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Abstract Characterizing large complex networks such as online social networks through
node querying is a challenging task. Network service providers often impose severe con-
straints on the query rate, hence limiting the sample size to a small fraction of the total
network of interest. Various ad hoc subgraph sampling methods have been proposed, but
many of them give biased estimates and no theoretical basis on the accuracy. In this work,
we focus on developing sampling methods for large networks where querying a node also
reveals partial structural information about its neighbors. Our methods are optimized for
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NoSQL graph databases (if the database can be accessed directly), or utilize Web APIs avail-
able on most major large networks for graph sampling. We show that our sampling method
has provable convergence guarantees on being an unbiased estimator, and it is more accurate
than state-of-the-art methods. We also explore methods to uncover shortest paths between
a subset of nodes and detect high degree nodes by sampling only a small fraction of the
network of interest. Our results demonstrate that utilizing neighborhood information yields
methods that are two orders of magnitude faster than state-of-the-art methods.

Keywords Crawling · Graph sampling · Online social network · Random walk

1 Introduction

The literature on sampling large networks is vast and rich. Various techniques have been
proposed for subgraph sampling and characterization of large networks [1–3] (refer toAhmed
et al. [4] for a good survey). These techniques, however, often lack provable guarantees. This
means that after sampling a fraction of a large network, one has no guarantees whether
the metrics obtained are to be trusted. Fortunately, researchers have recently made a push
toward network characterization through sampling with provable properties and accuracy
guarantees.

Techniques adapted to sample networks stored at NoSQL graph databases or accessible
from Web APIs (e.g. available on Facebook,1 Sina microblog,2 Quora,3 and CiteSeerX4)
must refrain from randomly sampling too many nodes and all together avoid sampling edges,
either due to caching inefficiencies or limitations in the API. In practice, most large networks
such as online social networks (OSNs), including those we present in this study, do not
provide random sampling primitives. Practitioners perform random sampling by guessing
user IDs in the user ID space, which, if sparsely populated, imposes a large number of query
misses until a valid user is found. In this context, techniques that heavily rely on random
sampling, such as Dasgupta et al. [5], suffer from the low query rate. Dasgupta et al. [5]
partially compensate the low query rate through the use of neighborhood information present
in the node query reply. Similarly, graph streaming techniques, such as Ahmed et al. [4],
are also not well adapted to this environment as they require visiting all edges, which is
prohibitively expensive for large networks with millions or even billions of edges.

Recently, great focus has been placed on developing techniques that use specially con-
structed “crawlers” to query large networks and to provide asymptotically unbiased estimates
of a handful of network characteristics [6,7]. Chief among these techniques are random
walks (RWs), which provide provable accuracy and convergence guarantees (see Ribeiro
and Towsley [8] and Avrechenkov et al. [9]). RWs present a number of desirable properties
that are useful to characterize large networks: (1) they require either few or no independently
sampled nodes and produce asymptotically unbiased estimates and accuracy guarantees under
mild conditions for a large family of directed5 and undirected networks, even when the net-
work of interest has multiple disconnected components, as long as some limited amounts
of random sampling are available [6,8,9]; (2) they use crawling to collect samples (which

1 http://www.facebook.com.
2 http://www.weibo.com.
3 http://www.quora.com.
4 http://citeseerx.ist.psu.edu.
5 In directed networks where querying a node retrieves the node¡−s incoming and outgoing edges.
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Fig. 1 Examples of networks providing neighborhood information with no sampling cost. a Sina microblog
(directed graph), b Quora (directed graph), c Facebook (undirected graph), d Citeseerx (directed graph)

effectively implements importance sampling on node degrees) and can achieve relatively
high query rates on NoSQL graph databases or using Web APIs; (3) they do not require
any advance knowledge of the network, such as its size or topology. However, existing RW
techniques do not take advantage of the extra neighborhood information, despite the fact that
neighborhood information is readily available in many networks at (practically) no sampling
cost (obtained from the node query reply). Several examples are given in Fig. 1. When we
crawl a user’s profile on Sina microblog, we obtain its neighbors’ information such as the
number of followers, the number of followings, location, and gender.When we crawl a user’s
profile on Facebook, we obtain its friend list and its friends’ friend counts. When we crawl a
user’s profile on Quora (a question-and-answer website), we obtain its neighbors (followers
and followings) and the number of followers of each of its neighbors. When we search a
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paper on CiteSeerX, we obtain the information of its citations and references such as the
authors and the number of citations. To efficiently support the above functions, we guess that
these network service providers organize and store each node’s neighbors and its neighbors’
brief summaries separately, which can be easily achieved by NoSQL databases. The extra
neighborhood information is obtained with little sampling cost in the above examples. When
the node and edge labels of interest are included in the extra neighborhood information,
clearly, we can reduce the sampling cost by utilizing this extra information to characterize
node and edge labels. However, including such extra information in RW-based estimator
while retaining unbiased guarantees is challenging due to different types of biases involved
in the sampling process. Moreover, in this paper, we observe that other applications such
as high degree node detection and shortest path discovery can also benefit from the extra
neighborhood information.
Contributions In this work, we consider the generalization of RW sampling and combine
current state-of-the-art estimators to include neighborhood information for estimating node
and edge label densities. Our estimator drastically reduces (by 4-fold) the number of samples
required to achieve the same estimation accuracy. Examples of OSNs that provide neigh-
borhood information are found everywhere, e.g. Facebook, Sina microblog, and Google
Scholar.6 Our generalization allows us to include neighborhood information in the estima-
tion of a variety of network characteristics from nodes sampled using a RW-based technique
called Frontier Sampling [6]. We also explore methods to uncover shortest paths between a
subset of nodes and detect high degree nodes by sampling only a small fraction of the network
of interest. Our results show that utilizing neighborhood information yields methods that are
two orders of magnitude faster than state-of-the-art methods.

This paper is organized as follows. Several basic crawling techniques are summarized
in Sect. 2. In Sect. 3, we present the methodology of using neighborhood information to
estimate node label density. In Sects. 4, 5, and 6, we propose methods using neighborhood
information to estimate edge label density, detect high degree nodes, and uncover shortest
paths respectively. The performance evaluation and testing results are presented in Sect. 7.
Section 8 summarizes the related work. Concluding remarks then follow.

