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Abstract—In this paper, we consider a new network security
game wherein an attacker and a defender are battling over
“multiple” targets. This type of game is appropriate to model
many current network security conflicts such as Internet
phishing, mobile malware or network intrusions. In such
attacks, the attacker and the defender need to decide how
to allocate resources on each target so as to maximize their
utilities within their resource limits. We model such a multi-
dimensional network security game as a constrained non-
zero sum game. Two security breaching models, the product-
form and the proportion-form, are considered. For each
breaching model, we prove the existence of a unique Nash
equilibrium (NE) based on Rosen’s theorem and propose
efficient algorithms to find the NE when the games are strictly
concave. Furthermore, we show the existence of multiple
NEs in the product-form breaching model when the strict
concavity does not hold. Our study sheds light on the strategic
behaviors of the attacker and the defender, in particular,
on how they allocate resources to the targets which have
different weights, and how their utilities as well as strategies
are influenced by the resource constraints.

I. Introduction

The economics of network security has become a thriv-
ing concern in fixed line and mobile Internet. Due to
the popularity of e-commerce and other online services,
malicious attacks have evolved into profit driven online
crimes in the forms of Internet phishing, network intrusion,
mobile malware etc. Although security defence is essential,
the networking community is still witnessing an increased
number of global attacks. Part of reasons are the economic
benefits on performing attacks by hackers as well as the
inadequate protection against the persistent attacks. There-
fore, economic studies beyond the technological solutions
are vitally important to reveal the behaviors of the defend-
ers and the malicious attackers, and game theory serves as
a well suited mathematical tool to bring about this fun-
damental understanding. A prominent application of game
theory in security is intrusion detection where an attacker
exploits system vulnerabilities and a defender monitors the
events occurring in a network strategically [1][3]. Recent
advances of network security games have two features. One
is called uncertainty that incorporates incomplete informa-
tion of players [3] and stochastic properties of players or
environments [4]. The other is called interdependency in
which the actions of players may affect other players. This

type of interactions are sometimes regarded as network
effects with positive or negative externality [6], [7], [12].

In this work, we explore a new type of network security
game which is characterized by multi-dimensional attacks.
We are motivated by three facts. Firstly, the effectiveness
of attack or defence depends on the amount of resources
that are used. The resource is an abstract representation
of manpower, machines, technologies, etc. For instance,
many resources are needed to create malicious websites in
phishing attacks, or to camouflage malicious apps in mo-
biles, or to recruit zombie machines in DDoS attacks, or to
probe server vulnerabilities in intrusion attacks. However,
one needs to note that resource is not free for the attacker
and the defender. Secondly, the attacker and the defender
usually possess limited resources. For instance, the number
of active bots that a botmaster can manipulate is usually
constrained to a few thousands [19]. Thirdly, the attacker
can assaults multiple targets for better economic returns.
These targets may represent different banks in the Internet
phishing attack [8], or different Android apps in mobile
malware, or different servers in network intrusion attacks.
These targets vary in values or importances. Attacking
(resp. protecting) more targets requires a larger amount of
resources, which may exceed the resource budget of the
attacker (resp. defender). As a consequence, the conflicts on
multiple targets are conjoined whenever the attacker or the
defender has limited amount of resources. This transforms
the decision making in network security issues into myopic
constrained optimization problems.

We propose a non-zero sum game to characterize the
constrained resource allocation between an attacker and
a defender. The utility of the attacker is modeled as the
profit, which is equivalent to the loss of victims minus
the costs of attack resources. The utility of the defender is
modeled as the loss of victims plus the costs of defence
resources. Both players aim to optimize their individual
utilities. We express the loss of victims on a target as a
product of its weight and the security breaching probability.
Two breaching models are considered; one is the product-
form of attack and defence efficiencies, the other is the
proportion-form of attack and defence efficiencies. In our
work, we focus on the following questions: 1) How does
a player select targets to attack/defend and how does he
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allocate resources to heterogenous targets at the NE? 2)
How do the resource limits of the players influence the NE
and their performance at the NE?

This work provides important insights into the multi-
dimensional network security issues. In the product-form
breaching model, both players allocate positive resources to
the subsets of more valuable targets at the NE. For any two
targets protected by the defender, he always allocates more
resources to one with a higher value. While the attacker
may allocate more resources to the more important targets,
or evade the well-protected valuable targets, depending on
the defender’s relative ineffectiveness of defence (RID).
We also show the existence of multiple NEs that yield
different utilities to the players when the attack and defence
efficiencies are linear. In the proportion-form breaching
model, the attacker and the defender allocate resources
on all the targets. Each player allocates more resources
to more valuable targets. In both models, a player may
place positive amount of resources to more targets when he
possesses a larger resource budget. A resource insufficient
player can reduce the utility of his opponent by acquiring
more resources, while not necessarily improving his own
utility at the NE.

Our major contributions are summarized as below:
- We propose a novel network security game that cap-

tures the competition on multiple targets simultaneously.
- We present efficient algorithms to find the unique NE

when the games are strictly concave.
- We also show the existence of multiple NEs when the

objective functions are not strictly concave in the product-
form game.

