Chained Declustering:
Load Balancing and Robustness to Skew and Failures

Leana Golubchik

John C.S. Lui

Richard R. Muntz

Computer Science Department, University of California
Los Angeles, CA 90024

Abstract

There has been considerable research comcerning
the use of arrays of disks in solving I/O bottleneck
problems, where high availability of data is achieved
through some form of data redundancy, e.g., mirror-
ing. In this paper we investigate the degree to which
a dynamic load balancing disk scheduling algorithm in
conjunction with chained declustering, an alternative
to the classical mirroring scheme, can respond robustly
to variations in workload and disk failures. Specifi-
cally, we define and investigate the behavior of two
dynamic scheduling algorithms under various work-
load distributions and disk failure. We demonstrate
that using a simple dynamic scheduling algorithms can
greatly improved the average response time compared
with static load balancing.

1 Introduction

In the past decade, we have observed an unprece-
dented growth in processor’s speed, main memory and
secondary storage capacity [11]. Yet, the improvement
in performance of magnetic storage systems has been
modest compared with other computer system com-
ponents. In recent years, there has been considerable
research concerning the use of arrays of disks in solv-
ing this emerging 1/O bottleneck problem. The idea
of disk arrays is to utilize a set of disks and concep-
tually present the abstraction of a high capacity, high
throughput, and highly reliable logical disk. In order
to make data highly available, some form of data re-
dundancy is introduced. Two basic schemes for intro-
ducing data redundancy are (1) parity based schemes
and, (2) mirroring.

In a parity based scheme a parity block is associ-
ated with several data blocks. Whenever a disk fails, a
data block on the failed disk can be reconstructed by

0-8186-2660-7/92 $3.00 © 1992 IEEE

RLams Aaant S et ERS T

88

reading the corresponding parity and data blocks. Ex-
amples of parity based schemes include RAID level 5
{11], clustered RAIDs [10] and various parity striping
schemes [6]. Full mirroring has a higher storage over-
head than the parity based schemes because data is
fully duplicated, but it can offer better performance
in terms of throughput and response time [6] than
the parity based schemes. Mirroring or shadow disks
[1] typically replicate complete disks, i.e., one disk is
replicated on a second. The disk farm is composed of a
number of such pairs. In [3], the authors illustrate the
idea of optimizing seek times in a mirrored disks envi-
ronment. Disk scheduling policies for mirrored disks
systems have been studied in [12], and disk schedul-
ing policies with real-time applications using mirrored
disks have been studied in [4]. In [7], chained declus-
tering is considered as a replication scheme at the log-
ical level of a shared nothing database machine. This
scheme provides an alternative to the classical mirror-
ing scheme when applied to physical level replication.
We briefly describe the concept of chained decluster-
ing in [7], where it is applied at the logical level of
a shared nothing database machine. Later, we apply
the same concept to physical level replication.

Chained declustering has the same storage overhead
compared to the classic mirroring scheme, but it offers
better performance degradation properties when a sin-
gle disk failure occurs. Figure 1 illustrates the chained
declustering concept. Assume a file R is declustered
into 8 fragments. At any point in time, two physi-
cal copies of this file, termed the primary copy and
the backup copy, are maintained. During the normal
mode of operation, read requests are directed to the
primary copy and write operations update both copies.
When a disk failure occurs (e.g. disk 1 in the figure),
the chained declustering scheme is able to uniformly
distribute the workload over the surviving disks and
thereby obtain a less degraded performance. For ex-
ample, if disk 1 has failed, 2/7 of the transactions to

R3 can be routed to Disk 3 and 5/7 of the transactions
to R3 can be routed to Disk 4. The idea is to adjust
the load to both copies of the data in such a way as
to balance the load among the surviving disks.

disk0 disk1 disk2 disk3 disk4 diskS disk6 disk7
7

s I e i tie I e i < I e I i i
EEEEEEEE
Copy
IIHBIIIIH

Normal Situation
=
]