2 Preliminaries

In this section we present three basic graph sampling methods: Uniform Vertex Sampling
(UNI), Random Walk (RW) [11], and Frontier Sampling (FS) [6], which are underlying
techniques for problems discussed in later sections. For ease of presentation, in this section,
we only present methods for undirected graphs. One way to convert a directed graph into
an undirected graph is by ignoring the direction of edges. Unless we state otherwise, denote
by Gd = (V, Ed) the directed graph under study, and G = (V, E) the undirected graph
generated by ignoring the direction of edges in Gd. For ease of reading, we list notation used
throughout the paper in Table 1.

2.1 Uniform node sampling (UNI)

UNI is the simplest method to provide unbiased estimates of population estimates, where
each node v ∈ V is sampled with the same probability

6 http://scholar.google.com.
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Table 1 Table of notation

G = (V, E) Undirected graph

Gd = (V, Ed) Directed graph

Nv The set of neighbors of node v in G

N (I)
v The set of followers of node v in Gd

N (O)
v The set of followings of node v in Gd

dv , d
(I)
v , d(o)v Degree, in-degree, out-degree of node v respectively

{l1, . . . , lK } The set of node labels

{l ′1, . . . , l ′K ′ } The set of edge labels

Lv The label of node v

Lu,v The label of edge (u, v)

θ = (θ1, . . . , θK ) Node label density

τ = (τ1, . . . , τK ′ ) Edge label density

[si ]i=1,...,n List of nodes sampled by UNI, RW, and FS

[(s−i , si )]i=1,...,n List of edges sampled by RW and FS

s−i = si−1 holds for RW but does not always hold for FS

n The number of sampled nodes

K , K ′ The number of node labels and edge labels, respectively

πUNI
v , πRW

v , πFS
v The stationary probability of sampling node v at each step of UNI, RW, and FS

respectively

πUNI
v = 1

|V | .

There are few OSNs that provide APIs support for UNI. One website that supports UNI is
Wikipedia, where one can query a randomly sampled Wikipedia page. On networks such as
Facebook, Foursquare, Flickr,7 Sina microblog, and Xiami,8 one can sample users (nodes) as
users have numeric IDs between the minimum and the maximum ID values. Unfortunately,
ID values of users in many networks (e.g. Flickr, Facebook, and Sina microblog) are not
assigned sequentially, and the ID space is sparsely populated [6,12]. Hence, a randomly
generated ID may not correspond to a valid user and a considerable computational effort
may be required to generate a legitimate ID. To sample a large number of nodes, therefore,
UNI is only practical on networks that provide the API and those whose user ID space is
densely packed.

2.2 Random walk (RW)

RW has been extensively studied in the graph theory literature [11]. From an initial node, a
walker selects a neighbor at random as the next-hop node. The walker moves to this neighbor
and repeats the process. Denote by Nu the set of neighbors of any node u ∈ V . Let du
(i.e., du = |Nu |) be the degree of u. Formally, a RW can be viewed as a Markov chain

7 http://www.flickr.com.
8 http://www.xiami.com.
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with transition matrix [PRW
u,v ]u,v∈V , where PRW

u,v is defined as the probability of node v being
selected as the next-hop node given that the walker is currently at node u. Formally, we have

PRW
u,v =

{
1/du if v ∈ Nu,

0 otherwise.

The stationary distribution πRW of this Markov chain is

πRW
v = dv

2|E | , v ∈ V .

For a connected and non-bipartite graph G, the probability of being at node v converges
to the above stationary distribution [11]. In addition, RW can also be used to sample edges
randomly, and the probability of traversing each edge converges to the same value 1

|E | [6].

2.3 Frontier sampling (FS)

FS [6] is a fully distributed sampling algorithm that performs m independent RWs on G.
If m = 1, FS behaves exactly like a RW. When m > 1, compared to a single RW, FS is
more robust to the problem that arises from the walker getting trapped at a loosely connected
component ofG. EachFSwalker has a predefined budget B (we explain how B is chosen at the
end of this section). At each step, an FS walker at node u moves to a node randomly selected
from Nu , deducting from the budget B a random quantity X ∼ Exp(du), an exponentially
distributed random variable with mean 1/du . FS stops when B becomes negative. If G is a
connected and non-bipartite graph, the probability that a node v is sampled by FS converges
to the following distribution

πFS
v = dv

2|E | , v ∈ V .

FS can also be used to sample edges randomly, as the probability of traversing each edge
converges to the same value 1

|E | [6]. Let n denote the number of nodes that one wishes to

sample. Define d̄ =
∑

v∈V dv
|V | as the average degree. The choice of budget B is often defined

as d̄n/m. In practice, one does not need to know d̄ as B may be increased dynamically
on-the-fly. Because we can adjust B on-the-fly, in what follows we take the liberty to assume
that FS samples exactly n nodes.

In the following sections, we assume that graph G is connected and non-bipartite. Let
[si ]1≤i≤n be the list (or, sequence) of sampled nodes by UNI, RW, and FS, where si is the
i th sampled node. Note that s1, . . . , sn are not necessary different from each other. Ref. [6]
reveals that RW and FS are also effective for randomly sampling edges. Let [(s−

i , si )]1≤i≤n
be the list of sampled edges by RW and FS, where (s−

i , si ) is the i th sampled edge, i.e., a
RW (or FS) walker moved from node s−

i to si . For RW, we easily have s−
i = si−1, where s0

is the initial node of RW. As we mentioned, FS has m independent walkers and si−1 and si
may not be generated by the same walker, so s−

i does not necessarily equal si−1. Let “a.s.”
denote “almost sure” converge, i.e., the event of interest happens with probability one. Then
we have

Lemma 1 [6,13,14] For any function φ(v) : V → R, where
∑

v∈V φ(v) < ∞, we have
the following equation for UNI, RW, and FS.

lim
n→∞

1
n

n∑

i=1

φ(si )
a.s.−−→

∑

v∈V
φ(v)πv.
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3 Node label density estimation

In this section, we present methods for estimating node label density. Formally, denote by
Lv the label of node v ∈ V , with range {l1, . . . , lK }. Define

θk =
|{v : Lv = lk ∧ v ∈ V }|

|V | , 1 ≤ k ≤ K ,

i.e., the fraction of nodes with label lk . Then, the node label density is defined as θ =
(θ1, . . . , θK ). For example, when Lv is defined as the degree of node v, then θ is the degree
distribution of nodes in V . When Lv is defined as the gender of node (or user) v, then θ is
the gender distribution of nodes in V .

