
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017 815

Workload-Aware Elastic Striping With Hot Data
Identification for SSD RAID Arrays

Yongkun Li, Biaobiao Shen, Yubiao Pan, Yinlong Xu, Zhipeng Li, and John C. S. Lui, Fellow, IEEE

Abstract—Redundant array of independent disk (RAID) offers
a good option to provide device-level fault tolerance for
solid-state drives (SSDs). However, parity update with either
read–modify–write or read–reconstruct–write may introduce a
lot of extra I/Os and thus significantly degrades SSD RAID
performance. To reduce the parity update cost, elastic striping
chooses to reconstruct new stripes with only the newly updated
data chunks instead of directly updating parity chunks. However,
it necessitates an RAID-level garbage collection (GC) process,
which may incur a very high cost due to the mixture of hot and
cold data chunks. To address this problem, we follow the idea of
elastic striping and propose a workload-aware scheme (WAS) to
reduce the RAID-level GC cost so as to improve the performance
and endurance of SSD RAID. In particular, we first develop a
novel lightweight hot data identification scheme which requires
only a very small computation time and memory cost, then
propose a hotness-aware elastic striping approach to separately
write data chunks with different hotness to different regions in
SSD RAID. To evaluate the effectiveness and efficiency of our
WAS, we implement a prototype system on RAID-5 and RAID-6
arrays composed of commercial SSDs. Experimental results show
that compared to original elastic striping, our scheme reduces
30.0%–70.6% (and 23.9%–63.2%) of chunk writes under the
RAID-5 (and RAID-6) settings, and also reduces the average
response time by 60.9%–79.3% (and 56.8%–80.9%) for RAID-5
(and RAID-6), respectively. Besides, our scheme also improves
the endurance and reliability of SSD RAID compared to original
elastic striping.

Index Terms—Elastic striping, redundant array of indepen-
dent disks (RAID)-level garbage collection, solid-state drive (SSD)
RAID, workload awareness.

I. INTRODUCTION

W ITHOUT mechanical parts, solid-state drives (SSDs)
can provide higher input/output operations per second,

Manuscript received March 13, 2016; revised June 14, 2016; accepted
July 31, 2016. Date of publication August 30, 2016; date of current ver-
sion April 19, 2017. The work was supported in part by the National Nature
Science Foundation of China under Grant 61303048 and Grant 61379038,
in part by the Anhui Provincial Natural Science Foundation under Grant
1508085SQF214, and in part by the Huawei Innovation Research Program
under Grant HIRPO20140301. An earlier conference version of the paper
appeared in IEEE/IFIP DSN 2015 [25]. This paper was recommended by
Associate Editor S. Bhunia. (Corresponding author: Yinlong Xu.)

Y. Li, B. Shen, Y. Pan, Y. Xu, and Z. Li are with the School of Computer
Science and Technology, University of Science and Technology of China,
Hefei 230026, China (e-mail: ykli@ustc.edu.cn; ustcshen@mail.ustc.edu.cn;
pyb@mail.ustc.edu.cn; ylxu@ustc.edu.cn; lizhip@mail.ustc.edu.cn).

J. C. S. Lui is with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2016.2604292

lower power consumption, and higher shock resistance than
traditional hard-disk drives (HDDs). Therefore, SSDs have
been replacing traditional HDDs and are widely used in both
personal computers and enterprise servers of various IT com-
panies, such as Google, Amazon, Dropbox, Facebook, and
Baidu [21], [24]. However, SSDs still have limitations due to
their physical characteristics. In particular, bit errors are very
common for SSDs [7], [8], [22], so device-level fault toler-
ance becomes necessary, especially for applications with high
reliability requirements.

Parity-based redundant array of independent
disks (RAID) [26] offers a good option to provide device-level
fault tolerance. In particular, data redundancies, which are
usually called parity chunks, are generated for each group of
data chunks, and then both the data chunks and parity chunks
are striped across multiple SSDs with one on each to form a
stripe. As a result, lost data chunks can be recovered from
other data chunks and parity chunks within the same stripe,
and so device-level fault tolerance is provided. Note that in
parity-based RAID arrays, to update a data chunk, all parity
chunks within the same stripe need to be updated so as to
preserve data consistency. We call the operation of updating
parity chunks parity update, which requires to first preread
old data and/or parity chunks, and then write back the newly
updated parity chunks to SSDs.

However, parity update not only severely degrades the write
performance of SSD RAID, but also significantly reduces the
SSD RAID endurance. On the one hand, parity update intro-
duces a lot of extra I/Os, and these I/O operations must delay
user requests, and so significantly prolong the I/O response
time and reduce the system throughput. On the other hand,
each block in an SSD can only sustain a limited number of
erasures [3], [8], so extra writes caused by parity update also
consume a lot of erasures and thus reduce system endurance.
Therefore, how to reduce the number of writes caused by
parity update still remains as a critical problem to SSD RAID.

To address the above problem, one good choice is elastic
striping [12], which chooses to reconstruct new stripes with
the newly updated data chunks instead of directly updating
the parity chunks in old stripes, and then mark the obsolete
data chunks in old stripes as invalid at the RAID level. Thus,
it can reduce the I/Os caused by parity update by writing the
reconstructed stripes with full-stripe writes. Besides, elastic
striping uses only SSDs without extra devices.

However, elastic striping necessitates garbage collec-
tion (GC) to reclaim the space of invalid data chunks in old
stripes. Specifically, when GC is triggered, it selects a GC
unit, e.g., multiple stripes, according to the GC algorithm,

0278-0070 c⃝ 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



816 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

then writes back all the valid data chunks in the selected
GC unit by reconstructing new stripes, and finally releases the
space of the GC unit for future allocation. We call this process
RAID-level GC, and it may introduce extra reads and writes.
Thus, the overall system performance heavily depends on the
RAID-level GC cost. In particular, because of the mixture of
hot and cold data chunks in a workload, invalid data chunks
may be scattered over the stripes in an RAID array. In this
case, it may incur a very large RAID-level GC cost, and thus
degrades both the performance and endurance of SSD RAID.
This motivates us to develop a WAS to separate data chunks
of different hotness values, so as to reduce the RAID-level GC
cost when deploying elastic striping for SSD RAID.

To achieve the above goal, we first develop a lightweight hot
data identification scheme, and then develop a hotness-aware
elastic striping for parity update in SSD RAID by leveraging
data hotness. Not like the direct counting-based approach for
hot data identification, which may result in a large overhead for
large systems as it records the information of all data chunks in
the whole system, our hot data identification scheme requires a
very small computation time and memory cost. We emphasize
that the lightweight feature is really important and necessary
to implement the WAS in SSD RAID. We make the following
contributions in this paper.

1) We first develop a novel lightweight hot data identi-
fication scheme to classify data chunks into multiple
types according to their hotness. Specifically, our scheme
leverages a hash-based grouping technique with multiple
least recently used (LRU) lists, and it requires only a
very small memory cost and computation time. Thus,
our scheme is practical and also efficient to be deployed
with elastic striping in RAID controller due to its
lightweight feature.

2) We then propose a hotness-aware elastic striping scheme
to separately store data chunks with different hotness
values in different regions in SSD RAID. To achieve
this, we first cache data chunks in different groups in
buffer according to their hotness, and then write data
chunks to SSDs by constructing full stripes with only
the data chunks in the same group in buffer via elastic
striping, which are supposed to have similar hotness.
By separating hot/cold data chunks, our scheme sig-
nificantly reduces the RAID-level GC cost, and thus
improves both the performance and endurance of SSD
RAID.

3) We also develop a prototype to implement our WAS
on RAID-5 and RAID-6 arrays with commercial SSDs.
With the prototype, we validate the effectiveness of
our scheme by using both synthetic and real-world
workloads. Experimental results show that compared
to elastic striping without workload awareness, our
WAS reduces 30.0%–70.6% (and 23.9%–63.2%) of
chunk writes for RAID-5 and RAID-6 arrays, and also
reduces the average response time by 60.9%–79.3% (and
56.8%–80.9%) for RAID-5 and RAID-6, respectively. In
addition, our scheme also improves the endurance and
reliability of SSD RAID.

The rest of this paper is organized as follows. In Section II,
we first provide necessary background on SSD RAID, then

Fig. 1. Layout of an SSD RAID-5.

introduce elastic striping in detail, and finally motivate our
design. In Section III, we describe the detailed design of
our WAS. In Section IV, we describe our system prototype
and discuss several implementation issues. In Section V, we
show experimental results, and in Section VI, we conclude this
paper.

