whereCin < Cy < Cynaz. The first term indicates the 1/0  tion, we assume thafl, = A_ = A. For2<i <n,
cost for mergings, ands., while the second term indicates |et/ife(s;) be the period between time 0 and the time when
the 1/0 cost for merging,. the resources used by are released due to merging with
We can now show that a subtrd® with a cost lower another stream. Lét fe(s1) be the synchronization time of
than that ofT} can be constructed to covey, s;, ands,  the setofn streams{si, ..., s}
by synchronizing streams, ands, first 4, followed by syn-
chronization of streams, ands.. In this case, the display
rate ofs;, is S,.,. This situation is illustrated in Fig. 1b. Let
P; be the synchronization time ef, ands,. Sinces, ands,
are merged firstP, < P;. The cost of subtre&, covering
Sa, Sy, @and s, in Fig. 1b, is

Pl(Ca + Cc) + PZszn .

Definition 7. The time cost of a synchronization tree T, cor-
responding to the set of streams{si,..., sy}, is defined
as

time(T) = i life(s;).

i=1
Lemma 3. Given a synchronization treg,

The first term represents the 1/O cost for mergiagandsec,  time(T)Conin < cost(T) < time(T)Conas
while the second term indicates the I/O cost for merging B -

Since Cyin < C, and P, < Py, the cost of subtred? is : . . ,
less than that of subtreg,. Therefore, the synchronization f r€o<[)g. }SDI]HCGVZ(:L S 151, Cmin < Co() < Cag for
tree in Fig. 1b has a lower colst than the syrr:chronizatg)n treﬁ ) o n b
in Fig. 1a. Hence, an optimal tree cannot have a node wit _
three children. Similarly, we can show that an optimal tree Z“fe(si) X Crnin < Z/o Cs, () dt
cannot have a node with four or more children by merging % =1
streams in a pair-wise manner. The result follows. “

The cost of stream synchronization depends on the order = Z life(si) X Crmax
in which the streams are synchronized. For example, suppose =1
Ay = A = 005,C, = Crin = Crae = 1.5 Mbits/s, and  The result follows.
there are four streams, s», s3, andss, wherep,, (0) = 15s,
ps,(0) = 95 s,p,,(0) = 55 s, andp,;,(0) = 0 s. Two
possible synchronization tre&s and7» are shown in Fig. 2.
T1 is an optimal synchronization tree; it synchronizegnd
sy attimet = 55,s3 ands, at timet = 55, and all streams
attimet = 150. Hencegost(11) = (55+55+150+ 150k
1.5 Mbits = 615 Mbits.T, synchronizess, and s3 at time

Theorem 1. An upper bound on the time cost of a synchro-
nization tree with the minimum time cost for the set of streams
{s1,...,8,} is equal to(log,(n) + 1)P, for all n > 2, where
P - psl(o) - pSn(O)

- 24
Proof. We use mathematical induction to prove the theo-
¢ = 40, s, ands, at time¢ = 95, and all streams at rem. LetP (n) be “the minimum time cost of synchroniz-

{ = 150. Hencecost(Ty) = (40+95+150+150x 15 N & Set ofn streams{ss, ... ;fl?o}) Is less than or equal to
Mbits = 652.5 Mbits. Note that, if we were given a slightly (1092(n) + 1)P, whereP = == ===,
different input, e.g., one wheye, (0) andp,,(0) are 8 s and Basis stepFor n = 2, it takesP = P10 = 2, ¢

7 s, respectively, theff; would be the optimal tree, at a to synchronize the streams. Hence, the time costP==2

cost of 585 Mbits. . -
From the above example, it should be clear that the shapQOQZ(Z) + 1)P. Hence,P () is true forn = 2.

of an optimal synchronization tree depends on the initial val-Inductive stepAssumeP (n) is true forn < k for some

ues of the playback points of all streams. Thus, we have t@ositive integerk > 2. Forn = k + 1, we divide the

consider how the remaining streams will be synchronizedstreams into two groups$; and S, such thatVs € Si,

when making a choice of a pair of adjacent streams to bg, () < M andVs € Sy, ps(0) > M

synchronized. Consider constructing the synchronization tree

- 5 The trees are not unique, because the same binary tree can be con-
4 The resources used by, are released after it has been merged with structed in two or more different ways (i.e., corresponding to two or more

