
Stochastic Modeling of Large-Scale Solid-State Storage
Systems: Analysis, Design Tradeoffs and Optimization

Yongkun Li, Patrick P. C. Lee, John C. S. Lui
The Chinese University of Hong Kong

yongkunlee@gmail.com, {pclee,cslui}@cse.cuhk.edu.hk

ABSTRACT

Solid state drives (SSDs) have seen wide deployment in mobiles,
desktops, and data centers due to their high I/O performance and
low energy consumption. As SSDs write data out-of-place, garbage
collection (GC) is required to erase and reclaim space with invalid
data. However, GC poses additional writes that hinder the I/O per-
formance, while SSD blocks can only endure a finite number of
erasures. Thus, there is a performance-durability tradeoff on the
design space of GC. To characterize the optimal tradeoff, this pa-
per formulates an analytical model that explores the full optimal
design space of any GC algorithm. We first present a stochastic
Markov chain model that captures the I/O dynamics of large-scale
SSDs, and adapt the mean-field approach to derive the asymptotic
steady-state performance. We further prove the model convergence
and generalize the model for all types of workload. Inspired by
this model, we propose a randomized greedy algorithm (RGA) that
can operate along the optimal tradeoff curve with a tunable pa-
rameter. Using trace-driven simulation on DiskSim with SSD add-
ons, we demonstrate how RGA can be parameterized to realize the
performance-durability tradeoff.

Categories and Subject Descriptors

D.3.3 [Memory Structures]: Performance Analysis and Design
Aids; G.3 [Probability and Statistics]: Markov Processes; D.4.2
[Operating Systems]: Storage Management—secondary storage,

garbage collection

General Terms

Performance;Theory;Algorithms

Keywords

Solid-state Drives; Garbage Collection; Wear-leveling; Cleaning
Cost; Stochastic Modeling; Mean Field Analysis

1. INTRODUCTION
The increasing adoption of solid-state drives (SSDs) is revolu-

tionizing storage architectures. Today’s SSDs are mainly built on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’13, June 17 - 21, 2013, Pittsburgh, PA, USA.
Copyright 2013 ACM 978-1-4503-1900-3/13/06 ...$15.00.

NAND flash memory, and provide several attractive features: high
performance in I/O throughput, low energy consumption, and high
reliability due to their shock resistance property. As the SSD price
per gigabyte decreases [21], not only desktops are replacing tradi-
tional hard-disk drives (HDDs) with SSDs, but there is a growing
trend of using SSDs in data centers [19, 27].

SSDs have inherently different I/O characteristics from tradi-
tional HDDs. An SSD is organized in blocks, each of which usually
contains 64 or 128 pages that are typically of size 4KB each. It sup-
ports three basic operations: read, write, and erase. The read and
write operations are performed in a unit of page, while the erase
operation is performed in the block level. After a block is erased,
all pages of the block become clean. Each write can only operate
on a clean page; when a clean page is written, it becomes a valid

page. To improve the write performance, SSDs use the out-of-place

write approach. That is, to update data in a valid page, the new data
is first written to a different clean page, and the original page con-
taining old data is marked invalid. Thus, a block may contain a mix
of clean pages, valid pages, and invalid pages.

The unique I/O characteristics of SSDs pose different design re-
quirements from those in HDDs. Since each write must operate
on a clean page, garbage collection (GC) must be employed to re-
claim invalid pages. GC can be triggered, for example, when the
number of clean pages drops below a predefined threshold. Dur-
ing GC, some blocks are chosen to be erased, and all valid pages
in an erased block must first be written to a different free block
prior to the erasure. Such additional writes introduce performance
overhead to normal read/write operations. To maintain high perfor-
mance, one design requirement of SSDs is to minimize the clean-

ing cost, such that a GC algorithm chooses blocks containing as
few valid pages as possible for reclamation.

However, SSDs only allow each block to tolerate a limited num-
ber of erasures before becoming unusable. For instance, the num-
ber is typically 100K for single-level cell (SLC) SSDs and 10K for
multi-level cell (MLC) SSDs [13]. With more bits being stored in
a flash cell and smaller feature size of flash cells, the maximum
number of erasures tolerable by each block further decreases, for
example, to several thousands or even several hundreds for the lat-
est 3-bits MLC SSDs [23]. Thus, to maintain high durability, an-
other design requirement of SSDs is to maximize wear-leveling in
GC, such that all blocks should have similar numbers of erasures
over time so as to avoid any “hot” blocks being worn out soon.

Clearly, there is a performance-durability tradeoff in the GC de-
sign space. Specifically, a GC algorithm with a low cleaning cost
may not achieve efficient wear-leveling, or vice versa. Prior work
(e.g., [1]) addressed the tradeoff, but the study is mainly based on
simulations. From the viewpoints of SSD practitioners, it remains
an open design issue of how to choose the “best” parameters of a

GC algorithm to adapt to different tradeoff requirements for differ-
ent application needs. However, understanding the performance-
durability tradeoff is non-trivial, since it depends on the I/O dynam-
ics of an SSD and the dynamics characterization becomes compli-
cated with the increasing numbers of blocks/pages of the SSD. This
motivates us to formulate a framework that can efficiently capture
the optimal design space of GC algorithms and guide the choices
of parameterizing a GC algorithm to fit any tradeoff requirement.

In this paper, we develop an analytical model that character-
izes the I/O dynamics of an SSD and the optimal performance-
durability tradeoff of a GC algorithm. Using our model as a base-
line, we propose a tunable GC algorithm for different performance-
durability tradeoff requirements. To summarize, our paper makes
the following contributions:

• We formulate a stochastic Markov chain model that captures
the I/O dynamics of an SSD. Since the state space of our
stochastic model increases with the SSD size, we adapt the
mean field technique [5, 38] to make the model tractable.
We formally prove the convergence results under the uni-
form workload to enable us to analyze the steady-state per-
formance of a GC algorithm. We also discuss how our sys-
tem model can be extended for a general workload.

• We identify the optimal extremal points that correspond to
the minimum cleaning cost and the maximum wear-leveling,
as well as the optimal tradeoff curve of cleaning cost and
wear-leveling that enables us to explore the full optimal de-
sign space of the GC algorithms.

• Based on our analytical model, we propose a novel GC algo-
rithm called the randomized greedy algorithm (RGA) that can
be tunable to operate along the optimal tradeoff curve. RGA
also introduces low RAM usage and low computational cost.

• To address the practicality of our work, we conduct extensive
simulations using the DiskSim simulator [8] with SSD exten-
sions [1]. We first validate via synthetic workloads that our
model efficiently characterizes the asymptotic steady-state
performance. Furthermore, we consider real-world workload
traces and use trace-driven simulations to study the perfor-
mance tradeoff and versatility of RGA.

The rest of the paper proceeds as follows. In §2, we propose a
Markov model to capture the system dynamics of an SSD and con-
duct the mean field analysis. We formally prove the convergence,
and further extend the model for a general workload. In §3, we
study the design tradeoff between cleaning cost and wear-leveling
of GC algorithms. In §4, we propose RGA and analyze its per-
formance. In §5, we validate our model via simulations. In §6, we
present the trace-driven simulation results. In §7, we review related
work, and finally in §8, we conclude the paper.

2. SYSTEM MODEL
We formulate a Markov chain model to characterize the I/O dy-

namics of an SSD under the read, write, and GC operations. We
then analyze the model via the mean field technique when the SSD
scales with the increasing number of blocks or storage capacity.

2.1 Markov Chain Model Formulation
Our model considers an SSD with N blocks of k pages each,

where the typical value of k is 64 or 128 for today’s commonly
used SSDs. Since SSDs use the out-of-place write approach (see
§1), a write to a logical page may reflect on any physical page.

Therefore, SSDs implement address mapping to map a logical page
to a physical page. Address mapping is maintained in the soft-
ware flash translation layer (FTL) in the SSD controller. It can
be implemented in block level [43], page level [24], or hybrid form
[16,33,40]. A survey of the FTL design including the address map-
ping mechanisms can be found in [17]. In this paper, our model
abstracts out the complexity due to address mapping; specifically,
we focus on the physical address space and directly characterize
the I/O dynamics of physical blocks.