(a)
Jisk 1 disk2 disk3 disk4 diskS disk6 disk7
Figure 1: Chained Declustering Scheme

A A A A Y
(e 3] [30 3] [3] [3
~ed

i 6
G B E G

Disk 1 Failure
(b)

There are several ways to perform the load adjust-
ment depending on table declustering methods, stor-
age organization, and access plans. Since data is log-
ically replicated, the query scheduler makes the deci-
sion on the access plan in order to balance the load.
This form of load balancing has several limitations
(1) the load is only approximately divided among the
nodes; the assumption that a uniform division of the
data corresponds to a uniform division of the load
can be incorrect with skewed reference patterns, and
(2) both short term and long term reference patterns
change with time and a static balancing scheme can
not adjust to variations in load. Another way to bal-
ance the load of the system is to apply some dynamic
load balancing scheme, since it can adjust the load on
each node in real time to respond to statistical vari-
ations. Several dynamic balancing schemes are dis-
cussed in [12], in the context of mirrored disks sys-
tems.

The objective of this paper is to investigate the de-
gree to which a dynamic load balancing disk sched-
uling algorithm in conjunction with chained declus-
tering can respond robustly to variations in workload
and disk failures (which destroy the symmetry of the
system and introduce skewed load). Specifically, we
define and investigate the behavior of two dynamic
scheduling algorithms under various workload distri-
butions and disk failure. We demonstrate that using
these two simple dynamic scheduling algorithms has
greatly improved the average response time compared
with static load balancing.

The paper is organized as follows. In section 2,

89

we discuss the difference between logical and phys-
ical data replication. In section 3, we present two
dynamic disk scheduling algorithms. We also show
the improvement in response time compared with the
static load balancing algorithm under different work-
load distributions and disk failure conditions. Section
4 summarizes the contributions of the paper.

2 Physical vs. Logical Replication

In general, data replication can be implemented on
different levels within a database system. In partic-
ular, we distinguish between (1) physical replication
and (2) logical replication.

With physical level replication the contents of one
area of a disk are mirrored on an area of another disk
(in the classical mirrored disk system, one entire disk
is mirrored by another entire disk). The I/O controller
generally handles the replication and higher levels of
software are not concerned. With logical fragmenta-
tion as in the Teradata [2] and Gamma [5] shared noth-
ing database machines, relations are fragmented and
relation fragments are stored on independent nodes of
the system. Replication is visible to the query process-
ing software and is managed by the database system
software.

The dynamic scheduling algorithms studied here
can be applied to both physical and logical replica-
tion methods. There are significant problems associ-
ated with dynamic data sharing across multiple nodes
of a system, e.g., concurrency control, and efficient
use of buffer space [14, 13]. We do not address these
problems here. With respect to logical replication one
can view this study as an investigation of the poten-
tial benefits of dynamic load balancing with chained
declustering, particularly with respect to robustness
to workload imbalance and disk failure. Determining
whether these benefits compensate for the overhead
and complexity of logical level dynamic scheduling is
beyond the scope of this paper. In the remainder of
this paper we will concentrate on physical replication.

3 Analysis

In this section we will describe our model of the
disk subsystem, state the algorithms for dynamic load
balancing, present the results of analysis of these al-
gorithms using a variety of workloads, as well as show
the improvements in performance gained through dy-
namic scheduling.

3.1 System Description

As mentioned earlier, the physical system of inter-
est is a disk subsystem with data replicated using the
chained declustering scheme [7] at the physical level
(refer to sections 1 and 2). In such a system, the data
residing on disk i is backed up partly on disk i + 1
and partly on disk i — 1!, The replication not only
provides higher data availability, but can also be used
to improve performance, since it provides flexibility in
servicing read requests?. We can potentially improve
performance by properly choosing from which copy to
read. For example, consider the system in Figure 2;
we will call each portion of data which is replicated a
“fragment”. The data fragment A is stored on disk 0

- —-—— - —
= 2]
o]) =]
disk O disk 1 disk 2 disk 3

Figure 2: Chained Declustering Data Configuration
Scheme

and disk 1. A write of a block of data from A must be
executed on both disks 0 and 1. However, a read re-
quest for the same block can be serviced by either disk.
The flexibility to read from either disk is the source of
improvement possible via dynamic scheduling. Below,
we first introduce our model of a disk system using
chained declustering and the two dynamic scheduling
algorithms.