Sa- different sequences of stream merges).
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150 =+ 150 =+

|~

ISR

We synchronize streams, . . ., s, using the following pro-

cedure: streams i, are synchronized to become a stream corresponding to streamsy, ..

denoted bys’; streams inS, are synchronized to become a
stream denoted by”; finally, s’ and s’ are synchronized
to become a single stream. The synchronization frefer
streamssy, . .., s, IS shown in Fig. 3. Lefl; andT; be the
synchronization trees fd§; and.S,, respectively. Let; and
ny be| Sy | and| S |, respectively. LetP; and P, be the
synchronization time of; and the synchronization time of
S,, respectively. LetD; and D, be £ — P and L — P, re-
spectively. Sinces; and.S, must contain at least one stream,
we have 1< ny < kand 1l < ny < k. From Fig. 3,
we have

time(T) = 2x % + D1 + Dy + time(T1) + time(T3) .
By the inductive hypothesis,

time(T) < P+ D1+ D+ (l0gy(n1) +1)P1
+(|ng(n2) + 1)P2 .

SinceD; log,(n1) > 0 andD;log,(nz) > 0, we have

time(T) < P+ (P1+ Dy)(logy(n1) + 1)
+(P + Do)(log,(nz) +1) .

By £

= Di1+P = D+ P,

. P P
time(T) < P+ E(Ing(nl) +1)+ §(|ng(n2) +1)
= time(T) < P+ g(logz(nl X ng) +2).

k+ 1, n1 x no has the maximum value
&1 Therefore,

Sinceni +ny, =
whenn; = np, =

time(r) < P+ Do (2 +2)

= time(T) < (logy(k+1)+1)P .

Thus,P (n) is true forn = k£ + 1.

time #1100 + time 1100 +
(seconds) (seconds)
50 + 50 +
(\r< 1 } } (J\/- } ‘ I
N\ NN AN AN
55 95 15 55 95 15

relative playback point (seconds) relative playback point (seconds)

Fig. 1a,b.Theleft treecontains a node with three children. Tifight treereduces the cost by synchronizing
the streams in a pair-wise manner

Fig. 2. The left andright binary treesareT; and T, respectively
Fig. 3. Synchronization tree

Corollary 1. The cost of an optimal synchronization tree

., S, IS not greater than
Dsq (0)—[)5,” (0)

P(log,(n) + 1)Ciraa, WhereP = A

Proof. The result follows from Theorem 1 and Lemma 3.

Using the proof of Theorem 1, we can construct a recur-
sive algorithm for finding a synchronization tree which has
a time cost not greater than (fg) + 1)P. This recursive
algorithm is used by the function BuildSyncTree, which is
given below. (The function returns the root of the synchro-
nization tree.)

function BuildSyncTree(set of streants): tree node pointer
var
set of streamsSy, Sp;
streams’, s’;
tree node pointet;
begin
t := new(tree node);
if | S|> 1then

begin
s’ := first stream ofS;
s’ = last stream ofS;

Sy = {s € 5| pa(0) < 2L O 2Oy,
Sp = {s € § | ps(0) > 2L O Perr Oy,
left child of ¢ := BuildSyncTree§1);
right child of ¢ := BuildSyncTreef5);
end
else
begin
left child of ¢ := NULL ;
right child of ¢ :== NULL ;
stream oft := the stream inS;
end;
return (¢);
end

Theorem 2. Given a set ofn streams{si,...,s,}, algo-
rithm BuildSyncTree require®)(nlog(n)) comparisons to
find a synchronization tree corresponding to thessreams.

Proof. Represent the set of streams by an array:déle-
ments sorted in the descending order of the initial values



of playback points. In the worst case, each call to func-

tion BuildSyncTree splits the set of strearisinto a set
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n dF(x)
Forx < 3, =% < O,

Hence, F(z) is minimum whenz

or F(z) >

containing only a single stream and another set containn(log,(n) — 1).

ing | S | —1 streams. Using binary search, we can lo-

cate the split point ofS in O(log(| S [)) comparisons.

