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1 Introduction

Many modern applications can benefit cost-wise from sharing resources such
as network bandwidth and disk bandwidth. In addition, it is desirable for
information systems to store data that can be of use to multiple classes of
applications, e.g., digital libraries type systems. Efficient resource management
is essential in providing scalability in large multimedia information systems
serving a variety of applications, where part of the difficulty is that these
applications have vastly different performance and quality-of-service (QoS)
requirements as well as resource demand characteristics.

One approach to dealing with this problem is to simply share the resources
among the different classes of requests with a best-effort attempt to meet
the performance or QoS requirements of each. Another approach is to par-
tition the available resources between the different classes of workloads, i.e.,
to essentially maintain separate and independent servers. However, resource
partitioning is, in general, not a good idea, since one set of resources might
remain idle while another set is overloaded. Furthermore, if copies of the same
data are of use to multiple classes of applications, we may, in addition, in-
cur a penalty for having to maintain consistency between multiple copies of
the data. Thus, a more sensible approach is to consider techniques which can
share the resources among the different types of workloads while satisfying (to
some degree) their performance requirements and QoS constraints. In order
to explore such designs as well as facilitate efficient studies of tradeoffs of the
possible design approaches, what is needed are accurate analytical models of
mixed workload multimedia systems with tractable solutions.

Motivated by such applications, in this paper we consider analytical models
of multimedia storage servers which, in general, can serve a variety of applica-
tions, requesting video, image, audio, and text data. We focus on the storage
system and assume that the network can deliver the necessary performance.
We consider two classes of workloads: (1) continuous (or real-time), and (2)
non-continuous (or non-real-time). For instance, the real-time workload with
continuity-type requirements may correspond to requests for video streams,
whereas the non-real-time workload may correspond to billing inquiries about
the videos, requests for thumbnail images corresponding to particular scenes
in a video, and so on. In the remainder of the paper, we will use the terms
“real-time” and “continuous” interchangeably; likewise for the terms “non-
real-time” and “non-continuous”. Clearly, the two types of workloads have
different performance and QoS requirements. For instance, the real-time work-
load requirements might include delivery of data at a particular rate (e.g., at
4 Mbps for an MPEG-2 stream) with little jitter, whereas the non-real-time
workload requirements might include short response time.



There is a large body of work on the design of continuous media servers, which
include [1,20,23] (see [10] for a detailed survey of the literature). This work
focuses mostly on data layout and retrieval and delivery techniques which
facilitate the maintaining of continuity in data delivery while providing either
deterministic or statistical QoS guarantees. The scheduling of mized workloads
has not received as much attention. In [17,18,16,19], the authors discuss such
scheduling techniques as well as present fairly coarse analytical models of the
system. We build on this work in [11], in studying the tradeoffs involved in
serving mixed workloads on the same storage server. Hierarchical scheduling
with a corresponding taxonomy of schemes is considered in [21].

All these studies illustrate one important point — there are many tradeoffs in
designing mixed workload multimedia storage servers which often correspond
to “non-obvious” design choices. For instance, the main tradeoff we explore
in [11] involves seek optimization opportunities, which can either aid in or be
detrimental to response time of non-continuous requests, depending on the
workload experienced by the system. The performance consequences arising
from these and other tradeoffs are often difficult to assess, and their evaluation
can lead to significantly different designs of the system. Such design choices
are better studied through analytical models, as it is desirable to obtain results
quickly, especially at design time. The potentially higher accuracy that can
be obtained through either detailed simulations or measurements is often not
needed at design time or simply not possible or economical to achieve.

Motivated by the need for mixed workload storage servers as well as the need
for performance studies that can lead to better designs of such servers, we first
present a family of scheduling algorithm for mixed workload storage servers.
We then develop a family of analytical non-Markovian models, corresponding
to these scheduling algorithms, with tractable analytical solutions. We show
how our solution methodology applies to this entire family of models and how
it can be used to obtain performance measures of interest for both classes
of workloads. Finally, we illustrate, through numerical examples, how such
models can be used to study performance tradeoffs and facilitate making of
design choices in mixed workload storage servers.

2 Scheduling

In this section, we first review the basic concept of cycle-based (or group-
based) scheduling [4,23,24], which is commonly used for serving continuous
media requests in storage servers. We then describe how statistical quality-of-
service (QoS) provisions are made for continuous requests. Finally, we present
a family of scheduling algorithms for mixed workload servers which we model
and analyze in Sections 3 and 4.



2.1 Clycle-Based Scheduling

In cycle-based scheduling algorithms, the retrieval of data from the disk sub-
system for serving continuous requests is performed on a cyclic basis, where in
each cycle is of length T" the system retrieves data for /N, continuous requests.
Here we assume that the viewing clients have relatively little buffer space and
thus the server is responsible for maintaining the continuity in data delivery.
Consequently, in cycle-based scheduling algorithms, the transmission of data
retrieved in the i™ cycle does not start until the beginning of the (i+1)** cycle.
If the data delivery is not offset by one cycle from data retrieval, then jitter
may occur due to seek optimization, as explained below. The use of cycle-
based scheduling is motivated by the increased opportunities for performing
seek optimization, i.e., data blocks needed for service of a group of continuous
requests are retrieved using a SCAN-type algorithm. Since the transmission of
data is offset by one cycle from its retrieval, the order of data retrieval within
a cycle does not affect the jitter characteristics of the transmission; hence, the
SCAN algorithm.

The cost of this optimization is that the system may need additional buffer
space to hold the retrieved data until the beginning of the next cycle. This
cycle-based or group-based approach to serving continuous streams is, for
instance, suggested in [4,23,24], and the tradeoff between improved utilization
of the disk bandwidth (due to seek optimization) and the need for additional
buffer space is analyzed, for instance, in [2,4,24]. Note that, in general, larger
values of N, afford better seek optimization opportunities; however, they may
also result in larger buffer space requirements.

2.2 Computing Cycle Time

One important design parameter in cycle-based scheduling is the cycle length
T. In general, the value of 7" is a function of the mazrimum number of con-
tinuous requests, ., that can be served by the system within a cycle and
the degree of QoS that the system can provide. Such QoS guarantees can
be provided by the system either deterministically (by considering worst case
scenarios) or stochastically. The undesirable effect of deterministic QoS pro-
visions is that they can result in poor disk bandwidth utilization, e.g., when
the video streams have variable bit rate characteristics and there is a large
deviation between the peak and the mean rates. Thus, in the remainder of the
paper we consider statistical QoS guarantees.

Let 7y, be the random variable representing the service time of /N, continuous
requests. Then



TN, :Tseek(Nc) + Nc * (Trot + thr) 3 (1)

where Tgeer,(IV,) is the random variable corresponding to the total seek time of
N, requests incurred in one scan of a disk. As explained below, we will assume
this seek time to be deterministic, given IN.. Random variables 7., and 7,
correspond to the rotational latency for each of the N, requests and to the
transfer time of each of the NN, requests, respectively.