3.2 Model Description

In our model, the 1/O requests are separated into
queues based on the data fragments they reference.
Within each queue, requests are served in a first come
first serve order. The disks can be viewed as servers in
our model. Figure 3 illustrates the model of the phys-
ical system depicted in Figure 2. It has four queues,
with queue 0 representing requests for data blocks in
fragment A, queue 1 representing requests for data
blocks in fragment B, etc. There are also four servers,
each representing one of the disks in the original sys-
tem. Each server can serve only two of the queues,
i.e., each 1/O request can be performed on either of

! For the remainder of the paper, all arithmetic is done mod-
ulo D (the number of disks in the system).

2Each write request must be done on both disks, in order to
maintain consistency between the two copies.

90)

the two disks® (refer to Figure 3). When an I/O sub-

queue queue queue queue queue
3 0 1 2 3
[Cq,=2]] ”q,=1] q,=4] [q,=17 [q,=2]
disk disk disk disk
0 1 2 3

Figure 3: Model Terminology

system is heavily utilized, especially when it is the bot-
tleneck, this choice can affect the overall system per-
formance. The basic goal is to avoid having requests
queued for some servers, while other servers are idle.
A good scheduling scheme can decrease the amount of
time spent in this state by, for example, balancing the
workload among the servers. We will show that an
adaptive (dynamic) scheduling scheme performs sig-
nificantly better than a non-adaptive (static) one, es-
pecially when there are “hot spots” in the database or
when failure occurs.

Our model parameters are as follows (refer to Fig-
ure 3):

D = number of disks

¢ = queue lengths of queue i

L; = sum of queue lengths at queues i and i — 1
)A; = arrival rate to queue i

i = service rate of server/disk i

In the following sections we will consider homoge-
neous servers, exponential arrival rates, and exponen-
tial service rates (this is done for ease of presentation;
similar results can be show for other types of arrival
and service distributions). Both uniform and skewed
workloads will be considered, as well as systems with
failures.

Given this model, our goal is to investigate the ben-
efits associated with dynamic scheduling of 1/O re-
quests. Specifically, since a read request can be per-
formed on one of two disks, the performance of the disk
subsystem will improve or degrade depending on how
we make this choice. Hence, a scheduling algorithm
is characterized by how it determines which customer
should a disk serve next.

3This is true for reads only. In the remainder of the paper a
pure read model is assumed, except where otherwise specified.

3.8 Dynamic Scheduling Algorithms

In this section we will discuss two dynamic sched-
uling algorithms. These algorithms will differ in the
type of state information they use and the complexity
of the decision process.

Our first algorithm, Longest Queue First (LQF),
uses the set of queue lengths, i.e., (g0,91,.-.,9D-1), a8
its state information. In this case the decision process
is simple. When a disk becomes available for service, it
chooses the first customer from the longest of the two
queues it is able to service. LQF is perhaps a natural
heuristic to use for dynamic scheduling. However, a
simple example can illustrate that it is not clearly the
best heuristic. Consider the state of the system in Fig-
ure 3 when disk 3 becomes available. Our first instinct
might be to serve the longer of the two queues, i.e.,
queue 3. On the other hand, if disk 3 empties queue 2
(there is only one customer in that queue), then server
2 will be free to concentrate on the backlog in queue
1. This example illustrates that in order to avoid the
problem of some disks experiencing a high load while
others are idle, we need to minimize the difference in
disk loads, instead of minimizing the difference in re-
quest queue lengths (as in the LQF algorithm). ‘