Letting « ni andn = k+ 1, we have:

Therefore, in the worst case, the number of comparisongime(T) > (k+ 1)T+F(’%1)T

is O(Y 12, l0g(i) = O(nlog(n).

Let K be the set of all possible sets of streams with
the same synchronization time, where an element ih<

is characterized by the initial relative playback points Ofé%erSn > 2. Thereforeime(T) > nlogy(n)r > P log,(n).
h

the n streams. In other words, since the time cost and th
synchronization cost of streams depend only on the relative

playback points of those streams, we do not need to make ¥
distinction between two sets of streams with identical initial

relative playback points.

Theorem 3. Let S = {s1,...,s,} be a set ofn streams,
whereS € K and.S has the largest optimal time cost among
the elements oK . Then the time cost of a synchroniza-
tion tree with the minimum time cost, correspondingstas

greater than or equal td® log,(n), whereP = w
forall n > 2.

Proof. Let P (n) be “the minimum time cost of synchro-
nization of streamsy, .. ., s, is at least:7 log,(n) for some

input wherer = pi“z(giffz(o) "

Forn = 2,P (n)is true.

AssumeP (n) is true forn < k for some positive integer
k> 2.

Forn k + 1, we choosey,...,s, suchthatv0 < i <
n—1, ps,(0) — ps,,,(0) = d for some positive real number
d > 0.

Let T' be a synchronization tree fef,...,s,. Let 73 and
T> be the subtrees df’. Let n; andn, be the number of
streams that are covered By and75, respectively. We have

ny + ny = k+1,
— d
T_ﬂ'

By Lemma 1, the streams @f; and the streams ¢f, will
be synchronized at time = (n; — 1)r andt = (n, — 1)r,

respectively, and all streams will be synchronized at time

t = kr. Therefore, the remaining lifetime of the stream
at the root ofTy, after merging all streams iff;, and the
remaining lifetime of the stream at the root®f, after merg-
ing all streams irfly, arekr — (n1 — 1) andkr — (np — 1)1,
respectively. Thus,
time(T) = k1t — (1 — 171 +kt—(n2— L)1

+time(T1) + time(T3)

= time(T) > (k + 1)7 + nylog,(ni)r

tnzlogy(n2)T (by ni+ny = k+1

and inductive hypothesis) .
Let F(z) = zlog,(z) + (n—x)log,(n—z)forl <z <n-1
wheren > 2 is a constant.

@) = Jogy(z) — logy(n — )
Forz = %, 4@ = o
Forz > 12, 4@ - g

= time(T) > (k+ 1)+ (k+1)(log,(k +1)— 1)r
= time(T) > (k+1)log,(k + 1)r
= P (n)is true forn = k+1.

By mathematical inductior®? (n) is true for all positive inte-

e result of the theorem follows as the time cost in the
orst case is greater than or equal to the time cost in the
case described above.

Corollary 2. The cost of an optimal synchronization tree
corresponding to the set of strearfis,, ..., s,} is greater

than or equal toP l0g,(n)Cyi, for some input wheré® =
Ps;(0)—ps,, (0)
2A '

Proof. By Theorem 3, there exists some input such that if
T’ is the synchronization tree with the minimum time cost,
then

time(T") > Plog,(n) .

Let T be an optimal synchronization tree. We have
Plog,(n) < time(T") < time(T)
= Plog,(n)Criin < time(T)Coin

= Pl0g,(n)Cruin < time(T)Coin

< cost(T) (by Lemma 3) .

Recall thatKK is the set of all possible sets af streams
with the same synchronization tinfe, where an element in
K is characterized by the initial relative playback points of
the n streams. Then we have the following corollary.

Corollary 3. Let S € K be the set ok streams with the
largest optimal synchronization cost among the elements of
KK ; then S satisfies the following condition:

Ploga(n)Crin < the optimal synchronization cost 6f
< P(ZOQZ(n) + 1)Cmaw .

Proof. The result follows from Corollary 1 and Corollary 2.

Note that the upper and lower bounds diverge logarithmi-
cally, so the bounds on the worst case cost are tight.