The system guarantees that the probability of the event that 7y, is greater
than T is less than some predefined system parameter, p. That is

Prob[ry, > T| <p. (2)

One can use, for instance, the Chernoff bound [14] (e.g., as in [16,25]) to
determine the value of T' so as to serve N, requests under the probability
constraint p. Let Fy (s) be the Laplace transform for the random variable
Tn,, and let F,(s) and Fjy, (s) be the Laplace transforms for the random
variables 7., and 7., respectively. Since a cycle-based algorithm employs
seek optimization and since the worst case seek time occurs when these N,

requests are equally spaced out on the disk surface [10], we have

(3)

Here we assume a worst case (deterministic) seek of the disk scan as a function
of N,, which is represented by 77247 (N,.), hence the first term in Equation (3).

seek

—§ TMAT( N, * * Ne
Fy (s)=e* ek N [FY (5)Fy(5)]

Let My, (s) be the moment generating function for the random variable Ty, .
Since My, (s) = Fy_(—s), applying the Chernoff bound gives [15]

o [ My, (6)
Prob[ry, > T| < égg { T (- (4)
Using standard numerical solution techniques, the optimal 6* which gives the
tightest upper bound can be obtained, which then yields the value of 7T'.

If 7, is larger than 7', then an overflow event occurs. In general, there are
several approaches to handling overflow situations. For example, the system
can allow an “overrun” of data retrieval into the next cycle, i.e., finish serving
the requests in cycle ¢ where, as a consequence, the N, requests in cycle 7 + 1
will have less than 7" time units to meet their deadlines. Alternatively, the
system can stop serving the requests in the overflowing cycle ¢ and proceed to
serve the next N, continuous requests in cycle i + 1. (A more general scheme
allows the overruns to “terminate” after some predefined number of cycles,



L.) Our methodology can be used to model any one of these approaches to
handling overflow.

2.8 A Family of Mized Workload Scheduling Algorithms

In what follows, we consider a system which always has N, continuous requests
present. That is, our interest is in the performance of the system under high
continuous requests loads, partly because it often does not matter what re-
source management techniques are used at low loads. Furthermore, it is often
desirable for cost-based reasons to run the storage server at a high (or maxi-
mum) number of real-time requests, provided that QoS requirements can be
satisfied for both classes of customers. Thus, high real time workloads corre-
spond to reasonable and important operating points at which to consider our
system. The family of scheduling algorithms given below explore several de-
grees of freedom in serving the two classes of workloads, including: (1) ordering
of service of non-continuous requests as well as (2) the work conserving na-
ture (or lack thereof) of the system, or in other words, “greediness” in serving
continuous requests.

Non-Greedy FCFS (NG-FCFS)

We have already described how the system schedules the retrieval of contin-
uous requests using cycle-based scheduling and scanning of the disk. Thus,
whatever time remains in the cycle can be used to serve any non-continuous
request present in the system. We first consider serving these in a FCEF'S man-
ner, and call this algorithm Non-Greedy FCFS (NG-FCFS). More formally,
assume there are two classes of requests in our system, class C' (for continuous
requests) and class NC for (non-continuous requests). Let N, be the (fixed)
number of class C' requests which is used to compute the cycle time T, as
in Equation (4) above. Thus, in the NG-FCFS algorithm, we first serve NN,
customers within a single period of length T'. If after serving all N, customers
the system still has some residual time within the period, that remaining time
is dedicated to serving non-continuous requests in a FCFS manner. If there
is not sufficient time remaining in 7" to serve a non-continuous request, then
no additional requests are served until the end of that cycle. Note that this
algorithm is non-work-conserving in the sense that when some residual time
exists and there are no non-continuous requests present, the server will not
schedule the waiting continuous requests but instead, will remain idle until the
end of the period. The necessity to be non-work conserving is motivated by
the need to maintain a specific rate of data delivery for continuous requests.
Any “early” data retrieval (i.e., earlier than is dictated by the desired deliv-
ery rate) will result in increasing growth in buffer space requirements, either
at the storage server or at the client, depending on the system architecture.
An example of the NG-FCFS scheduling algorithm is illustrated in Figure 1,



where N, =5 and an overflow event is depicted in the second period.

[0 oneclassCrequest  |n each period T, the system serves 5 class C requests
] oneclass NC request

overloaded period
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Fig. 1. Non-Greedy FCFS Algorithm: Within a cycle, serve class C first, then serve
class NC in FCFS manner.

Although NG-FCFS algorithm provides reasonable performance characteris-
tics for the continuous customers, it can result in long waiting times for the
non-continuous requests. One approach to improving the response time of non-
continuous requests is to serve them in groups instead of in a FCFS manner,
i.e., provide similar seek optimization opportunities as for continuous requests
by serving groups of non-continuous requests in a SCAN-type manner. This
approach is taken in the next algorithm.

Non-Greedy gated (NG-Gated)

The Non-Greedy Gated (NG-Gated) algorithm is similar to the NG-FCFS,
with the exception that instead of serving class NC requests in a FCFS man-
ner, we serve them in a sorted order such that the total seek time is minimized
(i.e., a form of SCAN). To achieve this minimization, the system can re-order
all class NC requests and serve them according to their position with respect
to the disk head, including the new class NC requests that arrive after the be-
ginning of class NC service. However, this may introduce unacceptable delays
for the requests that are far away from the disk head at the beginning of the
service cycle, since new requests that are closer to the head’s position would
have a higher priority of service. To alleviate this problem, we use the following
gated discipline. When the system completes service of class C' requests before
the end of a cycle, the system switches to serving class NC' requests currently
present in the system. However, no new class NC' requests are admitted into
service until the current batch completes service (i.e., the gated discipline). If
there is still time left in the current cycle, then the new class NC' requests that
arrived while the previous batch was being served are eligible to start service.
The gate is again closed and the process repeats until the end of the cycle.
This discipline gives priority to old NC' requests over new ones while trying to
make efficient use of the disk; thus, some notion of fairness is also provided.
Similar to the NG-FCF'S algorithm, a non-continuous request is not taken into
service if there is not sufficient time to finish serving that request before the
end of the cycle. This algorithm is non-work-conserving, because it is possible
that the server is idle while there are some class C' requests waiting for service
(e.g., when there are no non-continuous requests present in the system and
there is still residual time in a cycle).



The NG-Gated algorithm is depicted in Figure 2. In this figure, the number of
continuous requests that have to be served within a cycle, N, is equal to 5. In
the first cycle, the gate is closed three times, and each batch of non-continuous
requests is served in a SCAN order so as to reduce seek overhead.

[] oneclass C request
[JoneclassNCrequest ~ Each period T, the system serves 5 class C requests

l Indicates that class NC requests are gated at this point. Only those
class NC requests inside the gate are considered for service.

overloaded period

| L [ ———— | \E |

L T | T L T \

Fig. 2. NG-Gated Algorithm: Within a cycle, serve class C, then gated service for
class NC.

Even under the gated service discipline, the resulting QoS (e.g., expected
response time) for the non-continuous requests may be poor. For instance, if
a non-continuous request arrives to the system at the beginning of a cycle,
it has to wait until the system finishes the service of all continuous requests.
Only then, if there is some residual time in the cycle, the service of the non-
continuous request can begin.

To improve the response time of non-continuous requests and, at the same
time, not significantly degrade the performance characteristics of the contin-
uous requests, we can generalize these scheduling algorithms as follows. We
divide the cycle of length T into N,,. mini-cycles, each of length T'/N,,.. Within
each mini-cycle, the system uses the NG-FCFS (or the NG-Gated) algorithm
to serve N./N,,. continuous requests. In practice, of course, some earlier mini-
cycle may serve [N./N,,.| continuous requests, while later mini-cycles may
serve | N./Npy.| continuous requests. Under this scheme, non-continuous re-
quests can receive service if there is any residual time left at the end of each
mini-cycle. It is important to note the presence of two opposing effects.

