
Continuous�ery-based Data Trading
Jin Cheng

School of Science and Engineering, Shenzhen Institute of
Arti�cial Intelligence and Robotics for Society

The Chinese University of Hong Kong, Shenzhen
Shenzhen, China

jincheng2@link.cuhk.edu.cn

Ningning Ding
Department of Electrical and Computer Engineering

Northwestern University
Evanston, USA

ningning.ding@northwestern.edu

John C.S. Lui
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Hong Kong, China

cslui@cse.cuhk.edu.hk

Jianwei Huang∗
School of Science and Engineering, Shenzhen Institute of

Arti�cial Intelligence and Robotics for Society
The Chinese University of Hong Kong, Shenzhen

Shenzhen, China
jianweihuang@cuhk.edu.cn

ABSTRACT
In the era of big data, traditional data trading methods designed for
one-time queries on static databases fail to meet the demands of
continuous query-based trading on streaming data, often resulting
in repeated and inaccurate charges due to neglecting computation
sharing in continuous query execution. To address this, we intro-
duce CQTrade, the �rst trading framework tailored for continuous
queries, which incorporates computation sharing across di�erent
time windows and queries, enhancing integration with existing
trading systems. Our contributions include a theoretical analysis
of computation-sharing techniques, the development of a general
optimization problem to maximize seller revenue adaptable to vari-
ous techniques, and the proposal of a branch-and-price algorithm
to handle the problem’s complexity. Our evaluation shows that
the proposed framework improves the success rate of data trading
by 12.8% and boosts the seller’s revenue by an average of 28.7%,
compared to the one-time query-based data trading methods used
in the current data market.

ACM Reference Format:
Jin Cheng, Ningning Ding, John C.S. Lui, and Jianwei Huang. 2024. Con-
tinuous Query-based Data Trading. In Abstracts of the 2024 ACM SIGMET-
RICS/IFIP PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS/PERFORMANCE Abstracts
’24), June 10–14, 2024, Venice, Italy. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3652963.3655050

1 MOTIVATION
Data has increasingly become a vital asset in data-driven decision-
making processes such as machine learning, highlighting the need
for robust data trading platforms [3]. The surge in online analytics

∗Jianwei Huang is the corresponding author of this paper.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS/PERFORMANCE Abstracts ’24, June 10–14, 2024, Venice, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0624-0/24/06
https://doi.org/10.1145/3652963.3655050

and online machine learning calls for a shift in data trading methods
from traditional one-time query-based to continuous query-based.
However, current data trading practices primarily cater to static,
one-time queries. If applied directly to continuous queries, existing
methods often lead to repeated and imprecise charges that hurt the
seller’s revenue. This is because existing methods do not consider
the computation sharing across di�erent time windows and among
di�erent queries, which is crucial for continuous query execution.

To meet the evolving needs of online analytics, it is crucial to
transition from traditional static one-time data trading methods to
those that support continuous queries (CQs) [1]. CQs continuously
collect and update data within speci�ed time windows, enhancing
real-time decision-making. In practice, computation sharing boosts
the e�ciency of CQ execution by allowing computation sharing
across di�erent time windows and queries. To fully leverage this
capability, an essential step is to develop a CQ-based data trading
framework that incorporates computation sharing, optimizing data
utilization, and maximizing economic returns.

2 CQTRADE: OVERVIEW
We begin by analyzing computation sharing techniques for contin-
uous queries. From this analysis, we develop CQTrade, a trading
framework integrated with a data stream management system. We
then formulate a general optimization problem to maximize seller
revenue. To address the complexity of the problem, we introduce a
branch-and-price algorithm.

2.1 Continuous Query
Customers submit continuous queries (CQs) to the seller with a
data stream management system (DSMS) based on their needs.

D��������� 2.1. (Continuous Query) A continuous query @ =
(B, A , c) aggregates streaming data over time windows, each with a
speci�ed time span termed as ‘range’ (A), and updates its results at
every ‘slide’ (B) interval. The query execution involves a ‘payment’
(c) to the seller per time unit.

We investigate computation sharing among CQs in multiple CQ
execution techniques, a critical aspect for continuous query-based
data trading [2]. We introduce and analyze self-sharing, which
optimizes data processing within the same query across di�erent

73

https://doi.org/10.1145/3652963.3655050
https://doi.org/10.1145/3652963.3655050
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3673660.3655050&domain=pdf&date_stamp=2024-06-13

SIGMETRICS/PERFORMANCE Abstracts ’24, June 10–14, 2024, Venice, Italy Jin Cheng, Ningning Ding, John C.S. Lui, and Jianwei Huang

u...

CQs

Input Monitor
Data Stream

Steam
Processor

Static
Storage

Query
Repository

Streaming Results
Output Buffer

Query Processor
Query Plans	1

Subplan

CQ

*!
*"

*&
*'

Customers

time

...

)+ = 0
+, = ,

++ = 1
)+ = 2

Plan "-

Query #+

Query #,
{!", … , !2} Sharing

Figure 1: The trading system, CQTrade.

time windows, and mutual-sharing, which extends to sharing com-
putations among di�erent queries. From our theoretical analysis,
two key observations emerged: First, self-sharing does not always
guarantee revenue maximization, especially when the payment is
low, highlighting the constraints on the maximum range and its
implications on pro�tability. Second, mutual-sharing often proves
bene�cial, especially when individual CQs are unpro�table on their
own. By executing these together, mutual-sharing can enhance both
the success rate of data trading and the overall revenue, providing a
compelling case for its implementation in continuous query-based
trading systems.