4 Dynamic stream-merging algorithms

In a VOD system, a stream is initiated for an object when a
new request for that object arrives, and it is removed from
the system when the stream reaches the end of the object’s
display. Therefore, we have to consider the dynamic stream-
merging problem in order to optimize the 1/0O demand re-
duction resulting from the stream-merging approach. Thus,
in this section, we describe several dynamic stream-merging
algorithms. We consider a class of dynamic stream-merging
algorithms which make speed adjustments when one of the
following two types of events occursarrival or merge
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An arrival event corresponds to an initiation of a new 1/O procedure Equal-Split(Event eventloat 17)
stream. Amergeevent corresponds to a merge of two I/O  var
streams. set of streams7;

The dynamic stream-merging problem is much more P¢9"

lex th the static st . bl Wh if (event is an arrival of stream at timet) then
compiex than the static stream-merging problem. en an if (there does not exist a group of streams such that the leading

event occurs, an algorithm which minimizes the 1/0 demand stream of the group has arrived after time W) then
must consider many factors, such as, the request arrival pro- begin
cess and the current playback points of the existing streams. create a new group and paitinto the new group;
Complex stochastic modeling and optimization would be re- speed ofs = Smin
quired to find the best way to merge the streams correspond- elsﬁ”d
ing to requests for the same object. begin

However, we can find a good heuristic for solving the G := the set of streams in the current group;
dynamic stream-merging problem by making use of an al- put s into G;
gorithm constructed for solving the static stream-merging call BuildSyncTree() to find a synchronization tree
problem. More specifically, we can break down a dynamic for the streams i}
stream-merging problem into several smaller static stream- end

. o . . else if (event is a merge of streams ands;) then

merging problems. The basic idea is to partition the streams begin !
of the same video object into disjoint sets such that the discards ;;
streams in each set can be merged into a single stream be- if (s; is the only stream in its groughen
fore any of the streams in this set terminate (due to reaching speed ofs; = Sy,
the end of an object’s display). One possible partitioning else if (s; is going to merge with a slower stream according to

approach is to group the streams according to their arrival Speae” dac')rg?‘?'i’ g,onysm‘ded synchronization trte)

times such that all the streams in the same group have ar- clse

rived within a time period, called theatch-up windowWe speed Ofs; = Smaa;

use the term ‘window-based’ stream-merging algorithm to end

refer to a dynamic stream-merging algorithm that partitions end

streams into disjoint sets using a catch-up window. In the re-

mainder of this section, we present several dynamic merging  The sjze of a catch-up window, i.6¥, is a tuning pa-
algorithms, whose performance is analyzed and compared ifameter of the window-based algorithms. Note that there are
Sects. 5 and 6, respectively. limitations on the actual value df; thus we proceed by
deriving the maximum possible value & . The time re-
quired to merge the leading stream and the trailing stream
in some group must be less than the remaining lifetime of
This is the normal situation. When a request arrives, therdhe léading stream. Note that the leading stream is at most
is no attempt to adjust the display rates, i.e., all requests arét — 4-)W seconds ahead of the trailing stream, because

assigned the normal display rate, and there are no merging€ /€ading stream moves at a speed of-(1\_)S,, until
events in the system. all streams have been merged. Hencel ifs the normal

playback time of a video object, then

) . (1—A,)W<L—(1—A,)W
4.2 Equal-Split algorithm A+A S 1- A )

4.1 Baseline algorithm

This algorithm partitions I/O streams into groups using aor

catch-up window. For each group of streams, algorithm < (A++AZ)L
BuildSyncTree is used to find a way to merge the streams irW T @A+ANA-AD)
the group. The streams are partitioned into groups such that

the period between the arrivals of any two streams in the )
same group is bounded BY seconds, wher#/ is the size 4.3 Brute-force algorithm

of the catch-up window. (If the offline approach to SpeEdThis algorithm is the same as the Equal-Split algorithm, ex-

alteration is used (see Sect. 1), then the valué&/oshould e . e
be chosen to strike a balance between the additional disﬁGpt that. it finds an optimal synchronlzanon tree.for the
streams in each group by evaluating all the possible syn-

storage required and the resulting I/O demand reduction;