(1) By serving all continuous requests within one scan, we achieve better
disk bandwidth utilization. In this case, greater seek optimization oppor-
tunities exist for the continuous requests, which can result in more time
available in a cycle for serving non-continuous requests.

(2) By serving the continuous requests in many mini-cycles, we reduce the
opportunities for seek optimization of the continuous requests, and thus
we reduce the amount of cycle time that could have been used for service
of non-continuous requests. However, we potentially improve the response
time of the non-continuous requests by serving some of them earlier in
a cycle. In addition, it is also possible that some continuous requests,
especially those that are served in the later mini-cycles, will have a lower



probability of completing service before the end of a cycle.

These tradeoffs give rise to the following optimization problem. How does
one find an optimal number of mini-cycles so as to minimize the expected
response time of the non-continuous requests while providing the required
QoS to continuous requests. An analytical model can be used to explore these
tradeofts.

Clearly, one problem with the non-greedy algorithms is that idle times may
be wasted at the end of each mini-cycle. To improve on these algorithms,
we describe another class, which we term greedy algorithms. The greedy al-
gorithms can exploit both FCFS and Gated type service of non-continuous
requests. In the interests of brevity, below we only describe the gated version;
the modifications needed for the FCFS version are straightforward.

Greedy Gated (G-Gated)

Given N, mini-cycles, in the first mini-cycle the system begins by serving
N/ Ny class C requests. At the end of this service, the system checks whether
there are any class NC requests in the queue. If there is no class NC' request
waiting, then the system immediately begins service of the next N./N,,. class
C requests. If there are class NC requests waiting, the system will serve these
class NC requests in a gated fashion, as in the NG-Gated algorithm above.
As in other algorithms, if there is not sufficient time remaining in 7" to serve
a non-continuous request, then the server remains idle until the end of that
cycle. Thus, the server switches back to serving class C' requests when either:
(1) there are no more class NC requests in the queue or (2) the mini-cycle ends
and the system has not managed to get “ahead” on service of class C' requests
during some previous mini-cycle. For instance, if during the first mini-cycle
the system manages to serve 2 J\ZI\::C class C requests, then it will continue to
serve class NC' requests at the beginning of the second mini-cycle, since the
system is “ahead” on service of class C' requests in this example. The system
behavior continues in this manner for the first N,,. — 1 mini-cycles. For the
last mini-cycle, the system will behave as in the NG-Gated algorithm.

This algorithm is greedy because, during the first N,,. — 1 mini-cycles, the
server is never idle. Only in the last mini-cycle is there a possibility of the
server being idle while there are continuous requests in the system. Another
important point to observe is that the greedy service of class C' requests in the
first N,,. — 1 mini-cycles should result in a lower probability of overflow for
class C requests that belong to the later mini-cycles (i.e., those served towards
the end of the cycle), thereby reducing jitter in data delivery. Figure 3 depicts
the G-Gated algorithm with N,,. = 3. In this figure, the system serves 5 class
C requests in each mini-cycle. The system finishes the first batch of 5 class
C requests, and as soon as there are no class NC' requests in the system, it
immediately switches to the second batch of 5 class C requests (even though



[0 oneclass C request - )
The system has 3 mini-cycles, and in each
[] one class NC request mini-cycle the system serves 5 class C reguests

l Indicates that class NC requests are gated at this point. Only those
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Fig. 3. G-Gated Algorithm: Serve class C requests, then gated service for class NC
requests.

the first mini-cycle has not yet expired). In the last mini-cycle, the system
uses the NG-Gated algorithm to serve class NC' customers.

In some sense, the above algorithm is only partially greedy, because it takes
into consideration the notion of being “ahead” on service of class C requests.
We can imagine an even more greedy algorithm, i.e., one that always schedules
service of another NL;C class C requests whenever a mini-cycle ends. We will
distinguish between these two approaches by referring to the former one as a
partially greedy algorithm and to the latter one as a greedy algorithm. Lastly,
it is easy to observe that when the number of mini-cycles is equal to 1, the
partially greedy and the greedy algorithms behave just like the non-greedy
algorithm. In summary, we have discussed six algorithms, i.e., Non-greedy
FCFS, Non-greedy Gated, Partially Greedy FCFS, Partially Greedy Gated,
Greedy FCFS, and Greedy Gated. Clearly, other algorithms are possible, but
these six are sufficient to illustrate the range of possibilities as well as the

usefulness of our models and the corresponding solution technique.

3 Analytical Models

In this section, we present a family of analytical performance models of the
scheduling algorithms described in Section 2. Note that in the mixed workload
scheduling algorithms deterministic events are present; for instance, the end of
a mini-cycle is a deterministic event. Thus, in order to model these algorithms
accurately, we need to consider analytical models that are non-Markovian in
nature. In order to analyze these models, we adapt the methodology devel-
oped in [8] (see also related work in [5,7,9]). This approach is based on the use
of embedded Markov chains to analyze non-Markovian stochastic processes
and involves three fundamental steps: (1) identifying a sequence of embedded
points, (2) deriving transition probabilities from one embedded point to an-
other, and (3) evaluating performance measures of interest based on the steady
state probabilities and appropriate reward functions at these embedded points.

10



In the models developed here, the embedded points we consider occur at the
start (or end) of each mini-cycle. We model the service of a set of class C
customers, which are served in a single mini-cycle, using an Erlang distribution
with K stages (as explained in Section 4), where each stage has an exponential
parameter «. The arrival process of class NC' customers is Poisson with a rate
A. We model the service of one NC customer using an exponential distribution,
the rate of which is a function of the service discipline used to serve this class
of customers, as explained below. Finally, we assume a finite buffer size for
class NC' customers, with a maximum buffer size of B.

Events of interest that occur in our models are either exponential or deter-
ministic. The deterministic event corresponds to the duration of a mini-cycle,
and it occurs every T/N,,. time units. The exponential events are of three
types: (1) the service completion of one Erlang stage corresponding to part
of the work associated with the class C' customers served in a mini-cycle; (2)
the arrival of a class NC' customer; and (3) the departure of a class NC cus-
tomer after its service is completed. The rates of these exponential events are
a function of the type of a mixed scheduling algorithm under consideration
(see Section 4 for details).

Recall that the mixed workload scheduling algorithms are divided into two
classes, namely, the non-greedy (NG) and the greedy (G). We will consider
the partially greedy variation later in this section; however, it is similar in
spirit to the greedy. Each algorithm has two variants according to the service
discipline of the class NC requests, namely, first come first served (FCFS) and
gated (G). In this section, we present the variation of the models for which
overruns of class C' customers to the next period are not allowed, i.e., stages of
class C' customers still present in the system at the end of the period of length
T are dropped. In [6] we give details of how these models can be extended to
include the two approaches that allow the handling of overruns, as suggested
in Section 2.

3.1 Non-Greedy Algorithms

At the beginning of a mini-cycle, K stages of class C' requests are introduced
into the system (the determination of K is given in Section 4). If the service
of all K stages is completed before the end of the current mini-cycle, then
class NC requests are served. If no class NC customers are present, the server
remains idle until the end of the mini-cycle. In the NG-FCFS model, the class
NC requests are served exhaustively, while in the NG-Gated model, they are
served in a gated fashion. In the exhaustive case, all class NC' requests have
an exponential service requirement of rate [, while in the gated case these
requests are served at a rate that depends on the number of class NC' requests

11



present when the gate is closed. If there are g class NC requests at that time,
then the corresponding exponential service rate is f3,.