2.2 System Design
Fig. 1 depicts the trading framework CQTrade, integrated with a
data streammanagement system. Customers submit CQs within the
query set Q = {@1, · · · ,@# } of di�erent window speci�cations to
the query repository. The query processor executes CQs according
to the query plans (de�ned in De�nition 2.2) outlined in the trading
strategy, interacting with the stream processor and the storage for
processing the stream and storing results.

D��������� 2.2. (Query Plan) A query plan, denoted as ? ✓ Q,
represents a continuous query set executed in one container, with a
computation sharing type C 2 T , indicating how to share computation.

A query plan organizes multiple CQs that the system executes
collectively, leveraging computation sharing to optimize opera-
tional e�ciency. The computation sharing types for plans T =
{)B<,)B=,)==} include)B< for self-sharing and mutual-sharing,
)B= for just self-sharing, and)== for no sharing. Only CQs within a
plan can share computations, leading to diverse potential execution
and computation-sharing patterns. The cost structure of each plan
is a critical component of our trading framework. Through our anal-
ysis, we recognize that it comprises two main parts: the startup cost,
which is shared among all CQs within a plan, and the query-speci�c
costs, which are individual to each CQ. The startup cost includes
expenses related to setting up the plan, which are incurred once per
plan activation. In contrast, query-speci�c costs are calculated per
CQ based on the processing and memory resources they consume
during their execution. The dual cost structure identi�es a common
cost framework for di�erent techniques, allowing us to create a
general optimization problem.

2.3 Optimization Problem
max
x,~

’
82 []

’
92 [#] G8 908 9 �

’
82 [] ⇠8~8

B .C .
’

92 [#] G8 9w8 9 ]8~8 , for 8 2 [],’
82 [] G8 9 = 1, for 9 2 [#],

G8 9 2 {0, 1}, for 8 2 [], 9 2 [#],
~8 2 {0, 1}, for 8 2 [],

(P1)

According to the common cost structure, we formulate a general
optimization problem P1 to maximize seller revenue. The problem
incorporates: binary variables ~8 for starting up plan ?8 and G8 9 for
assigning CQ@ 9 to plan ?8 , with and# denoting the total numbers
of plans and CQs. Parameters 08 9 , ⇠8 ,w8 9 , and]8 represent the net
pro�t of CQ allocation, plan startup cost, speci�c allocation cost, and
plan capacity, respectively. The complexity of the problem stems
from combining aspects of knapsack and bin packing problems.

To address the complexity, we propose a branch-and-price al-
gorithm adapted to the problem, achieving global optimality. This
solution stands out due to its ability to decompose the problem
into manageable sub-problems, which are then solved iteratively.
The algorithm’s design allows it to adapt dynamically to changes
in query characteristics and system demands, ensuring an optimal
con�guration of query plans that signi�cantly enhances the trading
system’s e�ciency and pro�tability.

3 EXPERIMENTAL RESULTS
We conduct a comprehensive evaluation of our proposed frame-
work, focusing on its impact on the success rate and the revenue it
generates for sellers. Our experiments demonstrate that the trading
framework improves the success rate of data trading by 12.8% and
boosts the seller’s revenue by an average of 28.7%.

We also found that precise adjustments in the query plan settings
can signi�cantly in�uence the success rate and pro�tability of data
trading. Speci�cally, plans tailored to the dynamic requirements of
the data market allow for optimized computation resource usage
and cost management. This �ne-tuning leads to not only higher
revenue margins but also to a more stable trading environment.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (Project 62271434), Shenzhen Science and Technology
Innovation Program (Project JCYJ20210324120011032), Guangdong
Basic andApplied Basic Research Foundation (Project 2021B1515120008),
Shenzhen Key Lab of Crowd Intelligence Empowered Low-Carbon
Energy Network (No. ZDSYS20220606100601002), Shenzhen Stabil-
ity Science Program 2023, and the Shenzhen Institute of Arti�cial
Intelligence and Robotics for Society.

REFERENCES
[1] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous

query language: semantic foundations and query execution. The VLDB Journal 15
(2006), 121–142.

[2] Jin Cheng, Ningning Ding, John C.S. Lui, and Jianwei Huang. 2024.
Continuous Query-based Data Trading. https://www.dropbox.com/scl/�/
ey2erxx1yr42duint8hhq/CQTrade.pdf?rlkey=srjis9c88b8ll294ua2yozpt1&dl=0

[3] Zicun Cong, Xuan Luo, Jian Pei, Feida Zhu, and Yong Zhang. 2022. Data pricing
in machine learning pipelines. Knowledge and Information Systems 64, 6 (2022),
1417–1455.

74

https://www.dropbox.com/scl/fi/ey2erxx1yr42duint8hhq/CQTrade.pdf?rlkey=srjis9c88b8ll294ua2yozpt1&dl=0
https://www.dropbox.com/scl/fi/ey2erxx1yr42duint8hhq/CQTrade.pdf?rlkey=srjis9c88b8ll294ua2yozpt1&dl=0

