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Abstract Despite recent effort to estimate topology characteristics of large graphs (e.g.,
online social networks and peer-to-peer networks), little attention has been given to develop
a formal crawling methodology to characterize the vast amount of content distributed over
these networks. Due to the large-scale nature of these networks and a limited query rate
imposed by network service providers, exhaustively crawling and enumerating content main-
tained by each vertex is computationally prohibitive. In this paper, we show how one can
obtain content properties by crawling only a small fraction of vertices and collecting their
content. We first show that when sampling is naively applied, this can produce a huge bias in
content statistics (i.e., average number of content replicas). To remove this bias, one may use
maximum likelihood estimation to estimate content characteristics. However, our experimen-
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68 P. Wang et al.

tal results show that this straightforward method requires to sample most vertices to obtain
accurate estimates. To address this challenge, we propose two efficient estimators: special
copy estimator (SCE) andweighted copy estimator (WCE) to estimate content characteristics
using available information in sampled content. SCE uses the special content copy indicator
to compute the estimate, while WCE derives the estimate based on meta-information in sam-
pled vertices. We conduct experiments on a variety of real-word and synthetic datasets, and
the results show that WCE and SCE are cost effective and also “asymptotically unbiased”.
Our methodology provides a new tool for researchers to efficiently query content distributed
in large-scale networks.

Keywords Crawling · Online social networks · Sampling · Random walks

1 Introduction

Nowadays online social networks (OSNs) (e.g., Facebook and Twitter) and content shar-
ing networks (e.g., BitTorrent) are two popular classes of Internet applications. Measuring
content characteristics such as file duplication level and information spreading rate on such
networks become important since it helps one develop effective advertising strategies [46]
and provides valuable information for designing content delivery strategies, e.g., video shar-
ing techniques [28] to increase video pre-fetch accuracy by delivering videos based on users’
social relationships and interests, or to develop information seeding techniques [31] to min-
imize the peak load of cellular networks by proactively pushing some videos to OSN users.
Meanwhile, measuring characteristics of OSNs’ content provided by other networks also
helps to understand interactions between different networks. For example, [28] found that
80% of videos in Facebook come from other video service providers such as YouTube.

Due to a limited query (or crawling) rate imposed by network service providers, it is not
feasible to collect all content and one must consider using sampling methods to explore con-
tent distributed over large networks, because crawling the entire networks is computationally
expensive. To solve this problem, one can directly apply sampling methods to content, or it
can also collect content from a relatively small fraction of users. Unfortunately, in practice
one may not be able to sample content in large networks in a direct manner. For example, for
file sharing networks such as BaiduWangPan (in English: Baidu web disk, https://pan.baidu.
com) where a node (or user) maintains a list of files, they support users to randomly explore
nodes but not files. Similarly, directly sampling tweets on Sina microblog (http://weibo.com)
is not feasible. Even when content has a profile webpage, the profile IDs (numeric numbers or
strings) of content might be sparsely populated in the ID space, so it is expensive to generate a
random yet valid profile ID. Moreover, there may neither have no links between these profile
webpages of content. This disables us to directly use crawling methods such as randomwalks
to sample content at random. For example, suppose we want to study statistics of check-in
places on Facebook. A check-in place with string name placename has a profile webpage
(https://www.facebook.com/placename) on Facebook, and there exist no links between pro-
file webpages of check-in places. In the above scenarios, sampling content requires to first
sample a fraction of nodes and then collect their content.

Unfortunately, previous graph sampling work developed for estimating degree or work-
place distributions [14,40] cannot be directly applied in our context. This is because content
and vertex are intrinsically different since content may be duplicated. To illustrate this, con-
sider a simple example of a P2P network as shown in Fig. 1. Assume there are two types of
files: video and image, each video file such as F1 is cached by a large number of users, each
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Fig. 1 An example of sampling
files in a P2P network

image file such as F3 is cached by a small number of users, and we want to estimate the frac-
tion of distinct video and image files in the P2P network. Clearly, one will overestimate the
fraction of video files because video files are more likely to be sampled than image files even
when using uniform node sampling. Therefore, methods for estimating topological metrics
such as degree distribution cannot be blindly applied. They need to be modified to deal with
biases introduced because of the nature of content characterization.