II. BACKGROUND AND MOTIVATION

In this section, we first provide the necessary background on
SSD RAID, and then overview the elastic striping scheme for
improving parity update. Finally, we discuss the performance
degradation problem caused by RAID-level GC in SSD RAID
with elastic striping and motivate the design of our scheme.

A. SSDs and SSD RAID

We first give a brief introduction to the structure of SSDs.
A flash-based SSD is usually organized into blocks, each fur-
ther contains 64 or 128 pages with 4 KB or 8 KB each. Read,
write, and erase are three fundamental operations in SSDs. In
particular, read and write are performed in unit of page, while
erase is performed in unit of block. To perform write, SSDs
adopt the out-of-place overwrite scheme. That is, to update a
page in an SSD, it writes the new data to another free page
first, and then marks the original page as invalid. In order to
reclaim the space occupied by those invalid pages, GC oper-
ation inside SSDs is needed. When GC is triggered, it first
chooses a candidate block, reads out all the valid pages in
this candidate block, then writes them back to another free
block, and finally calls an erase operation to set all pages in
the chosen block to free.

As bit error is still common in SSDs, RAID is usually con-
sidered to provide system-level fault tolerance. We take an
SSD RAID-5 as an example, as shown in Fig. 1. The whole
RAID is divided into stripes, each of which contains multiple
chunks. Chunks in a stripe are distributed across all SSDs in
the RAID to protect device failures. Each stripe has one par-
ity chunk which is computed from data chunks in the same
stripe. Parity chunks in the RAID are usually stored in differ-
ent SSDs with a round-robin manner for load balance. When
data chunks are updated, their corresponding parity chunks
will be updated as well via either read–modify–write (RMW)
or read–reconstruction–write (RRW). We let the chunk size be
equal to the page size in this paper.



LI et al.: WORKLOAD-AWARE ELASTIC STRIPING WITH HOT DATA IDENTIFICATION FOR SSD RAID ARRAYS 817

Fig. 2. Elastic striping: P2 = D∗
1 ⊕ D∗

2 ⊕ D∗
4.

However, parity update in an RAID will introduce extra
I/Os and degrade both the performance and endurance of SSD
RAID. To address this issue, three types of RAID schemes
are developed to reduce the number of I/Os caused by parity
update, e.g., parity logging, parity caching, and elastic strip-
ing. Specifically, parity logging [29] usually uses a dedicated
device to log writes so as to delay parity update and reduce
the amount of I/Os, and it has also been used for deploying
RAID for SSDs. For example, Mao et al. [20] proposed a
design for RAID-4, which uses one HDD as the parity device
to absorb parity writes and uses another HDD as a mirror to
absorb small write requests, and similar idea was also designed
for RAID-6 in [36]. Li et al. [17] proposed EPLog which
extends parity logging with an elastic feature and uses HDDs
as log devices to absorb writes so as to reduce the writes to
SSDs. Differently, parity caching [4], [10], [14], [16] uses a
buffer, e.g., nonvolatile memory, to delay parity updates so
as to reduce the writes to SSDs. At last, elastic striping [12]
chooses to construct new stripes with updated new data chunks
instead of immediately updating the parity chunks in the old
stripe. Considering the good feature of requiring no addi-
tional devices, we focus on the scheme of elastic striping in
this paper. In the following of this section, we first review
how elastic striping works, and then discuss its problem and
motivate our design.

B. Elastic Striping

Elastic striping was first proposed for chip-level RAID in
single SSDs. Its main idea is to reconstruct new stripes with the
newly updated data instead of immediately updating the parity
chunks in the old stripe, so it requires no additional devices
such like nonvolatile memories. Fig. 2 shows an example
which illustrates the scheme.

Suppose that there are six data chunks D0–D5 and two parity
chunks P0 and P1 in an SSD RAID at the beginning, and the
incoming requests are: 1) updating D1 to D∗

1; 2) updating D2
to D∗

2; and 3) updating D4 to D∗
4. We assume that the three

update requests arrive sequentially.
Instead of immediately updating D1, D2, and D4 and their

corresponding parity chunks, elastic striping manages write
requests in a log-structured manner. Precisely, it appends the
updated data D∗

1, D∗
2, and D∗

4 into the RAID array by construct-
ing a new stripe without performing update to the old stripes.
Note that D1, D2, and D4 are out-of-date, but still need to
be kept in SSDs for data protection. For space consideration,
elastic striping marks these chunks as invalid at RAID level

Fig. 3. RAID-level GC. (a) Before GC operation. (b) After GC operation.

and calls GC to reclaim the space occupied by invalid chunks
in future.

The GC works as follows. When it is triggered, it selects a
GC unit, which represents the smallest unit for GC and can
be a multiple of stripes, according to a GC algorithm, then
writes back all the valid data chunks in the selected GC unit
by reconstructing new stripes, and finally releases the space
of the GC unit for future allocation. We call this GC process
RAID-level GC so as to differentiate the GC process inside
single flash chips. We further define the average number of
valid data chunks that need to be written back during each
GC operation as RAID-level GC cost.

To further illustrate the RAID-level GC process, we consider
an example shown in Fig. 3, where a GC unit consists of two
stripes. As shown in the example, there are three valid data
chunks, D0, D3, and D5, in the selected GC unit in Fig. 3(a).
An RAID-level GC operation first reads D0, D3, and D5, then
writes them into free places, and reclaims those invalid chunks
for future allocation as shown in Fig. 3(b).

C. Motivation

We note that skewness and temporal locality exist in real-
world I/O workloads [6], [15], [28]. Skewness indicates that
some data are accessed and updated frequently while others
are updated rarely. Temporal locality means if a data chunk is
accessed at present, it will be accessed with a high probability
in the near future. In particular, many workloads of real-world
applications exhibit the characteristic that 80% of accesses are
directed to only 20% of data, which is the so called “80/20
Rule” [6], [23]. Our analysis of real-world workloads also
validates this property (see Table I). As a result, the mixture
of hot and cold data in SSD RAID will potentially increase
the number of chunk rewrites per RAID-level GC operation,
and finally aggravates the RAID-level GC cost. In order to
explain this, we present a simple numerical analysis by using
the example in Fig. 4.

Now we compare the RAID-level GC cost in two hypothetic
cases so as to study the impact of workload-awareness on elas-
tic striping: 1) hot and cold data are evenly mixed together [see
Fig. 4(a)] and 2) hot and cold data are perfectly separated [see
Fig. 4(b)]. In this example, we consider an 80/20 Rule sce-
nario, in which 20% of data in an SSD RAID is hot and
receives 80% of write requests, and the remaining 80% of
data is cold and receives 20% of writes, and use the num-
ber of write accesses to measure hotness so as to ease the



818 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

Fig. 4. Impact of hot/cold data separation on RAID-level GC cost. (a)
Mixture of hot/cold data. (b) Separation of hot/cold data.

analysis here. Based on the 80/20 Rule, suppose that each cold
data chunk receives one write on average, then each hot data
chunk receives 16 writes. So hot data chunks are more likely
to be updated and marked invalid than cold data chunks. We
use ph (pc) to denote the probability of a hot (cold) data chunk
being turned into invalid until the GC unit containing the
chunk is selected for GC, and we have pc = (ph/16) approxi-
mately. If we define the average probability of a chunk being
turned into invalid (i.e., being updated) until the time when the
unit containing the chunk is selected for GC as p, then for the
example in Fig. 4(a), we have p = (ph + pc/2) = (17/32)ph,
and the expected RAID-level GC cost, which we denote as
C1, can be expressed as follows.

RAID-Level GC Cost in Case 1 (Data Mixture):

C1 = N(1 − p) = N(1 − 17/32ph)

where N denotes the number of chunks in a GC unit.
In contrast, if hot data chunks and cold data chunks are

perfectly separated as in Fig. 4(b), and we suppose that the
RAID always selects a GC unit containing the most invalid
chunks for GC, then the GC units with full of hot data chunks
will potentially contain the most invalid chunks, and they are
most likely to be selected for RAID-level GC as in Fig. 4(b),
so the average probability p is p = ph, and we can also derive
the RAID-level GC cost, which we denote as C2, as follows.

RAID-Level GC Cost in Case 2 (Data Separation):

C2 = N(1 − p)=N(1 − ph)<C1.

Based on the simple analysis on the above hypothetic exam-
ple, we see that if hot and cold data chunks are mixed
together in SSD RAID, then RAID-level GC requires more
chunk rewrites, and thus degrades both the performance and
endurance of SSD RAID. On the other hand, separating the
hot and cold data may significantly reduce the RAID-level GC
cost due to the skewness and locality within workload.