Recall from §1 that a page can be in one of the three states: clean,
valid or invalid. We classify each block into a different type based
on the number of valid pages containing in the block. Specifically,
a block of type i contains exactly i valid pages. Since each block
has k pages, a block can be of one of the k+1 types (i.e., from 0
to k valid pages). If a block is of type i, then we say it is in state i.
Let Xn(t) denote the state of block n ∈ {1, ..., N} at time t. Then
the state descriptor for the whole SSD is

X
N (t) = (X1(t), X2(t), . . . , XN (t)), (1)

where Xi(t) ∈ {0, 1, ..., k}. Thus, the state space cardinality is
(k+1)N . To facilitate our analysis under the large system regime
(as we will show later), we transform the above state descriptor to:

n
N (t) = (n0(t), n1(t), . . . , nk(t)), (2)

where ni(t) ∈ {0, 1, ..., N} denotes the number of type i blocks

in the SSD. Clearly, we have
∑k

j=0nj(t)=N , and the state space

cardinality is
(
N+k

k

)
.

We first describe how different I/O requests affect the system
dynamics of an SSD from the perspective of physical blocks. The
I/O requests can be classified into four types: (1) read a page, (2)
perform GC on a block, (3) program (i.e., write) new data to a page,
and (4) invalidate a page. First, read requests do not change nN (t).
For GC, the SSD selects a block, writes all valid pages of that block
to a clean block, and finally erases the selected block. Thus, GC
requests do not change the state of n

N (t) either. On the other
hand, for the program and invalidate requests, if the corresponding
block is of type i, it will move from state i to state i+1 and to state
i−1, respectively.

We now describe the state transition of a block in an SSD. Since
the read and GC requests do not change n

N (t), we only need to
model the program and invalidate requests. Suppose that the pro-
gram and invalidate requests arrive as a Poisson process with rate
λ. Also, suppose that the workload is uniform, such that all pages
in the SSD will have an equal probability of being accessed (in
§2.5, we extend our model for a general workload). The assump-
tion of the uniform workload implies that (1) each block has the
same probability 1/N of being accessed, (2) the probability of in-
validating one page is proportional to the number of valid pages of
the corresponding block, and (3) the probability of programming a
page is proportional to the total number of invalid and clean pages
of the corresponding block. Thus, if the requested block is of type
i, then the probability of invalidating one page of the block is i

k
,

and that of programming one page in the block is k−i
k

. Figure 1
illustrates the state transitions of a single block in an SSD under
the program and invalidate requests. If a block is in state i, the pro-

gram and invalidate requests will move it to state i+1 at rate
λ(k−i)

Nk

and to state i−1 at rate λi

Nk
, respectively. Note that Figure 1 only

shows the state transition of a particular block but not the whole
SSD. Specifically, the state space cardinality of a particular block
is k+1 as shown in Figure 1, while that of the whole SSD is

(
N+k

k

)

as described by Equation (2).
To characterize the I/O dynamics of an SSD, we define the occu-

0 1 i-1 i i+1 k

λ/Nk

λ/N
λ/Nk

(k-1)/Nk λ(k-i+1)/Nk λ(k-i)/Nk

λ/N

λ

λ(i+1)/Nkλi/Nk2λ/Nk

.....

Figure 1: State transition of a block in an SSD.

pancy measure M
N (t) as the vector of fraction of type i blocks at

time t. Formally, we have

M
N (t) = (M0(t),M1(t), ...,Mk(t)),

where Mi(t) is

Mi(t) =
1

N

N∑

n=1

1{Xn(t)=i} =
ni(t)

N
. (3)

In other words, Mi(t) is the fraction of type i blocks in the SSD.
It is easy to see that the occupancy measure M

N (t) is a homoge-
neous Markov chain.

We are interested in modeling large-scale SSDs to understand
the performance implication of any GC algorithms. By large-scale,
we mean that the number of blocks N of an SSD is large. For
example, for a 256GB SSD (which is available in many of today’s
SSD manufactures), we have N ≈ 1×106 and k = 64 for a page
size of 4KB, implying a huge state space of MN (t). Since MN (t)
does not possess any special structure (i.e., matrix-geometric form),
analyzing it can be computationally expensive.

2.2 Mean Field Analysis
To make our Markov chain model tractable for a large-scale SSD,

we employ the mean field technique [5, 38]. The main idea is that
the stochastic process MN (t) can be solved by a deterministic pro-
cess s(t) = (s0(t), s1(t), ..., sk(t)) as N → ∞, where si(t) de-
notes the fraction of blocks of type i at time t in the deterministic
process. We call s(t) the mean field limit. By solving the deter-
ministic process s(t), we can obtain the occupancy measure of the
stochastic process MN (t).

We introduce the concept of intensity denoted by ε(N). Intu-
itively, the probability that a block performs a state transition per
time slot is in the order of ε(N). Under the uniform workload,
each block is accessed with the same probability 1/N , so we have

ε(N) = 1/N . Now, we re-scale the process MN (t) to M̃
N
(t).

M̃
N
(tε(N)) = M

N (t) ∀t ≥ 0. (4)

For simplicity, we drop the notation t when the context is clear.
We now show how the deterministic process s(t) is related to the

re-scaled process M̃
N
(t). The time evolution of the deterministic

process can be specified by the following set of ordinary differential
equations (ODEs):

dsi
dt

=− λsi+λ
k−i+1

k
si−1+λ

i+1

k
si+1, 1≤ i≤k−1,

ds0
dt

=− λs0+λ
1

k
s1,

dsk
dt

=− λsk+λ
1

k
sk−1.

(5)

The idea of the above ODEs is explained as follows. For an
SSD with N blocks, we express the expected change in number
of blocks of type i over a small time period of length dt under

the re-scaled process M̃
N
(t). This corresponds to the expected

change over the time period of length Ndt under the original pro-
cess MN (t). During this period (of length Ndt), there are λ(Ndt)
program/invalidate requests, each of which changes the state of
some type i block to state i − 1 or state i + 1 with probability
1/N . Since there are a total of Nsi blocks of type i, the expected
change from state i to other states is λNdtsi. Using the similar
arguments, the expected change in number of blocks from state
i+1 to state i is λNdt i+1

k
si+1, and that from state i − 1 to state

i is λNdt k−i+1
k

si−1. Similarly, we can also specify the expected
change in fraction of blocks of type 0 and type k, and we obtain the
ODEs as stated in Equation (5).

2.3 Derivation of the Fixed Point
We now derive the fixed point of the deterministic process in

Equation (5). Specifically, s(t) is said to be a fixed point if s(t) =
π implies s(t′) = π for all t′ ≥ t. In other words, the fixed
point π describes the distribution of different types of blocks in the
steady state. The necessary and sufficient condition for π to be a
fixed point is that dπi

dt
= 0 for all i ∈ {0, 1, . . . , k}.

Theorem 1. Equation (5) has a unique fixed point π given by:

πi =

(
k

i

)

2k
, 0 ≤ i ≤ k. (6)

Proof: First, it is easy to check that π satisfies dπi

dt
=0 for 0≤ i≤k.

Conversely, based on the condition of dπi

dt
= 0 for all i, we have

− πi+
k − i+ 1

k
πi−1+

i+ 1

k
πi+1 = 0, 1 ≤ i ≤ k−1,

− π0+
1

k
π1 = 0,

− πk +
1

k
πk−1 = 0.

By solving these equations, we get

πi =

(
k

i

)
πk, for 0 ≤ i ≤ k.

Since
k∑

i=0

πi=1, the fixed point is derived as in Equation (6).

2.4 Summary
We develop a stochastic Markov chain model to characterize the

I/O dynamics of a large-scale SSD system. Specifically, we solve
the stochastic process with a deterministic process via the mean
field technique and identify the fixed point in the steady state. We
claim that the derivation is accurate when N is large, as we can
formally provide that (i) the stochastic process converges to the
deterministic process as N → ∞ and (ii) the deterministic process
specified by Equation (5) converges to the unique fixed point π as
described in Equation (6). We refer readers to our technical report
[34] for the convergence proofs.

Our model enables us to analyze the tradeoff between cleaning
cost and wear-leveling of GC algorithms. As shown in §3, cleaning
cost and wear-leveling can be expressed as functions of π.