- We provide important insights on how the attacker(s)
and the defender allocate resources to heterogeneous tar-
gets under resource limits, and how the NE(s) is (are)
influenced by the resource limits.

The remainder of this paper is as follows. Section II
describes the game model. Section III carries out the
analysis of the NE as well as the impact of resource limits
on the NE. Section IV presents a linear intrusion detection
game analysis. We analyse the NE of the proportion-form
breaching model in Section V. Section VI surveys the
related works and Section VII concludes.

II. Game Model and Basic Properties
In this section, we present a game-theoretic model for

network security that contains two players; one being an at-
tacker and the other being a defender. They simultaneously
compete on multiple targets.

A. Motivation
We are motivated by new features of network attacks

and defences that are not well captured by existing works
(e.g. [3] and references therein). Most of state-of-the-
art researches focus on the one dimensional strategies
(i.e., monitoring probability of intrusion, channel access
probability or insurance adoption of a node). Such game

models are insufficient to characterize the modern days
security attacks such as phishing and mobile malware, etc.
Here, we present some salient features of network security
issues that lead to our game formulation.

Firstly, the attackers and the defenders are resource
constrained. Resources are defined in a variety of forms.
For instance, in the fast-flux phishing attack, the hijacked
IP address is one type of resources of the attackers. In a
mobile malware attack, the attacker’s resources can be the
technology and the manpowers used to spoof the security
check mechanism of the third-party apps markets. In DDoS
attacks, a botmaster is usually able to control only a few
thousands active bots [19]. Similarly, the defender needs
to allocate resources such as technologies and manpowers
to detect and remove these attacks. In general, both the
attacker and the defender only possess limited resources.

Secondly, the efficiencies of attacks and defences depend
on how many resources are allocated. While existing works
(e.g. references in [3]) assume that the payoffs of the
attacker and the defender are determined by whether the
target is attacked or defended. We take phishing attack
as an example. By creating more malicious websites, the
phishing attacker is able to seduce more users and to
perform more persistent attacks. If the defender allocates
more resources to perform proactive detection, more mali-
cious sites will be ferreted out in zero-day, and the attack
time window will be reduced. Similarly, if more efforts
are spent to create malicious Android apps, the attacker
can carry out more effective camouflage, thus gaining
more profits through stealing private information or sending
premium SMS imperceptibly. As a countermeasure, the
defender installs these apps on his cloud and examines their
suspicious events for a certain amount of time.

Last but not least, the attacker and the defender battle
not on a single, but rather, multiple targets. Attackers are
profit-driven. They are inclined to attack many targets in
parallel. The targets are specified as different E-banks in
phishing, different apps in mobile malware attacks and
different servers in network intrusions. Note that the targets
vary in their valuations, so the attacker and the defender
may allocate different amount of resources to them. To
attack (resp. protect) multiple targets, more resources are
required. How to perform parallel attacks becomes a chal-
lenging problem when players have certain resource limits.
All these motivate our study on the strategic allocation
of limited resources by the players on multiple targets
simultaneously.

B. Models

Let us start with the basic security game which consists
of two players, an attacker A and a defender D. The
attacker launches attacks on N targets (or “battlefields”
interchangeably) which we denote as B = {B1, · · ·, BN}.
The target Bi is associated with a weight wi (i = 1, · · ·, N ).
When wi>wj , Bi is more valuable than Bj . Without loss
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of generality, we rank all targets from 1 to N in the
descending order of their weights (i.e. wi>wj if i<j).

Attacking a target may consume some resources such
as manpower to design malware, social engineering tech-
niques to camouflage them, or dedicate many compromised
machines for attacks. Defending a target needs manpower,
investment in technology, and computing facilities etc.
Here, we monetarize different types of resources. Let c
be the price of per-unit of A’s resources, and let ĉ be that
of D’s resources. We next define two important terms that
form the utilities of the attacker and the defender.
• Attack efficiency. Let xi be the amount of resources

spent by A on Bi, and let f(xi) be the corresponding
attack efficiency on target Bi. Here, f(·) reflects the
ability of the attacker to intrude a system, or to cam-
ouflage the malware, etc. We assume that f(xi) is a
differentiable, strictly increasing and concave function
with respect to (w.r.t.) xi. The concavity means that
the increment of attack efficiency decreases when A
further increases xi. Without loss of generality, we let
f(0) = 0 and 0 ≤ f(xi) ≤ 1.

• Defence efficiency. Denote yi as the resources that D
uses to detect and remove the attacks on target Bi. Let
g(yi) be the defence efficiency when D allocates yi to
Bi. We assume that g(yi) is a differentiable, strictly
increasing and concave function of yi with g(0) = 0
and 0 ≤ g(yi) ≤ 1. For the sake of convenience, we
define a complementary function g̃(yi), the defence
inefficiency, which has g̃(yi) = 1− g(yi). Then, g(·)
is a decreasing and convex function.