3.1 Simple estimators of node densities

To estimate θ based on sampled nodes [si ]1≤i≤n , the stationary distribution of sampling
methods (e.g. UNI, RW, and FS) π = [πv]v∈V is needed to correct the bias induced by
the underlying sampling method. For v ∈ V , we have πv = 1

|V | for UNI, and πv = dv
2|E |

for RW and FS. Since the values of |V | and |E | are usually unknown, we cannot correct
the sampling bias in a direct manner. Instead, one may use a non-normalized stationary
distribution π̂ = [π̂v]v∈V to reweigh sampled nodes, where π̂v is computed as

π̂v =
{
1 for UNI,
dv for RW and FS.

(1)

We easily find that πv ∝ π̂v . Let 1(P) denote the indicator function that equals one when
predicate P is true, and zero otherwise. Similar to the Horvitz–Thompson estimator [16], we
use inverse probability weighting to reweigh sampled nodes. That is, we estimate θk as

θ̂k =
1
C

n∑

i=1

1(Lsi = lk)
π̂si

, 1 ≤ k ≤ K , (2)

where C = ∑n
i=1 π̂−1

si . Ribeiro and Towsley [6] show that θ̂k is an asymptotically unbiased
estimate of θk .

3.2 Estimators using neighborhood information of sampled nodes

A node w ∈ V appears in dw nodes’ neighbor sets. When the degrees and the node labels of
sampled nodes’ neighbors are available, therefore, nodes with larger degrees have a larger
chance to appear as sampled nodes’ neighbors in comparisonwith nodeswith smaller degrees
even for UNI. Similar to the Horvitz–Thompson estimator, we propose the following esti-
mator utilizing the free neighborhood information

θ̆k =
1

C̆

n∑

i=1

∑

w∈Nsi

1(Lw = lk)
π̂si dw

, 1 ≤ k ≤ K , (3)

where C̆ = ∑n
i=1

∑
w∈Nsi

π̂−1
si d−1

w . The above estimator is similar to one proposed in
Dasgupta et al. [5]. However, the estimator in Dasgupta et al. [5] requires |V | to be known
in advance, which is usually not available. Moreover, Dasgupta et al. [5] focus on designing
independent node samplingmethods (e.g. UNI, independentweighted node sampling), which
we argued has a low query rate. Whereas we focus on crawling methods such as RW and FS.
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For any v ∈ V , Eq. (1) shows that πv
π̂v

has the same value, denoted asCπ . We haveCπ = 1
2|E |

for RW and FS and Cπ = 1
|V | for UNI. Next, we analyze the accuracy of estimator θ̆k .

Theorem 1 θ̆k is an asymptotically unbiased estimate of θk .

Proof Let φ(v) = ∑
w∈Nv

1(Lw=lk )
π̂vdw

. Applying Lemma 1, we have

lim
n→∞

1
n

n∑

i=1

∑

w∈Nsi

1(Lw = lk)
π̂si dw

= lim
n→∞

1
n

n∑

i=1

φ(si )

a.s.−−→
∑

v∈V
πvφ(v)

= Cπ

∑

w∈V

∑

v∈Nw

1(Lw = lk)
dw

= Cπ

∑

w∈V
1(Lw = lk)

= Cπ |V |θk .

Similarly, we have limn→∞ C̆
n

a.s.−−→ Cπ |V |. Thus, we obtain limn→∞ θ̆k
a.s.−−→ θk . *+

θ̆k is computed based on node labels of sampled nodes’ neighbors, while θ̂k is computed
based on node labels of sampled nodes. We can easily find that neighbors of sampled nodes
are biased to nodes with high degrees even for UNI. Therefore, θ̆k is an estimator based on
biased samples. Ribeiro and Towsley [6] show that UNI has a smaller error for characterizing
small degree nodes than biased sampling methods such as FS. It is consistent with our results
in Sect. 7, which show that θ̆k may exhibit a larger error than θ̂k defined in (2). Ref. [10] gives
an optimal method to combine unbiased estimators. According to this method, we present
the following mixture estimator for θk

θ̂mix
k = αk θ̂k + (1 − αk)θ̆k, 1 ≤ k ≤ K , (4)

where parameter αk is defined as

αk =
Var(θ̆k)

Var(θ̂k)+ Var(θ̆k)
.

αk lies between zero and one, and is used to determine the relative importance of two estimates

θ̂k and θ̆k . When θ̂k and θ̆k are independent, θ̂mix
k has the smallest variance Var(θ̂k )Var(θ̆k )

Var(θ̂k )+Var(θ̆k )
. In

practice, θ̂k and θ̆k might not be independent, our later experimental results show that θ̂mix
k

exhibits smaller errors than θ̂k and θ̆k for many real networks.
Inwhat followswepropose an estimator of θ using the available neighborhood information

of sampled nodes for directed OSNs such as Sina microblog, where a node has knowledge
of in-degrees (i.e., the number of followers) and out-degrees (i.e., the number of followings)
of its incoming neighbors and outgoing neighbors. For a node v ∈ V , denote by d (I)v its
in-degree and d(O)v its out-degree. Let

N (I)
v = {u : (u, v) ∈ Ed}

be the set of followers of v, and

N (O)
v = {u : (v, u) ∈ Ed}
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be the set of followings of v. Let Nv = N (I)
v ∪ N (O)

v . Define

ψu,v =






2, (u, v) ∈ Ed ∧ (v, u) ∈ Ed
0, (u, v) /∈ Ed ∧ (v, u) /∈ Ed
1, otherwise.

A node w ∈ V appears as a following of d(I)w nodes in N (I)
w and as a follower of d(O)w

nodes in N (O)
w . Therefore, node w with larger d(I)w + d(O)w has a larger chance to appear as a

neighbor of sampled nodes even for UNI. Similar to θ̆k , using sampled nodes’ followers and
followings we estimate θk as

θ̆∗
k = 1

C̆d

n∑

i=1

∑

w∈Nsi

ψsi ,w1(Lw = lk)

π̂si (d
(I)
w + d(O)w )

, 1 ≤ k ≤ K ,

where C̆d =
∑n

i=1
∑

w∈Nsi
ψsi ,wπ̂−1

si (d(I)w + d(O)w )−1.

Theorem 2 θ̆∗
k is an asymptotically unbiased estimate of θk .