First, we consider a simple definition of a disk load
to be the sum of queue lengths of the two queues that
a disk can service. Then the state information is ex-
pressed as (Lo, L1,...,Lp-1), where L; is the sum of
¢; and g¢i_;, as defined in section 3.2. Our service
decision criterion can be illustrated using the exam-
ple discussed above. When disk 3 becomes available
for service, the state information is (3,5,5, 3), refer
to Figure 4(a). If disk 3 chooses to serve a customer
from queue 2, then the new state information will be
(3,5,4,2), refer to Figure 4(b). If disk 3 chooses to
serve a customer from queue 3, then the new state in-
formation will be (2, 5, 5, 2), refer to Figure 4(c). It is
clear that Figure 4(b) depicts a more balanced state
than the one in Figure 4(c), i.e., the choice to serve
from queue 2 minimizes the difference in disk loads.
This criterion is the concept of majorization as it is
described in [9]. To state formally, given two vectors
X =(Xy,...,X,)and Y = (Y1,...,Y,) where X and
Y € Z", let X;, Y; denote the i-th largest elements of
X and Y respectively. Then Y majorizes X (X <Y)
iff:

ixi = Zf’., and (1)
i=1

k k
Yx < ¥, k=1,..,n-1 (2
i=1

L=5 L=5
1 2

L=3 L=3
3 (]

Disk loads before scheduling
@

L=5 L‘=5 L2=5

L=2 L=2 L=2
3 [

Remove from queue 2 Remove from queue 3

® ©)

Figure 4: Minimizing Differences in Load

Below is our second dynamic scheduling al-
gorithm, which we refer to as the majoriza-
tion algorithm. Given that the current state is
(Lo, weesLic1y, Liy Lig1y. . oy LD—I), we illustrate the
procedure for the case of both queues not being empty
(since that is the only non-trivial case).

Majorization Algorithm (MAJ)

If (Lo,. ..,L,'__l - 1, L,' - 1,L,’+1,...,LD_1) =
(Loy---sLic1, Li— 1, Liy1 — 1,...,Lp_1)
apply the LQF algorithm
If (Loy..., Lici—1,Li = 1, Ligs,...,Lp_1) <
(Loy++wyLic1y Li = 1, Lig1 — 1,...,Lp_y)
serve the first customer in queue 7 — 1
If (Loy.. oy Licyy Li — 1, Liy1 ~ 1,...,Lp-1) <
(Loy.+eyLici = 1,Li = 1, Liy,...,Lp_1)
serve the first customer in queue 7

3.4 M/M/K Lower Bound

To better illustrate the significance of a dynamic
scheduling scheme we will compare its performance
not only to that of a static scheme, but also to some
lower bound on the performance of the disk subsys-
tem. If we can show that the performance of the
dynamic scheme is much closer to that of the lower
bound rather than that of the static scheme, then we
can justify the added complexity associated with dy-

namic scheduling®. In this section we will present a
relatively loose but still interesting lower bound for
comparison.

We can achieve a lower bound by relaxing some
constraint on the scheduling discipline. In this case
we relax the condition that a disk can serve only two
of the D queues; instead, we allow each disk to serve
all D queues. This is then a simple M/M/K [8] model
of the disk subsystem (refer to Figure 5). Although

queue queue queue queue
1 2 3
disk disk disk disk
0 1 2 3

Figure 5: M/M/K Lower Bound Model

this is an unachievable lower bound, it serves our pur-
pose for comparison. We choose an M/M/K system
because it is known to have a very flat response time
curve as a function of the load, almost up to the point
that the system is saturated (see Figure 6). As will be
shown, the dynamic scheduling with chained declus-
tering achieves similar behavior.