Section 6.2 discusses this tradeoff in more detail, and Fig. éc:) ?:;)25:;%2 t\r/igscéﬁscomnztr; Eg{fg):n(c%?gfbgg{ﬁn)?]Ognrf)Up
illustrates it.) The partitioning of I/O streams is done as fol- ' : P 9

lows. If a streams arrives at timet and there does not exist " J4€ binary synchronization trees.

a group of streams such that the arrival time of the leading

stream (the group leader) is less thanlV’, thens becomes 4.4 Offline brute-force algorithm

the leader of a new group. All streams which arrive in the

period between time andt + W belong to this new group. This algorithm is the same as the brute-force algorithm, ex-
The termcurrent group refers to the group of streams that cept that it knows the arrival times of requests a priori, and
has been created most recently. The details of the algorithrhence it performs better than the online brute-force algorithm
Equal-Split are given below. and the Equal-Split algorithm.
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(c) streamss;.q, . . ., s;+x—1 have arrived during this period.
Given thatk streams have arrived in a catch-up window of
lengthw, d(w, k) is the mean time between the arrivals of
the leading and the trailing streams in this sekaftreams,
and B(w, k) is the mean 1/O cost (in bits) of merging these

/\. . e e e time between arrivals of; ands, and the mean I/O cost

k streams. Henced(W.,,n) and B(W,s,n) are the mean
o e . . .
5 St Si s, . -
’- ddWgm2, i) = fe— ddew,, m 9 A.I of merging streams;, .. ., s,,, respectivelyd(w, k) can be
| dW,,, n) expressed as

I W !

k—1 .
dw,k) = —w ifk>1.
Fig. 4. Synchronization tree fon streams under algorithm Equal-Split k
At this point we can deriveB(w, k). Whenk = 2, two
) streams,s; and s;+;, are merged into one stream. Since
5 Performance analysis s; has a display rate 08,,;,, = (1 — A_)S, before the
) ) ) merge and the time between arrivalsspfinds;.1 is d(w, 2),
In this section, we present performance analysis of thep (t) — ps...(t) = (L — A_)d(w, 2) when the merge begins
S; Si+1 - ?

stream-merging algorithms described in Sect. 4, using thet'timet. Then the cost of merging; and s;+1, B(w, 2), is
mean total I/O demand, on a storage server, as the measugauaI tod(w 2)((1+A+)C (1-A_)Crman

. . . min + .
of performance. We define the following notation to be used‘+1 be th bA++Af7 A A 3 Q’Vhsmlf ; 2, llet f
in the derivations of this section. All analysis is done with 1 be the number of streams covered by the left subtree o

respect to a particular video object. Finally, we assume tha}he root of the synchronization tree. The probability that the
the request arrival process is Poisson eft subtree covers + 1 streams is given by the following
' binomial distribution,

L = normal playback time of a video object (k — 2)!
A = mean request arrival rate TUC_Z)W , where 0<i<k-2.
tq = random variable representing the time between suc- (k=2 =0t
cessive I/0O stream initiations By taking the products of this probability and the corre-
W, = size of a catch-up window for algorithma (note  sponding I/O cost and then summing over all possible cases,
that we have already defind®l in Sect. 4) we can derive the value dB(w, k), which can be expressed
BW, = mean total /O bandwidth demand under algorithm as
a (bits/s) d(w, 2)(Uy + Us) if k=2,

Since the request arrival process is Poisson with kate he2) b3 k—2p oy d(w k) -
the probability density function of, is 2 AN O TAB(T i+ 1)

+B(2R) i — 1)+

— -z — 2
fta (3;‘) = )e for x Z 0. B(Uh k) - (d(w, k) _ d(d(;%’k),i + 1))U1
+Hd(w, k) — d(LG2 | — i — 1))Uo]+
d(w,k
5.1 Analysis of the baseline algorithm d(w, k) — d(22R) | — 1)Uy + Up)
+2B(k) | — 1)} if k> 2,