3.1.1 Model for the Non-Greedy FCFS Algorithm

The states of the NG-FCFS model are of the form (7, ), where i represents
the number of class C stages in the system and j represents the number of
class NC requests in the system. Since the buffer size for class NC requests is
limited to B, j € {0,..., B}. Since no overruns of class C stages are allowed
and since K stages are entered into the system at each of the N,,. mini-cycles,
i€{0,..., Nyu.K}. The events of interest with corresponding transition rates
include:

(1) exponential event for the departure of a class C' stage:

(6,) = (i=1,5),  (i>0) (5)

(2) exponential event for the arrival of a class NC request:

(6,5) 2> (i,j+1), (5 <B) (6)

(3) exponential event for the departure of a class NC' request:

0,5) 2 (0,5 -1), (>0 (7)

(4) deterministic event corresponding to the end of one of the first N, — 1
mini-cycles in a period of length T

(4,5) — (1 + K, J), (8)

This corresponds to adding K additional stages of work for class C' requests
at the beginning of the next mini-cycle.

(5) deterministic event corresponding to the end of the last mini-cycle in a
period of length T

(i,5) — (K, ), 9)

Note that overflow occurs when the system is in state (i, j) where i > 0 at the
end of a period of length 7'. Since in the model presented above we assume
that overruns are not allowed, the C' stages remaining at the end of the period
are dropped and the system starts the next period of length 7" with K stages
of work for class C requests (and all class NC requests present at that time).

12



3.1.2  Model for the Non-Greedy Gated Algorithm

The model of the NG-Gated algorithm is slightly more complicated. Specif-
ically, in the state space description corresponding to class NC requests, we
need to account for: (a) the total number of class NC requests in the system,
(b) the number of class NC requests that were present when the gate closed
and are still in the system, and (c) the number of class NC requests that were
present when the gate closed, since the service rate of a class NC' request
depends on that number (recall we are using a SCAN-type algorithm to serve
class NC requests in this case). Thus, the states of the NG-Gated model are
of the form (i, j, h, g), where i represents the number of class C stages in the
system, j represents the fotal number of class NC' requests in the system, A
represents the number of class NC' requests in the system which were present
at closing of the gate and are still in the system, and g indicates the number
of class NC requests that were present when the gate last closed (the value
of g dictates the rate at which class NC' requests are currently being served).
Note that A < 7, since h counts departures and j counts both arrivals and
departures of class NC requests. The value of h can only decrease until it
reaches zero; when it becomes zero before the end of a mini-cycle, a new gate
closes and a new set of class NC requests begin service. Furthermore, h < g,
since initially their values are identical at the instant that the gate closes, but
h decreases due to departures of class NC' requests while g remains constant.
This condition holds until a new gate closes or the mini-cycle ends. Thus in
the gated case, 1 € {0,..., Nn.K} and j, h,g € {0,...,B}. The events of
interest for this model include:

(1) exponential event for the departure of a class C' stage:

(7”]:070) i>(7’_1:.7:070)’ (7’> 1) (10)
(1’j7070)i> (0’]’]’-7)7 (11)
where Equation (11) represents switching service from class C requests to class
NC requests. At that instant the gate is closed, and j class NC requests are

eligible for service.
(2) exponential event for the arrival of a class NC request:

(i,5,h,g) == (i,j +1,h,9),  (j <B) (12)

(3) exponential event for the departure of a class NC' request:

(0,4,h,g) 25 (0,5 —1,h—1,9), (h>1) (13)
0,5,1,9) 25 (0,5 —1,j— 1,5 — 1), (14)

13



where Equation (14) represents the event that the gate is again closed and
there are 7 — 1 class NC requests eligible for service.

(4) deterministic event corresponding to the end of one of the first N, — 1
mini-cycles in a period of length 7"

(4,4,0,0) — (i + K,4,0,0), (i > 0) (15)
0,5,h,9) — (K,3,0,0), (16)

In all cases, K additional stages of work from class C requests are scheduled
at the beginning of the next mini-cycle. Equation (15) corresponds to serving
class C requests both before and after the start of the mini-cycle, while Equa-
tion (16) corresponds to switching service from class NC to class C' when a
new mini-cycle begins.

(5) deterministic event corresponding to the end of the last mini-cycle in a
period of length 7"

(0,4: h, 9) — (K, j,0,0), (17)
(4,7,0,0) — (K, 5,0,0), (i >0) (18)

Equation (18) corresponds to the overflow condition, i.e., 7 > 0 stages of class
C requests are dropped before starting the next time period of length 7.

3.2 Greedy Algorithms

We now consider a greedy model, for which K stages of work corresponding
to class C' requests can be introduced into the system whenever the number of
class NC requests becomes zero before the end of a mini-cycle. We consider
two different variants depending on how the introduction of the K stages of
class C into the system at the beginning of a mini-cycle is done. The first
variant is the greedy strategy, wherein these K stages are always introduced
into the system at the beginning of a mini-cycle. The second is the partially
greedy strategy wherein these K stages are not introduced into the system if
the system is “ahead” of schedule on the service of class C requests (see Section
2 for details of the corresponding scheduling algorithms). Thus, in the partially
greedy case, at the beginning of the k™ mini-cycle, where k € {2,3,..., Ny},
K additional stages of class C' work will not be introduced if the server has
already served an amount of class C' work corresponding to the n® mini-cycle
where n > k. The motivation for the partially greedy strategy is to allow
class NC requests to receive service earlier. In both variants, the system only
introduces at most N, * K stages of work for class C' requests in a period
of length 7. Similar to the non-greedy case, class NC' requests can be served
based on the FCFS service discipline or based on the gated service discipline.
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As before, the service requirement of a class NC request is exponential with
a rate depending on the service discipline (i.e., the rate is S for exhaustive
service and 3, for gated service when g customers are present at the closing
of the gate).

3.2.1 Model for the Greedy FCFS Algorithm

In the case of the G-FCFS algorithm, the states of the model are (i, j, w),
where 7 represents the number of class C' stages in the system, j represents
the number of class NC requests in the system, and w represents the number
of class C' “chunks of work” (i.e., units of K stages) that have been introduced
into the system. If £ represents the current mini-cycle where k = 1,..., Ny,
then w > k, since class C stages can be introduced before the end of a mini-
cycle, as well as at the start of a new mini-cycle. These state variables range
over i € {0,...,N,.K}, j €{0,...,B}, and w € {1,..., N.}. The possible
events of interest include:

(1) exponential event for the departure of a stage of a class C request:

(3,7, w) — (i —1,7,w), (1>1) (19)
(L, 4,w) = (0,4, w), (7 >0) (20)
(1,0,w) = (K, 0,w + 1), (w < Npe) (21)
(1,0, Nppe) == (0,0, Ny, (22)

Equation (21) indicates the greedy characteristic of the algorithm. If no class
NC request is in the system when the last class C stage departs, K additional
stages of class C work will be scheduled.

(2) exponential event for the arrival of a class NC request:

(i, j,w) =5 (i, + 1,w), (j <B) (23)

(3) exponential event for the departure of a class NC request:

0,4,w) 25 (0,5 —Lw),  (>1) (24)
0,1,w) 25 (K,0,w+1),  (w< Npe) (25)
(0,1, Nome) =5 (0,0, Nime), (26)

Again, Equation (25) indicates the greedy characteristic of the algorithm. If
there are no class NC' requests in the system, K additional stages of class C
work are scheduled.