3.5 Results

In this section we compare the performance of the
dynamic scheduling algorithms discussed in section
3.3, optimal® static scheduling, and the lower bound
M/M/K model. We also discuss the difference in per-
formance of the two dynamic algorithms, LQF and
MAJ, in those cases where the difference is signifi-
cant. The mean system response time is used as the
measure of performance. For simplicity of illustra-
tion, each disk has an exponential service rate, u;,
with mean equal to 1.0. The results for the dynamic
schemes are obtained through simulations; the results
for the static scheme and the lower bound model are
obtained through simple equations (see [7] and [8] for

4This applies to physical level replication; of course, other
issues must be considered in the case of logical level replication.

3By optimal we mean that the response times for the static
scheme are calculated after balancing the load among the disks
as much as possible for a given case (for an example, refer to
Figure 1). Note that it is not always possible (due to skewness
in workload) to partition the load among the disks equally.

92

details). All results presented in the remainder of the
paper are for a 16 disk subsystem.

3.5.1 Uniform Load

In this section we consider a uniformly loaded system,
i.e., each queue experiences the same arrival rate. Fig-
ure 6 is a graph of the system response time, as a func-
tion of utilization, for the M/M/K model, the static
scheduling scheme, and one of the dynamic scheduling
schemes®. We can see that there is a significant im-
provement in performance in changing from the static
to the dynamic scheme. At 0.9 utilization, the re-
sponse time of the M/M/K model is about 1.4, and the
response time for the dynamic scheme is around 2.6.
Note that the difference of 1.2 is relatively small com-
pared to the 10.0 response time of the static scheme.
Figure 7 illustrates results for the uniform workload
where 20% of the workload is due to write requests.
The results are similar to those of the pure read case.
For the remainder of the paper we will discuss only the
pure read cases, since inclusion of write requests does
not provide any additional insight into our problem
(i.e., qualitative results are similar).

Uniform Workload
(Pure Read Case)
10 T T T T]
O— static
’g 8- A---majorization 7
E o—-M/M/K
3 o .
5
R e
=-+--::.‘3_":'.?..'°“.__9—--?—"'0
0.2 0.4 0.6 0.8
Utilization

Figure 6: Uniform Workload — Pure Read Case

3.5.2 Skewed Load

As mentioned earlier, skewed workload is one of the
cases where dynamic scheduling is most advantageous
(see section 3.3). In this section we present two types
of skewed workload: (1) alternating between frequent

SWe will show results for both dynamic schemes only when
the difference between them is significant.

Uniform Workload
(20% Write Case)
I I T 1

25]
B— static
g 201 A - - - majorization T
@ o—-M/MK
E 15
g
% 10
2 5
0 .
02 0.4 0.6 0.8 1.0
Utilization

Figure 7: Uniform Workload — 20% Write Case

and infrequent access, e.g., queue 0 has a high re-
quest rate, queue 1 has a low request rate, queue 2
has a high one, etc., and (2) gradual increase in fre-
quency of access, e.g., queue 0 has a low request rate,
queue 1 has a slightly higher request rate, queue 2 has
an even higher one, etc. Figures 8 and 9 depict re-
sults for the two types of skewed workload. Here, the
dynamic scheme’s curve closely follows the M/M/K
curve, i.e., it remains relatively flat almost until the
system saturates. Note that the performance of the
M/M/K model is immune to the skewness in the work-
load since any disk in the M/M/K model can serve any
of the queues, i.e., it is a loose bound. Therefore, it
is not surprising that the guantitative differences be-
tween the M/M/K model and the dynamic scheme
performance are large for this type of workload.

3.5.3 Failures

One consequence of a disk failure is an increase in the
workload of both of its neighbors, i.e., two of the D
queues are left with only orne server, instead of two.
Hence, we can view a failure as a special case of skew-
ness in the workload (assuming a pure read workload
before the failure). Figure 10 illustrates the dynamic
scheme’s response time curve, which increases very
gradually almost to the point of system saturation.
It is clear that the static scheme is not able to dis-
tribute the increase in load, due to failure, nearly as
well. The lower bound curve is obtained by using an
M/M/K—1 model”.

"The graph for the skewed workload with a failed disk is not
shown due to the lack of space; it exhibits similar characteristics.