We point out that even though the above example just
shows an extreme case, it serves as a good motivating exam-
ple to help understand the problem. The experiments with
real-world workloads in later section further validate the
above argument for general cases. In short, we see that even
though elastic striping can effectively reduce writes caused
by RMW and RRW during parity update, it may suffer from
high RAID-level GC cost, especially when invalid chunks

are scattered over the stripes in the whole RAID array.
Besides, according to the analysis on GC cost in single SSDs
(e.g., [9], [13], [18], [19], [32], [35], and [31]) it is a general
consensus that the GC performance in SSDs can be improved
via separately storing hot/cold data. Inspired by this insight,
we believe that the RAID-level GC cost in SSD RAID can
also be reduced by separating hot and cold data. This moti-
vates us to develop a WAS with elastic striping to reduce the
RAID-level GC cost so as to finally improve the SSD RAID
performance and endurance.

III. WORKLOAD-AWARE ELASTIC STRIPING

In this section, we introduce our WAS in detail. To achieve
workload-awareness in SSD RAID with elastic striping, we
first classify data chunks into multiple types according to
their hotnesses by developing a novel lightweight hot data
identification scheme, and then exploit hotness awareness in
parity update with elastic striping. In particular, we address
the following key issues.

1) How to identify different types of data chunks efficiently
(see Section III-A for lightweight hot data identifica-
tion).

2) How to achieve hotness awareness when performing
writes to SSDs with elastic striping (see Section III-B
for hotness-aware elastic striping).

A. Lightweight Hot Data Identification

To achieve workload awareness, we first propose a
lightweight hot data identification scheme by leveraging a
hash-based grouping technique with multiple lists, which are
managed to maintain the LRU property. For ease of presenta-
tion, we call these lists LRU lists, and call our identification
scheme which relies on multiple grouping-based LRU lists
GLRU with “G” standing for grouping.

The main idea of GLRU is to maintain a group of LRU lists
to keep tracking of data chunks, and each LRU list contains a
fixed number of data items, each of which records the logical
page number (LPN) and a write counter of a particular data
chunk. Specifically, the information of a data chunk is recorded
by a data item which contains a 32-bit LPN and a 4-bit write
counter. The association between data chunks and LRU lists
are determined with a hash function, which is the division
method [f (x) = x mod K, where x is the LPN of the requested
data chunk and K is the number of LRU lists]. That is, for a
data chunk, we compute the hash value of its LPN and take
the hashing result as its group ID which is the identity of the
LRU list in which the LPN is stored. We note that a data chunk
belongs to at most one LRU list. In the whole system, we keep
K LRU lists with N items in each. For ease of presentation,
we collectively call them a hot data table. We emphasize that
not all data chunks are recorded in the hot data table, and the
rationale is that only potential hot data chunks are needed to
be recorded so as to save the computation time and memory
cost. Hot data chunks can be identified by looking up the hot
data table. To further illustrate, we also show an example in
Fig. 5 to depict the structure of GLRU which contains four
LRU lists.

We now introduce the process of measuring the hotness of
a single data chunk. Specifically, to determine whether a data



LI et al.: WORKLOAD-AWARE ELASTIC STRIPING WITH HOT DATA IDENTIFICATION FOR SSD RAID ARRAYS 819

Fig. 5. Structure of GLRU, where K = 4 and N = 4.

Algorithm 1 Hot Data Identification: GLRU
Input: LPN of a data chunk;
Output: the hotness of the data;

1: Determine the group G in which the data belongs by hashing
LPN;

2: if LPN exists in G then
3: Increase the Counter by one;
4: Adjust the position of the items in G to maintain the LRU

property;
5: if Counter ≥ Threshold then
6: return HOT;
7: else
8: return COLD;
9: end if

10: else
11: if the probability test passed then
12: Evict the last item in G;
13: Insert an item with the LPN in the head;
14: Set the Counter to one;
15: end if
16: return COLD;
17: end if

chunk is hot or not, we first hash its LPN to determine its group
ID, and then look up the LPN in the corresponding LRU list.
If the LPN is found and its counter is greater than or equal to a
predefined threshold, then we take this data as hot; otherwise,
we take it as cold. Before returning the identification result, we
need to update the LRU list. In particular, if the LPN already
exists in the LRU list, then we increase its counter by one
and move this item to the head of the list so as to maintain
the LRU property. We note that the write count will not be
incremented if it reaches the maximum value of 15 as we use
4 bits to represent the counter. Otherwise, i.e., the LPN does
not exist in the list before, then we evict the item in the tail
with probability 0.5 and insert the new LPN into the list if the
tail item is evicted. The rationale of this probabilistic evicting
policy is that we can not be sure that the newly accessed data
chunk is always hotter than the data chunk in the list tail, so
we do the eviction with a probability.

Algorithm 1 provides the pseudo-code of the above
described hot data identification scheme GLRU. Its time com-
plexity is O(N) and its space complexity is O(N × K), where
N denotes the number of data items in each LRU list and K
denotes the number of LRU lists. Considering that N directly

affects the computation time of our scheme, in implementa-
tion, we usually set N as a small constant, say less than ten, so
as to reduce the time cost for maintaining the LRU property
in each LRU list.

We emphasize that our hot data identification scheme pos-
sesses at least three benefits. First, it is really fast in identifying
whether a data chunk is hot or not, this is because we use
a simple hash function to identify the group ID and each
group (i.e., each LRU list) contains only a small number of
items. Thus, our algorithm incurs a very small time overhead.
Second, we only record the information of data chunks in the
hot data table instead of all data chunks in the whole sys-
tem, so the memory cost is also small. More importantly, the
memory cost is independent from the system size, i.e., the
total number of data chunks in the system. That is, as long
as the number of LRU lists K and the number of items in
each list N are fixed, the memory cost of our scheme is also
fixed. Last, our algorithm is also highly efficient. As shown
in the experiments with real-world workloads, even compared
to the direct counting based approach which records the infor-
mation of all data chunks, our algorithm helps further reduce
the RAID-level GC cost by up to 16.7%.

Note that with the hot data identification scheme, data
chunks are classified into different types according to their
hotness, and the number of data types is clearly equal to the
number of hotness levels. For example, if we set two hotness
levels (hot and cold), then data chunks are also classified into
two types, one type is hot, and the other type is cold. We point
out that by also keeping write counters in the hot data table,
we can easily extend GLRU to realize a multitier classification
scheme by setting more than one threshold, so as to classify
data chunks into multiple types. In our experiment, we imple-
ment the scheme by considering 2–4 tiers, so data chunks are
classified into 2–4 types, respectively.

B. Hotness-Aware Elastic Striping

1) Data Flow: To achieve hotness awareness in elastic
striping, after identifying hot/cold data, we first cache data
chunks in buffer with a grouping-based approach. Specifically,
we divide the whole buffer into multiple groups with the num-
ber of groups being equal to the number of data types, and use
each group to cache only one type of data. After determining
the type of a data chunk, we append it to the corresponding
group in the system buffer, and we use in-place overwrite to
update data in buffer. We note that all chunks in the same
group should have similar update frequency. That is, these
chunks are expected to be updated with similar likelihood in
future. We call this caching approach hotness-aware caching,
and Algorithm 2 describes the data flow.

After a chunk is appended into a group in buffer and the
buffer for caching this group is full, then we generate full
stripes by using data chunks in this group, and flush them to
the underlying SSDs. In particular, we use a log-structured
approach by appending the constructed data stripes to the
end of the SSD RAID array. Precisely, we use data chunks
from the same group in buffer to construct new full stripes,
no matter whether the accesses to these data chunks are new
writes or updates, and then append the new stripes to the SSD



820 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

Algorithm 2 Caching
1: for Each chunk C with its type being identified via the hot

identification scheme do
2: if The old version of C exists in a group in buffer then
3: Delete it from that group;
4: else if The old version of C has already flushed to SSDs then
5: Mark it as invalid in metadata;
6: end if
7: Assign C into a group according to its type;
8: if The buffer for caching the group to which C belongs is full

then
9: Perform encoding to generate full stripes;

10: end if
11: end for

Algorithm 3 Hotness-Aware Elastic Striping
1: for Each group G to be flushed do
2: if Space utilization exceeds the threshold then
3: Perform RAID-level GC;
4: end if
5: Flush all chunks in group G with a log-structured manner by

using elastic striping;
6: end for

RAID array. Clearly, before flushing chunks into the under-
lying SSDs, we need to check whether the space utilization
of the whole RAID array exceeds a predefined threshold. If it
is, then RAID-level GC will be triggered to reclaim space for
future writes, and we will introduce RAID-level GC in detail
in the next section. Algorithm 3 formally presents the process
of writing data chunks to SSDs, and we call it hotness-aware
elastic striping.