2.5 Extensions to General Workload
Our model thus far focuses on the uniform workload, i.e., all

physical pages have the same probability of being accessed. For
completeness, we now generalize our model to allow for the general
workload, in which blocks/pages are accessed with respect to some

general probability distribution. We show how we apply the mean
field technique to approximate the I/O dynamics of an SSD, and
we also conduct simulations using synthetic workloads to validate
our approximation (see §5.1). As stated in §2.1, we focus on the
program and invalidate requests, both of which can change the state
of a block in the Markov chain model. We again assume that the
program/invalidate requests arrive as a Poisson process with rate
λ. In particular, to model the general workload, we let pi,j be the
transition probability of a type i block being transited to state j due
to one program/invalidate request. We have

pi,j = 0, if j 6= i− 1 and j 6= i+ 1,

∑

i

∑

j

pi,j

(
∑

n

1{Xn(t)=i}

)
= 1,

where 1{Xn(t)=i} indicates whether block n is in state i, and thus∑
n
1{Xn(t)=i} represents the number of blocks in state i. The

second equation comes from the fact that each program/invalidate
request can only change the state of one particular block.

In practice, pi,j (where j = i− 1 or j = i+1) can be estimated
via workload traces. Specifically, for each request being processed,
one can count the number of blocks in state i (i.e., ni) and the
number of blocks in state i that change to state j (i.e., ni,j). Then
pi,j can be estimated as:

pi,j ≈

∑
for each request

ni,j

ni

total number of requests
, (7)

where
ni,j

ni
is the probability that a block transits from state i to j

in a particular request, and pi,j is the average over all requests.
We can derive the occupancy measure M

N (t) with a determin-
istic process s(t) specified by the following ODEs:

dsi
dt

=−λ(pi,i−1+pi,i+1)si+λpi−1,isi−1+λpi+1,isi+1, 1≤i≤k−1,

ds0
dt

=− λp0,1s0+λp1,0s1,

dsk
dt

=− λpk,k−1sk+λpk−1,ksk−1.

(8)
We can further derive the fixed point of the deterministic process

s(t) as in Theorem 2. For the convergence proof, please refer to
our technical report [34].

Theorem 2. Equation (8) has a unique fixed point π given by:

πk =
1

1 +
∑k−1

i=0

∏i+1

j=k
pj,j−1

∏k−1

j=i
pj,j+1

,

πi =

∏i+1
j=k

pj,j−1
∏k−1

j=i
pj,j+1

πk, 0 ≤ i ≤ k − 1.

(9)

Proof: The derivation is similar to that of Theorem 1.

3. DESIGN SPACE OF GC ALGORITHMS
Using our developed stochastic model, we analyze how we can

parameterize a GC algorithm to adapt to different performance-
durability tradeoffs. In this section, we formally define two met-
rics, namely cleaning cost and wear-leveling, for general GC algo-
rithms. Both metrics are defined based on the occupancy measure
π which we derived in §2. We identify two optimal extremal points
in GC algorithms. Finally, we identify the optimal tradeoff curve
that explores the full optimal design space of GC algorithms.

3.1 Metrics
We now define the new parameters that are used to characterize

a family of GC algorithms. When a GC algorithm is executed, it
selects a block to reclaim. Let wi ≥ 0 (where 0 ≤ i ≤ k) denote
the weight of selecting a particular type i block (i.e., a block with i
valid pages), such that the higher the weight wi is, the more likely
each type i block is chosen to be reclaimed. The weights are chosen
with the following constraint:

k∑

i=0

wi

N
× ni =

k∑

i=0

wiπi = 1. (10)

The above constraint has the following physical meaning. The ratio
wi/N can be viewed as the probability of selecting a particular type
i block for a GC operation. Since ni is the total number of type
i blocks in the system, wiπi can be viewed as the probability of
selecting any type i block for a GC operation. The summation of
wiπi over all i is equal to 1. Note that πi is the occupancy measure
that we derive in §2.

We now define two metrics that respectively characterize the per-
formance and durability of a GC algorithm. The first metric is
called the cleaning cost, denoted by C, which is defined as the av-
erage number of valid pages contained in the block that is selected
for a GC operation. This implies that the cleaning cost reflects the
average number of valid pages that need to be written to another
clean block during a GC operation. The cleaning cost reflects the
performance of a GC algorithm, such that a high-performance GC
algorithm should have a low cleaning cost. Formally, we have

C =

k∑

i=0

iwiπi. (11)

The second metric is called the wear-leveling, denoted by W ,
which reflects how balanced the blocks are being erased by a GC
algorithm. To improve the durability of an SSD, each block should
have approximately the same number of erasures. We use the con-
cept of the fairness index [29] to define the degree of wear-leveling
W , such that the higher W is, the more balanced the blocks are
erased. Formally, we have

W =
(
∑k

i=0
wi

N
Nπi)

2

N
∑k

i=0(
wi

N
)2Nπi

=

(
k∑

i=0

w2
i πi

)−1

. (12)

Note that the rationale of Equation (12) comes from the fact that wi

N

is the probability of selecting a particular type i block, and there
are Nπi type i blocks in total. For example, if all wi’s are equal to
one, which implies that each block has the same probability 1

N
of

being selected, then the wear-leveling index W achieves its maxi-
mum value equal to one as

∑k

i=0 πi = 1.
The set of wi’s, where 0 ≤ i ≤ k, will be our selection parame-

ters to design a GC algorithm. In the following, we show how we
select wi’s for different GC algorithms subject to different trade-
offs between cleaning cost and wear-leveling. Our results are de-
rived for a general workload subject to the system state distribution
π. Specifically, we also derive the closed-form solutions under the
uniform workload as a case study.

3.2 GC Algorithm to Maximize Wear-leveling
Suppose that our goal is to find a set of weight wi’s such that a

GC algorithm maximizes wear-leveling W . We can formulate the

following optimization problem:

max W =

(
k∑

i=0

w2
i πi

)−1

(13)

s.t.
k∑

i=0

wiπi = 1,

wi ≥ 0.

Since
∑k

i=0 w
2
i πi − (

∑k

i=0 wiπi)
2 =

∑k

i=0 w
2
i πi − 1 ≥ 0, we

always have W ≤ 1. Thus, the solution to the above optimization
problem is wi = 1 for all i, and the corresponding W is equal to
1 and achieves the maximum. The corresponding cleaning cost is∑k

i=0 iπi. In other words, each block has the same probability (i.e.,
1/N) of being selected for GC. Intuitively, this assignment strategy
which maximizes wear-leveling is the random algorithm, in which
each block is uniformly chosen independent of its number of valid
pages.

Under the uniform workload, we can compute the closed-form
solution of the cleaning cost C as:

C =

k∑

i=0

iwiπi =

k∑

i=0

i

(
k

i

)

2k
=

k

2
.

It implies that a random GC algorithm introduces an average of k/2
additional page writes under the uniform workload.

3.3 GC Algorithm to Minimize Cleaning Cost
Suppose now that our goal is to find a set of weight wi’s to min-

imize the cleaning cost C, or equivalently, minimize the number of
writes of valid pages during GC. The optimization formulation is:

min C =

k∑

i=0

iwiπi (14)

s.t.
k∑

i=0

wiπi = 1,

wi ≥ 0.

Note that C must be non-negative. Thus, the solution to the above
optimization problem is w0 = 1/π0 and wi = 0 for all i > 0 (as-
suming that there exist some blocks of type 0), and the correspond-
ing C is equal to 0 and achieves the minimum. The corresponding
wear-leveling W is π0. Intuitively, this assignment strategy corre-
sponds to the greedy algorithm, which always chooses the block
that has the minimum number of valid pages for GC.

Under the uniform workload, the closed-form solution of W cor-
responding to the minimum cost is given by:

W =
1

w2
0π0

=
1

2k
.

The result shows that the greedy algorithm can significantly de-
grade wear-leveling. For today’s commonly used SSDs, the typi-
cal value of k is 64 or 128. This implies that the degree of wear-
leveling W ≈ 0, and the durability of the SSD suffers.