(4a) for the greedy strategy, the deterministic event corresponding to the end
of the k™ mini-cycle in each period of length T (where k € {1,2, ..., Ny.—1}):

15



(i,j,w) — (i + K, j,w+1),  (w< Npe) (27)
(6,5, Neme) — (6,5, Nne), (28)

(4b) for the partially greedy strategy, the deterministic event correspond-
ing to the end of the k' mini-cycle in each period of length T (where k €

1,2, ..., Npo — 1}):

(¢, j,w) — (i + K, j,w+ 1), (w < k) (29)
Giw) —  (dw), (k <w < Nyo) (30)

Equations (27) to (30) illustrate the difference between the greedy and the
partially greedy strategies.

(5) for the greedy and the partially greedy strategy, the deterministic event
corresponding to the end of the last mini-cycle in a period of length 7"

(4, J, Nme) — (K, j, 1), (31)

Note that in Equation (31), the states (i, j, Ny,.) where i > 0 correspond to
the occurrence of the overflow condition at the end of a period of length 7.

3.2.2  Model for the Greedy Gated Algorithm

Similar to the non-greedy algorithm, when class NC' requests are served under
the gated discipline, two additional variables are added to the state space.
Specifically, in addition to the total number of class NC requests, j, we include
h, the number of class NC requests which are still in the system and were
present when the gate closed, and g, the number of class NC requests present
at the last gate closure (which is used to determine the service rate 3, of class
NC requests). Thus the states of the gated model are of the form (i, j, w, h, g).
As in the non-greedy case, we have h < j and h < g, while we also have w > k
where £ is the number of the current mini-cycle. Therefore, i € {0, ..., Ny K},
Jyh,g€40,...,B}, and w € {1,..., Nyu.}. The events of interest include:
(1) exponential event for the departure of a class C' stage:

(iajawao O) L> (i_]-ajawaoao)a (Z>1) (32)
(1,4,w,0,0) = (0,4,w,7,7), (j > 0) (33)
(1,0,w,0,0) = (K,0,w +1,0,0), (w < Npe) (34)
(1,0, Nyne, 0,0) == (0,0, Nyne, 0, 0), (35)

Equation (33) indicates the gated policy and corresponds to the gate closure
instant. Equation (34) indicates the greedy characteristic for which K addi-
tional stages of class C' work are introduced into the system.

(2) exponential event for the arrival of a class NC request:
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(i,4,w, b, g) = (i, j + 1, w, h,g),  (j < B) (36)

(3) exponential event for the departure of a class NC' request:

0,4, w, b, g) 25 (0,5 —1,w,h—1,9), (h>1) (37)
(0,4,w,1,9) 25 (0,5~ Lw,j—1,4-1), (i>1) (38)
0,1,w,1,9) 2%  (K,0,w+1,0,0), (w < Npe) (39)
(0,1, Nue 1, 9) 2% (0,0, Nipe, 0, 0), (40)

Equation (38) corresponds to the gate closing so as to serve the next batch of
class NC requests. Equation (39) illustrates the greedy characteristic of the
algorithm.

(4a) for the greedy strategy, the deterministic event for the end of the k™
mini-cycle in each period of length 7" where k£ € {1,2,..., Ny, — 1}:

(4,7, w,0,0) — (i + K, j,w + 1,0,0), (1>0)AN(w< Npe) (41)
(4,7, Nine, 0,0) — (4,7, Nime, 0,0), (1 > 0) (42)
0,j,w,h,9) — (K,j,w+1,0,0), (w < Npe) (43)
(0,4, Nme, b, g) —> (0,5, Nine, h, 9), (44)

(4b) for the partially greedy strategy, the deterministic event for the end of
the k" mini-cycle in each period of length T" where k € {1,2,..., Ny, — 1}:

(,7,w,0,0) — (1 + K, j,w +1,0,0), (1>0)A(w<k) (45)
(i,7,w,0,0) —s  (i,4,w,0,0), (i >0) A (k <w < Nyp) (46)
0,j,w,h,9) — (K,j,w+1,0,0), (w < k) (47)
(0,7, w, h,g) — (0,4, w, h, g), (k <w < Npe) (48)

Equations (41) to (48) illustrate the difference between the greedy and par-
tially greedy strategies.

(5) for the greedy and the partially greedy strategy, the deterministic event
for the end of the last mini-cycle in a period of length 7'

(O,j: NmCa hag) _>(Kaja1,050): (49)
(i,j, ch,0,0) — (K,ja 1,0,0): (7’ > 0) (50)

Since no overrun is allowed, Equations (49) and (50) indicate that the system
will restart with K stages of class C' work. It is important to point out that
states indicated by Equation (50) are the states for which a class C' overflow
has occurred.
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3.8 Performance Measures

In this section we consider the calculation of two main performance measures:
(1) the probability of overflow for class C requests, and (2) the number of class
NC requests in the system averaged over all time. The first of these measures
is simply the probability that at least one stage of the class C' workload which
is introduced into the system during a period of length T is still present in
the system at the end of this time period. For models without overruns, which
are studied in this section, such stages are dropped from the system. Models
with overruns are considered in [6]. A related measure is the probability that
a class C request will meet its deadline. The second performance measure, the
time average number of class NC' requests in the system, can also be used to
find other measures of interest. Specifically, the mean response time of a class
NC request can be obtained from it with an application of Little’s Result.

3.3.1 Probability of Overflow

We first consider the probability of overflow for the NG-FCFS and the NG-
Gated algorithms. In this case, class NC requests do not affect the behavior of
class C' stages, so that the overflow probability under both service disciplines
is identical. Assuming that overruns are not allowed, the number of stages at
the beginning of any period [¢T, (£ + 1)T] is exactly K. We wish to determine
the probability that at the end of the period of length 71" at least one class C
stage has not been completely served and remains in the system. The period is
split into N,,. mini-cycles, each of length T/ N,.. We will find the distribution
of the number of class C stages at the beginning of each mini-cycle and at
the end of each mini-cycle. Let £&%), k = 1,..., N,.., be the state probability
vector of the number of class C stages in the system at the start of the k™
mini-cycle. Similarly, let x¥), k = 1,..., Ny, be the state probability vector
of the number of class C stages in the system at the end of the k** mini-cycle.
The size of £&¥) is 1 x (kK + 1), and the size of x(¥) is also 1 x (kK + 1), as
will be shown below.

Clearly £V = ey, where the K™ entry of ek is 1 and all other entries are 0.
This holds since K stages are always present at the start of the first mini-cycle.
To find x), the probabilities at the end of the first mini-cycle, we consider
a pure death process with states 0,1,..., K, which represent the number of
stages in the system during the first mini- cycle see Figure 4 with k = 1). The

(D (e ()

Fig. 4. Pure Death Chain for Overflow Probability
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rate from state i toi—1 (i = 1,..., K) is «, the service rate for a class C stage.
State 0 is an absorbing state, since once there are no stages in the system, no
additional stages of class C' workload can arrive (or be served) during the mini-
cycle for the non-greedy algorithms. To find the probabilities of the number of
stages at the end of the mini-cycle, we use uniformization [12,13] on the pure
death chain over a period of length 7'/ N,,.. Alternatively, note that a transition
from K at the beginning of the mini-cycle to i > 0 at the end of the mini-
cycle occurs if and only if there are K — i’ departures during time 7'/ Ny, in
the pure death chain, i.e., with probability e*aT/Nm(aT/NmC)K_i’/(K — )l
The probability of a transition from K to 0 is the probability of at least K
departures, since 0 is an absorbing state. Thus we obtain the 1 x (K + 1)
vector x1) for the state probabilities at the end of the first mini-cycle.