2) Benefits and Limitations: First of all, by separating
data chunks into different groups in buffer, our hotness-aware
caching scheme has the following advantages.

1) We can generate only full-stripe writes without trigger-
ing RMW and RRW when flushing data chunks, thus the
performance degradation caused by these two operations
can be eliminated.

2) Each full-stripe write only generates one parity write, so
the number of parity writes gets minimized.

3) We can perform large write operations on the underlying
SSDs by buffering small random writes and group-
ing them into sequential writes, and this improves the
performance of single SSDs.

However, the loss of data chunks stored in cache at a sudden
power off presents as a constraint for this design. In order to
avoid this disaster, one may choose nonvolatile memory for
caching, while we post this as a future work.

Second, by using a log-structured approach to write data
chunks to SSDs, load balance between SSDs can be achieved,
because log-structured approach always appends writes to SSD
RAID in a round-robin mode no matter whether the request
is a new write or an update. This also helps to achieve
system-level wear-leveling among SSDs. Note that to flush
BlockSize×(RAIDSize−1) data chunks in the RAID-5 setup,
extra BlockSize parity chunks are generated. Thus, the system
totally flushes BlockSize × RAIDSize chunks with the log-
structured write policy. That is, multiple full-stripe writes at
the system level are issued, and the size of the write to each

SSD is exactly equal to the full block size. Besides, note that
each update operation inside SSDs triggers an out-of-place
overwrite, the log-structured manner at RAID level, which
takes updates as new writes, is similar to the out-of-place
overwrite policy, so it does not have negative impact on SSD
performance.

3) Discussions: We note that two key issues in the caching
design need to be addressed so as to achieve high system per-
formance. The first issue is how many chunks a group should
contain. We denote the number of chunks in each group in
cache as SizeG, and it is set as BlockSize×(RAIDSize−1) for
RAID-5 and BlockSize × (RAIDSize − 2) for RAID-6, where
BlockSize is the number of pages in a block of an SSD and
RAIDSize is the number of SSDs in the RAID array. Thus, one
group can contain SizeG chunks in our setting. With this con-
figuration, one can generate only full-stripe writes at system
level.

The second key issue is how many groups we should have.
We note that the more groups a system keeps, the higher accu-
racy the hot data identification scheme can achieve. However,
the marginal gain, which denotes the additional improve-
ment of identification accuracy by increasing one more group,
should decrease. Besides, the more groups a system has, the
more memory it consumes. As shown in the experiment sec-
tion, using less than five groups is usually enough to achieve
a good performance, and in particular, setting two groups
already works well in most cases.

In terms of the memory cost of the caching scheme, note
that if an RAID-5 is composed of 16 SSDs where each block
contains 128 pages, then one group can buffer 128 × (16 − 1)
chunks at most. In this case, the size of each group is 7.5 MB if
the page size is 4 KB. Therefore, the total cache size required
by our algorithm is only tens of megabytes even if we classify
data chunks into multiple types, say less than five. That is, our
algorithm incurs only a small memory cost for caching.

IV. SYSTEM PROTOTYPE AND
IMPLEMENTATION DETAILS

To evaluate the performance of our WAS, we implement
a system prototype by deploying our scheme on SSD RAID
with commercial SSDs. In the following of this section, we
first describe the overall system architecture of our prototype,
then describe the RAID-level garbage collection component,
and finally discuss several implementation issues.

A. Overview of System Architecture

Our system prototype consists of five key modules:
1) hot/cold identification module; 2) caching module; 3) cod-
ing module; 4) write module; and 5) GC module. The overall
system architecture is illustrated in Fig. 6. Note that our design
is implemented at the device level, so it does not need to access
the SSD internals.

The main function of the hot/cold identification module is
to track the access information of data and then categorize dif-
ferent data chunks into different groups. In particular, when
a write request arrives, the hot/cold identification module first
divides the data contained in the request into chunks whose
size is set as the page size, then for each data chunk, the



LI et al.: WORKLOAD-AWARE ELASTIC STRIPING WITH HOT DATA IDENTIFICATION FOR SSD RAID ARRAYS 821

Fig. 6. Overview of system architecture.

hot/cold identification module checks the accessing addresses
of each data chunk to determine whether it is a random request
or a sequential request. If it is a sequential request, i.e., the
addresses being accessed are successive to the ones accessed
by the last request, the hot/cold identification module will
simply return the identification result of the last request. The
rationale is to leverage the temporal locality to reduce iden-
tification overhead. On the other hand, for a random request,
the hot/cold identification module will search for its write fre-
quency in our grouping-based LRU lists to decide which group
this chunk belongs to. That is, for random requests, this mod-
ule implements the hot identification scheme GLRU described
in Section III-A to identify hot/cold data.

The caching module simply appends data chunks from the
hot/cold identification module to different groups in the system
buffer. When a chunk is appended into a group, if the cache
for buffering this group of data chunks is not full, the caching
module will simply cache this chunk in the buffer. Otherwise,
it will flush all data chunks in this group to the underlying
SSDs by calling the coding module.

The coding module adopts different codes (e.g., we imple-
ment RAID-5 code and RDP [5] code for RAID-6 in different
experimental setups) to generate parity chunks. Note that our
RAID scheme can also be applied for different RAID levels,
and we just use RAID-5 and RDP code of RAID-6 as exam-
ples to validate the effectiveness of our design in this paper. In
fact, the idea can be directly applied when constructing other
RAID systems like EVENODD [2] code, X-Code [34], and
Reed–Solomon [27] code, and we only need to make small
changes in the implementation.

The write module is responsible for writing data to SSDs
by implementing the hotness-aware elastic striping scheme
described in Section III-B. It uses a log-structured approach
to append chunks from the same group into SSD RAID.
Precisely, data chunks from the same group in the caching
module are always grouped to construct full new stripes, no
matter whether these data chunks correspond to new writes
or updates. The write module balances the write operations
performed on all SSDs, and has the potential to benefit
the system-level wear-leveling among SSDs. Before writing
chunks into SSDs, the write module will check the space uti-
lization of the whole array. If the space utilization exceeds
a predefined threshold (e.g., 90% in our experimental setup),

the write module first triggers RAID-level GC. Otherwise, it
simply appends data and parity chunks into SSDs directly.

The GC module works for reclaiming the space occupied
by invalid data, i.e., the data that has been updated before.
When RAID-level GC is triggered, the GC module selects a
candidate GC unit, which may be a multiple of stripes, and
then writes back all the valid data chunks in the candidate
GC unit by reconstructing new stripes. We further describe
the RAID-level GC operation in the next section.

B. RAID-Level Garbage Collection

We note that the chunks that are marked invalid at the
RAID level still need to be retained for protecting other data
in the stripes. Therefore, we need RAID-level GC operation to
reclaim the space occupied by invalid chunks. We further elab-
orate on two key issues when implementing the RAID-level
GC in our prototype.

The first issue is how to set the size of GC unit. As
we described before, a GC unit represents the smallest unit
selected for RAID-level GC operation, and it is defined as
a multiple of stripes in this paper. In particular, in our
implementation, we let the size of a GC unit be equal to
BlockSize×RAIDSize. Based on this setting, our RAID-level
GC operates on a group of BlockSize stripes. With the help
of the WAS, the RAID-level GC cost can be reduced.

The second issue is choosing which GC algorithm. We note
that GC cost comes from the rewrites of valid chunks, so we
use the greedy algorithm for performance consideration. That
is, we always select the GC unit containing the least valid
chunks for reclamation. When RAID-level GC is triggered,
we first read out all valid chunks in the selected GC unit, then
treat them as the coldest chunks, and finally assign them into
the over-provisioned space of the RAID. Besides, this greedy
algorithm is quite simple and easy to be implemented.

C. Implementation Issues

In this section, we discuss three implementation issues.
Metadata: We use (LBA, PDN, PBN, PPN) to record a

chunk, where LBA denotes the logical block address of a
chunk, PDN denotes physical device number or SSD num-
ber, PBN denotes physical block number, and PPN denotes
physical page number. Note that PDN, PBN, and PPN are
used to record the exact location of a chunk. We use 4 bytes
to record LBA, and 4 bytes to store PBN. Additionally, we
make several optimizations.