To the best of our knowledge, our work is the first analytical and qualitative study on the
problem of estimating characteristics of content distributed over large graphs. We propose
methods to accurately estimate content statistics. Our contributions are summarized as:

• We demonstrate that it is challenging to efficiently explore characteristics of content
distributed over large graphs, because: (1) when sampling is naively applied, there can
be huge bias in computing content statistics; (2) although one can remove this bias using
the maximum likelihood estimation, our experimental results show that one needs to
sample most vertices in the graph in order to obtain an accurate estimation.

• To solve the above problem,wepresent two accuratemethods to estimate content statistics
using available meta-information in sampled content based on two different assumptions,
respectively. The first method assumes that we can determine whether a collected content
copy is a source or not, which is true for most OSNs that have a label in each content
copy to indicate whether it is a source or a duplicated copy. For example, a tweet in
microblog networks can be classified as an original tweet or a retweet. Therefore, one
can utilize a special content copy set consisting of all original tweets to characterize tweets
in the network. To measure statistics of content in these networks, we propose a special
copy estimator (SCE) based on collected source content copies. Moreover, we propose
another weighted copy estimator (WCE) for networks (e.g., P2P networks) that content
(e.g., video) copies have no difference and no meta-data can be used as a special copy
indicator. It assumes that each content copy records the number of copies its content
holds. This feature is true for many OSNs and P2P networks [52]. Our experimental
results show that WCE and SCE are asymptotically unbiased, andWCE is more accurate
than SCE, because SCE uses only a fraction of sampled content copies.

• We also use WCE to estimate graph structure statistics for OSNs such as Sina Microblog
and Xiami (http://www.xiami.com) where users maintain graph property summaries of
their neighbors. For example, by crawling the profile of a user in Sina Microblog, we can
obtain its neighbors’ properties such as the number of followers, the number of following,
the number of tweets. This allows us to collect more information than previous graph
sampling methods under the same sampling cost. Since a user’s graph property summary
can be viewed as contentmaintained by itself and its neighbors,we applyWCE to estimate
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graph statistics. Our experimental results show thatWCE obtains the same accuracy with
a much less sampling cost as compared with previous works.

This paper is organized as follows. Section 2 introduces preliminaries. Section 3 presents
our crawling methods for estimating characteristics of content in large networks. The per-
formance evaluation and testing results are presented in Sect. 4. Section 5 presents real
applications on Sina Microblog Web sites. Related work is given in Sect. 6, and conclusion
is given in Sect. 7.

2 Preliminaries

In this section, we briefly review popular graph sampling methods, which are underlying
techniques for sampling vertices and content in large networks discussed in Sect. 3. For ease
of presentation, we assume the underlying graph is undirected. One way to convert a directed
graph into an undirected graph is by ignoring the direction of edges. Consider an undirected
graph G = (V, E), where V is the set of vertices and E is the set of undirected edges.
Breadth-first search (BFS) is one of most popular graph sampling techniques. However, it
introduces a large bias toward high-degree vertices that is unknown and difficult to remove in
general graphs [1,25]. Therefore, we do not consider BFS in this paper. In what follows, we
present four popular graph sampling methods: uniform vertex sampling (UNI), random walk
(RW), Metropolis–Hastings RW (MHRW) [45], and Frontier sampling (FS) [40]. Unless we
state otherwise, we denote π = (πv :v ∈ V ) as the probability distribution for the underlying
sampling method, where πv is defined as the probability of sampling vertex v at each step.

2.1 Sampling method I: uniform vertex sampling

UNI randomly samples vertices from V with replacement. Not all networks support UNI but
some do. For example, one can view Wikipedia as a graph and Wikipedia provides a query
API to obtain a random vertex (wiki page) sampled from its entire vertices. At each step,
UNI samples each vertex v with the same probability, so we have

πUNI
v = 1

|V | , v ∈ V .

For OSNs such as Facebook, MySpace, Flickr, Renren (http://www.renren.com), Sina
Microblog, and Xiami, one can sample users (vertices) as users have numeric IDs. Unfor-
tunately, ID values of users in many networks (e.g., Flickr, Facebook, Sina Microblog, and
MySpace) are not sequentially assigned, and the ID space is sparsely populated [39,41].
Hence, a randomly generated ID may not correspond to a valid user, so considerable com-
putational effort in generating a random ID will be wasted. Therefore, UNI should only be
applied to those graphs whose user ID values are densely packed.