Proof Let φv = ∑
w∈Nv

ψv,w1(Lw=lk )

π̂v(d
(I)
w +d(O)w )

. Applying Lemma 1, we have

lim
n→∞

1
n

n∑

i=1

∑

w∈Nsi

ψsi ,w1(Lw = lk)

π̂si (d
(I)
w + d(O)w )

= lim
n→∞

1
n

n∑

i=1

φ(si )

a.s.−−→
∑

v∈V
πvφ(v)

= Cπ

∑

v∈V

∑

w∈Nv

ψv,w1(Lw = lk)

d(I)w + d(O)w

= Cπ

∑

w∈V

∑

v∈Nw

ψw,v1(Lw = lk)

d(I)w + d(O)w

= Cπ

∑

w∈V
1(Lw = lk)

= Cπ |V |θk .

The second last equation holds because
∑

v∈Nw
ψw,v = d(I)w + d(O)w , which is easily

obtained by the definition of ψw,v . Similarly, we have limn→∞ C̆d
n

a.s.−−→ Cπ |V |, and then

limn→∞ θ̆∗
k

a.s.−−→ θk . *+

Next, we propose a method for graphs such as Google scholar, Quora, and Citeseerx,9

where we can obtain a sampled node’s neighbors’ in-degrees but no out-degrees. A node
w ∈ V appears as a following of d(I)w nodes in N (I)

w . Therefore, node w with larger d(I)w + 1
has a larger chance to appear as a sampled node or a neighbor of sampled nodes for UNI.
Based on sampled nodes and their outgoing neighbors, similar to θ̆k , we estimate θk as

9 http://citeseerx.ist.psu.edu/.
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θ̆
(O)
k = 1

C̆∗
d

n∑

i=1

∑

w∈N (O)
si ∪si

1(Lw = lk)

π̂si (d
(I)
w + 1)

,

where C̆∗
d = ∑n

i=1
∑

w∈N (O)
si ∪si

1
π̂si (d

(I)
w +1)

.

Theorem 3 θ̆
(O)
k is an asymptotically unbiased estimate of θk .

Proof Let φ(v) = 1(Lv=lk )
π̂v(d

(I)
v +1)

+ ∑
w∈N (O)

v

1(Lw=lk )
π̂v(d

(I)
w +1)

. Applying Lemma 1, we have

lim
n→∞

1
n

n∑

i=1

1(Lsi = lk)

π̂si (d
(I)
si + 1)

+
∑

w∈N (O)
si

1(Lw = lk)

π̂si (d
(I)
w + 1)

= lim
n→∞

1
n

n∑

i=1

φ(si )

a.s.−−→
∑

v∈V
πvφ(v)

= Cπ

∑

v∈V



1(Lv = lk)

d(I)v + 1
+

∑

w∈N (O)
v

1(Lw = lk)

d(I)w + 1





= Cπ




∑

v∈V

1(Lv = lk)

d(I)v + 1
+

∑

v∈V

∑

w∈N (O)
v

1(Lw = lk)

d(I)w + 1





= Cπ




∑

v∈V

1(Lv = lk)

d(I)v + 1
+

∑

w∈V

∑

v∈N (I)
w

1(Lw = lk)

d(I)w + 1





= Cπ

(
∑

v∈V

1(Lv = lk)

d(I)v + 1
+

∑

w∈V

d(I)w 1(Lw = lk)

d(I)w + 1

)

= Cπ

∑

v∈V
1(Lv = lk)

= Cπ |V |θk .
The fourth last equation holds because we have

∑

v∈V

∑

w∈N (O)
v

χ(v,w) =
∑

w∈V

∑

v∈N (I)
w

χ(v,w)

for any function χ(v,w). Similarly, we have limn→∞
C̆∗
d
n

a.s.−−→ Cπ |V |, and then

limn→∞ θ̆
(O)
k

a.s.−−→ θk . *+

4 Edge label density estimation

Let Lu,v denote the label of edge (u, v), with range {l ′1, . . . , l ′K ′}. For undirected graph G,
we let Lu,v = Lv,u . Note that the labels of edges (u, v) and (v, u) in directed graph Gd may
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be different. For 1 ≤ k ≤ K ′, let 0 ≤ τk ≤ 1 denote the fraction of edges with label l ′k . We
define the edge label density as τ = (τ1, . . . , τK ′). In this section, we propose methods to
estimate τ for undirected and directed graphs respectively.

4.1 Simple estimators of edges densities

Ribeiro and Towsley [6] show that RW and FS sample each edge with the same probability
at the steady state. Based on edges [(s−

i , si )]1≤i≤n sampled by RW and FS, therefore, [6]
estimates τk for undirected graph G as

τ̂k =
1
n

n∑

i=1

1
(
Ls−i ,si = l ′k

)
, 1 ≤ k ≤ K ′, (5)

and demonstrates that τ̂k is an asymptotically unbiased estimate of τk . One can easily extend
this estimator to compute τ of directed graph Gd as

τ̂ ∗
k = 1

Hd

n∑

i=1

(
1

(
Ls−i ,si = l ′k

)
1
((
s−
i , si

)
∈ Ed

)

+ 1
(
Lsi ,s

−
i
= l ′k

)
1
((
si , s

−
i

)
∈ Ed

))
.

where Hd =
∑n

i=1 1((s
−
i , si ) ∈ Ed)+ 1((si , s−

i ) ∈ Ed).

4.2 Estimators using neighborhood information of sampled nodes

In this paper, we assume that we can obtain the labels of all (resp. incoming and outgoing)
edges of a node when querying the node from G (resp. Gd). Besides RW and FS, UNI then
can also be used to sample edges. We utilize the neighborhood information of sampled nodes
[si ]1≤i≤n to improve the accuracy of estimating edge label density τ for both undirected and
directed graphs.

• Undirected graph We estimate τk of G as

τ̆k =
1

H̆

n∑

i=1

∑

w∈Nsi

1
(
Lsi ,w = l ′k

)

π̂si
, 1 ≤ k ≤ K ′, (6)

where H̆ = ∑n
i=1

∑
w∈Nsi

π̂−1
si .

Theorem 4 τ̆k is an asymptotically unbiased estimate of τk for undirected graph G.