There is no merging of streams in the baseline algorithm. — (1+A)Cmin - (1=A )Chas k=
Thus, the mean total bandwidth demand under this algo¥Vhere Un = S35x=e, Uz = =33x==, and Cf =
rithm is the product of the average number of streams tha{#{ni!. Since,B(w, k) = B(1, k)w, we can express(w, k)
are active simultaneously and the normal display bandwidthas

Hence, the expected I/O demand is B(w, k) = wB'(k) ,

BW, = \LC,, . where

Ute if k=2.
5.2 Analysis of the Equal-Split algorithm

_ k-3 - .
. . . . B/(k) — kkzk}Z{% Zi:l Ozk Z[B/(’L + 1)

The behavior of the Equal-Split algorithm is such that each T +B(k—1—i)+ %Ul
group of streams is statistically identical. We can therefore +kk—_ilU2]+ !
analyze the mean I/O demand for one such group of streams F_2 " .
(and then use the results to compute the mean /O demand 2-n(r+U2) + Bk = 1)} i k> 2.
for the system). Consider Fig. 4, which depicts a system withSince B/(k) can be solved recursively, we can compute
n streams. B(w, k). Let BW?, be the mean total I/O cost for the

Let d(w, k) and B(w, k) be the mean time between ar- streams in Fig. 4. Ther3IW?", can be expressed as follows.
rivals of s; and s;+x_1 and the mean 1/O cost (in bits) of

merging streams,, ..., s;+x_1, respectively, given that (a) WesCrmin +[L — (1= A )We,]C, ifn=1
exactly k streams have arrived in a period @ftime units, =~ BW(, = (1 A_Yd(Woo ) .
(b) streams, has arrived at the beginning of the period, and B(Wes,n) + [L — == 5=]C,, ifn>2
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Since a new group of streams is initiated when a requesta?!® 1. Values of parameters used in simulation

arrives after the end of the catch-up window of the previoug Parameter| Value
group and is terminated when the new catch-up window ex; L 120 min
pires, the mean time between initiations of two consecutive Smin 28.5 frames/s
groups isW,,+1/\. The expected /0O demand for algorithm g" 2(1) g?meS/s
.G L max .5 frames/s
Equal-Split is the product of the initiation rate of groups of | 4’ 0.05
streams and the mean total I/0 cost of a group; this expected A_ 0.05
I/O demand can be expressed as Crmin 1.425 Mbits/s
= (AW,e) e MW, gn i'g;\gbr\i/ﬁst;/'f/
— 1 es) € e n+1 max . Its/s
BWes = 5175 ; g BWI?.

performance of the merging algorithms by computer simu-
. . lation, because we do not have the analytic results for the
5.3 Validation of analytic result brute-force and the offline brute-force algorithrhs
The maximum possible catch-up window (for the cases
In conclusion of this section, we validate our (approximate)discussed in this section) 8, = 12 min, when the
analysis of algorithm Equal-Split by comparing it with re- normal display time of a video object is 120 min and
sults obtained through simulation. The performance measurél, = A_ = 0.05. We have evaluated the performance of
which we consider is the percentage reduction of (or im-the algorithms for the maximum catch-up windoW{ = 12
provement in) the average bandwidth requirement of a sysmin), a catch-up window of medium lengthi{, = 6 min),
tem, due to algorithm Equal-Split, as compared to the baseand a relatively short catch-up window{, =2 min). The
line algorithm. Figure 5 shows the percentage bandwidthperformance of each stream-merging algorithm was mea-
improvement for several different catch-up windows. Thesured as the percentage reduction of (or improvement in) the
curves in Fig.5 indicate that the analytic results match theaverage bandwidth requirement of a system, as compared to
simulation results closely (for most cases we have considthe baseline algorithm. The values of the parameters used
ered). Therefore, the analytic results should be sufficient foin the simulations are given in Table 1. The stream arrival
the performance evaluation of the algorithm under differ-process was modeled as a Poisson process. The results are
ent catch-up windows and arrival rates. Note however, thapresented with 95% confidence intervals where the length
the difference between analytic results and simulation resultef each confidence interval is bounded by 0.1%. Figures 6-
becomes larger when the length of the catch-up window i8 show the performance results for the maximum possible
maximum (in this case, whei, = 12 min). This is due to  catch-up windowi¥, = 12 min, W, = 6 min, andW, = 2
the fact that, in the analysis of Sect. 5.2, we assumed that thein, respectively?.
arrival times of all streams in the same group are known a  Because of the extremely long computation tirog((—
priori, and thus the synchronization tree can be constructed)!)) of algorithm Brute-force, the simulation results for this
according to the arrival times of all the streams in the gfoup algorithm could not be obtained for high arrival rates, at
The error caused by this assumption increases as the numbleast not within 480 h of CPU time whéf.; was between
of requests in the group increases. 6 min and 12 min.