It is very difficult to capture the loss of victims (also
the revenue of the attacker) due to the obscure interaction
between the attack efficiency of A and the defence effi-
ciency of D. Here, we formulate two simplified breaching
models, one is named a “product-form” model and the
other is named a “proportion-form” model. Denote by pi
the breaching probability of target Bi. Then, there exist
• Product-form model: pi = f(xi)g̃(yi);
• Proportion-form model: pi = f(xi)

f(xi)+g(yi)
.

In the product-form model, the change of attack (resp. de-
fence) efficiency causes a linear change of breaching prob-
ability. For mobile phishing attacks, the defence efficiency
can be regarded as the probability of detecting malware,
and the attack efficiency represents the ratio of victims
defrauded by the attacker. Then, the breaching probability
can be taken as a product of attack efficiency and defence
inefficiency. A classic example of the product-form model
is the matrix-form intrusion detection game where f(xi)
and g(yi) are linear functions [3]. The attack efficiency
denotes the probability of performing an attack and the
defence efficiency denotes the probability of performing a
detection action. In reality, the resources of the attacker
and the defender have a coupled effect on the security of
a target. The increase of attack efficiency might not yield
a linearly augmented breaching probability. However, it is

very difficult to quantify their coupling. Here, we present
a proportion-form breaching model that generalizes the
cyber-security competition in [18] and the DDoS attacks on
a single target in [9]. The breaching probability increases
with the attack efficiency, while at a shrinking speed.

In practice, both A and D have limited resource bud-
gets which we denote by XA and YD respectively, with
0 < XA, YD < ∞. Our focus is to unravel the alloca-
tion strategies of the players on multiple targets with the
consideration of resource limits. To achieve this goal, we
make the following assumption on the attack and defence
efficiencies.
Assumption: limxi→∞ f(xi) = 1 and limyi→∞ g(yi) = 1
in the product-form model if not mentioned explicitly.

Late on, we consider the linear f(xi) and g(yi) that
generalize intrusion detection game to multiple targets. As
a consequence of attacking Bi, A receives an expected
revenue of wipi. Let UA be the aggregate profit of A on
all the N targets. We have UA =

∑N
i=1 wipi−c

∑N
i=1 xi.

The attacker A is usually profit driven and is assumed to
be risk-neutral. His purpose is to maximize UA under the
resource cap XA. Then, the constrained resource allocation
problem is expressed as

max{xi}Ni=1
UA

subject to
∑N

i=1
xi ≤ XA. (1)

The defender D’s objective is to minimize the revenue
of the attacker A with the consideration of his resource
budget. Let UD be the disutility of D given by UD =
−
∑N
i=1 wipi−ĉ

∑N
i=1 yi. When ĉ (resp. c) is 0, D (resp.

A) has a use-it-or-lose-it cost structure such that he will
utilize all his resources. The resource allocation problem
of D can be formulated as:

max{yi}Ni=1
UD

subject to
∑N

i=1
yi ≤ YD. (2)

Noticing that A and D have conflicting objectives, we
model the resource allocation problem as a two-player non-
cooperative game and we denote it as G. LetH be a convex
hull expressed as {(xi, yi)|xi ≥ 0, yi ≥ 0,

∑N
i=1 xi ≤

XA,
∑N
i=1 yi ≤ YD}. In what follows, we define a set

of concepts for the game.
Definition 1: Nash Equilibrium: Let x = (x1, · · · , xN ) and
y = (y1, · · · , yN ) be the feasible resource allocations by
A and D in the convex hull H respectively. An allocation
profile S = {x∗,y∗} is a Nash equilibrium (NE) if
UA(x∗,y∗) ≥ UA(x,y∗) and UD(x∗,y∗) ≥ UD(x∗,y)
for any x 6= x∗ and y 6= y∗.
Definition 2: [5] (Concave game) A game is called concave
if each player i chooses a real quantity in a convex set
to maximize his utility ui(xi,x−i) where ui(xi,x−i) is
concave in xi.
Theorem 1: [5] (Existence and Uniqueness) A concave
game has a NE. Let M be a n×n matrix function in which
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Mij=ϕi
∂2ui

∂xi∂xj
, for some constant choices of ϕi>0. If

M+MT is strictly negative definite, then the NE is unique.

Theorem 2: The multi-dimensional security game G has
a unique NE for the product-form breaching model if the
attack and defence efficiencies are strictly concave, and for
the proportion-form breaching model.
All the proofs in this work can be found in the technical
report [20].

III. Nash Equilibrium and Influence of Resource
Limits for Product-form Model

In this section, we propose an algorithm to find the NE
and present its properties. Furthermore, we analyze how
the resource limits XD and YD influence the allocation
strategies of the attacker and the defender.