Proof Let φ(v) = ∑
w∈Nv

1(Lv,w=l ′k )
π̂v

. Applying Lemma 1, we have

lim
n→∞

1
n

n∑

i=1

∑

w∈Nsi

1(Lsi ,w = l ′k)
π̂si

= lim
n→∞

1
n

n∑

i=1

φ(si )

a.s.−−→
∑

v∈V
πvφ(v)

= Cπ

∑

v∈V

∑

w∈Nv

1(Lv,w = l ′k)

= 2Cπ |E |τk .
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Similarly, we have limn→∞ H̆
n → 2Cπ |E |, and then limn→∞ τ̆k

a.s.−−→ τk . *+

• Directed graph We estimate τk of Gd as

τ̆ ∗
k = 1

H̆d

n∑

i=1

∑

w∈Nsi

(
1(Lsi ,w = l ′k)1((si , w) ∈ Ed)

π̂si
+ 1(Lw,si = l ′k)1((w, si ) ∈ Ed)

π̂si

)

where H̆d =
∑n

i=1
∑

w∈Nsi

1((si ,w)∈Ed)+1((w,si )∈Ed)
π̂si

. Similar to Theorem 4, we have the
following theorem.

Theorem 5 τ̆ ∗
k is an asymptotically unbiased estimate of τk for directed graph Gd.

In summary, τ̂ = (τ̂1, . . . , τ̂K ′) and τ̂ ∗ = (τ̂ ∗
1 , . . . , τ̂

∗
K ′) computed as described above

form asymptotically unbiased estimates of τ for undirected and directed graphs, respectively.
Whenproperties of samplednodes’ neighbors are available,weutilize all edge labels observed
from the neighborhood information, and provide asymptotically unbiased estimates τ̆ =
(τ̆1, . . . , τ̆K ′) and τ̆ ∗ = (τ̆ ∗

1 , . . . , τ̆
∗
K ′) of τ for undirected and directed graphs, respectively.

5 High degree node detection

In this section, we study the problem of detecting nodes with the largest degrees in undirected
graph G = (V, E). Let S be the set of nodes sampled by methods such as RW. Previous
methods use the high degree nodes in S to estimate high degree nodes in the original graph
G [18,19]. In [19], weighted RW (WRW) is used to detect high degree nodes. WRW can
be viewed as a RW over a weighted graph, where each edge (u, v) ∈ E has a positive
weight wu,v = wv,u [20]. At each step, WRW selects the next-hop node v randomly from
the neighbors of the current node u with probability proportional to weight wu,v , which can
be achieved with computational complexity O(du). WRW (with well defined edge weights)
and RW are fast for detecting high degree nodes, since they are biased to sample high degree
nodes [6,19]. Note that the WRW proposed in [19] sets weight wu,v = (dudv)β , which
indicates that at each step their WRW requires to obtain the degrees of current sampled
node’s neighbors. However, their description does not account for the cost of retrieving this
information. In [21], a method, expansion sampling (XS), is proposed for detecting high
degree nodes. Denote by NS the neighborhood of S, where NS consists of nodes in V − S
that are neighbors of nodes in S, that is

NS = {u : ∃v ∈ S, (u, v) ∈ E ∧ u ∈ V − S}.
Starting from a random node s, and S = {s}, XS adds the node in NS that has the most
neighbors in V − (NS ∪ S) to S, which can be achieved with computational complexity
O(|NS |), and repeats this process. For a node u ∈ NS , denote by dS

u the number of edges
between u and nodes in S, and dNS

u the number of edges between u and nodes in NS . Then,
the number of its neighbors in V − (NS ∪ S) equals du −dS

u −dNS
u . One can compute du and

dS
u solely based on the knowledge of edges of nodes in S. However, dNS

u cannot be obtained
based on the available information of S and NS . In order to identify the node in NS that has
the most neighbors in V − (NS ∪ S), it is necessary to crawl all nodes in NS . The original
description of XS [21] does not account for this cost. To solve this problem, [22] develops a
method named SEC to select the node v ∈ NS with the most neighbors in S as the next node
to crawl. When sampled nodes’ degrees are given without extra crawling cost, i.e., each node
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Table 2 Computational,
memory, and crawling cost of
obtaining n sampled nodes for
detecting high degree nodes

Method Computational cost Memory cost Crawling cost

Without free neighborhood information

RW O(n) O(n) O(n)

WRW O(d̄n) O(n) O(d̄n)

XS O(d̄2n2) O(d̄n) O(d̄n)

SEC O(d̄2n2) O(d̄n) O(n)

With free neighborhood information

RW O(n) O(n) O(n)

WRW O(d̄n) O(n) O(n)

MXS O(d̄2n2) O(d̄n) O(n)

The crawling cost refers to the
number of queries a crawler sent
to the network of interest

has the knowledge of its neighbors’ degrees, we can simply extend RW, SEC, and WRW to
utilize this information. That is, we use high degree nodes in S ∪NS to estimate high degree
nodes in G. In addition, we propose a more crawling efficient method Modified XS (MXS).
It requires no extra crawling cost to identify the node in NS that has the most neighbors in
V − S, i.e., the node u ∈ NS with the largest value of du − dS

u , because d
S
u can be easily

computed based on the knowledge of edges from nodes in S to u. Thus, we add this node u
to S at each step and repeats this process. Finally, we output high degree nodes inNS ∪ S as
the final result.

The above method can be easily modified to identify nodes with the largest in- or out-
degrees for directed graphs such as Sina microblog and Xiami, where a node has the
knowledge of its neighbors’ out- and in-degrees. Here, at each step, MXS adds the node
w ∈ NS with the largest d(I)w + d(O)w to S. Table 2 shows the computational, memory, and
crawling cost of obtaining n sampled nodes (i.e., repeating the sampling process n times)
for all above methods. We can see that RW is the most computational and memory efficient
method. In this paper, however, our aim is to accurately detect high degree nodes by using a
small crawling cost, i.e., the number of queries posted to the network of interest. In our later
experiments, we demonstrate that our method MXS is much more accurate than the other
methods under the same crawling cost.