The online brute-force, Equal-Split, and greedy algo-
rithms achieve a high 1/0 demand reduction at high arrival
rates. The brute-force and Equal-Split algorithms can re-
sult in reductions in I/O demand of more than 80% when
. . the mean inter-arrival time is 0.5 min and of more than
In this section, we compare the performance of the Equal3no at relatively low arrival rate% The results in Figs. 6-8
Split algomhm, the brute-force_ algorithm, the Qfﬂme brute- gpow that algorithm Equal-Split outperforms the odd-even
force algorithm, and two algorithms proposed in [5]. In [S], and greedy algorithms in all cases. With a catch-up window
the authors proposed the odd-even, simple, and greedy alggf 12" min and the mean inter-arrival times of 0.5 to 10 min,
rithms. The odd-even algorithm attempts to reduce 1/O deygorithm Equal-Split outperforms the odd-even algorithm
mand by at most 50%. The basic idea behind the odd-evepy 2804 to 70%, and it outperforms the greedy algorithm by
algorithm is to pair up and merge two consecutive streams;” oy,
whenever poss[ble. The simple ajgonthm merges streams in The (online) brute-force algorithm performs only slightly
a group by slowing down the leading stream of the group anthetter than the Equal-Split algorithm in all cases for which
accelerating all streams trailing the leader. In the greedy al-
gorithm, adjacent streams are merged until no further merg-

: . . . . . ¥ 7t appears, from the graphs reported in [5], that the simple algorithm
Ing of streams is p055|ble. (It IS baSICa”y a recursive appll'performs worse than the other two algorithms presented in the same paper,

cation of the odd-even algorithm.) We have evaluated the€y jeast for the Poisson arrival process. Hence, we do not include the simple
algorithm in our comparison.

6 That is, assuming that arrival times of all streams in the same group & We have modified the original odd-even and greedy algorithms in [5]
are known a priori results in the assumption that merging decisions aresuch thatiV, is a tuning parameter of the algorithms rather than something
never “reversed”. This is not the case in algorithm Equal-Split, where it isthat is computed by the algorithm itself, as was defined in [5].
possible to “waste” some effort, because some merging decisions may be ° We refer to the cases for which it was possible to compute performance
“reversed” as a result of new arrivals. results.

6 Performance of merging algorithms
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Table 2. Bandwidth improvement whelW/, = 12 min

Table 4. Bandwidth improvement wheW/, =2 min

Mean inter-arrival Bandwidth improvement (%) Mean inter-arrival Bandwidth improvement (%)

time (min) Offline brute-force| Brute-force | Equal-Split time (min) Offline brute-force| Brute-force | Equal-Split
0.5 NA NA 82.88 0.5 76.46 75.84 75.82

1.0 NA NA 73.96 1.0 62.87 62.43 62.40

2.0 NA 63.00 62.37 2.0 46.59 46.42 46.29

4.0 52.59 49.42 49.17 4.0 31.00 30.82 30.82

8.0 38.04 35.74 35.66 8.0 18.56 18.46 18.46

10.0 33.58 31.58 31.53 10.0 15.35 15.27 15.27

Table 3. Bandwidth improvement whei/, = 6 min

Mean inter-arrival Bandwidth improvement (%)

time (min) Offline brute-force| Brute-force | Equal-Split
0.5 NA NA 83.16
1.0 NA 74.57 74.06
2.0 63.82 62.19 62.00
4.0 49.05 47.91 47.87
8.0 34.05 33.34 33.32
10.0 29.50 28.90 28.90

it was possible to compute performance results. Indeed, th
performance difference of the two algorithms is under 1%.