93

Skewed Workload
(Alternating Case)
(Pure Read Case)
1) I T
- G— static
fg &---majorization
15 o—-MM/K
&
Q
g 10
0 0.2 04

Utilization

Figure 8: Skewed Workload (type 1) — Pure Read Case

A disk failure is also the case where the two dy-
namic schemes exhibit significantly different perfor-
mance. Table 1 contains the response times, as a func-
tion of utilization, for the uniform workload case; it
also presents the percentage differences between these
response times. We present only the high workload

utilization | LQF | MAJ | percentage
difference

0.750 2.621 | 2.475 5.89 %
0.775 2.871 | 2.743 4.66 %
0.800 3.210 | 3.004 6.86 %
0.825 3.643 | 3.406 6.95 %
0.850 4.335 | 3.956 9.58 %
0.875 5.415 | 4.712 14.92 %
0.900 7.124 | 6.111 16.58 %
0.920 9.827 | 8.252 19.09 %

Table 1: Response times for LQF and MAIJ algo-
rithms.

results, since that is where the significant difference
occurs. Note that MAJ achieves as high as 19% bet-
ter performance than LQF for the case of 0.92 system
utilization.

3.6 Stability Conditions

Since we are considering a highly utilized I/O sub-
system, it is important to understand under what con-
ditions this system can remain stable. In this section
we investigate the problem of stability and character-
ize the saturation conditions for our model. We con-
sider two issues: (1) how does a scheduling scheme

Skewed Workload

(Low to High Case)
(Pure Read Case)
T T T T
12 . -
G— static
’g 10 A---majorization -
o—-MM/K
&
= 8K -
£
a8 R
3 A
Ft /-
[4
2 ____..—"- =
"='—’0'—::1$—-—e—-—?-—-'°
02 04 0.6 0.8
Utilization

Figure 9: Skewed Workload (type 2) — Pure Read Case

approach the saturation point, and (2) where that sat-
uration point occurs.

Consider again the graphs presented in section 3.5
where response time curves are given, using various
workloads, for static scheduling, dynamic scheduling,
and the M/M/K lower bound model. Both static and
dynamic scheduling schemes asymptotically saturate
at the same point. In the case of a failed disk and/or
skewed access, their saturation occurs at lower uti-
lizations than in the case of the M/M/K lower bound
model. This is due to the relaxation of constraints in
the service discipline. However, an important differ-
ence which was pointed out earlier, is that the shape
of the response time curve for the dynamic scheme is
much like that of the M/M/K model, i.e., it remains
flat almost until the point of saturation. This is not
true in the case of the static scheme.

Since both dynamic and static schemes saturate at
the same level of workload, let us, for ease of illustra-
tion, consider the static case. We present the following
condition which characterizes the workload that can
be sustained by our system without reaching satura-
tion.

Let A; be the arrival rate to queue i, i =
0,1,...,D — 1. The system is stable if for any ¢ and
any k, k= 1,2,...,D — 1, the following holds:

k-1

Z Al+j)modp < k41 and (3)
j=0

D-1
) < D (4)
j=0

94

Failed Disk
Uniform Workload
(Pure Read Case)
25 T T T T]
@— static
20~ a---majorization "
o—-M/M/K

—
A

(v

Response time (in secs)
)

0.2 04 0.6 08
Utilization

Figure 10: Failed Disk — Uniform Workload — Pure
Read Case

We would like to offer the following intuition for the
this condition. Any set of N consecutive queues can
be serviced by N + 1 disks (except in the case where
N = D). We constrain the combined arrival rate to
the N queues to be less than the combined service rate
of the N + 1 disks. This is the condition for stability
for a simple queueing system (see [8]).