3.4 Exploring the Full Optimal Design Space
We identify two GC algorithms, namely the random and greedy

algorithms, that correspond to two optimal extremal points of all
GC algorithms. We now characterize the tradeoff between cleaning
cost and wear-leveling, and identify the full optimal design space
of GC algorithms. Specifically, we formulate an optimization prob-
lem: given a cleaning cost C∗, what is the maximum wear-leveling

that a GC algorithm can achieve? Formally, we express the prob-
lem (with respect to wi’s) as follows:

max W =

(
k∑

i=0

w2
i πi

)−1

(15)

s.t.

k∑

i=0

wiπi = 1,

k∑

i=0

iwiπi = C∗,

wi ≥ 0.

Without loss of generality, we assume that πi > 0 (0 ≤ i ≤ k).
The solution of the optimization problem is stated in the following
theorem.

Theorem 3. Given a cleaning cost C∗, the maximum wear-leveling

W∗ is given by:

W∗ =





π0, C∗ = 0,

1∑I
i=0 γ

2
i πi

, 0 < C∗ <
k∑

i=0

iπi,

1, C∗ =

k∑

i=0

iπi,

1∑k

i=L Γ2
iπi

,
k∑

i=0

iπi < C∗ < k,

πk, C∗ = k,

(16)

for some constants γi, I, Γi, and L.

Proof: The proof is in our technical report [34]. We also derive
the constants I, γi, L, and Γi.

4. RANDOMIZED GREEDY ALGORITHM
In this section, we present a tunable GC algorithm called the

randomized greedy algorithm (RGA) that can operate at any given
cleaning cost C∗ and return the corresponding optimal wear-leveling
W∗; or equivalently, RGA can operate at any point along the opti-
mal tradeoff curve of C∗ and W∗.

4.1 Algorithm Details
Algorithm 1 shows the pseudo-code of RGA, which operates as

follows. Each time when GC is triggered, RGA randomly chooses
d out of N blocks b1, b2, · · · , bd as candidates (Step 2). Let v(bi)
denote the number of valid pages of block bi. Then RGA selects
the block b∗ that has the smallest number of valid pages, or the
minimum v(.), to reclaim (Step 3). We then invalidate block b∗

and move its valid pages to another clean block (Steps 4-5). In
essence, we define a selection window of window size d that de-
fines a random subset of d out of N blocks to be selected. The
window size d is the tunable parameter that enables us to choose
between the random and greedy policies. Intuitively, the random
selection of d blocks allows us to maximize wear-leveling, while
the greedy selection within the selection window allows us to min-
imize the cleaning cost. Note that in the special cases where d = 1
(resp. d → ∞), RGA corresponds to the random (resp. greedy)
algorithm.

Algorithm 1 Randomized Greedy Algorithm (RGA)

1: if garbage collection is triggered then

2: randomly choose d blocks b1, b2, ..., bd;
3: find block b∗ = minv(bi){bi : bi ∈ {b1, b2, ..., bd}};
4: write all valid pages in b∗ to another clean block;
5: erase b∗;
6: end if

4.2 Performance Analysis of RGA
We now derive the cleaning cost and wear-leveling of RGA. We

first determine the values of weights wi’s for all i. Recall from §3.1
that wiπi represents the probability of choosing any block of type
i for GC. In RGA, a type i block is chosen for GC if and only if the
randomly chosen d blocks all contain at least i valid pages and at
least one of them contains i valid pages. Thus, the corresponding
probability wiπi is (

∑k

j=i
πi)

d − (
∑k

j=i+1 πi)
d. Note that this

expression assumes that d blocks are chosen uniformly at random
from the N blocks with replacement, while in RGA, these d blocks
are chosen uniformly at random without replacement. However, we
can still use it as approximation since d is much smaller than N for
a large-scale SSD. Therefore, we have

wi =
(
∑k

j=i
πi)

d − (
∑k

j=i+1 πi)
d

πi

. (17)

Based on the definitions of cleaning cost C in Equation (11) and
wear-leveling W in Equation (12), we can derive C and W:

C =

k∑

i=0

i

(
(

k∑

j=i

πi)
d − (

k∑

j=i+1

πi)
d

)
, (18)

W =
1

k∑
i=0

(
(
∑

k
j=i

πi)d−(
∑

k
j=i+1

πi)d

πi

)2

πi

. (19)

In §5, we will show the relationship between cleaning cost C and
wear-leveling W based on RGA. We show that RGA almost lies on
the optimal tradeoff curve of C and W .

4.3 Deployment of RGA
We now highlight the practical implications when RGA is de-

ployed. RGA is implemented in the SSD controller as a GC algo-
rithm. From our evaluation (see details in §5), a small value of d
(which is significantly less than the number of blocks N) suffices
to make RGA lie on the optimal tradeoff curve. This allows RGA
to incur low RAM usage and low computational overhead. Specif-
ically, RGA only needs to load the meta information (e.g., number
of valid pages) of d blocks into RAM for comparison. With a small
value of d, RGA consumes an only small amount of RAM space.
Also, RGA only needs to compare d blocks to select the block
with the minimum number of valid pages for GC. The computa-
tional cost is O(d) and hence very small as well. Since a practical
SSD controller typically has limited RAM space and computational
power, we expect that RGA addresses the practical needs and can
be readily deployed.

We expect that RGA, like other GC algorithms, is only executed
periodically or when the number of free blocks drops below a pre-
defined threshold. The window size d can be tunable at different
times during the lifespan of the SSD to achieve different levels of
wear-leveling and cleaning cost along the optimal tradeoff curve.
In particular, we emphasize that the window size d can be chosen
as a non-integer. In this case, we can simply linearly extrapolate d
between bdc and bd + 1c. Formally, for a given non-integer value

d, when GC is triggered, RGA can set the window size as bdc with
probability p and set the window size as bd + 1c with probability
1− p, where p is given by:

d = pbdc+ (1− p)bd+ 1c. (20)

Thus, we can evaluate the values of wi’s as follows:

wi(d) = pwi(bdc) + (1− p)wi(bd+ 1c),

based on Equation (17). The cleaning cost and wear-leveling of
RGA can be computed accordingly via Equations (11) and (12)
substituting wi(d). More generally, we can obtain the window size
from some probability distribution with the mean value given by
d. This enables us to operate at any point of the optimal tradeoff
curve.

5. MODEL VALIDATION
We thus far formulate an analytical model that characterizes the

I/O dynamics of an SSD, and further propose RGA that can be
tuned to realize different performance-durability tradeoffs. In this
section, we validate our theoretical results developed in prior sec-
tions. First, we validate via simulation that our system state deriva-
tions in Theorem 2 provide accurate approximation even for a gen-
eral workload. Also, we validate that RGA operates along the opti-
mal tradeoff curve characterized in Theorem 3.

5.1 Validation on Fixed-Point Derivations
Recall from §2 that we derive, via the mean field analysis, the

fixed-point π for the system state of our model under both uni-
form and general workloads. We now validate the accuracy of such
derivation. We use the DiskSim simulator [8] with SSD exten-
sions [1]. We generate synthetic workloads for different read/write
patterns to drive our simulations, and compare the system state ob-
tained by each simulation with that of our model.

We feed the simulations with three different types of synthetic
workloads: (1) Random, (2) Sequential, and (3) Hybrid. Specifi-
cally, Random means that the starting address of each I/O request
is uniformly distributed in the logical address space. Note that its
definition is (slightly) different from that of the uniform workload
used in our model, as the latter directly considers the requests in
the physical address space. The logical-to-physical address map-
ping will be determined by the simulator. Sequential means that
each request starts at the address which immediately follows the
last address accessed by the previous request. Hybrid assumes
that there are 50% of Random requests and 50% of Sequential
requests. Furthermore, for each synthetic workload, we consider
both Poisson and non-Poisson arrivals. For the former, we assume
that the inter-arrival time of requests follows an exponential distri-
bution with mean 100ms; for the latter, we assume that the inter-
arrival time of requests follow a normal distribution (denoted by
N(µ, σ2)) with mean µ = 100ms and standard deviation σ = 10ms.