A. Solving NE for the Generalized Game

In the previous section, we have shown the existence of
a unique NE in the multi-dimensional security game G1.
However, we have not stated how to derive the NE, which
is nontrivial in fact. Define (x∗,y∗) as the NE of G1. We
show that (x∗,y∗) has the following property.
Theorem 3: There exist non-negative variables λ and ρ
such that

−wif(x∗i )g̃
′(y∗i )− ĉ

{
= ρ if y∗i > 0
≤ ρ if y∗i = 0

, (3)

wif
′(x∗i )g̃(y∗i )− c

{
= λ if x∗i > 0
≤ λ if x∗i = 0

, (4)

where {
λ ≥ 0 if

∑N
i=1 x

∗
i = XA

λ = 0 if
∑N
i=1 x

∗
i < XA

and (5){
ρ ≥ 0 if

∑N
i=1 y

∗
i = YD

ρ = 0 if
∑N
i=1 y

∗
i < YD

. (6)

Herein, λ and ρ are viewed as shadow prices of violating
the resource limits. From Theorem 3, one can see that x∗i
and y∗i may take on 0, which occurs when A or D decides
not to attack or defend target Bi. Our main question here
is that given XA and YD, how λ and ρ are solved at the
NE? Before answering this question, we state the sets of
targets with positive resources of A and D at the NE.
Lemma 1: Let KA be the number of targets with positive
resources of A, and KD be that with positive resources of
D at the NE. We have i) the set of targets being attacked
is {B1, · · · , BKA} and the set of targets being defended is
{B1, · · · , BKD}; ii) KA ≥ KD.
Remark: The utility of Lemma 1 is that it greatly reduces
the space of searching KD and KA, which is essential
for us to compute the values of λ, ρ, x∗i and y∗i at the
NE. In fact, we only need to test at most (N+1)(N+2)/2
possible sets of targets. Define two inverse functions
hD(·) := {g̃′}−1(·) and hA(·) := {f ′}−1(·). At the NE,

the resources used by A and D on a target are given by

x∗i =


hA( c+λ

wig̃(y∗i (λ,ρ)) ) ∀ i ≤ KD
hA( c+λ

wig̃(0) ) ∀ KD<i≤KA
0 ∀ i > KA

, (7)

y∗i =

{
hD( −(ρ+ĉ)

wif(x∗i (λ,ρ)) ) ∀ i ≤ KD
0 ∀ i > KD

. (8)

In what follows, we define a set of notations w.r.t. the total
resources (denoted as Tot Res) used by both players at the
NE in Table I. The pair (Xsuf

A , Y sufD ) denote the sufficient
amount of resources needed by A and D when λ and ρ are
both 0. If both XA>X

suf
A and YD>Y

suf
D hold, A and D

have some unused resources at the NE. Then, the strategies
of A and D on one target are independent of the other
targets. We can partition the plane of (XA, YD) into four
domains: D1) XA≥Xsuf

A and YD≥Y sufD ; D2) XA<X
suf
A

and YD≥Ŷ sufD ; D3) XA≥X̂suf
A and YD<Y

suf
D ; D4) none

of the above. If (XA, YD) ∈ D1, the consumed resources
of A and D at the NE are Xsuf

A and Y sufD respectively.
If (XA, YD) ∈ D2, the resources of A are insufficient.
Then, A uses XA resources and D uses Ŷ sufD at the NE.
If (XA, YD) ∈ D3, the resources of D are insufficient.
Then, A uses X̂suf

A resources and D uses YD at the NE. If
(XA, YD) ∈ D4, A uses XA and D uses YD resources at
the NE. The partition of (XA, YD) enables us to understand
when the attacker (resp. the defender) possesses sufficient
amount of resources for the attack (resp. defence).

X∗A :=
∑N
i=1 x

∗
i (Tot Res used by A at the NE)

Y ∗D :=
∑N
i=1 y

∗
i (Tot Res used by D at the NE)

Xsuf
A Tot Res used by A at the NE with λ=ρ=0

Y sufD Tot Res used by D at the NE with λ=ρ=0

X̂suf
A Tot Res needed by A at the NE to let λ=0,

given YD < Y sufD (i.e. ρ>0)
Ŷ sufA Tot Res needed by D at the NE to let ρ=0,

given XA < Xsuf
A (i.e. λ>0)

TABLE I
NOTATIONS OF TOTAL AMOUNT OF RESOURCES

The remaining challenge on deriving the NE is how λ
and ρ are found for the given KA and KD. Intuitively, we
can solve λ and ρ based on Eqs. (5)(6)(7)(8). However,
there does not exist an explcit expression in general. We
propose a bisection algorithm in Fig. 1 to search λ and ρ.
The basic idea is to express ρ as two functions of λ, ρ1(λ)
obtained from Eqs. (5)(7)(8) and ρ2(λ) obtained from Eqs.
(6)(7)(8), and then compute their intersection. To guarantee
that the bisection algorithm can find feasible λ and ρ if they
exist, we show the monotonicity of ρ1(λ) and ρ2(λ) in the
following lemma.
Lemma 2: Suppose that feasible λ and ρ (i.e. λ, ρ≥0)
exist for the fixed KA and KD at the NE. The following
properties hold i) if λ is 0, there has a unique ρ ≥ 0; ii) if ρ
is 0, there has a unique λ; iii) ρ1(λ) is a strictly increasing
function and ρ2(λ) is a strictly decreasing function.