As a simple example of the stability problem, con-
sider a system which starts out with a uniform work-
load. First, change the arrival pattern as follows: (a)
increase (slightly) one);, and (b) decreasing all the
other); so as not to change the total workload; i.e.,
create a “spike” in the workload. Then allow this
“spike” to grow, while keeping the total workload con-
stant. If we now obtain the system response time us-
ing both dynamic and static schemes and plot it as a
function of the height of the “spike”, then we should
observe the following: (1) the two schemes should sat-
urate at the same point, and (2) the dynamic scheme’s
curve should grow a lot more gradually than the static
scheme’s curve.

Referring to Figure 11, we begin with a uniform
workload, with the total load being 8.0, and then al-
low the frequency of access to data fragment A, i.e.,
queue 0, to grow (or become a “hot spot”). While
the “spike” height is small both the static and the
dynamic schemes are able to balance the load, and
the response time curves remain almost flat. But, as
the height of the “spike” continues to grow, the static
scheme looses its ability to optimally balance the load,
i.e., keep all the disks equally loaded; this occurs ap-
proximately around Ag = 1.3. Beyond this point, the

static scheme’s response time curve increases sharply.
The response time curve of the dynamic scheme con-
tinues to grow fairly gradually. At Ag = 2.0, the sys-
tem becomes unstable, since the load on disks 0 and
1 exceeds their service capacity.

Response time (in secs)

Spike Workload
Static and MAJ
(Pure Read Case)

T 1

G— static
5t A---majorization -

-

—

075 100 125 150

Input Traffic to Queue 0

1.75

Figure 11: Saturation of Dynamic and Static Schemes

Acknowledgements

The authors are grateful to Bill Cheng for all the
valuable discussions.

References

(1]

(2]

(3]

(4]

[5)

NonStop SQL, A Distributed,
High-performance, High-reliablity Implemen-
taion of SQL. Technical Report No. 82317,
Tandem Database Group, March,1987.

DBC/1012 database computer system man-
ual release 2.0. Technical Report Document
No. C10-0001-02, Teradata Corporation, Nov
1985.

D. Bitton and J. Gray.
VLDB, pages 331-338, 1988.

Disk shadowing.

S. Chen and D. Towsley. Performance of a
mirrored disk in a real-time transaction sys-
tem. ACM Sigmetirics 1991, pages 198-207,
1991.

David J. Dewitt, R. Gerber, G. Graefe,
M. Heytens, K.Kumar, and M.Muralikrishna.

95

[6]

(7]

(8]

(10]

(1

(12)

[13]

(14]

Gamma : A high performance dataflow data-
base machine. VLDB Conference, pages 228
240, 1986.

Jim Gray, Bob Horst, and Mark Walker. Par-
ity striping of disk arrays: Low-cost reliable
storage with acceptable throughput. VLDB
Conference, pages 148-172, 1990.

H. Hsiao and D. J. DeWitt. Chained Declus-
tering: A New Availability Strategy for Mul-
tiprocessor Database Machines. Proc. of Data
Engineering, pages 456-465, 1990.

L. Kleinrock. Queueing Systems, Volume II:
Computer Applications. Wiley-Interscience,
1976.

A. W. Marshall and I. Olkin. Inequalities:
Theory of Majorization and Its Application.
Academic Press, 1979.

Richard R. Muntz and John C.S. Lui. Per-
formance analysis of disk arrays under failure.
VLDB Conference, pages 162-173, 1990.

David A. Patterson, Garth Gibson, and
Randy H. Katz. A case for redundant arrays
of inexpensive disks (RAID). ACM SIGMOD
Conference, pages 109-116, 1988.

D. Towsley, S. Chen, and P.S. Yu. Perfor-
mance analysis of a fault tolerant mirrored
disk system. Proceeding of Performance ’90,
pages 230-254, 1990.

Philip S. Yu and Asit Dan. Effect of system
dynamics on coupling architectures for trans-
action processing. Technical Report RC 16606,
IBM T.J. Watson Research Division, Feb 1991.

Philip S. Yu and Asit Dan. Impact of affinity
on the performance of coupling architectures
for transaction processing. Technical Report
RC 16431, IBM T.J. Watson Research Divi-
sion, Jan 1991. ‘