1) We use only several bits to record PDN instead of an
int variable. For example, if an SSD RAID consists of
16 SSD, just 4 bits are enough to indicate all integers
ranging from 0 to 15.

2) We also use only a small number of bits for PPN. If one
block in an SSD contains 64 pages, 6 bits are able to
represent all integers from 0 to 63 by using a binary
string.

We note that only about 10 bytes are enough to store the
metadata of one chunk. Therefore, our design requires only
around 2.5 MB memory space for storing metadata for every
gigabyte of data on SSDs.

We point out that we encode some parts of the metadata
into one or two bytes so as to save the memory consumption



822 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

TABLE I
STATISTICS OF I/O WORKLOADS

of metadata, while the decoding operation requires additional
processing overhead. Thus, there is a tradeoff between memory
consumption and processing overhead. However, the process-
ing overhead is usually small as decoding only requires bitwise
shift operations. Besides, both the memory usage and the pro-
cessing overhead can be reduced if the chunk size is set to
be larger. However, if the chunk size is too large, then there
will be more partial writes, which may result in a degradation
of the write performance. Thus, there is also a tradeoff when
setting the chunk size.

To manage the metadata, note that the metadata will be
frequently queried and modified. Compared to the inefficiency
of a liner list in searching, a red–black tree, as a kind of self-
balancing binary search tree, can achieve a higher efficiency
in searching and insertion. Therefore, we use a red–black tree
to manage metadata.

1) Partial Writes: Chunk is the smallest write unit in our
implementation. In order to make the prototype be compatible
with different chunk sizes, we also implement partial writes in
our prototype. In particular, when the offset of a write request
does not align with one chunk, our prototype first reads data
from the remaining part of this chunk, combines them with
the new data from the incoming request, then writes the com-
bined chunk into the corresponding device. This process helps
maintain data consistency when performing write operations.

2) Parallel Programming: Because our prototype is imple-
mented on an RAID composed of multiple commercial SSDs,
parallel I/Os are essential for system performance. We make an
effort to provide parallelism for our prototype in which read,
write, and RAID-level GC operations can be simultaneously
executed among SSDs with a multithreading implementation.

V. PERFORMANCE EVALUATION

We conduct extensive experiments to show the effectiveness
of our prototype by deploying it on an RAID consisting of
commercial SSDs. In the experiments, we use four real-world
workloads and one synthetic workload for evaluations.

Note that our design follows the idea of elastic striping [12]
to do parity update and aims to reduce the RAID-level GC
cost, so we take eSAP developed in [12] as the baseline
scheme. We compare our scheme with eSAP mainly in the
following aspects: RAID-level GC cost, average I/O response
time, endurance, and reliability.

A. Workloads

We consider the following I/O workloads.
1) Financial1 [30]: It is an I/O trace collected from OLTP

applications at a large financial institution.

TABLE II
SPECIFICATION OF SSDS

2) Online [33]: It is a workload collected from a course
management system of a university department.

3) Webmail [33]: It is a workload collected from Web
interface of a department mail server.

4) Online+Webmail: It is the workload that combines the
Online and Webmail workloads.

5) Synthetic: It is a synthetic workload in which addresses
are accessed in normal distribution with 20% of
addresses being accessed by 80% of requests.

Because the evaluation of RAID-level GC cost is the most
important part in our experiments, all workloads considered
in the evaluations are write-dominant. In particular, we only
generate write requests for the Synthetic workload. Based on
our analysis on the four real-world workloads, we find that the
minimal write ratio is about 0.74 (the Online workload), and
each workload writes several gigabytes of data. For exam-
ple, there are about 40 GB of data chunks being written in
the Online+Webmail workload, and all other workloads write
more than 10 GB of data. Also, skewness exists in all work-
loads. For example, around 80%–90% of requests access only
20% of data except for the Financial1 workload which is ran-
dom write dominant. The statistics further validate the widely
assumed 80-20 Rule used in storage workloads, and also show
the high skewness exhibited in real-world workloads. Table I
shows the detailed workload statistics.

B. System Configuration

In our implementation, all experiments except for the
endurance tests are performed on a Dell PowerEdge T620
server equipped with four 2.40 GHz Intel Xeon CPUs and
8 GB of physical memory. There are nine commercial SSDs
being attached to the server. One SSD is installed with
Debian 8 OS and works as the host. Other eight SSDs are
taken as raw block devices and are configured as an RAID
array. Table II shows the detailed specifications of the SSDs.

Because we cannot access the exact number of erasure oper-
ations for commercial SSDs, we run simulations to evaluate



LI et al.: WORKLOAD-AWARE ELASTIC STRIPING WITH HOT DATA IDENTIFICATION FOR SSD RAID ARRAYS 823

Fig. 7. RAID-level GC cost. (a) RAID-5. (b) RAID-6.

the endurance of SSD RAID by using the widely accepted
SSD simulator, DiskSim [11] with SSD extensions [1].

We implement our prototype using C programming lan-
guage with the gcc version 4.9.2.0. For comparison, we also
implement the eSAP scheme. We set the chunk size as 4 KB,
and so the stripe size is 32 KB as we have eight SSDs in the
RAID. We set the parameter Pwait used in eSAP as 200 ms,
which means that data chunks will first be buffered in a cache
and wait for at most 200 ms before flushing to SSDs. We fix
the working set size in each SSD as 256 MB in our experi-
ments, thus, it is a total of 2 GB in the whole RAID composed
of eight SSDs. According to the statistics of the I/O workloads
in Table I, we find that each workload writes more than 10 GB
and less than 40 GB data, and the total size of unique chunk
writes for each workload is no more than 1 GB. Therefore,
2 GB is large enough to store all data chunks, and so the
system needs to trigger a large amount of RAID-level GC
operations under this setting. Furthermore, our prototype and
eSAP will call RAID-level GC operations when more than
90% of space in the array has been utilized. In order to validate
the effectiveness of our scheme in different RAID levels, we
implement the RAID-5 code and RDP code of RAID-6 in the
prototype.

In the implementation of our hot data identification scheme,
we set the number of LRU lists and the number of data items in
each list as 128 and 8, respectively. Based on this setting, the
memory consumption of GLRU is around 5 KB. In terms of
the threshold setting in our hot data identification scheme, we
note that many exiting hot data identification schemes require
to set a similar threshold. In particular, one simple counting-
based method that is previously used to identify a hot data page
is to check whether the page that is being accessed received
writes or not before, i.e., whether the page receives more than
one access or not. Besides, due to the temporal locality in
real-world workloads, the frequently updated data is usually
accessed more than once in a short time. Thus, we set the
threshold as two in our experiments. We point out that different
thresholds correspond to different definitions of hot data. If
the threshold is larger, then a smaller amount of data is defined
as hot. By using the same threshold as in a counting-based
method, which implies to use the same definition of hot data,
our scheme almost identifies all the hot data, but it can save
a lot of memory consumption than counting-based method,

because it does not need to record the information of all logical
addresses, but only needs to maintain the hot data table.

C. RAID-Level GC Cost

In this evaluation, in order to generate full-stripe writes at
the RAID level and have the potential to issue full-block writes
to SSDs in the write module, we initialize the cache size,
SizeG, as BlockSize × (RAIDSize − 1) = 64 × (8 − 1) = 448
for each group in an RAID-5 array, and set it as BlockSize ×
(RAIDSize − 2) = 64 × (8 − 2) = 384 for RAID-6. Since
we set the chunk size as 4 KB, each group needs the memory
space of 448×4 KB = 1792 KB and 384×4 KB = 1536 KB
for RAID-5 and RAID-6, respectively. We set the number of
groups as 2–4. In this section, we compare the RAID-level
GC cost of our scheme under different settings with eSAP. In
particular, for each workload, we evaluate the RAID-level GC
cost by calculating the total number of chunk rewrites incurred
by RAID-level GC. For ease of presentation, we denote our
scheme as WAS.

Fig. 7 shows the results of RAID-level GC cost which
denotes the total number of chunk rewrites caused by
RAID-level GC operations. The number in the brackets after
WAS indicates the number of groups used in the experiment.
For example, WAS(2) means that we configure our prototype
to have two groups in the caching module. That is, data chunks
are classified into only two types, either hot or cold. Results
show that our prototype with WAS can reduce the RAID-level
GC cost compared with eSAP under all settings. In partic-
ular, even if we only classify data chunks into two types,
our scheme WAS(2) shown in Fig. 7(a) can still reduce up to
70.6% of chunk writes compared with eSAP under Financial1
workload, and it reduces 30.0%–43.2% of chunk writes for
other four workloads. For RAID-6 as shown in Fig. 7(b),
WAS(2) can also reduce 23.9%–63.2% of chunk writes under
all workloads.