145



The monotonicity property enables us to use bisection
algorithm to check the existence of the pair (λ, ρ) and solve
them if they exist. When XA and YD are sufficient, the
NE can be directly computed via eqs.(7) and (8). When
the resources of either A or D are insufficient, the NE
is found by the lines 5∼17 in Fig.1. When both players
have insufficient resources, the NE is obtained by the lines
18∼26. The complexity order of finding the sets with
positive resource allocation is merely O(N2).

Input: N , XA, YD, wi, c, ĉ, f(·) and g(·);
Output: KA, KD, λ, ρ, x∗i and y∗i
1: Initialize KA = KD = N
2: Let λ=ρ=0, compute y∗i , x∗i using eqs. (7),(8) for all i;
3: Compute Xsuf

A :=
∑N
i=1 x

∗
i and Y sufD =

∑N
i=1 y

∗
i ;

4. If both XA ≥ Xsuf
A and YD ≥ Y sufD , exit;

5: For KA ≥ 1
6: KD = KA
7: For KD ≥ 1

8: If XA ≤ Xsuf
A

9: Find λ by letting ρ = 0 and X∗A = XA via (7)(8);
10: Elseif YD ≤ Y sufD
11: Find ρ by letting λ = 0 and Y ∗D = YD via (7)(8);
12: End;
13: If x∗i ≥ 0, y∗i ≥ 0, exit;
14: KD = KD − 1
15: End
16: KA = KA − 1
17: End
18: For KA ≥ 1
19: KD = KA = N
20: For KD ≥ 1
21: Compute the fixed point (ρ, λ) which solves (7)

and (8) by setting Y ∗D=YD and X∗A=XA; Given
new pair (λ, ρ), compute y∗i and x∗i via (7) and (8);

22: If x∗i ≥ 0, y∗i ≥ 0, exit;
23: KD = KD − 1
24: End
25: KA = KA − 1
26: End

Fig. 1. Algorithm to find KA, KD , λ, ρ, x∗i and y∗i at the NE

B. Properties of NE

Given the resource limits XA, YD and other system
parameters, we now know the way to compute the unique
NE. Our subsequent question is how a player disposes
resources on heterogeneous targets at the NE.
Lemma 3: The NE (x∗,y∗) satisfies the following prop-
erties:
• y∗i ≥ y∗j for 1 ≤ i < j ≤ KD;
• x∗i ≥ x∗j for KD < i < j ≤ KA;
• i) x∗i > x∗j if g̃′(y)

g̃(y) is strictly increasing w.r.t. y, ii)

x∗i = x∗j if g̃
′(y)
g̃(y) is a constant, and iii) x∗i < x∗j if g̃

′(y)
g̃(y)

is strictly decreasing w.r.t. y for all 1≤i<j≤KD.

The first property manifests that D is inclined to allocate
more resources to the targets with higher weights at the
NE. The second property means that if two targets are not
protected by D at the NE, A allocates more resources to
the one of higher value. However, it is uncertain whether A
allocates more (or less) resources to a high (or lower) value
target among the top KD targets with positive resources
of D. We next use three examples to highlight that all
the possibilities can happen. These examples differ in the
choice of (complementary) defence efficiency functions.
We define a new term, “relative ineffectiveness of defence
(RID)”, as the expression | g̃

′(y)
g̃(y) |. Note that the first-order

derivative g̃′(y) reflects how fast (i.e. the slope) g̃(y)
decreases with the increase of y. RID reflects the relative
slope that the increase of y reduces g̃(y). If | g̃

′(y)
g̃(y) | is

increasing in y, further increasing y makes g̃(y) decreases
faster and faster. On the contrary, if | g̃

′(y)
g̃(y) | is decreasing in

y, further increasing y only results in a smaller and smaller
relative reduction of g̃(y). For a better understanding, we
investigate the competition on B1 and B2 that are allocated
positive resources by A and D.
Example 1 (InvG): f(x)=1−(1+x)−a and
g̃(y)= 1

1+θy . The following defence inefficiency

equality holds, | g̃
′(y)
g̃(y) |=

θ
1+θy . Then, we obtain

wi

wj
= ( 1+xi

1+xj
)2(1+a) 1−(1+xi)

−a

1−(1+xj)−a . Due to wi > wj , it
is easy to show xi > xj by contradiction.
Example 2 (ExpG): f(x)=1−(1+x)−a and
g(y)= exp(−θy). The expression | g̃

′(y)
g̃(y) | is equal to

θ. According to the KKT conditions in Theorem 3, there
has ( 1+xi

1+xj
)1+a 1−(1+xi)

−a

1−(1+xj)−a = 1. The above equation holds
only upon xi = xj .
Example 3 (QuadG): f(x)=1 − (1 + x)−a and g̃(y) =

(1 − θy)2. There exists | g̃
′(y)
g̃(y) |=

2θ
1−θy . Theorem 3 yields

wj

wi
= ( 1+xi

1+xj
)1+a( 1−(1+xi)

−a

1−(1+xj)−a )2. Then, there has x∗i < x∗j .
Remark 2: For InvG-like g̃(y), RID is strictly decreasing.
The attacker’s best strategy is to allocate more resources
to more important targets. In a word, the attacker and the
defender have a “head-on confrontation”. For ExpG-like
g̃(y), RID is a constant. The attacker sees a number of
equally profitable targets. For QuadG-like g̃(y), RID is an
increasing function. The attacker tries to avoid the targets
that are effectively protected by the defender.