To find the number of stages at the beginning of the second mini-cycle, we
simply add K stages to those (if any) that are present at the end of the first
mini-cycle. Thus €@ is the 1 x (2K + 1) vector obtained by taking x(!) and
shifting it K entries to the right. That is,

5.(2):0, i=0,...,K—1 (51)

7

=" =K, . 2K (52)

To find the state probability vector x(® at the end of the second mini-cycle,
we consider a pure death chain with states 0,...,2K, with state 0 being an
absorbing state (see Figure 4 with k£ = 2). The initial number i of stages
can be any of K,...,2K, and its distribution is given by £®, while the final
number i’ at the end of the second mini-cycle can be any of 0,...,2K with
distribution x®. We use uniformization on this pure death chain with 2K +1
states for a time period of T//Np,.. Alternatively, a transition from i to 7' > 0
occurs if there are i — ' departures during 7//Np,., while a transition from
to 0 occurs if there are at least 7 departures. This gives x(.

The 1 x (3K + 1) vector £€®) corresponding to the start of the third mini-cycle
is obtained by shifting x(® to the right K entries and filling the first K entries
with zeros, as before. Continuing in this manner, each time considering a pure
death chain with K more states, we finally obtain (M=), the state probability
vector at the end of mini-cycle N,,.. That is, x(Me) is the state probability
vector for the end of the period of length T'. Note that x(Vme) is 1 x (N, K +1),
since any number 0, ..., N, K of class C stages may occur at the end of the
period of length 7. The probability of overflow is then simply

NpeK

Ploverflow] = Z y(Nme) = 1 — y{PVme) (53)

This is the probability that at least one class C stage remains in the system
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at the end of the period of length 7". Note that a closed-form expression for
the probability of overflow is available in terms of Poisson probabilities.

3.3.2 Time Averages for Class NC

We now wish to find the distribution of the number of class NC requests in the
system averaged over all time. In obtaining this measure, the class C' requests
do affect class NC requests, so we will have to keep track of both classes. In
the NG-Gated case, one must keep both original class NC' requests and total
class NC requests along with an indicator of the rate 3, at which class NC
requests depart the system.

Let X (t), t > 0, be the stochastic process with state space S which represents
the behavior of the NG-FCFS algorithm without overruns. We outline the pro-
cedure for finding time average distributions corresponding to X (¢). Let L C S
be a subset of states, and suppose we wish to find P, = lim; ., P[X (t) € L].
A particular case of interest occurs when the subset consists of a single state s
(i.e., L ={s}), and we use the simplified notation P; = lim;_,o, P[X (¢) = s].

Consider the time points that are the beginnings of mini-cycles. Then using
Markov chains with rewards, it can be shown as in [9] that

1
Pr=
“TT/N,

> E[L,5,. (54)

C seS

Here § is the stationary distribution for X (¢) at the start of a mini-cycle,
with §, being the entry corresponding to state s € S. The random variable L,
represents the amount of time during a mini-cycle that X (¢) spends in states
of £ given that the initial state at the start of the mini-cycle was s. Note
that a variable k, £k = 1,..., N, must be included in the state description
to refer to the appropriate mini-cycle. Letting H be the matrix that gives the
transition probabilities from the start of a mini-cycle to the start of the next
mini-cycle, then it follows that H has a cyclic structure. Specifically, we have

0 HG, 0 --- 0
0 0 H,G,--- 0
H= (55)
0 0 0 Hy, _1Gn,._1
|Hy, Gy, 0 0 0 |

Here Hy, is the matrix that gives the transition probabilities from the start of
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the k™ mini-cycle to its end, while G, gives the transition probabilities from
the end of the k™ mini-cycle to the start of the (k+1)** mini-cycle (mod Ny,.).
Thus Gy, simply accounts for the possible introduction of K class C stages at
a mini-cycle boundary.

An expression for P can also be found by considering time points correspond-
ing to the beginning of the first mini-cycle in a period of length 7". More gener-
ally, one can consider the 2N, different sequences of points that represent (a)
the beginning of mini-cycle k£ or (b) the end of mini-cycle k, &k = 1,..., Ny
Let n®*), k = 1,..., N, be the stationary probability vector for X(t) at
the beginning of the k" mini-cycle, and similarly let v®) k = 1,... Ny,
correspond to the end of the £ mini-cycle. Now note that

77(1) - 77(1)1_11(;,1 --Hy, .Gy,

and

vH =pvWGH, -Gy, H.

Multiplying the first equation on the right by H;, we see that n(VH; also
satisfies the second equation. Thus, assuming irreducibility, we have equality
of these probability vectors, v(!) = p®H;. Similarly, n® = v(WGy, and in
general n*t1) = v(W)G, (mod N,.), v*¥) = n*)H,,. When considering quanti-
ties over periods of length 7', the variable £ does not need to appear as part
of the state, since this information is implicit in the above numbering scheme.
We then have

1
P£ = T ZE[U‘gk)]ngk), k = 1, .- -;ch (56)

seS

where U is the amount of time spent in £ from the beginning of the k%
mini-cycle to the beginning of the next such £ mini-cycle, given the initial
state was s. Similarly,

1
Pem AT EVOW, k=N &

SES

where V¥) is defined in terms of the end of the &k mini-cycle.
Suppose we wish to find the time average distribution for a subset £ by focus-

ing on the start of the first mini-cycle of a period of length T, i.e., we set k =1
in Equation (56). Then the expected time spent in £ during the period 7 is
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the sum of the corresponding expectations over the V,,. mini-cycles. That is,

E[UY] = sz E[ULM (0)], (58)

where U () is the amount of time spent in £ during the ¢ mini-cycle given
the initial state s at the start of the period 1'. Thus

Z Z E[UO(0)]n. (59)

sESZ 1

Now E[UM(¢)] is found by using uniformization on an interval of length
T /Ny Recall that X(¢) is Markovian during the ¢ mini-cycle with a fi-
nite state space, so its behavior during that time can be obtained using uni-
formization. We let W be the transition probability matrix of the resulting
discrete-time chain, and A, be the uniformization rate. Given n transitions of
the uniformized chain, the mini-cycle is split into n+ 1 subintervals. It is well-
known that the subinterval lengths are exchangeable random variables [5], and
so each subinterval has expected length (7//Ny,.)/(n+1). To find the expected
amount of time the uniformized process X () spends in the subset £ in the /%
mini-cycle, we need only multiply the probability that the discrete-time chain
is in £ at the m'™ step (m = 0,...,n) by the expected subinterval length and
sum over m. Unconditioning on the number of transitions, we have

B (] = 3 e-terree el (11 ) $° 57 26 m,) (0)

|
n=0 n. n+1 m=0s'eL

where 7¢(m, (,) = wt(m—1,{,)W® gives the probability vector at step m for
the discrete-time chain obtained by uniformizing X (¢) over the ¢** mini-cycle,
and 7¢(0,¢,) = ¢, is the s row of the matrix H; G - - - H,G, that gives the
transitions from the start of the first mini-cycle to the start of mini-cycle /.

Now note that

Zﬂ' m, Cs)n Zw (0,¢) WOV = gOH G - - - H G [WO]™,

SES SES

and since n\VH; G, ---H;G; = ¥ we have

S wt(m,s)nlV = nO[WO" = 7 (m, 7).