Using simulations, we generate 10M requests for each workload
and feed them to a small-scale SSD that contains 8 flash packages
with 160 blocks each. We consider a small-scale SSD (i.e., with
a small number of blocks) to make the SSD converge to an equi-
librium state quickly with a sufficient number of requests; in §6,
we consider a larger-size SSD. After running all 10M requests, we
obtain the system state of the SSD for each workload from our sim-
ulation results. On the other hand, using our model, we first execute
the workload and record the transition probabilities pi,j’s based on
Equation (7). We then compute the system state π using Theo-
rem 2 for a general workload (which covers the uniform workload
as well). We then compare the system states obtained from both the
simulations and model derivations.

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

State

P
ro

b
a
b

il
it

y

DiskSim

Model

Synthetic workload
(random)
10M requests

(a) Random + Poisson

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

State

P
ro

b
a
b

il
it

y

DiskSim

Model

Synthetic workload
(sequential)
10M requests

(b) Sequential + Poisson

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

State

P
ro

b
a
b

il
it

y

DiskSim

Model

Synthetic workload
(50% random)
10M requests

(c) Hybrid + Poisson

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

State

P
ro

b
a
b

il
it

y

DiskSim

Model

Synthetic workload
(random)
10M requests
Inter−arrv time ~ N(100, 100)

(d) Random + non-Poisson

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

State

P
ro

b
a
b

il
it

y

DiskSim

Model

Synthetic workload
(sequential)
10M requests
Inter−arrv time ~ N(100, 100)

(e) Sequential + non-Poisson

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

State

P
ro

b
a
b

il
it

y

DiskSim

Model

Synthetic workload
(50% random)
10M requests
Inter−arrv time ~ N(100, 100)

(f) Hybrid + non-Poisson

Figure 2: Model validation on the system state π. In each sub-figure, the x-axis represents the states (i.e., the number of valid pages in a
block), and the y-axis indicates the state probabilities.

Figure 2 show the simulation and model results for the Ran-
dom, Sequential, and Hybrid workloads, each associated with ei-
ther the Poisson or non-Poisson arrivals of requests. The results
show that under different synthetic workloads, our model derived
from the mean field technique can still provide good approxima-
tions of the system state compared with that obtained from the sim-
ulations. Note that we also observe good approximations even for
non-Poisson arrivals of requests. The results show the robustness
of our model in evaluating the system state.

5.2 Validation on Operational Points of RGA
In §3, we characterize the optimal tradeoff curve between clean-

ing cost and wear-leveling; in §4, we present a GC algorithm called
RGA that can be tuned by a parameter d to adjust the tradeoff be-
tween cleaning cost and wear-leveling. We now validate that RGA
can indeed be tuned to operate on the optimal tradeoff curve.

We consider different system state distributions π to study the
performance of RGA. We first consider π derived for the uniform
workload (i.e., Equation (6)). We also consider three different dis-
tributions of π that are drawn from truncated normal distributions,
denoted by N(µ, σ2) with mean µ and standard deviation σ. Fig-
ure 3(a) illustrates the four system state distributions, where the
mean and variance of each truncated normal distribution are shown
in the figure.

For each system state distribution, we compute the maximum
wear-leveling W∗ for each cleaning cost C∗ based on Theorem 3.
Also, we evaluate the performance of RGA by varying the window
size d from 1 to 100, and obtain the corresponding cleaning cost
and wear-leveling based on Equations (18) and (19). Here, we only
focus on the integer values of d.

Figure 3(b) shows the results, in which the four curves repre-
sent the optimal tradeoff curves corresponding to the four different

distributions of π, while the circles correspond to the operational
points of RGA with different integer values of window size d from
1 to 100. Note that the maximum wear-leveling corresponds to
RGA with window size d = 1 (i.e., the random algorithm). As
the window size increases, the wear-leveling decreases, while the
cleaning cost also decreases. We observe that RGA indeed operates
along the optimal tradeoff curves with regard to different system
state distributions.

It is important to note that we can realize non-integer window
sizes to further fine-tune RGA along the optimal tradeoff curve (see
§4.3). To validate, we consider different values of d from 1 to 2,
with step size 0.05, and calculate d via linear extrapolation between
1 and 2.

Figure 3(c) shows the results for non-integer d using different
system state distributions. Here, we zoom into the wear-leveling
values from 0.75 to 1. Each star corresponds to the RGA with a
non-integer window size obtained by Equation (20). We observe
that RGA can be further fine-tuned to operate along the optimal
tradeoff curves even when d is a non-integer.

6. TRACE-DRIVEN EVALUATION
In this section, we evaluate the performance of RGA under more

realistic settings. Since today’s SSD controllers are mainly pro-
prietary firmware, it is non-trivial to implement GC algorithms in-
side a real-world SSD controller. Thus, similar to §5, we conduct
our evaluation using the DiskSim simulator [8] with SSD exten-
sions [1]. This time we focus on a large-scale SSD. We consider
several real-world traces, and evaluate different metrics, including
cleaning cost, I/O throughput, wear-leveling, and durability, for dif-
ferent GC algorithms. Note that the cleaning cost and wear-leveling

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

State

P
ro

b
a

b
il

it
y

 π
i

uniform

N(32, 100)

N(8, 100)

N(56, 100)

(a) Distributions of π

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Cleaning Cost

W
e
a
r−

le
v
e
li
n

g

Maximum
Wear−leveling

RGA

Uniform
N(32,100)

N(56,100)
N(8,100)

(b) Design space and performance of RGA
for different integers of d from 1 to 100

0 10 20 30 40 50 60

0.75

0.8

0.85

0.9

0.95

1

Cleaning Cost

W
e
a
r−

le
v
e
li
n

g

 Maximum
Wear−leveling

RGA(d=1) RGA(d=2) RGA(d∈[1,2])

N(8,100)
N(56,100)

N(32,100)

Uniform

(c) Design space and performance of RGA for
different non-integers of d from 1 to 2

Figure 3: Full design space and the performance of RGA.

are the metrics considered in the model, while the I/O throughput
and durability are the metrics related to user experience.

Using trace-driven evaluation, our goal is to demonstrate the ef-
fectiveness of RGA in practical deployment. We compare different
variants of RGA with regard to different values of window size d,
as well as the random and greedy algorithms. We emphasize that
we are not advocating a particular value of d for RGA in real de-
ployment; instead, we show how different values of d can be tuned
along the performance-durability tradeoff.

6.1 Datasets
We first describe the datasets that drive our evaluation. Since

the read requests do not influence our analysis, we focus on four
real-world traces that are all write-intensive:

• Financial [44]: It is an I/O trace collected from an online
transaction process application running at a large financial
institution. There are two financial traces in [44], namely
Financial1.spc and Financial2.spc. Since Financial2.spc
is read-dominant, we only use Financial1.spc in this paper.

• Webmail [46]: It is an I/O trace that describes the webmail
workload of a university department mail server.

• Online [46]: It is an I/O trace that describes the coursework
management workload on Moodle at a university.

• Webmail+Online [46]: It is the combination of the I/O traces
of Webmail and Online.

Table 1 summarizes the statistics of the traces. The original Finan-
cial trace in [44] contains 24 application-specific units (ASUs) of a
storage server (denoted by ASU0 to ASU23). We study the traces
of all ASUs except ASU1, ASU3, and ASU5, whose maximum
logical sector numbers go beyond the logical address space in our
configured SSD (see §6.2). The remaining Financial trace contains
around 4.4 million I/O requests, in which 77.82% are write requests
and the remaining are read requests. Also, 1.67% of I/O requests
are sequential requests, each of which has its starting address im-
mediately following the last address of its prior request. The aver-
age size of each request is 5.4819KB, meaning that most requests
only access one page as the size of one page is configured as 4KB
in the simulation. The average inter-arrival time of two continuous
requests is just around 10 ms. On the other hand, for the Web-
mail, Online and Webmail+Online traces obtained from [46], the
write requests account for around 80% of I/O requests, and over
70% of I/O requests are sequential requests. Moreover, all requests

in those traces have size 4KB (i.e., only one page is accessed in
each request), and the average inter-arrival time is much longer
than that of the Financial trace. In summary, the Financial trace
has the random-write-dominant access pattern, while the Webmail,
Online, and Webmail+Online traces have the sequential-write-

dominant access pattern.
We set the page size of an SSD as 4KB (the default value in most

today’s SSDs). Since the block size considered by these traces is
512 bytes, we align the I/O requests of these traces to be multiples
of the 4KB page size. To enable us to evaluate different GC algo-
rithms, we need to make the blocks in an SSD undergo a sufficient
number of program-erase cycles. However, these traces may not
be long enough to trigger enough block erasures. Thus, we pro-
pose to replay a trace; that is, in each replay cycle, we make a copy
of the original trace without changing its I/O patterns, while we
only change the arrival times of the requests by adding a constant
value. In our simulations, we replay the traces multiple times so
that each trace file contains around 50M I/O requests. Since we
replay a trace, we issue the same write request to a page multiple
times, and this keeps invalidating pages due to out-of-place writes.
Thus, many GC operations will be triggered, and this enables us
to stress-test the cleaning cost and wear-leveling metrics. We point
out that this replay approach has also been used in the prior SSD
work [39].