Besides, we can also note that as the number of groups
increases by classifying data chunks into more categories, the
RAID-level GC cost further reduces. The main reason is that
with more groups, the hotness classification of data chunks
is more accurate, and data chunks in the same group should
be updated with more even probability. However, we see that
the improvement becomes negligible when we have more than



824 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

Fig. 8. Average response time. (a) RAID-5. (b) RAID-6.

two groups. The main reason is that after dividing data chunks
into two groups, most of data chunks in the same group already
have similar hotness, that is, we already efficiently separate
the hot and cold data and well utilize the locality information.
So there is no big benefit to further divide each group into
multiple groups.

Considering that using more groups may also incur larger
overhead, as the more groups a system has, the more memory
consumption and higher computational cost it requires. In par-
ticular, according to the settings in our experiment, WAS(3)
and WAS(4) consume one and two more groups of memory
than WAS(2), and the group size is 1792 KB for RAID-5 and
1536 KB for RAID-6, respectively. Thus, we suggest to set the
number of groups as two in general cases as WAS(2) already
achieves a good performance. However, if there is no resource
limitations in deploying a system, then more than two groups
can be used for pursuing the best performance.

D. Average Response Time

In this section, we evaluate the average response time
under different workloads. We vary the number of groups
from 2 to 4. We record the total number of requests and
the response time of each request, then compute the average
response time. We still compare our scheme with eSAP so as to
show the effectiveness and efficiency of workload awareness.

Fig. 8 shows the experimental results under different RAID
settings and workloads. First of all, we see that compared with
eSAP which is more busy in doing RAID-level GC operations,
the average response time of the SSD RAID deployed with
our scheme can be significantly reduced in both RAID-5 and
RAID-6 setups. In particular, WAS(2) in the RAID-5 setup
reduces the average response time by 60.9%–79.3% compared
with eSAP under different workloads, while it reduces the
response time by 56.8%–80.9% for RAID-6.

Second, we see that for our scheme, as the number of groups
increases, e.g., from 2 to 4, the average response time further
decreases, mainly because the hotness of data chunks within
the same group is more similar when the classification scheme
is configured in a more fine-grained manner by setting more
groups. However, the further reduction of response time when
setting more groups becomes small, e.g., the average response
time under the settings of 2–4 groups is very close. The main
reason is that the hotness of most data chunks in a group

already becomes similar even under the setting of two groups,
so further separating data chunks into more groups does not
bring big benefit. This trend conforms to our previous analysis
on RAID-level GC cost.

At last, we can observe that the average response time under
the Synthetic workload is much longer than that under other
workloads for both eSAP and our scheme. The main reason is
that the Synthetic workload does not possess high temporal
locality, so the ratio of the number of chunk writes caused by
RAID-level GC to the total number of chunk writes becomes
bigger. In other words, the SSD RAID is more busy in doing
RAID-level GC operations under the Synthetic workload than
other traces.

In a summary, based on the comparison results of
RAID-level GC cost and average response time, we con-
clude that our scheme, e.g., WAS(2), significantly improves
the performance of SSD RAID with eSAP.

E. System Endurance and Reliability

We first evaluate the system endurance by measuring the
total number of erasures performed on the whole SSD RAID
array. We also compare our scheme with eSAP under dif-
ferent workloads and RAID settings. Note that since we
cannot access the exact information about the number of
erasures being performed for commercial SSDs, we conduct
this evaluation by using the DiskSim simulator with SSD
extensions.

Fig. 9 shows the results of total number of erasures per-
formed on the whole array by using our scheme and eSAP.
Again, we also consider 2–4 groups in hot data identifica-
tion for our scheme. From Fig. 9, we see that compared with
eSAP, WAS(2) can reduce 22.9%–63.2% of erase operations
under all workloads under RAID-5 setting, and it reduces
23.0%–61.8% of erase operations for RAID-6. Besides, we
can also observe that by separating data chunks into more
groups, we can reduce more erasures to the whole array, but
the marginal reduction, i.e., the additional reduction of era-
sures by increasing one more group, is very small when setting
more than two groups. This observation and its rationale both
conform to the analysis on RAID-level GC cost and average
response time in the above two sections.

Note that we adopt a log-structured manner to append
writes into SSD RAID, so our scheme also balances writes



LI et al.: WORKLOAD-AWARE ELASTIC STRIPING WITH HOT DATA IDENTIFICATION FOR SSD RAID ARRAYS 825

Fig. 9. System endurance. (a) RAID-5. (b) RAID-6.

Fig. 10. System-level wear-leveling.

among SSDs. This benefits the system-level wear-leveling
among SSDs in the whole RAID array. To validate this, we
further show the number of erasures performed on each SSD
under different workloads. Fig. 10 shows the results of our
scheme in the RAID-5 setup under the Online workload with
different configurations. Results under the other four work-
loads and different setups share the same trend, so we ignore
them in the interest of space. We see that our scheme achieves
a very good system-level wear-leveling under all settings.
Therefore, each SSD will get a similar aging rate with our
RAID scheme.

Now we consider the reliability of SSD RAID with eSAP
and our scheme WAS(2). We first characterize the error rate of
each SSD after using eSAP and our scheme for parity update.
Note that it is a common consensus that the error rate of an
SSD increases as it undergoes more erasures, so we assume
that the error arrive rate of each SSD after handling the same
workload by using eSAP and our scheme is proportional to
the number of erasures being performed. Mathematically, we
denote the error arrive rate of each SSD by using eSAP to han-
dle a workload as λ, then the error arrival rate of each SSD by
using our scheme to handle the same workload can be com-
puted as αλ, where α is ratio of erasures with our scheme to
that of eSAP. So α can be set as [0.37, 0.77] for RAID-5, and
[0.38, 0.77] for RAID-6, as WAS(2) can reduce 22.9%–63.2%
of erase operations for RAID-5 and 23.0%–61.8% of erase
operations for RAID-6 than eSAP.

To compare the reliability of eSAP and WAS(2), we define
a metric based on mean-time-to-data-loss (MTTDL). In partic-
ular, after handling the same workload, the error arrival rates
of each SSD by using eSAP and WAS(2) are denoted as λ
and αλ, and we define RAID reliability by evaluating how

Fig. 11. RAID reliability. (a) RAID-5. (b) RAID-6.

long the RAID system can sustain until data loss happens if
SSD failure arrives according to the rates λ and αλ, respec-
tively. We assume that the recovery rate for eSAP and WAS(2)
is the same, which we denote as µ, and we denote the total
number of SSDs in the RAID array as n. Now we can derive
the MTTDL of SSD RAID with eSAP, which we denote as
MTTDLeSAP, as follows:

MTTDLeSAP

=

⎧
⎪⎪⎨

⎪⎪⎩

µ + (2n − 1)λ

n(n − 1)λ2 , RAID-5

µ2 + 2(n − 1)λµ +
(
3n2 − 6n + 2

)
λ2

n(n − 1)(n − 2)λ3 , RAID-6.

Similarly, by replacing λ with αλ in the above equation, we
can derive the reliability of SSD RAID with WAS(2).

Now we perform numerical analysis to compare the relia-
bility of eSAP and WAS(2) by using the above equations. In
particular, we set n as 8, and set λ as 0.25 by assuming a four
year average lifetime for SSDs. For the recovery rate, we set
it as µ = 104 by configuring the SSD capacity as 400 GB and
the I/O throughput for recovery as 100 Mb/s. For the param-
eter α, based on the above analysis, we set it as 0.37, 0.5,
and 0.77. Fig. 11 shows the reliability results under different
settings. We see that more erasures a scheme can reduce, then
the higher reliability it can achieve. In particular, compared
to eSAP, WAS(2) improves RAID reliability from 2× to 20×
under different RAID settings in terms of MTTDL.

F. Design Tradeoffs of Parity Update Schemes

As we introduced in Section II-A, parity update
schemes for SSD RAID can be classified into three



826 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

Fig. 12. Comparison of eSAP, WAS(2), and parity logging. (a) Financial1. (b) Online. (c) Webmail. (d) Online+Webmail.

categories: 1) parity logging; 2) parity caching; and 3) elastic
striping, and they pose different design tradeoffs. In this sec-
tion, we discuss their tradeoffs in details by evaluating their I/O
overhead, which is defined as the amount of additional reads
and writes required to handle all user requests of a workload.