SES
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It follows from (59) and (60) that

N, n
me e (AT Nipe)™ (T/ N\ &
2D i el ey PR TEER

|
n. m=0s'el

'ﬂ |

Thus the initial vector corresponding to the uniformization over the ¢** mini-
cycle is the stationary distribution n® for the beginning of that mini-cycle.
When the same uniformized chain is used in all mini-cycles, we may write
A=A, WO =W and ! =, so that the above results simplify to

P, = i e—AT/ch (AT/NmC)n %:0 ZS’EL Zé\]:nic Ty (m’ T](Z))
L g (n+ 1) Ny

n=0

Finally, since

1 Nme 1 Nme (1) e (Nme)
Z w(m,n(@) _ Z w(O,n(Z))Wm _n + +n W
me ¢g—1 me g—1 ch

we may perform a single uniformization with the probability vector

a1
_ch

:,’7 (,,7(1) 4+t n(ch)),

instead of carrying out NV,,. instances of uniformization. The final expression
is

Py = i e~ AT/Nme (AT/ch)n {Z?nzo YsecTs (m, f') } . (61)

o n! n+1

The vectors n© and v®, £ =1,..., N,,., can be obtained simultaneously by
iterating from mlnl—cycle to mini-cycle. This is equivalent to employing 2N,
simultaneous occurrences of the power method [22]. Note that, up to a nor-
malization constant, the vector [p), ... n(¥me)] is the stationary distribution
for the cyclic matrix H. Thus we are, in fact, finding the stationary distribu-
tion for the Markov chain corresponding to the embedded points that are the
beginning of a (any) mini-cycle.

We now return to the consideration of the mixed workload model. Suppose
we wish to find the time average distribution for the number of class NC
requests in the system. In the NG-FCFS case with no overruns, the states of
X (t) are of the form s = (4,7). For j' € {0,..., B}, we consider the subset
of states L = {(¢,5') :i=0,..., Nn.K}. Applying the above results to £j
will yield the limiting probability that there are j' requests of class NC in
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the system. In the case of no overruns, there are always K class C stages at
the beginning of the period of length 7'. Unlike the calculation of the overflow
probability, class C' influences the class NC' requests, and so (for NG-FCFS)
we also have to keep track of class C stages. The process X (¢) is Markovian
during each mini-cycle, and the solution proceeds using uniformization, except
that the pure death Markov chain of the overflow probability case is replaced
by a two-dimensional chain that keeps track of both classes. The chain for the
first mini-cycle has (B + 1)(K + 1) reachable states, since only at most K
class C' stages can be present during this mini-cycle. Each state has the form
(1,7),1=0,...,K,j=0,...,B, where i represents the class C stages and j
represents the class NC requests. Transitions out of a state (7, j) can occur to
state (i—1, j) at rate « (¢ > 0), which corresponds to the completion of service
of a class C' stage; or to state (i, + 1) at rate A (j < B), which corresponds
to the arrival of a class NC request; or a transition can occur from (0, j) with
j > 0 at rate 8 to (0,7 — 1), which corresponds to the completion of service of
a class NC request Figure 5 illustrates this chain for the case of mini-cycle

944ﬁ

A
(200 o (g
Fig. 5. Markov Chain for Embedded Points

Suppose an initial distribution corresponding to the start of the first mini-
cycle, say n1(0), is given. After using uniformization on the chain in Figure 5
(with k = 1) for time T/N,,., one obtains the state probability vector v(})(0).
To find 9®(0), which is 1 x (B+1)(2K +1), one takes the 1 x (B+1)(K +1)
vector v(1)(0) and shifts it right by K columns. That is,
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n)(0) =0, i=0,....,K—-1,j=0,...,B

g (0)=ve,;(0),  i=K.. . 2Kj=0,...B
We now use this as the initial distribution for the Markov chain with states
(i,7),i=0,...,2K,7=0,..., B, and apply uniformization to obtain v(?(0).
Continuing in this way, we finally obtain ©(V=<)(0), the state probability vector
at the end of mini-cycle N,,. given the starting vector () (0). Iterating we
obtain the stationary vectors n*) and v(*). Then we can apply the previous
time average results to the subset £; to find the distribution of time for
which there are j' class NC requests in the system. From this one can obtain
the mean number and, via Little’s Result, the mean response time. Also, the
throughput may be calculated by determining the rate of arrivals of class NC
requests to the system.

The analysis of the partially greedy and greedy algorithms is similar, except
that the Markov chains between the start and end of a mini-cycle are more
complicated than in the non-greedy case. For example, to find the overflow
probability, the class NC' requests must be taken into account, since class C
stages may be introduced into the system if no class NC' requests are being
served. Thus the one-dimensional chain of the non-greedy case is replaced
with a larger chain. Further, the gated case (even for non-greedy) is more
complicated than FCFS, since the total number of NC' requests, the number
of original requests left who can be served, and an indicator g of the service
rate 3, must all be kept. However, the method of analysis is again based on
embedded Markov chains and uniformization, although the individual chains
may become larger as the algorithm becomes more complicated.

4 Numerical Results

In this section, we illustrate the use of the methodology of Section 3 for evalu-
ating mixed workload scheduling algorithms through numerical examples. We
begin with the details of workload model and parameter estimation for class
C and class NC' requests, using the Erlang and the exponential distributions,
respectively. Specifically, in the examples of this section we consider a system
which employs disks whose characteristics are given in Table 1. Note that the
seek time is in seconds, and it is a function of the request seek distance d.

4.1  Workload Characterization

We set a requirement that each disk in the system has to support N, = 24
class C' requests, which represent MPEG-1 streams with an average display
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Disk capacity 2.25 GBytes

Number of cylinders 5288

Transfer rate 75 Mbps

Maximum rotational latency | 8.33 milliseconds

seek(d) = { 061073 4+0.3%10 3 %vd ifd <400

seek time function (secs)
5.75% 1073 4 0.002 % 10~3 x d if d > 400

Table 1
Seagate Barracuda 4LP Disk Parameters

rate of 1.5 Mbps each. The average transfer size of each NC request is 46.875
KBytes. We assume that the QoS requirement for the class C' requests is that
the probability of an overloaded cycle has to be less than or equal to 0.01
(i.e., Prob[ry, > T] < 0.01). Given the disk characteristics in Table 1 and
this QoS requirement, we can solve Equation (4) numerically to determine
the minimum value of 7" such that Prob[ry, > T| < 0.01, i.e., T = 1.48754
seconds.

We model the transfer size of a class C' request as an exponential distribution
with a mean of 2.25 Mbits (i.e., so that, on the average, the display rate
per stream per cycle is approximately 1.5 Mbps as for an MPEG-1 stream).
Therefore, the mean transfer time ¢,;, = E[rf,] is equal to 0.03 secs. The
rotational latency for both class C' and class NC requests is modeled as a
uniform distribution in the range of [0,%,] = [0, 8.33] milliseconds, where £,
is the maximum latency. As already stated, the seek time is assumed to be
deterministic (see Section 2) and can be obtained using Table 1. Thus, for
class C requests, Equation (3) gives the Laplace transform of the total service
time requirement of the /N, continuous requests, i.e.,

N,
Fy = e~ 5 Tseek (Ne) ( T) . 62
n.(s)=e [ st, 1+ sty (62)

The mean, E|Ty,], and the variance, oy,, of the total service time of NV, class
C requests are

Elrn.] =Ticer (Ne) + Ne (t:/2 + tugr) (63)
Oy, =N (2/12+12,,) . (64)

To determine the parameters for the class C' workload, we observe that the
coefficient of variation is always less than 1.0 for N, > 1. Thus, we use an
Erlang distribution to represent the class C workload. Given the value of N,
we compute the appropriate number of stages in an Erlang distribution so as
to match the mean in Equation (63) and match the variance in Equation (64)
to within a 5% deviation.