6 Shortest path discovery

In this section, we study the problem of performing topology discovery and message routing
with incomplete topological information, which is important for applications such as the
discovery of shortest paths betweenOSN users and routing algorithms (e.g. Bubble Rap [23])
for delivering messages between users using an OSN. Formally, the problem is: Two nodes
u and v are looking for the shortest path on undirected graph G. Ribeiro et al. [24] find that a
RW has the ability to observe a large fraction of edges by visiting a relatively small number
of nodes on power law graphs. Here an edge is observed when at least one of its endpoints is
visited by the RW. They propose a RW-based shortest path discovery algorithm that works as
follows: TwoRWs are started from u and v separately. Each RW takes n steps. Let S be the set
of nodes sampled by two RWs. They use the shortest path in observed graph G∗ = (V ∗, E∗)
for routing between u and v, where V ∗ = S ∪NS and E∗ consists of edges in E which have
at least one endpoint in S. From Sect. 5 and our experimental results in Sect. 7, we know that
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Table 3 Overview of graph datasets used in our experiments

Graph LCC

Nodes Edges Directed-edges

Xiami [25] 1,748,010 16,015,779 16,568,449

YouTube [26] 1,134,890 2,987,624 4,942,035

Flickr [26] 1,624,992 15,476,835 22,477,014

Soc-Epinions [27] 75,877 405,739 811,478

Soc-Slashdot [28] 77,360 469,180 828,161

“Directed-edges” refers to the number of directed edges in a directed graph, “edges” refers to the number
of edges in an undirected graph obtained by ignoring the direction of edges, and “LCC” refers to the largest
connected component of a given graph

MXS can effectively find high degree nodes and observe more edges based on neighborhood
information. Thus, we extend MXS to accelerate the performance of shortest path discovery.
That is, we perform an MXS starting from u and v, respectively, and use the shortest path in
graph G∗ = (V ∗, E∗) observed by MXS for routing between u and v.

7 Experiments

7.1 Datasets

We perform our experiments on a variety of real-world networks that are summarized in
Table 3.Xiami is a popularwebsite devoted tomusic streaming and recommendations. Similar
to Twitter, Xiami builds a social network based on follower and following relationships.
Flickr and YouTube are popular photo sharing and video sharing websites. In these websites,
a user can subscribe to other user updates such as blogs and photos. These networks can be
represented by direct graphs, with nodes representing users and a directed edge from u to v

represents that user u subscribes to user v. Epinions is a who-trusts-whom OSN providing
general consumer reviews, where a directed edge from u to v represents that user u trusts user
v. Slashdot is a technology-related news website for its specific user community, where a
directed edge from u to v represents that user u tags user v as a friend or foe. In the following
experiments, we evaluate our methods in comparison with previous methods based on the
largest connected component (LCC) of these graphs under the same sampling budget n,
where n is defined as the number of sampled nodes.

7.2 Results of node label density estimation

Error metric In our study, besides θk (i.e., the fraction of nodes with label lk), we also estimate
ξk = ∑K

i=k+1 θi , the complementary cumulative distribution function (CCDF) of θ , which
is the statistic of choice when it comes to display degree distributions. For estimator θ̂k ,

we define the normalized root mean square error (NMSE) as NMSE(θ̂k) =
√

E[(θ̂k−θk )2]
θk

,
k = 1, 2, . . . . In the following experiments, we use 1000 independent runs to estimate
E[(θ̂k − θk)

2]. Similarly, we define the NMSE of the CCDF of θ , which we denote as the
CNMSE to avoid confusion with the NMSE of θ .
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Fig. 2 Results of degree distribution estimations for undirected graphs, n = 0.001|V |. a Xiami, b YouTube
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Fig. 3 To achieve the same error, the regular FS requires at least 4× the number of the samples of FS with
neighborhood information. a Xiami, b YouTube

Results of characterizing undirected graphs Figure 2 shows the CNMSEs of estimates of
degree distribution, where we set sampling budget n = 0.001|V |. For crawling methods,
we only study FS and set its parameter m = 10. The result of RW is similar to that of FS.
Figure 2 shows that degree distribution estimates produced by UNI and FS using neighbor-
hood information almost have the same accuracy. For FS, the degree distribution estimate
greatly improves when neighborhood information is used, which is almost twice as accurate
than the regular FS without using neighborhood information for Xiami. [6,29] show that
NMSEs are roughly proportional to 1√

n . It indicates that FS using neighborhood information
requires 4 times faster than the regular FS method to achieve the same accuracy, which is
consistent with our results shown in Fig. 3. For UNImethod, the degree distribution estimator
based on using the neighborhood information of sampled nodes exhibits larger errors than
the estimator given by sampled nodes for small degrees (degrees smaller than 20 and 30 for
Xiami and YouTube respectively). For the degree distribution estimator given by neighbors
of sampled nodes, we can see that FS using neighborhood information is more accurate than
the other methods for most degrees. We also evaluate the performance of FS using neighbor-
hood information for estimating the location distribution of users in Xiami. Figure 4 shows
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Fig. 4 The location distribution
of users in Xiami
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Table 4 (Xiami) Province numbers and corresponding names

1. Beijing 2. Tianjin 3. Hebei 4. Shanxi 5. Inner Mongolia

6. Liaoning 7. Jilin 8. Heilongjiang 9. Shanghai 10. Jiangsu

11. Zhejiang 12. Anhui 13. Fujian 14. Jiangxi 15. Shandong

16. Henan 17. Hubei 18. Hunan 19. Guangdong 20. Guangxi

21. Hainan 22. Chongqing 23. Sichuan 24. Guizhou 25. Yunnan

26. Tibet 27. Shannxi 28. Gansu 29. Qinghai 30. Ningxia

31. Xinjiang 32. Taiwan 33. Hong Kong 34. Macao 35. Null

36. Overseas
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10−2

10−1

100

province ID

N
M

SE

FS, neighbors, |n |=0.01|V|
FS, |n |=0.02|V|
FS, |n |=0.03|V|
FS, |n |=0.04|V|

Fig. 5 To achieve the same error, regular FS requires at least 2 to 4× the number of the samples of FS with
neighborhood information

the real value, where the province numbers and corresponding names are shown in Table 4.
Figure 5 shows the NMSEs of FS using neighborhood information in comparison with the
regular FS method. We can see that FS using neighborhood information is 4 times faster than
the regular FS method for most provinces and is 2–3 times faster than the regular FS method
for the other provinces.
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Fig. 6 Results of in-degree distribution estimations for directed graphs, n = 0.001|V |. a Xiami, UNI; b
Xiami, FS; c YouTube, UNI; d YouTube, FS