6.1 Offline brute-force algorithm

We evaluated the performance of the offline brute-force al
gorithm for several different catch-up windows. Tables 2—4
show the percentage bandwidth improvement of the Equal
Split, brute-force, and offline brute-force algorithms for 12-,

6-, and 2-min catch-up windows, respectively. Note that we
can only obtain the performance of the (online) brute-force

and the offline brute-force algorithms for low-to-medium ar-
rival rates because of the extremely long computation time o
the algorithms. We ran the simulations on a Sun Sparc 200
workstation with 20 processors. We parallelized the proce
dure for searching for the optimal synchronization tree to

b

slow-down is required while the streams in a group are be-
ing merged and is not required after the streams in a group
have been merged into a single stream. A smaller amount
of additional storage is required for a smaller catch-up win-
dow, because the amount of replicated data grows with the
time required to merge all streams in a group and hence
grows with the length of the catch-up window. On the other
hand, the larger the catch-up window, the greater the oppor-
tunity for /0 bandwidth demand reduction. Thus, there is

tradeoff between the increase in storage requirements and
the reduction in I/O bandwidth demand.

We have investigated the performance of algorithm
Equal-Split under different lengths of catch-up windows. The
results are shown in Fig.9. Given fairly small mean inter-
arrival times, most of the reduction in I/O demand can be
achieved using fairly small catch-up windows. This implies

that most of the reduction in /O demand can be achieved
with only a small amount of storage overhead. For example,
when the mean inter-arrival time is 0.5 min and the catch-
up window is 1 min long, the reduction in I/O demand is
64.58%, as compared to 82.88% when using the maximum
possible catch-up window. However, the corresponding in-
ease in disk storage (for 120 min video) would$H&35

B or 17% of the size of a video object for the 1-min catch-
up window and~ 2.7 GB or 200% of the size of a video

object for the maximum possible catch-up window.

harness the power of 20 processors. Each table entry marked

with 'NA’ corresponds to a case in which a simulation run
could not be completed within 480 h of CPU time.

Since the offline brute-force algorithm has perfect knowl-
edge of arrival times of requests, it performs better than th
Equal-Split algorithm and the online brute-force algorithm
However, for low-to-medium arrival rates, it performs only
slightly better than its online counterpart, brute-force algo-
rithm, or the Equal-Split algorithm. Also, the online (or of-
fline) brute-force algorithm can perform slightly better than
the Equal-Split algorithm when the window length is 2 min
and the mean inter-arrival time is 0.5 min.

6.2 Limited merging

7 Conclusions

In summary, we have formalized the static stream-merging

e‘problem, which minimizes the cost of merging a setnof

streams, corresponding to requests for the same object, into a
single stream, given that it is possible to mergenadtreams.

Our cost model is general and can be applied to many dif-
ferent architectures of VOD systems. The time required to
merge a set of streams depends only on the initial differ-
ence of the playback points of the trailing and the leading
streams in that set (Lemma 1), the maximum fraction of
the display rate by which a stream can be sped up, and the
maximum fraction of the display rate by which a stream can
be slowed down. We have also proposed an efficient heuris-
tic algorithm (BuildSyncTree), which require3(n log(n))

ing replicas of a video object for display rates{1A_)S,,

and (1 +A,)S,. If replication of data is used to perform
display rate alteration, then we need to consider the amou
of additional disk space that would be necessary to store th
replicated data. Note that replicated data for speed-up an

10 Note that the offline brute-force does not necessarily minimize the 1/O
cost for the dynamic stream-merging problem.

cost not higher tha(log,(n) + 1)Cypas, for n > 1, where

£ = W is the time required to merge allstreams

ina set and’,,,, is the bandwidth requirement of the max-
um display rate. Based on algorithm BuildSyncTree, we
ave proposed a heuristic algorithm, Equal-Split, for solv-
ing the dynamic stream-merging problem. Although the of-
fline brute-force algorithm (also introduced in the context of
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Further work is required to either prove that there is
an efficient algorithm for finding an optimal way to merge
streams, both in the case of the static and the dynamic
stream-merging problems, or prove that the problem of find-
ing an optimal way to merge streams is in NP.
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