2.2 Sampling method II: random walk

RW has been extensively studied in the graph theory literature [30]. From an initial vertex,
a walker selects a neighbor at random as the next-hop vertex. The walker moves to this
neighbor and repeats the process. Denote N (u) as the set of neighbors of any vertex u,
deg(u) = |N (u)| is the degree of u. Formally, RW can be viewed as a Markov chain with
transition matrix PRW = [PRW

u,v ], u, v ∈ V , where PRW
u,v is defined as the probability of vertex

v being selected as the next-hop vertex given that its current vertex is u, we have:
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PRW
u,v =

{ 1
deg(u) if v ∈ N (u),
0 otherwise.

The stationary distribution πRW of this Markov chain is

πRW
v = deg(v)

2|E | , v ∈ V .

For a connected and non-bipartite graph G, the probability of being at a vertex v ∈ V
converges to the above stationary distribution [30]. We can see that πRW is biased toward
high-degree vertices, but this sampling bias can be removed when we estimate statistics of
graph topologies such as node degree distribution [17,42].

2.3 Sampling method III: Metropolis–Hastings random walk

MHRW [14,45,54] provides another way to modify RW using Metropolis–Hastings tech-
nique [10,16,32], which aims to collect vertices uniformly. To generate a sequence of random
samples from a desired stationary distribution πMHRW, the Metropolis–Hastings technique
is a Markov chain Monte Carlo method based on modifying the transition matrix of RW as

PMHRW
u,v =






PRW
u,v min

(
πMHRW
v PRW

v,u
πMHRW
u PRW

u,v
, 1

)
if v ∈ N (u),

1 − ∑
w #=u PMHRW

u,w if v = u,
0 otherwise.

For a MHRW with target distribution πMHRW = πUNI, it works as follows: at each step,
MHRWselects a neighbor v of current vertexu at randomand then accepts themove randomly
with probability min

(
deg(u)
deg(v) , 1

)
. Otherwise, MHRW still remains at u. Essentially, MHRW

removes the bias of RW at each step by rejecting moves toward high-degree vertices with a
certain probability.

2.4 Sampling method IV: Frontier sampling

FS [40] is a centrally coordinated sampling which performs T ≥ 1 dependent RWs in the
graph G of interest. Compared to a single RW, FS is less likely to get stuck in a loosely
connected component of G. Denote L = (v1, . . . , vT ) as a vector with T vertices. Each vi
(1 ≤ i ≤ T ) is initialized with a random vertex uniformly selected from V . At each step, FS
selects a vertex u ∈ L with probability deg(u)∑

∀v∈L deg(v) and randomly selects a vertex w from
N (u), i.e., the set of neighbors of u. One can easily find that w is uniformly selected from
vertices that are connected to the vertices in L = (v1, . . . , vT ). Then, FS replaces u by w

in L and adds w to the sequence of sampled vertices. If G is a connected and non-bipartite
graph, the probability of FS sampling a vertex v converges to the following distribution

πFS
v = deg(v)

2|E | , v ∈ V .

2.5 Horvitz–Thompson estimator

Previous work has considered how to estimate topology properties (e.g., degree distribution)
via sampling methods. Let L ′(v) denote the vertex label of vertex v ∈ V under study,
with range L′ = {l ′0, . . . , l ′K ′}. Denote vertex label density τ = (τ0, . . . , τK ′), where τk
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(0 ≤ k ≤ K ′) is the fraction of vertices with label l ′k . For example, τ is the degree distribution
when L ′(v) is defined as the degree of v. To estimate τ , RW- and FS-based samplingmethods
can be viewed as extensions of Horvitz–Thompson estimator [18], which applies inverse
probability weighting to account for samples with different probabilities. Therefore, the
stationary distribution π is needed to correct the bias introduced by the underlying sampling
method. Since |V | and |E | are usually unknown, unbiasing the error is not straightforward.
Instead, one may use a non-normalized stationary distribution π̂ = (π̂v : v ∈ V ) to reweight
sampled vertices si (1 ≤ i ≤ n), where π̂v is computed as

π̂v =
{
1 for UNI and MHRW,

deg(v) for RW and FS.
(1)

Let 1(P) define the indicator function that equals one when predicate P is true, and zero
otherwise. Finally, τk is estimated as

τ̂k =
1
S

n∑

i=1

1(L ′(si ) = l ′k)
π̂si

, 0 ≤ k ≤ K ′,

where S = ∑n
i=1 π̂−1

si .
In summary, RW and FS are biased to sample high-degree vertices. Their biases can be

later corrected when we compute topology properties [14,38]. Compare the performances
of RW and MHRW, and observe that RW is consistently more accurate than MHRW for
exploring large networks. Compared to RW and MHRW, Ribeiro and Towsley [40] reveal
that FS is more accurate for characterizing loosely connected and disconnect graphs.