Results of characterizing directed graphs For directed graphs, Fig. 6 shows results for
in-degree distribution estimates. When in-degrees and out-degrees of sampled nodes are
available, the in-degree distribution estimator given by neighbors of nodes sampled by FS
outperforms the estimator given by the sampled nodes. For small in-degrees (3 and 18 for
Xiami and YouTube respectively), the in-degree distribution estimator given by neighbors of
nodes sampled by UNI exhibits larger errors than the estimator given by the sampled nodes.
Meanwhile, the results show that we can also give an accurate in-degree distribution estimate
given by outgoing neighbors of sampled nodes, which is a little less accurate than the estimate
obtained by all neighbors’ information. Figure 7 shows the results of the mixture estimator
in (4). We observe that the mixture estimator outperforms the estimator based on sampled
nodes and the estimator based on neighbors of sampled nodes.
Results in comparison with state-of-the-art methods Let c denote the cost of UNI, i.e., the
average number of IDs queried until one valid ID is obtained. For example, Flickr has a
random node sampling cost of c = 77 [29]. Here, we set the cost of crawling methods FS
and RW as 1. Next we compare with performance of crawling methods with social sampling
(SS), a node sampling method proposed by Dasgupta et al. [5]. Here, SS is equivalent to
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Fig. 7 Results of degree distribution estimations for the mixture estimator, n = 0.001|V |. a Xiami, UNI; b
Xiami, FS; c YouTube, UNI; d YouTube, FS

the estimator given by neighbors of nodes sampled by UNI. Figure 8 shows that SS exhibits
larger errors as c increases. When sampling cost c = 10, FS and RW using neighborhood
information are much more accurate than SS under the same sampling budget. Meanwhile,
we can see that FS using neighborhood information exhibits smaller errors than RW using
neighborhood information.

7.3 Results of edge label density estimation

Results of estimating the joint degree distributionWe evaluate the performance of our method
for estimating the joint degree distribution τ = [τi, j ]0< j≤i for undirected graph G, where
τi, j is the fraction of edges consisting of two nodes with degrees i and j separately. For
two-dimensional distribution τ , we define δ as

δ =
√ ∑

0< j≤i

(τ̂i, j − τi, j )2,
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Fig. 8 Results of degree distribution estimations for different node sampling cost c, n = 0.001|V |. a Flickr,
b Xiami
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Fig. 9 CCDFs of errors of joint degree distribution estimates, n = 0.001|V |. a Soc-Epinions, b Soc-Slashdot

which is a metric that measures the error of its estimate τ̂ . Figure 9 shows the CCDF of
δ for 1,000 independent estimates, where the sampling budget is n = 0.001|V |. It shows
that RW and UNI using sampled nodes’ neighborhood information are more accurate. All
estimates have errors larger than 0.1 when we have no knowledge of sampled nodes’ degrees.
More than 85% of estimates have errors smaller than 0.1 when sampled nodes’ degrees are
available.
Results of estimating the edge label density Let us illustrate how to apply the edge label
density estimation. Consider the directed graph of Xiami, 53.8% of users are male (M),
37.5% are female (F), and 8.7% are unknown (U). A directed edge (u, v) is classified into the
following 9 types when the edge label is defined as u.gender → v.gender : (1) M→M, (2)
M→F, (3)M→U, (4) F→M, (5) F→F, (6) F→U, (7) U→M, (8) U→F, (9) U→U. Figure 10
shows the edge label density τ = (τ1, . . . , τ9), where τi (1 ≤ i ≤ 9) is the fraction of type i
edges. Figure 11 shows the result of estimating τ . Similarly, we find that RW and UNI using
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Fig. 10 (Xiami) Density of
edges with different types. Type
1: M→M, 2: M→F, 3: M→U, 4:
F→M, 5: F→F, 6: F→U, 7:
U→M, 8: U→F, 9: U→U 1 2 3 4 5 6 7 8 9
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Fig. 11 (Xiami, gender-gender) NMSEs of edge label density estimates. a n = 0.001|V |, b n = 0.01|V |

sampled nodes’ neighborhood information exhibit smaller errors, and are two times more
accurate than the regular RWmethod. Here, we omit the result of FS, which is similar to that
of RW.

7.4 Results of high degree node detection

In this section, we study the performance of our method MXS for detecting top high degree
nodes in comparison with state-of-the-art methods. Similar to node and edge label density
estimation, we evaluate all methods under the same crawling cost, i.e., the same sampling
budget n. Figure 12 shows the results of previous methods for detecting top-100 high degree
nodes, where the edge weight function is defined aswu,v = (dudv)β for WRW. For previous
methods without the free neighborhood information of sampled nodes, we assume that XS
and WRW both must crawl sampled nodes’ neighbors to obtain their degrees. Figure 12
shows that RW, SEC, WRW, and XS need to sample more than n = 0.01|V | nodes to obtain
an accurate result (about 90% ) of top-100 high degree nodes. To detect top-100 high degree
nodes using the free neighborhood information of sampled nodes, Fig. 13 shows that on
average the simple extensions of RW, SEC, and WRW reduce the crawling cost to about
n = 0.0001|V | to obtain about 90% of top-100 high degree nodes, and our method MXS is
the most efficient one, which further reduces the crawling cost to n = 0.00001|V |. A total
of 1,000 runs are used to produce the averages seen in the figure. For detecting top-100 high
out- and in-degree nodes of directed graphs, similarly, Figs. 14 and 15 show that our method
MXS is 10 times more crawling efficient than the other simple extensions of WRW and RW
using the free neighborhood information of sampled nodes. Here, the edge weight function
of WRW is defined as wu,v = (d(O)u + d(I)u )β(d(O)v + d(I)v )β .
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Fig. 12 (Previous methods) Results of top-100 high degree node detection. a Xiami, b Flickr, c YouTube
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Fig. 13 (Our methods, using neighborhood information of sampled nodes) Results of top-100 high degree
node detection. a Xiami, b Flickr, c YouTube

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1

x 10−4

0

20

40

60

80

100

sampling budget n  (×|V|)fra
ct

io
n 

of
 d

et
ec

te
d 

to
p−

10
0 

(%
)

RW
WRW, β=0.5
WRW, β=1
MXS

0 0.2 0.4 0.6 0.8 1

x 10−4

40

60

80

100

sampling budget n  (×|V|)fra
ct

io
n 

of
 d

et
ec

te
d 

to
p−

10
0 

(%
)

RW
WRW, β=0.5
WRW, β=1
MXS

0 0.2 0.4 0.6 0.8 1

x 10−4

0

20

40

60

80

100

sampling budget n  (×|V|)fra
ct

io
n 

of
 d

et
ec

te
d 

to
p−

10
0 

(%
)