What remains is to determine the parameters of the NC' workload. Under the
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FCFS service discipline of class NC requests (assuming that the data blocks
are uniformly distributed on a disk surface), we use an average seek distance
of 1/3 of the maximum seek distance. Thus, using the seek time function in
Table 1, we obtain the average seek time of 0.009275 secs. The rotational
latency is uniformly distributed with an average of 0.00425 secs. Since the
average transfer size of an NC request is 46.875 KBytes, the average transfer
latency is 0.004882 secs. Thus, we model the service time of an NC request
as an exponential distribution with a mean of 0.018407 secs (which includes
seek, rotation, and transfer time).

The only difference in obtaining the parameters corresponding to gated service
of class NC requests is in determining the average seek time, which in general,
will be smaller than in the FCFS case. Specifically, the average seek distance
for a gated group of class NC requests with a group size of g > 1 is given by

dg“'“:{ ek * [(9-2Fl> <912> " (ZJ_rD (gi2> G)H - (6)

where d/*! denotes the longest possible seek distance (in number of cylinders)

of a disk. The above expression can be obtained as follows. First, observe that
after finishing service of the continuous requests, the disk head is positioned
in a random place on the disk. Thus, in general, the disk may have to serve
the g class NC requests by doing sweeps in both directions. That is, the g
requests are served by sorting them based on the current location (i.e., where
the disk head stopped after the last group of served requests) and direction
(i.e., the direction in which the previous sweep was going) of the disk head and
then retrieved in that order. Secondly, we make another simplifying assump-
tion, namely, that the g requests together with the disk head are uniformly
distributed on the surface of the disk, i.e., they correspond to (g + 1) equally
spaced points that divide the disk surface into (g + 2) partitions of equal size.
Then the first term in Equation (65) represents all the cases for which the
disk head corresponds to a point on an edge of the disk surface. In such cases,

the disk head needs to seek a distance of —Ldf “l,lc) to serve these g class NC
g+2 "see
2

g+1
Equation (65) represents all the cases for which the disk is not on an edge
of the disk surface. In such cases, the disk head needs to seek a distance of
(%)(g%)dﬁé,ﬁ, and these cases occur with probability (g;—}). Once the average
seek distance is found, the average seek time of each class NC' request can be
obtained using Table 1, and the total service time of each class NC request is

again modeled as an exponential distribution.

requests, and these cases occur with probability < ) The second term in
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4.2  Experiments

We now present several numerical results, which are all computed through the
use of the methodology described in Section 3, to illustrate the type of perfor-
mance tradeoffs and design decisions that can be studied using our analytical
models. Specifically, in these examples, for the greedy variations on the algo-
rithms, we use the partially greedy algorithms. In all cases we allow overruns,
using the overrun extension to the models of Section 3 (for details refer to [6]).
Thus, the results given below are for fairly complex variations of the models.
Lastly, we present performance results for both classes of customers. All nu-
merical results were obtained by implementing the methodology described in
this paper using the Tangram-II modeling tool [3].

Figure 6 depicts the probability of overflow of class C' customers as a function
of the arrival rate of class NC customers, where N,,. = 6. As noted in Section
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Fig. 6. Probability of overflow of class C requests as a function of arrival rate of
class NC requests.

3.3, the probability of overflow in the non-greedy algorithms is independent of
the arrival rate as well as the service discipline of class NC' customers; this,
of course, is not the case for the greedy algorithms. Note also, that the greedy
algorithms are able to sustain the QoS requirement (i.e., that of p = 0.01)
at N,,. = 6, whereas the non-greedy algorithms are not able to provide the
required QoS at such a high number of mini-cycles in this experiment. Recall
that the value of T is computed based on the assumption of N,,. = 1. As we
already noted, it is expected that with higher values of N,,. the probability of
overflow will increase (as there are fewer opportunities for seek optimization
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and hence the overall service demand of N, requests is increased). We further
elaborate on this point below.

Figure 7 illustrates the expected response time for class NC customers as a
function of their arrival rate. The results in this figure for the greedy algorithms
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Fig. 7. Expected response time of NC requests as a function of the NC requests
arrival rate.

are fairly unusual and deserve a few words of explanation. Recall that the
buffer size for class NC' requests is finite, and this finite buffer size (when
reasonably small) produces the unusual effect. Note that class NC requests
that arrive during service of class C requests tend to experience longer response
times; however, those that arrive during service of other class NC requests
can experience a fairly short response time (assuming a mini-cycle does not
expire before they receive service). These short response times, have a higher
probability of occurring at higher arrival rates. At the lower arrival rates there
is little chance that more customers will arrive to take advantage of the server,
and thus in the greedy case the server will resume service of class C requests
(contributing to longer response times of class NC' requests). Note also that
we are computing the expected response time for the class NC' customers
that are “accepted” into the system (i.e., those that arrive when the buffer
is not full). Hence, at the higher arrival rates, the queue does not build up
sufficiently (due its finite capacity) to contribute significantly to increases in
mean response time. The degree of significance of all these effects depends
on the actual buffer size, and this unusual behavior will disappear as the
maximum buffer size for the class NC requests is increased. However, if it
is desirable to maintain small buffer sizes in the real system, then this effect
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needs to be considered and studied further in order to make appropriate design
choices.

Lastly, Figures 8 and 9 depict the probability of overflow of class C' requests
and the expected response time of class NC requests, respectively, both as a
function of number of mini-cycles, i.e., N,,.. These figures illustrate interest-
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Fig. 8. Probability of overflow of class C requests as a function of number of
mini-cycles (Nyc).

ing design tradeoffs, which were described in Section 2. Specifically, increasing
the number of mini-cycles shortens their length and reduces the response time
of class NC requests through more frequent opportunities for service. How-
ever, this technique results in diminishing returns beyond a certain number of
mini-cycles. At the same time, higher values of N,,. result in fewer opportuni-
ties for seek optimization for class C' requests. This in turn results in a higher
overall class C' load on the system, which contributes to two effects: less time
in the cycle left for service of class NC' requests as well as higher probability
of overflow for class C' requests. Due to these opposing effects, there exists an
optimum number of mini-cycles which minimizes the mean response time of
class NC' customers. In the example of Figure 9 this value is N, = 4. Of
course, an important consideration here is whether the required QoS charac-
teristics for class C requests (i.e., p = 0.01) can be sustained at N, = 4,
which is not the case in the example of Figure 8. Thus, our models can be
used, for instance, to choose an appropriate number of mini-cycles so as to
satisfy the performance and QoS requirements of both classes of customers.
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5 Conclusions

Motivated by the need for mixed workload storage servers as well as the need
for performance studies that can lead to better designs of such servers, in
this paper we presented a family of scheduling algorithm for mixed workload
storage servers. We then developed a set of corresponding analytical non-
Markovian models with tractable analytical solutions. We showed that our
solution methodology is flexible. It applies to the entire family of models, and
it can be used to obtain performance measures of interest for both continuous
and non-continuous classes of customers. Future work includes: (a) further
performance studies of mixed workload systems using our analytical models
and corresponding solution techniques; (b) improvements in computational
complexity of the solution technique, e.g., by considering special structure
that is present in these models, in order to facilitate studies of larger systems.
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