3 Content sampling

Our problem To describe our methods formally, we first introduce some notations. For ease
of reading, we list notations used throughout the paper in Table 1. Define L(c) as a generic
labeling function of content c, with range L = {l0, . . . , lK }.We focus on developing crawling
methods for estimating the content distribution ω = (ω0, . . . ,ωK ), where ωk (0 ≤ k ≤ K )
is the fraction of content with label lk . For example, L(c) can be defined as the number
of comments of post c in OSNs, and then ωk is the fraction of posts with k comments,
where L = {0, 1, 2, . . .}. In P2P networks, L(c) can denote the number of replicas of file
c; then ωk is the fraction of files having k replicas, where L = {1, 2, . . .}. Similarly L(c)
can also be the file type of c in P2P networks, with L = {l0= “video”, l1= “music”, l2=
“text”, l3 = “others”}. Then ωk (k = 0, 1, 2, 3) is the fraction of files of type lk . Denote
by C = {c1, . . . , cH } the set of all content distributed over graph G, where H is the total
number of distinct content in G. Then, the content distribution ω = (ω0, . . . ,ωK ) is defined
as

ωk =
∑

c∈C 1(L(c) = lk)
H

, k = 0, . . . , K ,

where L(c) is the label of content c with range {l0, . . . , lK }. We assume that n vertices
s1, . . . , sn are obtained by a graph sampling method (e.g., UNI, RW, MHRW, or FS) with
vertex sampling probability distributionπ . Denote byC(v) the set of the content copiesmain-
tained by a vertex v ∈ V . Later in Sect. 3.1, we will present two methods DCE and MLE and
show that it is difficult to estimate ω solely from sampled content copies C(s1), . . . ,C(sn).
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Table 1 A list of notations

si , 1 ≤ i ≤ n Sampled vertices

π = (πv : v ∈ V ) Vertex sampling probability distribution

C = {c1, . . . , cH } Set of all content appearing in graph G

L(c) Label of content c ∈ C

{l0, . . . , lK } Range of label function L(c)

ω = (ω0, . . . ,ωK ) Distribution of content by the content label

f (c) Number of copies that content c possesses

{c(1), . . . , c( f (c))} All copies of content c

c∗ The special copy of content c

CS = {c∗1 , . . . , c∗H } Special content copy set

c A copy of content c

v(c) Vertex that maintains content copy c

L(c), f (c) L(c) = L(c), f (c) = f (c)

C(v), v ∈ V Content copies maintained by vertex v

CD Set of content that has a copy maintained by sampled vertices si

To solve this challenge, we develop two estimators SCE and WCE utilizing the following
two kinds of content meta-information, respectively:

Meta-information 1: special copy indicator We let c∗ denote a special copy, such as the
original source of content c. Note that each content c has one and only one special copy c∗.
Unless we state otherwise, in what follows the notation c is used to depict content and c is
used to depict a copy of content c. Let CS = {c∗

1, . . . , c
∗
H } be a special content copy set.

For some graphs, sampling methods can check whether a sampled content copy is special or
not and generate such a set CS. For example, a tweet in the Sina Microblog can be classified
into an original tweet or a retweet; therefore, we can generate CS consisting of all original
tweets.

Meta-information 2: content copy count For content c∈C, let f (c) denote the number of its
copies, and {c(1), . . . , c( f (c))} denote the set of its copies appearing in graph G. For networks
such as Sina Microblog and Renren, f (c) is available in each content copy c(i), 1 ≤ i ≤
f (c).
Unlike WCE using each and every content copy sampled, SCE only uses a fraction of

sampled content copies. Therefore,WCE tends to exhibit smaller estimation errors than SCE.
Table 2 summarizes all content sampling methods studied in this paper.