Intuitively, when a player does not possess sufficient
resources, he will gain a higher utility if his resource limit
increases. First of all, we give an example to support this
claim. Suppose that not all the targets are attacked by
A and YD is insufficient. When XA increases, A can at
least gain more profits by allocating the extra resources
to the targets that are not under attack. We next present a
counter-intuitive example. Suppose that A and D allocate
positive amount of resources to all the targets at the NE.
The resources of A are insufficient while those of YD are
sufficient, that is, λ > 0 and ρ = 0. When XA increases,
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it is easy to show by contradiction that λ decreases and
xi increases. Due to the equality −wif(xi)g̃

′(yi) = ĉ
in the KKT conditions, yi also becomes larger. The util-
ity of the attacker on target Bi at the NE is given by
wif(xi)g̃(yi) − cxi = −ĉ g̃(yi)g̃′(yi)

− cxi. If RID of the

defender, | g̃
′(y)
g̃(y) |, is a constant or an increasing function

of yi, the expression −ĉ g̃(yi)g̃′(yi)
is a constant or decreases as

yi increases. Hence, the utility of the attacker on target Bi
decreases when XA increases.
Remark 3: When the defender’s resources are insufficient,
the attacker gains more profits by acquiring more resources
and allocating them to more important targets. When the
defender’s resources are sufficient, the attacker may explore
new targets to attack, other than using all the resources to
battle with the resource sufficient defender at the NE.

IV. A Linear Intrusion Detection Game for
Product-form Model

In this section, we investigate the existence and unique-
ness of NE of an intrusion detection game where the attack
and defence efficiencies are linear functions.

A. A Matrix-form Game

We study a matrix-form multi-dimensional intrusion
detection game. The payoff matrix on target Bi is shown
in Fig.2 where A (resp. NA) denotes “attack” (resp. “not
attack”) strategy, and D (resp. ND) denotes “defend”
(resp. “not defend”) strategy. Here, wi denotes the loss
of victims for the pair-wise strategies (A,ND) and γwi
denotes that for (A,D) with γ ∈ (0, 1). Let c and ĉ be
the costs of the “attack” and the “defend” strategies. Note
that ĉ refers to not only the cost of resources, but also
the cost of performance such as QoS or false alarm of
benign events. We consider the mixed strategies of A and
D in which A attacks target Bi with probability xi and
D detects this target with probability yi. Each player only
has one action on all the targets, which yields the resource
constraints:

∑N
i=1 xi ≤ XA ≤ 1,

∑N
i=1 yi ≤ YD ≤ 1 and

0 ≤ xi, yi ≤ 1.
To make the game non-trivial, we let γwi ≤ c and wi >

c ∀i, i.e. the loss of victims is greater than the cost of the
attacker on an unprotected target, and is less than this cost
on a protected target. Given the attack probabilities {xi}Ni=1

and the detection probabilities {yi}Ni=1, the utilities of A
and D can be derived easily,

UA = wixi − (1− γ)wixiyi − cxi,
UD = −wixi + (1− γ)wixiyi − ĉyi.

The above utility functions fall in the category of our
product-form game with f(x) := x and g̃(y) := 1− (1 −
γ)y. The resource constraints hold naturally because the
sum of attack probabilities is no larger than 1, and the sum
of detection probabilities is also no larger than 1. For the
sake of simplicity, we denote a new variable as γ̄ := 1−γ.

D ND
A (γwi − c,−γ1wi − ĉ) (wi − c,−wi)
NA (0,−ĉ) (0, 0)

Fig. 2. Payoff Matrix

B. Computing NE

We take the derivatives of UA (resp. UD) over xi (resp.
yi) and obtain
dUA/dxi = wi − wiγ̄yi − c, dUD/dyi = wiγ̄xi − ĉ.
The existence of a NE is guaranteed by the concavity of

the game. Before diving into the solution of the NE, we
present a property of the sets of targets that are attacked
or defended at the NE.

Lemma 4: The sets of targets with positive resources at the
NE are given by i) {B1, · · · , BKA} for the attacker and
{B1, · · · , BKD} for the defender; ii) either KA = KD or
KA = KD + 1.

Lemma 4 is the sufficient condition of the existence
of NE. Similar to Lemma 1, A and D allocate resources
to the subsets of more important targets. The difference
lies in that A may allocate resources to more targets than
D when f(·) and g(·) are nonlinear functions, but to at
most one more target than D when f(·) and g(·) are our
linear functions. We proceed to find the NE by considering
different regions of XA and YD in the following theorem.