We first focus on parity logging, which uses a dedicated
device to store log chunks that are computed as the delta
between the old version and the new version of data chunks
belonging to the same stripe. Note that generating log chunks
requires to preread the old data/parity chunks, and write back
the log chunks to log devices. For performance consideration,
we directly write data and parities to SSD RAID for full-stripe
writes, rather than generating log chunks, so as to reduce the
amount of preread and log chunks. Besides, we assume that
the capacity of log device is large enough so that all log chunks
can be kept in log devices without writing back to SSD RAID.
Therefore, the overhead of parity logging includes three parts:
1) log chunk writes; 2) prereads, which are required when
generating log chunks; and 3) parity writes, which are caused
by full-stripe writes.

We now consider eSAP and our WAS, which are in the cat-
egory of elastic striping. For our scheme, we focus on WAS(2)
in this experiment, which classifies data into two types only
(either hot or cold). As we described in Section II-A, the
overhead of eSAP and WAS(2) mainly consist of two parts:
1) GC cost, which corresponds to the data movement caused
by RAID-level GC and 2) parity writes, which are caused by
writing full stripes to SSD RAID.

Fig. 12 shows the overhead of parity logging, eSAP, and
WAS(2) under different workloads. First of all, we see that
compared to eSAP, our scheme WAS(2) can significantly
reduce the I/O overhead by exploiting workload aware-
ness, and the benefit mainly comes from the reduction of
RAID-level GC cost as analyzed before. Besides, different
from elastic striping, parity logging generates a lot of log
chunks and also requires a lot of prereads. Note that log chunks
are written to log devices only, but not distributed across SSDs,
so even though parity logging can reduce the amount of par-
ity writes, it requires a careful design to efficiently address the
writes of log chunks. Otherwise, the log device is very likely
to be posed as a bottleneck and severely degrades device-level
parallelism and system performance.

At last, for parity caching, which first caches updated
data in buffer and then flushes to SSD RAID when buffer
becomes full, its overhead heavily depends on the buffer size.
In particular, if the buffer is extremely small, then this scheme

corresponds to the conventional RAID scheme, which updates
parities by using either RMW or RRW. As shown in [12],
eSAP can outperform conventional RAID-5 by up to an order
of magnitude in terms of the parity overhead for random write
dominant workload, and we already show that WAS(2) can
further reduce the RAID-level GC cost than eSAP. On the
other hand, if the buffer size is large enough, and suppose that
all updated data can be kept in memory, then no overhead is
introduced. However, if more data is kept in memory for par-
ity caching, then the lower reliability the system can achieve
if DRAM is used for caching. Therefore, there is a tradeoff
between performance and reliability for parity caching, so it
is unfair to directly compare it with parity logging or elastic
striping schemes.

In summary, we see that all the three classes of parity update
schemes pose a design tradeoff. On the one hand, they reduce
parity writes by deferring the updates to parity chunks in SSD
RAID in different ways. On the other hand, each of them has
its own drawbacks. Parity caching requires to keep data in
memory, and so it sacrifices system reliability. Parity logging
requires additional log devices, and it also necessitates a care-
ful design to guarantee system performance when applying to
SSD RAID. Elastic striping does not need additional devices,
but it requires RAID-level GC, which may incur a large cost.
We emphasize that the main focus of this paper is to reduce
RAID-level GC cost of elastic striping by exploiting workload
awareness, so as to make the best use of its advantages and
bypass its disadvantages simultaneously.

G. Discussions on Hot Data Identification Schemes

To further show the effectiveness and efficiency of our hot
data identification scheme GLRU, we compare it with a direct
counting-based approach which records the information of all
data chunks. In particular, we implement the counting based
approach by extending the hotness computation algorithm used
in previous work [25]. Hereafter, we call this scheme hotness
computation algorithm (HCA).

HCA works as follows. It first defines the hotness of a data
chunk C as HC = (WF/NF + WC/#AgeC), where WC is the
total number of updates to chunk C, #AgeC denotes the time
interval between the last two updates to chunk C, WF is the
total number of updates to the file to which chunk C belongs,
and NF is the total number of chunks in this file. Second, for a
group of data chunks G, HCA defines the group similarity as
SG = (1/NC)

∑
C∈G HC, where NC is the number of chunks



LI et al.: WORKLOAD-AWARE ELASTIC STRIPING WITH HOT DATA IDENTIFICATION FOR SSD RAID ARRAYS 827

Fig. 13. Comparison of RAID-level GC cost between different hot data
identification schemes.

that are assigned to group G. At last, for a new chunk Ci,
it is assigned to group Gj if and only if SGj is the closest one
to HCi . After assigning Ci to a group, we update the group
similarity accordingly.

HCA also performs well in our evaluation, but it requires
considerable memory space to maintain the metadata for every
data chunk. In particular, we use 8 bytes to record the access
time of a data chunk and use 2 bytes to record the write count
of a data chunk, HCA will require around 2.5 MB memory
space for storing the hotness information for each gigabytes
of data on SSDs. With the increment of the storage capacity
of SSDs, the memory cost for storing metadata becomes very
large. Different from HCA, the memory cost of our new hot
data identification scheme GLRU does not increase with the
storage capacity of SSDs, and it is fixed as long as the num-
ber of LRU lists and the number of data items in each list are
fixed. For example, according to the settings used in our exper-
iments, our scheme requires only around 5 KB memory space
regardless of the SSD capacity. Besides, GLRU performs even
better than HCA, as measured by RAID-level GC cost. Fig. 13
shows the RAID-level GC cost of our WAS, but incorporating
HCA and GLRU, respectively. We can easily see that GLRU
can further reduce the RAID-level GC cost by up to 16.7%
compared to HCA when we consider two groups in hot data
identification.

We further make a discussion on the impact of number of
data types used in the hot data identification scheme, and this
parameter also determines the number of groups in the caching
module. As we mentioned before, the more groups the caching
module keeps, the higher accuracy of the hot/cold data classi-
fication we can achieve. However, caching data also consumes
physical memory which is a scarce resource. From the evalu-
ation results of RAID-level GC cost in Fig. 7 and the average
response time in Fig. 8, we find that the performance improve-
ment diminishes when the number of groups reaches a certain
value, and this value may be different for different workloads,
which depends on the skewness and temporal locality of the
workload. However, we emphasize that separating data into
two types already works well.

H. Summary

Based on the experimental results shown in the previous sec-
tions, we conclude that with hotness-aware elastic striping, our
proposed RAID scheme can not only reduce the RAID-level
GC cost and the number of writes to SSD RAID, it can also
reduce the average I/O response time. Meanwhile, our scheme

also reduces the total number of erase operations performed on
SSDs and improves SSD RAID reliability. Therefore, our WAS
improves both the performance and endurance of SSD RAID.

VI. CONCLUSION

In this paper, we proposed a WAS to take advantage of the
skewness and temporal locality of workloads to enhance the
performance and endurance of SSD RAID. Our scheme first
classifies data chunks into different types according to their
hotness and buffers them in a cache within different groups, it
then writes data chunks to the underlying SSDs with a hotness-
aware elastic striping approach and log-structured write policy.
We developed a prototype to implement our scheme and con-
ducted extensive experiments on commercial SSDs. Results
validated that our scheme improves both the performance and
endurance of SSD RAID.

REFERENCES

[1] N. Agrawal et al., “Design tradeoffs for SSD performance,” in Proc.
USENIX ATC, Boston, MA, USA, 2008, pp. 57–70.

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.

[3] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in Proc. SIGMETRICS, Seattle, WA, USA, 2009, pp. 181–192.

[4] C.-C. Chung and H.-H. Hsu, “Partial parity cache and data cache man-
agement method to improve the performance of an SSD-based RAID,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 7,
pp. 1470–1480, Jul. 2014.

[5] P. Corbett et al., “Row-diagonal parity for double disk failure cor-
rection,” in Proc. USENIX FAST, San Francisco, CA, USA, 2004,
pp. 1–14.

[6] M. E. Gomez and V. Santonja, “Characterizing temporal locality in I/O
workload,” in Proc. Int. Symp. Perform. Eval. Comput. Telecommun.
Syst., 2002.

[7] L. M. Grupp et al., “Characterizing flash memory: Anomalies, obser-
vations, and applications,” in Proc. Micro, New York, NY, USA, 2009,
pp. 24–33.

[8] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of NAND
flash memory,” in Proc. USENIX FAST, San Jose, CA, USA, 2012, p. 2.