6.2 System Configuration
Table 2 summarizes the parameters that we use to configure an

SSD in our evaluation. We use the default configurations from the
simulator whose parameters are based on a common SLC SSD [13].
Specifically, the SSD contains 8 flash packages, each of which
has its own control bus and data bus, so they can process I/O re-
quests in parallel. Each flash package contains 8 planes containing
2048 blocks each. Each block contains 64 pages of size 4KB each.
Therefore, each flash package contains 16384 physical blocks in
total and the physical capacity of the SSD is 32GB. For the tim-
ing parameters, the time to read one page from the flash media to
the register in the plane is 25µs, and the time of programming one
page from the register in the plane to the flash media is 0.2ms. For
an erase operation, it takes 1.5ms to erase one block. The time of
transferring one byte through the data bus line is 0.025µs. Since
an SSD is usually over-provisioned, we set the over-provisioning
factor as 15%, which means that the advertised capacity of an SSD
is only 85% of the physical capacity. Moreover, we set the thresh-
old of triggering GC as 5%, meaning that GC will be triggered
when the number of free blocks in the system is smaller than 5%.

Trace Total # of requests Write ratio Sequential ratio Avg. request size Avg. inter-arrival time

Financial 4.4 M 0.7782 0.0167 5.4819 KB 9.9886 ms
Webmail 7.8 M 0.8186 0.7868 4 KB 222.118 ms
Online 5.7 M 0.7388 0.7373 4 KB 303.763 ms

Webmail+Online 13.5 M 0.7849 0.7597 4 KB 128.302 ms

Table 1: Workload statistics of traces.

Parameter Value

page size 4KB
of pages per block 64

of blocks per package 16384
of packages per SSD 8

SSD capacity 32 GB

read one page 0.025ms
write one page 0.2ms
erase one block 1.5ms
transfer one byte 0.000025ms

over-provisioning 15%
threshold of triggering GC 5%

Table 2: Configuration parameters.

Since flash packages are independent in processing I/O requests,
GC is also triggered independently in each flash package. In the
following, we only focus on a single flash package and compare
the performance of different GC algorithms.

We consider two different initial states of an SSD before we start
our simulations. The first one is the empty state, meaning that the
SSD is entirely clean and no data has been stored. The second one
is the full state, meaning the SSD is fully occupied with valid data
and each logical address is always mapped to a physical page con-
taining valid data. Thus, each write request to a (valid) page will
trigger an update operation, which writes the new data to a clean
page and invalidates the original page. Note that the full initial
state is the default setting in the simulator. In most of our simula-
tions (§6.3-§6.5), we use the full initial state as it can be viewed as
“stress-testing” the I/O performance of an SSD. When we study the
durability of SSDs (§6.6), we use the empty initial state as it can be
viewed as the state of a brand-new SSD.

6.3 Cleaning Cost
We first evaluate the cleaning cost of different GC algorithms.

In particular, we execute the traces with each of the GC algorithms
and record the total number of GC operations and the total number
of valid pages which are written back due to GC. We then derive the
cleaning cost as the average number of valid pages that are written
back in each GC operation.

Figure 4 shows the simulation results. In this figure, there are
four groups of bars which correspond to the Financial, Webmail,
Online, and Webmail+Online traces, respectively. In each group,
there are seven bars which correspond to the greedy algorithm, ran-
dom algorithm and RGA with different window sizes d. The verti-
cal axis represents the cleaning cost that each GC algorithm incurs.
In this simulation, the simulator starts from the full initial state. We
can see that the greedy algorithm incurs the smallest cleaning cost
that is almost 0, while the random algorithm has the highest clean-
ing cost that is close to the total number of pages in each block (i.e.,
k=64). The intuition is that if the greedy algorithm is used, then for
every GC operation, the block containing the smallest number of
valid pages is reclaimed, which means that it only needs to read out

and write back the smallest number of pages. Therefore, the clean-
ing cost of the greedy algorithm should be the smallest among all
algorithms. Moreover, RGA provides a variable cleaning cost be-
tween the greedy and random algorithms.

0

10

20

30

40

50

60

C
le

a
n

in
g

 C
o

s
t

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e

Greedy

RGA(d=30)

RGA(d=20)

RGA(d=10)

RGA(d=5)

RGA(d=2)

Random

Figure 4: Cleaning cost of different GC algorithms.

6.4 Impact on I/O Throughput
We now consider the impact of different GC algorithms on the

I/O throughput, using the metric Input/Output Operations Per Sec-
ond (IOPS). Note that IOPS is an indirect indicator of the clean-
ing cost. Specifically, the higher the cleaning cost, the more pages
needed to be moved in each GC operation. This prolongs the dura-
tion of a GC operation, and leads to smaller IOPS as an I/O request
must be queued for a longer time until a GC operation is finished.

0

500

1000

1500

2000

2500

3000

IO
P

S

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e

Greedy

RGA(d=30)

RGA(d=20)

RGA(d=10)

RGA(d=5)

RGA(d=2)

Random

Figure 5: IOPS of different GC algorithms.

Figure 5 shows the IOPS results of different GC algorithms (note
that the simulator starts from the full initial state). We can see that
the greedy algorithm achieves the highest IOPS, and the random
algorithm has the lowest IOPS, which is less than 5% of the IOPS

achieved by the greedy algorithm. The results conform to those in
Figure 4. This means that the cleaning cost, the metric that we use
in our analytical model, correctly reflects the resulting I/O perfor-
mance. Again, RGA can provide different I/O throughput results
with different values of d.

6.5 Wear-Leveling
We now evaluate the wear-leveling of different GC algorithms.

In the simulation, we execute the traces with each of the GC al-
gorithms and record the number of times that each block has been
erased. We then estimate the probability that each block is cho-
sen for GC and derive the wear-leveling based on its definition in
Equation (12).

Figure 6 shows the wear-leveling results. It is clear that the ran-
dom algorithm always achieves the maximum wear-leveling, which
is almost one. This implies that the random algorithm can ef-
fectively balance the numbers of erasures across all blocks. On
the other hand, the greedy algorithm achieves the minimum wear-
leveling which is less than 0.2 for all traces. Here, we note that
in all traces, our RGA realizes different levels of wear-leveling be-
tween the random and greedy algorithms with different values of d.
In particular, when d ≤ 2, the wear-leveling of RGA is within 80%
of the maximum wear-leveling of the random algorithm.

0

0.2

0.4

0.6

0.8

1

W
e
a
r−

le
v
e
li
n

g

Fin
an

ci
al

W
eb

m
ai

l

O
nlin

e

W
eb

m
ai

l

+O
nlin

e

Greedy

RGA(d=30)

RGA(d=20)

RGA(d=10)

RGA(d=5)

RGA(d=2)

Random

Figure 6: Wear-leveling of different GC algorithms.

6.6 Impact on Durability
The previous wear-leveling experiment provides insights into the

durability (or lifetime) of an SSD. In this evaluation, we focus on
examining how the durability of an SSD is affected by different GC
algorithms.