RW
WRW, β=0.5
WRW, β=1
MXS

Fig. 14 (Ourmethods, using neighborhood information of sampled nodes) Results of top-100 high out-degree
node detection. a Xiami, b Flickr, c YouTube
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Fig. 15 (Our methods, using neighborhood information of sampled nodes) Results of top-100 high in-degree
node detection. a Xiami, b Flickr, c YouTube
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Fig. 16 Fractions of observed edges. a Soc-Epinions, b Soc-Slashdot
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Fig. 17 (Soc-Slashdot and Soc-Epinions) Fractions of sampled node pairs with a given distance

7.5 Results of shortest path discovery

Figure 16 shows that MXS observes significantly more edges than WRW and RW under
the same sampling budget n, where the edge weight function is defined as wu,v = (dudv)β

for WRW. Next, we evaluate our MXS based shortest path discovery method in comparison
with the regular WRW- and RW-based methods in [24]. We use two metrics to evaluate the
performance of detecting the shortest paths of 10,000 node pairs: (1) the ratio of shortest
path discovery failures. For two nodes with distance d < ∞ in G, let d∗ be the length of
the shortest path observed by sampling methods. When there exists no path observed for two
nodes of interest, we denote d∗ = ∞, and a failure is reported; (2) For all d∗ < ∞, we also
use the average value of d∗ − d as a metric to measure the accuracy of detecting the shortest
paths. Figures 18 and 19 show results for 10,000 node pairs generated randomly, where the
sampling budget is set as n = 20. Figure 17 shows the fraction of sampled node pairs with
given distances (the length of the shortest paths in original graphs) for Soc-Slashdot and
Soc-Epinions. Figure 18 shows the fraction of failures as a function of the distance. Y axis
shows the fraction of failures for node pairs with a given distance. We can see that RW and
WRW generate a large fraction of failures especially for node pairs with a long distance,
e.g., more than 20% of failures for node pairs with distance larger than 6 for Soc-Epinions.
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Fig. 18 Performance of shortest path discovery, n = 20. a Soc-Epinions, b Soc-Slashdot
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Fig. 19 NMSEs of detected shortest path lengthes, n = 20. a Soc-Epinions, b Soc-Slashdot

However, our methodMXS almost has no failure. Moreover, Fig. 19 shows that MXS usually
discovers shorter paths in comparison with RW and WRW. On average, the d∗ − d of MXS
is 2 and 4 times smaller than WRW and RW respectively.

8 Related work

Graph sampling methods without using free neighborhood information Maiya and Berger-
Wolf [3] empirically investigate the performance of a number of subgraph sampling methods
(e.g., breadth-first search, RWs, etc.) and their performance in respect to various topological
properties (e.g., degree and clustering coefficient). The literature also shows a variety of
subgraph samplingworkswithout convergence or accuracy guarantees [1,2],which have been
empirically tested over a variety of networks. The above works [1–3] also consider subgraph
sampling techniques that can preserve other metrics, such as the eigenvalues of the original
network [1], but without accuracy guarantees. Breadth-First-Search (BFS) introduces a large
bias toward high degree nodes, and it is difficult to remove this bias in general, although
it can be ameliorated if the network in question is almost random [31]. RW is biased to
sample high degree nodes; however, its bias is known and can be easily corrected [6]. RW in
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Table 5 Our methods in comparison with state-of-the-art methods

Free neighborhood information

Not using Using

Node label density estimation [6,7,30,32–34] [5] requires expensive UNI APIs

Our method is a crawling based method

Edge label density estimation [6] Our method

High degree node detection [18,19,21,22] Our method

Shortest path discovery [24] Our method

the form of respondent driven sampling (RDS) [32,33] has been used to estimate population
densities using snowball samples of sociological studies. RDSwas developed for small social
networks with hidden links, while our method considers large OSNs without hidden links.
The Metropolis-Hasting RW (MHRW) [34] modifies the RW procedure, aimed at sampling
nodes with equal probability. However, [8] proves that MHRW degree distribution estimates
perform poorly in comparison with RWs, more markedly for large degree nodes whose error
grows proportionally to the degree value. Empirically, the accuracy of RW and MHRW has
been compared in [7,35] and experimental results demonstrate that RW is consistently more
accurate than MHRW. In addition to node label density estimation, a considerable attention
has been given to develop crawling methods to detect high degree nodes [18,19,21,22] and
uncover shortest paths [24].
Graph sampling methods using free neighborhood information Few network sampling meth-
ods use neighborhood information to provide accurate estimates that have convergence
guarantees. The work closest to ours is Dasgupta et al. [5]. Dasgupta et al. [5] randomly
sample nodes (either uniformly or with a known bias) and then use neighborhood infor-
mation to improve its unbiased estimator. However, randomly sampling nodes is practical
only if performed uniformly (in our scenarios, rejection sampling to bias the samples makes
little sense) and suffers from the low query rate in NoSQL graph databases and Web APIs.
Dasgupta et al. [5] partially compensate the low query rate through the use of neighborhood
information present in the node query reply of a number of major OSNs. Moreover, their
estimators require the knowledge of sampled nodes’ neighbors’ degrees, which incurs extra
query costs when applied to OSNs such as Quora and Sina microblog that provide neigh-
bors’ in- and out-degrees but no degrees in the node query reply. Kurant et al. [30] design a
RW-based method that uses a weighted RW to perform stratified sampling on OSNs. These
weights are computed using neighborhood information. Theyuse their technique onFacebook
and show that their stratified sampling technique achieves higher estimation accuracy than
other methods. However, the neighborhood information in their method is limited to helping
find random walk weights and not used in the estimator. Interestingly, our estimator can be
easily combined with the weighted random walk in [30] to improve its accuracy. Table 5
summarizes the contributions of our work in comparison with state-of-the-art methods.

9 Conclusions

In this paper, we study the problem of estimating characteristics for graphs where nodes
have knowledge of their neighbors’ properties. This feature is actually quite common in
networks, such as Facebook, Google scholar, Sina microblog, and Citeseerx. To utilize this
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extra neighborhood information,we develop novel estimators of node and edge label densities
from sampling which have provable convergence and accuracy guarantees. Our experimen-
tal results show that our estimators drastically reduce (by 4-fold) the number of samples
required to achieve the same estimation accuracy. We also adapt known techniques to detect
high degree nodes and the shortest paths between a subset of nodes, and our experimental
results demonstrate that our methods are two orders of magnitude faster than state-of-the-art
methods.
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