Theorem 4: The multi-dimensional intrusion detection
game admits a NE as below

• PA(k)<XA<PA(k+1) and YD>PD(k+1) for
0≤k≤N−1. The NE is uniquely determined by

x∗i =


ĉ
wiγ̄

, ∀ i ≤ k
XA−

∑k
j=1

ĉ
wj
, i=k+1

0, ∀ i>k+1

(9)

y∗i =

{
(1− wk+1

wi
) 1
γ̄ , ∀ i≤k

0, ∀ i > k
. (10)

Here, the sum over an empty set is 0 conventionally.
• PD(k)<YD<PD(k+1) and XA>PA(k) for 1≤k≤N .

The NE is uniquely determined by

x∗i =

{
(
∑k
j=1

wi

wj
)−1XA, ∀ i ≤ k

0, ∀ i > k
(11)

y∗i =

{
(
∑k
j=1

wi

wj
)−1
(
YD− 1

γ̄ k
)
+ 1
γ̄ , ∀i≤k

0, ∀i>k
. (12)

• XA>PA(N) and YD>PD(N+1).
The NE is uniquely determined by

x∗i =
ĉ

wiγ̄
, y∗i =

1

γ̄
− c

wiγ̄
, ∀ 1≤i≤N. (13)

• XA=PA(k) and YD≥PD(k) for 1≤k≤N .
Denote by ỸD an arbitrary real number in the range
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[PD(k),min{YD, PD(k+1)}]. A NE is given by

x∗i =

{
ĉ
wiγ̄

, ∀ i ≤ k
0, ∀ k+1≤i≤N (14)

y∗i =

{
1
γ̄+(

∑k
j=1

wi

wj
)−1(ỸD−k 1

γ̄ ), ∀ i ≤ k
0, ∀ i > k

.(15)

• YD=PD(k) and PA(k−1)≤XA≤PA(k) for 2≤k≤N .
Denote by X̃A an arbitrary real number in the range
[PA(k−1), XA]. A NE is given by

x∗i =

{
(
∑k
j=1

wi

wj
)−1X̃A, ∀ i ≤ k

0, ∀ i>k+1
(16)

y∗i =

{
(1−wk+1

wi
) 1
γ̄ , ∀ i ≤ k

0, ∀ i > k
. (17)

Here, PA(k) and PD(k) are defined as PA(0):=0,
PA(k):=

∑k
i=1

ĉ
wiγ̄

, ∀ 1≤k≤N ; PD(1)=0, PD(k):=∑k−1
i=1

1
γ̄ (1−wk

wi
), and PD(N+1):= 1

γ̄N−
∑N
i=1

c
wiγ̄

.

We illustrate the relationship between NE and resource
limits in Fig.3. When f(·) and g(·) are linear, the best
response of a player becomes a step-like function. The
feasible domain of (XA, YD) is partitioned into three
parts: i) D1 - sufficient XA and sufficient YD; ii) D2 -
insufficient XA and sufficient YD; iii) D4 - insufficient XA
and insufficient YD. The total consumed resources at the
NEs for D1 and D2 are located in the step-like boundary
curve. When XA or YD take some special values, the
boundary curve illustrates the existence of multiple NEs.
In the horizontal boundary, different NEs bring the same
utility to the attacker, but different utilities to the defender.
In the vertical boundary, the utilities of the defender are the
same, while those of the attacker are different. Let us take
a look at an example with XA= ĉ

w1γ̄
and YD>(1−w2

w1
) 1
γ̄ .

Two NEs on target B1 can be (x∗1, y
∗
1)(1)=( ĉ

w1γ̄
, 0) and

(x∗1, y
∗
1)(2)=( ĉ

w1γ̄
, (1−w2

w1
) 1
γ̄ ). Both A and D do not allo-

cate resources to other targets. The utility of D is given by
UD=− 1

γ̄ ĉ at the both NEs. The utilities of A are given by

U
(1)
A =x∗1(w1−c) and U (2)

A =x∗1(w2−c) at the two NEs. At
the first NE, B1 is the most profitable to A. At the second
NE, B1 and B2 are equally profitable. In both NEs, A
cannot gain more profits by switching to another allocation
strategy unilaterally. Besides, the total consumed resources
for D4 can be mapped to an arbitrary point in this domain,
in which both players have insufficient resources.

0
0

XA

Y
D

D
2

D
1

D
4

Fig. 3. Sufficiency of XA and YD with linear f(·) and g(·)

Remark 4: We summarize the salient properties of the NEs
for linear attacking efficiency and linear uptime as below.
1) The targets with x∗i > 0 are equally profitable to A such
that A has no incentive to change his strategy.
2)D prefers to allocate more resources to the more valuable
targets. As a countermeasure, A allocates more resources
to the targets that are not effectively protected by D.
3) The NE is not unique with some special choices for XA
and YD. If multiple NEs exist for a given pair (XA, YD),
they yield the same utility for one player, but different
utilities for the other player.