To study the durability of an SSD, we have to make the SSD con-
tinue handling a sufficient number of I/O requests until it is worn
out. In order to speed up our simulation, we decrease the maxi-
mum number of erasures sustainable by each block to 50. We also
reduce the size of the SSD such that each flash package contains
4096 blocks, so the size of each flash package is 1GB. Other con-
figurations are the same as we described in §6.2. Also, instead of
using the real-world traces as in previous simulations, we drive the
simulation with the synthetic traces that have more aggressive I/O
rates so that the SSD is worn out soon. Specifically, we consider
the same set of synthetic traces Random, Hybrid and Sequential
as described in §5.1, but here we set the mean inter-arrival time of
I/O requests to be 10ms (as opposed to 100ms in §5.1) based on
Poisson arrivals.

Due to the use of bad block management [37], an SSD can allow
a small percentage of bad (worn-out) blocks during its lifetime.
Suppose that the SSD can allow up to e% of bad blocks for some
parameter e. To derive the durability of the SSD, we first continue
running each workload trace on the SSD until e% blocks are worn
out, i.e., the erasure limit is reached. Then we record the length of
the duration span that the SSD survives, and take it as the durabil-
ity of the SSD. For comparison, we normalize the durability with
respect to that of the greedy algorithm (which is expected to have
the minimum durability). In this experiment, we consider the case
where e% = 5%, while we also verify that similar observations are
made for other values of e% ≤ 10%. Also, we assume that the
SSD is brand-new (i.e., the initial state is empty) and all blocks
have no erasure at the beginning.

Figure 7 shows the results. We observe that the durability re-
sults of different GC algorithms are consistent with those of wear-
leveling in Figure 6. We observe that the random algorithm achieves
the maximum durability, and the value can be almost six times over
that of the greedy algorithm (e.g., in the Sequential workload).
Again, RGA provides a tunable durability between the random and
greedy algorithms. When the window size d ≤ 5, the durability of
RGA can be within 68% of the maximum lifetime of the random
algorithm for Random and Hybrid workloads. For the Sequen-
tial workload, the durability of RGA drops to 40% of the maximum
lifetime of the random algorithm when d = 5. However, it is still
almost 3 times higher than that of the greedy algorithm.

0

1

2

3

4

5

6

D
u

ra
b

il
it

y

R
an

dom

H
yb

rid

Seq
uen

tia
l

Greedy

RGA(d=30)

RGA(d=20)

RGA(d=10)

RGA(d=5)

RGA(d=2)

Random

Figure 7: Durability of different GC algorithms (normalized with
respect to the greedy algorithm).

6.7 Summary
From the above simulations, we see that the greedy algorithm

performs the best and the random algorithm performs the worst in
terms of cleaning cost and I/O throughput, while the opposite holds
in terms of wear-leveling and durability. We demonstrate that our
RGA provides a tradeoff spectrum between the two algorithms by
tuning the window size. This simulation study not only confirms
our theoretical model, but also shows that our RGA can be viewed
as an effective tunable algorithm to balance between throughput
performance and durability of an SSD.

7. RELATED WORK
The research on NAND-flash based SSDs has recently received

a lot of attention. Many aspects of SSDs are being studied. A sur-
vey on algorithms and data structures for flash memories can be

found in [22]. Kawaguchi et al. [31] propose a flash-based file sys-
tem based on the log-structured file system design. Birrell et al. [6]
propose new data structures to improve the write performance of
SSDs, and Gupta et al. [25] suggest to exploit value locality and de-
sign content addressable SSDs so as to optimize the performance.
Matthews et al. [36] use NAND-based disk caching to mitigate the
I/O bottlenecks of HDDs, and Kim et al. [32] consider hybrid stor-
age by combining SSDs and HDDs. Agrawal et al. [1] study differ-
ent design tradeoffs of SSDs via a trace-driven simulator based on
DiskSim [8]. Chen et al. [13] further reveal many intrinsic charac-
teristics of SSDs via empirical measurements. Polte et al. [42] also
study the performance of SSDs via experiments, and Park et al. [41]
mainly focus on the energy efficiency of SSDs. Note that [1] ad-
dresses the tradeoff between cleaning cost and wear-leveling in GC,
but it is mainly based on empirical evaluation.

A variety of wear-leveling techniques have been proposed, mainly
from an applied perspective. Some of them are proposed in patents
[2, 3, 7, 20, 26, 35, 47]. Several research papers have been proposed
to maximize wear-leveling in SSDs based on hot-cold swapping,
whose main idea is to swap the frequently-used hot data in worn
blocks and the rarely-used cold data in new blocks. For example,
Chiang et al. [14, 15] propose clustering methods for hot/cold data
based on access patterns to maximize wear-leveling. Jung et al. [30]
propose a memory-efficient design for wear-leveling by tracking
only block groups, while maintaining wear-leveling performance.
Authors of [10–12] also propose different strategies based on hot-
cold swapping to further improve the wear-leveling performance.
Our work differs from above studies in that we focus on character-
izing the optimal tradeoff of GC algorithms, such that we provide
flexibility for SSD practitioners to reduce wear-leveling to trade for
higher cleaning performance. We also propose a tunable GC algo-
rithm to realize the tradeoff.

From a theoretical perspective, some studies propose analytical
frameworks to quantify the performance of GC algorithms. A com-
parative study between online and offline wear-leveling policies is
presented in [4]. Hu et al. [28] propose a probabilistic model to
quantify the additional writes due to GC (i.e., the cleaning cost
defined in our work). They study a modified greedy GC algo-
rithm, and implement an event-driven simulator to validate their
model. Bux and Iliadis [9] propose theoretical models to analyze
the greedy GC algorithm under the uniform workload, and Desnoy-
ers [18] also analyzes the performance of LRU and greedy GC algo-
rithms when page-level address mapping is used. Our work differs
from them in the following. First, the previous work focuses on an-
alyzing the write amplification which corresponds to the cleaning
cost in our paper, but our focus is to analyze the tradeoff between
cleaning cost and wear-leveling, which are both very important in
designing GC algorithms, and further explore the design space of
GC algorithms. Second, our analytical models are also very differ-
ent. In particular, we use a Markov model to characterize the I/O
dynamics of SSDs and adapt the mean field technique to approxi-
mate large-scale systems, then we develop an optimization frame-
work to derive the optimal tradeoff curve. Finally, our model also
provides a good approximation under general workload and address
mapping, and it is further validated via trace-driven evaluation.

We note that an independent analytical work [45], which is pub-
lished in the same conference as ours, also applies the mean-field
technique to analyze different GC algorithms. Its d-choices GC al-
gorithm has the same construction as our RGA. Our work has the
following key differences. First, similar to prior analytical stud-
ies, the work [45] focuses on write amplification, while we focus
on the trade-off between cleaning cost and wear leveling. Second,
its analysis is limited to the uniform workload only, while we also

address the general workload. Finally, we validate our analysis via
trace-driven simulations, which are not considered in the work [45].

8. CONCLUSIONS
In this paper, we propose an analytical model to characterize the

performance-durability tradeoff of an SSD. We model the I/O dy-
namics of a large-scale SSD, and use the mean field theory to de-
rive the asymptotic results in equilibrium. In particular, we classify
the blocks of an SSD into different types according to the number
of valid pages contained in each block, and our mean field results
can provide effective approximation on the fraction of different
types of blocks in the steady state even under the general workload.
We define two metrics, namely cleaning cost and wear-leveling, to
quantify the performance of GC algorithms. In particular, we the-
oretically characterize the optimal tradeoff curve between cleaning
cost and wear-leveling, and develop an optimization framework to
explore the full optimal design space of GC algorithms. Inspired
from our analytical framework, we develop a tunable GC algo-
rithm called the randomized greedy algorithm (RGA) which can
efficiently balance the tradeoff between cleaning cost and wear-
leveling by tuning the parameter of the window size d. We use
trace-driven simulation based on DiskSim with SSD add-ons to val-
idate our analytical model, and show the effectiveness of RGA in
tuning the performance-durability tradeoff in deployment.

9. REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design Tradeoffs for SSD
Performance. In Proc. of USENIX ATC, Jun 2008.

[2] M. Assar, S. Nemazie, and P. Estakhri. Flash Memorymass
Storage Architecture Incorporation Wear Leveling
Technique. US patent 5,479,638, Dec 1995.

[3] A. Ban. Wear Leveling of Static Areas in Flash Memory. US
patent 6732221, May 2004.