[9] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient identification of hot
data for flash memory storage systems,” ACM Trans. Stor., vol. 2, no. 1,
pp. 22–40, 2006.

[10] S. Im and D. Shin, “Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,” IEEE Trans. Comput., vol. 60,
no. 1, pp. 80–92, Jan. 2011.

[11] B. John, S. Jiri, S. Steve, and G. Greg. The DiskSim Simulation
Environment (v4.0). (Jan. 2015). [Online]. Available: http://
www.pdl.cmu.edu/DiskSim/

[12] J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh, “Improving SSD reli-
ability with RAID via elastic striping and anywhere parity,” in Proc.
IEEE/IFIP DSN, Budapest, Hungary, 2013, pp. 1–12.

[13] H.-S. Lee, H.-S. Yun, and D.-H. Lee, “HFTL: Hybrid flash translation
layer based on hot data identification for flash memory,” IEEE Trans.
Consum. Electron., vol. 55, no. 4, pp. 2005–2011, Nov. 2009.

[14] S. Lee, B. Lee, K. Koh, and H. Bahn, “A lifespan-aware reliabil-
ity scheme for RAID-based flash storage,” in Proc. ACM Symp. Appl.
Comput., Taichung, Taiwan, 2011, pp. 374–379.

[15] S.-W. Lee and B. Moon, “Design of flash-based DBMS: An in-page
logging approach,” in Proc. ACM SIGMOD, Beijing, China, 2007,
pp. 55–66.

[16] Y. Lee, S. Jung, and Y. H. Song, “FRA: A flash-aware redun-
dancy array of flash storage devices,” in Proc. 7th IEEE/ACM Int.
Conf. Hardw./Softw. Codesign Syst. Synth., Grenoble, France, 2009,
pp. 163–172.

[17] Y. Li, H. H. W. Chan, P. P. C. Lee, and Y. Xu, “Elastic parity logging for
SSD RAID arrays,” in Proc. IEEE/IFIP DSN, Toulouse, France, 2016.

[18] Y. Li, P. P. C. Lee, and J. C. S. Lui, “Stochastic modeling of large-scale
solid-state storage systems: Analysis, design tradeoffs and optimization,”
in Proc. ACM SIGMETRICS, Pittsburgh, PA, USA, 2013, pp. 179–190.



828 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 36, NO. 5, MAY 2017

[19] Y. Li, P. P. C. Lee, J. C. Lui, and Y. Xu, “Impact of data locality
on garbage collection in SSDs: A general analytical study,” in Proc.
ACM/SPEC ICPE, Austin, TX, USA, 2015, pp. 305–315.

[20] B. Mao et al., “HPDA: A hybrid parity-based disk array for enhanced
performance and reliability,” ACM Trans. Stor., vol. 8, no. 1, 2012,
Art. no. 4.

[21] C. Metz. Flash Drives Replace Disks at Amazon, Facebook,
Dropbox. (Jan. 2015). [Online]. Available: http://www.wired.com/
2012/06/flash-data-centers/all/

[22] N. Mielke et al., “Bit error rate in NAND flash memories,” in Proc.
IEEE Int. Rel. Phys. Symp., Phoenix, AZ, USA, 2008, pp. 9–19.

[23] A. Miranda and T. Cortes, “CRAID: Online raid upgrades using dynamic
hot data reorganization,” in Proc. USENIX FAST, Santa Clara, CA, USA,
2014, pp. 133–146.

[24] J. Ouyang et al., “SDF: Software-defined flash for Web-scale Internet
storage systems,” in Proc. ASPLOS, Salt Lake City, UT, USA, 2014,
pp. 471–484.

[25] Y. Pan, Y. Li, Y. Xu, and Z. Li, “Grouping-based elastic striping
with hotness awareness for improving SSD raid performance,” in Proc.
IEEE/IFIP DSN, Rio de Janeiro, Brazil, 2015, pp. 160–171.

[26] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. ACM SIGMOD, Chicago,
IL, USA, 1988, pp. 109–116.

[27] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, 1960.

[28] D. S. Roselli, J. R. Lorch, and T. E. Anderson, “A comparison of file
system workloads,” in Proc. USENIX ATEC, San Diego, CA, USA, 2000,
p. 4.

[29] D. Stodolsky, G. Gibson, and M. Holland, “Parity logging overcom-
ing the small write problem in redundant disk arrays,” ACM SIGARCH
Comput. Architect. News, vol. 21, no. 2, pp. 64–75, May 1993.

[30] (2002). Storage Performance Council. [Online]. Available:
http://traces.cs.umass.edu/index.php/Storage/Storage

[31] B. Van Houdt, “A mean field model for a class of garbage col-
lection algorithms in flash-based solid state drives,” in Proc. ACM
SIGMETRICS, Pittsburgh, PA, USA, 2013, pp. 191–202.

[32] B. Van Houdt, “Performance of garbage collection algorithms for flash-
based solid state drives with hot/cold data,” Perform. Eval., vol. 70,
no. 10, pp. 692–703, 2013.

[33] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “SRCMap: Energy
proportional storage using dynamic consolidation,” in Proc. USENIX
FAST, San Jose, CA, USA, 2010, pp. 267–280.

[34] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,”
IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276, Jan. 1999.

[35] Y. Yang and J. Zhu, “Analytical modeling of garbage collection algo-
rithms in hotness-aware flash-based solid state drives,” in Proc. IEEE
MSST, Santa Clara, CA, USA, 2014, pp. 1–10.

[36] L. Zeng et al., “HRAID6ML: A hybrid RAID6 storage architecture with
mirrored logging,” in Proc. IEEE 28th Symp. MSST, Pacific Grove, CA,
USA, 2012, pp. 1–6.

Yongkun Li received the B.Eng. degree in com-
puter science from University of Science and
Technology of China, Hefei, China, in 2008, and
the Ph.D. degree in computer science and engineer-
ing from the Chinese University of Hong Kong,
Hong Kong, in 2012.

He is currently an Associate Researcher with
the School of Computer Science and Technology,
University of Science and Technology of China. He
was a Post-Doctoral Fellow with the Institute of
Network Coding, the Chinese University of Hong

Kong. His current research interests include performance evaluation and
architectural design of networking and storage systems.

Biaobiao Shen received the bachelor’s degree in
computer science from the Anhui University of
Technology, Ma’anshan, China, in 2013, and the
master’s degree from the School of Computer
Science and Technology, University of Science and
Technology of China, Hefei, China, in 2016.

His current research interests include solid-state
devices and distributed storage systems.

Yubiao Pan received the B.S. and Ph.D. degrees
from the School of Computer Science and
Technology, University of Science and Technology
of China, Hefei, China, in 2010 and 2015, respec-
tively.

His current research interests include solid-
state devices, distributed storage system, and data
deduplication.

Yinlong Xu received the B.S. degree in mathemat-
ics from Peking University, Beijing, China, in 1983,
and the M.S. and Ph.D. degrees in computer sci-
ence from the University of Science and Technology
of China (USTC), Hefei, China, in 1989 and 2004,
respectively.

He is currently a Professor with the School
of Computer Science and Technology, USTC. He
served the Department of Computer Science and
Technology, USTC as an Assistant Professor, a
Lecturer, and an Associate Professor. He is currently

leading a group of research students in doing some networking and high per-
formance computing research. His current research interests include network
coding, wireless network, combinatorial optimization, design and analysis of
parallel algorithm, and parallel programming tools.

Prof. Xu was a recipient of the Excellent Ph.D. Advisor Award of the
Chinese Academy of Sciences in 2006.

Zhipeng Li received the bachelor’s degree from
the School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China, in 2010, where he is currently pur-
suing the Ph.D. degree.

His current research interests include storage sys-
tem, especially NAND flash solid-state devices-based
storage systems and lager-scale storage systems.

John C. S. Lui (F’10) received the Ph.D. degree in
computer science from the University of California
at Los Angeles, Los Angeles, CA, USA.

He is currently a Professor with the Department
of Computer Science and Engineering, Chinese
University of Hong Kong, Hong Kong. His
current research interests include communica-
tion networks, network/system security, network
economics, network sciences, cloud computing,
large scale distributed systems, and performance
evaluation theory.

Prof. Lui serves in the editorial board of the IEEE/ACM TRANSACTIONS
ON NETWORKING, the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the Journal of
Performance Evaluation, and the International Journal of Network Security.
He is an Elected Member of the IFIP WG 7.3, a fellow of ACM, a fellow of
IEEE, and Croucher Senior Research Fellow.