V. Nash Equilibrium for Proportion-form Model
In this section, we analyze the NE strategy of the play-

ers on different targets for the proportion-form breaching
model.
Nash Equilibrium and its Properties:

We define (x∗,y∗) as the NE of the game for the
proportion-form model. Then, based on KKT conditions,
(x∗,y∗) is given by the following theorem.
Theorem 5: There exist non-negative variables λ and ρ
such that

wi
f(x∗i )g

′(y∗i )

(f(x∗i ) + g(y∗i ))2
− ĉ

{
= ρ if y∗i > 0
≤ ρ if y∗i = 0

, (18)

wi
f ′(x∗i )g(y∗i )

(f(x∗i ) + g(y∗i ))2
− c

{
= λ if x∗i > 0
≤ λ if x∗i = 0

, (19)

with the slackness conditions in Eq.(5) and (6).
As the first step to find the NE, we need to investigate

how many targets will be attacked by A and defended by
D. The following lemma shows that both A and D allocate
resources to all the targets in B.
Lemma 5: At the NE, there have x∗i > 0 and y∗i > 0 for
all i = 1, · · · ,K if f(·) and g(·) are concave and strictly
increasing with f(0) = 0 and g(0) = 0.

Lemma 5 simplifies the complexity to obtain the NE
strategy because we do not need to test whether a target will
be attacked or defended. Then, the equalities in Eqs.(18)
and (19) hold. Similarly, we partition (XA, YD) into four
domains to fine the NE: D1) XA≥Xsuf

A and YD≥Y sufD ;
D2) XA<X

suf
A and YD≥Ŷ sufD ; D3) XA≥X̂suf

A and
YD<Y

suf
D ; D4) none of the above. The method to find

the NE contains the similar steps as those of the algorithm
in Fig.1. We need to check whether (XA, YD) is located
in a domain from D1 to D4 one by one.

We next study how A and D allocate resources to
different targets, given the resource limits XA and YD.
The NE strategy satisfies the following properties.
Lemma 6: A and D always allocate more resources to the
more important targets, i.e. x∗i>x

∗
j and y∗i>y

∗
j if wi>wj .

Remark 6: In comparison to the product-form breaching
model, the players in the proportion-form breaching model
always allocate more resources to the more valuable targets.

For the generalized proportion-form breaching model, it
is usually difficult to analyze how the NE and the utilities
at the NE are influenced by the resource limits. In the
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technical report [20], we consider two specific functions,
f(x) = xa and g(y) = ya, for the breaching probability
model with 0<a≤1. With this example, we show that
UD decreases accordingly when XA increases. However,
increasing XA does not necessarily bring a higher utility
to A. Similarly, increasing YD yields a worse utility to A,
but not necessarily resulting a higher utility to D.

VI. Related Work

Today’s network attacks have evolved into online crimes
such as phishing and mobile malware attacks. The attackers
are profit-driven by stealing private information or even
the money of victims. Authors in [2] measured the uptime
of malicious websites in phishing attacks to quantify the
loss of victims. Sheng et al. provided the interviews of
experts in [15] to combat the phishing. A number of
studies proposed improved algorithms to filter the spams
containing links to malicious websites in [16], [17].

Game theoretic studies of network security provide the
fundamental understandings of the decision making of
attackers and defenders. Authors in [4] used stochastic
game to study the intrusion detection of networks. More
related works on the network security game with incom-
plete information and stochastic environment can be found
in [3], [10]. Another string of works studied the security
investment of nodes whose security level depended on the
his security adoption and that of other nodes connected to
him. Some models did not consider the network topology
[6] and some others studied either fixed graph topologies
[11] or the Poisson random graph [7], [12].

Among the studies of network security game, [13], [1],
[14] are closely related to our work. In [13], authors used
the standard Colonel Blotto game to study the resource al-
location for phishing attacks. An attacker wins a malicious
website if he allocates more resources than the defender,
and loses otherwise. This may oversimplify the competition
between an attacker and a defender. Our work differs in
that the attackers perform attacks on multiple non-identical
banks or e-commerce companies, and the competition is
modeled as a non-zero sum game that yields a pure strategy.
In [1], the authors formulated a linearized model for de-
ciding the attack and monitoring probabilities on multiple
servers in network intrusion attacks. Altman et al. in [14]
studied a different type of multi-battlefield competition in
wireless jamming attack that provides important insights
of power allocation on OFDM channels.

VII. Conclusion

In this work, we model the conflict on multiple targets
between a defender and an attacker that are resource
constrained. A product-form and a proportion-form security
breaching models are considered. We prove the existence
of a unique NE, and propose efficient algorithms to search
this NE when the game is strictly concave. Our analysis
provides important insights in the practice of network

attack and defence. For the product-form breaching model,
i) the defender always allocates more resources to the
more important target, while the attacker may not follow
this rule; ii) when the defender has sufficient amount of
resources, more resources of the attacker might not bring
a better utility to him; iii) when the game is not strictly
concave, there may exist multiple NEs that yield different
utilities of the players. For the proportion-form breaching
model, iv) both the attacker and the defender allocate
more resources to more important targets; v) a resource
insufficient player causes a reduction of his opponent’s
utility, while not necessarily gaining a better utility by
himself when his resource limit increases.
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