[4] A. Ben-Aroya and S. Toledo. Competitive Analysis of
Flash-memory Algorithms. In Proc. of Annual European

Symposium, Sep 2006.

[5] M. Benaïm and J.-Y. L. Boudec. A Class of Mean Field
Interaction Models for Computer and Communication
Systems. Performance Evaluation, 2008.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A Design
for High-performance Flash Disks. ACM SIGOPS Oper. Syst.

Rev., 41(2):88–93, Apr 2007.

[7] R. H. Bruce, R. H. Bruce, E. T. Cohen, and A. J. Christie.
Unified Re-map and Cache-index Table with Dual
Write-counters for Wear-leveling of Non-volitile Flash Ram
Mass Storage. US patent 6,000,006, Dec 1999.

[8] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger.
The DiskSim Simulation Environment Version 4.0 Reference
Manual. Technical Report CMUPDL-08-101, Carnegie
Mellon University, May 2008.

[9] W. Bux and I. Iliadis. Performance of Greedy Garbage
Collection in Flash-based Solid-state Drives. Performance

Evaluation, November 2010.

[10] L.-P. Chang and C.-D. Du. Design and Implementation of an
Efficient Wear-leveling Algorithm for Solid-state-disk
Microcontrollers. ACM Trans. Des. Autom. Electron. Syst.,
15(1):6:1–6:36, Dec 2009.

[11] L.-P. Chang and L.-C. Huang. A Low-cost Wear-leveling
Algorithm for Block-mapping Solid-state Disks. In Proc of

SIGPLAN/SIGBED Conf. on LCTES, Apr 2011.

[12] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo. Improving Flash
Wear-Leveling by Proactively Moving Static Data. IEEE

Tran. on Computers, 59:53–65, Jan 2010.

[13] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
Intrinsic Characteristics and System Implications of Flash
Memory Based Solid State Drives. In Proc. of ACM

SIGMETRICS, Jun 2009.

[14] M.-L. Chiang and R.-C. Chang. Cleaning Policies in Mobile
Computers Using Flash Memory. J. Syst. Softw.,
48(3):213–231, Nov 1999.

[15] M.-L. Chiang, P. C. H. Lee, and R.-C. Chang. Using Data
Clustering to Improve Cleaning Performance for Flash
Memory. Softw. Pract. Exper., 29(3):267–290, Mar 1999.

[16] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and
H.-J. Song. System Software For Flash Memory: A Survey.
In Proc. of Int. Conf. on Embedded and Ubiquitous

Computing, 2006.

[17] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and
H.-J. Song. A Survey of Flash Translation Layer. Journal of

Systems Architecture, 55(5-6):332–343, May 2009.

[18] P. Desnoyers. Analytic Modeling of SSD Write Performance.
In Proceedings of SYSTOR, 2012.

[19] R. Enderle. Revolution in January: EMC Brings Flash Drives
into the Data Center. http://www.itbusinessedge.
com/blogs/rob/?p=184, Jan 2008.

[20] P. Estakhri, M. Assar, R. Reid, Alan, and B. Iman. Method of
and Architecture for Controlling System Data with
Automatic Wear Leveling in a Semiconductor Non-volitile
Mass Storage Memory. US patent 5,835,935, Nov 1998.

[21] D. Floyer. Flash Pricing Trends Disrupt Storage.
http://wikibon.org/wiki/v/Flash_Pricing_

Trends_Disrupt_Storage, May 2010.

[22] E. Gal and S. Toledo. Algorithms and Data Structures for
Flash Memories. ACM Computing Surveys, 37(2):138–163,
Jun 2005.

[23] L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak Future
of NAND Flash Memory. In Proc. of USENIX FAST, 2012.

[24] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash
Translation Layer Employing Demand-based Selective
Caching of Page-level Address Mappings. In Proc. of ACM

ASPLOS, March 2009.

[25] A. Gupta, R. Pisolkar, B. Urgaonkar, and
A. Sivasubramaniam. Leveraging Value Locality in
Optimizing NAND Flash-based SSDs. In Proc. of USENIX

FAST, 2011.

[26] S.-W. Han. Flash Memory Wear Leveling System and
Method. US patent 6,016,275, Jan 2000.

[27] K. Hess. 2011: Year of the SSD? http:
//www.datacenterknowledge.com/archives/

2011/02/17/2011-year-of-the-ssd/, Feb 2011.

[28] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka.
Write Amplification Analysis in Flash-based Solid State
Drives. In Proc. of SYSTOR, May 2009.

[29] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe. A Quantitative
Measure Of Fairness And Discrimination For Resource
Allocation In Shared Computer Systems. Technical report,
DEC, 1984.

[30] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee. A
Group-based Wear-leveling Algorithm for Large-capacity
Flash Memory Storage Systems. In Proc. of Int. Conf. on

Compilers, Architecture, and Synthesis for Embedded

Systems, Sep 2007.

[31] A. Kawaguchi, S. Nishioka, and H. Motoda. A
Flash-memory Based File System. In Proc. of USENIX

Technical Conference, Jan 1995.

[32] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and
A. Sivasubramaniam. HybridStore: A Cost-Efficient,
High-Performance Storage System Combining SSDs and
HDDs. In Proc. of IEEE MASCOTS, Jul 2011.

[33] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and
H.-J. Song. A Log Buffer-based Flash Translation Layer
Using Fully-associative Sector Translation. ACM Trans. on

Embedded Computing Systems, 6(3), Jul 2007.

[34] Y. Li, P. P. Lee, and J. C. Lui. Stochastic Modeling of
Large-Scale Solid-State Storage Systems: Analysis, Design
Tradeoffs and Optimization. Techinical report.
arXiv:1303.4816.

[35] K. M. J. Lofgren, R. D. Norman, G. B. Thelin, and A. Gupta.
Wear Leveling Techniques for Flash EEPROM Systems. US
patent 6,850,443, Feb 2005.

[36] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and
K. Grimsrud. Intelr Turbo Memory: Nonvolatile Disk
Caches in the Storage Hierarchy of Mainstream Computer
Systems. ACM Trans. on Storage, 4(2):4:1–4:24, May 2008.

[37] Micron Technology. Bad Block Management in NAND
Flash Memory. Technical Note, TN-29-59, 2011.

[38] M. Mitzenmacher. Load Balancing and Density Dependent
Jump Markov Processes. In Proc. of IEEE FOCS, Oct. 1996.

[39] M. Murugan and D. Du. Rejuvenator: A Static Wear
Leveling Algorithm for NAND Flash Memory with
Minimized Overhead. In Proc. of IEEE MSST, May 2011.

[40] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim.
A Reconfigurable FTL (Flash Translation Layer)
Architecture for NAND Flash-based Applications. ACM

Trans. Embed. Comput. Syst., 7(4):38:1–38:23, Aug 2008.

[41] S. Park, Y. Kim, B. Urgaonkar, J. Lee, and E. Seo. A
Comprehensive Study of Energy Efficiency and Performance
of Flash-based SSD. Journal of Systems Architecture,
57(4):354–365, April 2011.

[42] M. Polte, J. Simsa, and G. Gibson. Enabling Enterprise Solid
State Disks Performance. In 1st Workshop on Integrating

Solid-state Memory into the Storage Hierarchy, March 2009.

[43] Z. Qin, Y. Wang, D. Liu, and Z. Shao. Demand-based
Block-level Address Mapping in Large-scale NAND Flash
Storage Systems. In Proc. of IEEE/ACM/IFIP

CODES+ISSS, Oct 2010.

[44] Storage Performance Council. http://traces.cs.
umass.edu/index.php/Storage/Storage, 2002.

[45] B. Van Houdt. A Mean Field Model for a Class of Garbage
Collection Algorithms in Flash-based Solid State Drives. In
Proc. of ACM SIGMETRICS, 2013.

[46] A. Verma, R. Koller, L. Useche, and R. Rangaswami.
SRCMap: Energy Proportional Storage using Dynamic
Consolidation. In Proc. of USENIX FAST, Feb 2010. http:
//sylab.cs.fiu.edu/projects/srcmap/start.

[47] S. E. Wells. Method for Wear Leveling in a Flash EEPROM
Memory. US patent 5,341,339, Aug 1994.