3.1 Challenges

Challenge 1: directly using sampled content copies is biased for characterizing content in
large graphs Let CD be the set of content that has at least one copy maintained by sampled
vertices. One may directly estimate ω using all distinct sampled content CD as
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Table 2 A comparison of four estimators DCE, MLE, SCE, and WCE

DCE MLE SCE WCE

Unbiased or not × ! ! !
Meta-information 1 is required or not × × ! ×
Meta-information 2 is required or not × × ! ×
A small number of samples are needed or not × × ! !

ω̂DCE
k = 1

|CD|
∑

c∈CD

1(L(c) = lk), 0 ≤ k ≤ K .

We call this straightforward method as Distinct Content Estimator (DCE). For a content copy
c, let v(c) be the vertex that maintains c. As alluded, content c ∈ C may be maintained by
multiple vertices v(c( j)) (1 ≤ j ≤ f (c)) and each vertex v(c( j)) is sampled with probability
πv(c( j)), and therefore the probability that one copy of content c is collected by randomly

sampling a vertex is
∑ f (c)

j=0 πv(c( j)). Note that this probability depends both on the graph
sampling method and the number of copies of c; therefore, content in CD is not uniformly
sampled fromC. Evenwhen theUNI samplingmethod is used,where each vertexu is sampled
with the same probability πu = 1

|V | , the probability that CD contains c is proportional to
f (c), i.e., popular content is more likely to be sampled than rare ones. This clearly shows
that ω̂DCE

k using UNI is still biased.

Challenge 2: it is not easy to correct the sampling bias for characterizing content in large
graphs To correct the bias of DCE, we use the maximum likelihood estimation method,
which is widely used for inferring statistics of interest from partially observed samples. The
details of MLE is given in Appendix. In our experiments, however, we will show that one has
to sample a large number of vertices in order to accurately calculate ω̂MLE

k . It is consistent
with results observed in [35].

In summary, it is challenging to characterize content distributed over large networks solely
based on regular graph sampling methods. To solve this problem, next, we present two
methods utilizing two kinds of meta-information (i.e., an special copy indicator and the
number of copies) of content, which are available for each content copy in many OSNs.

3.2 Our unbiased estimator I: special copy estimator (SCE)

SCE estimates ω only using collected special content copies, i.e., content copies in CS. For
content c, v(c∗) is the vertex maintained its special copy c∗. Then the probability that c∗ is
collected by sampling a random vertex is πv(c∗). Similar to the Horvitz–Thompson estimator
introduced in Sect. 2, we use π̂ defined in Eq. (1) to estimate ωk (0 ≤ k ≤ K ),

ω̂SCE
k = 1

SSCE

n∑

i=1

∑

c∈C(si )

1(L(c) = lk)1(c ∈ CS)

π̂si
, (2)

where SSCE = ∑n
i=1

∑
c∈C(si )

1(c∈CS)
π̂si

. The pseudo-code of SCE is shown in Algorithm 1.

The average time complexity of SCE is O
(
n

∑
v∈V πv |C(v)|

|V |
)
, where (πv)v∈V is the sampling
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probability distribution of the underlying graph samplingmethod, which can be any sampling
method presented in Sect. 2.

Algorithm 1: The pseudo-code of SCE.
input : sampling budget n.
output: ω̂SCE

0 , . . . , ω̂SCE
K .

i = 1; SSCE ← 0;
foreach k ∈ {0, 1, . . . , K } do

ω̂SCE
k ← 0;

end
/* Crawler can be any sampling method in Sect. 2 */
Crawler.initialize();
for i ≤ n do

s ← Crawler.sample_a_node();
i ← i + 1;
foreach c ∈ C(s) do

if c is a special copy then
/* L(c).id is the label ID of content c, i.e., L(c) = lL(c).id. */
k ← L(c).id;
ω̂SCE
k ← ω̂SCE

k + 1
π̂s

;

SSCE ← SSCE + 1
π̂s

;

end
end

end
foreach k ∈ {0, 1, . . . , K } do

ω̂SCE
k ← ω̂SCE

k
SSCE

;

end

It is important to point out that ω̂SCE
k is an asymptotically unbiased estimator of ωk . For

each vertex v ∈ V , Eq. (1) shows that πv/π̂v has the same value, denoted as Sπ . We have
the following equation for each k = 0, . . . , K and i = 1, . . . , n

E




∑

c∈C(si )

1(L(c) = lk)1(c ∈ CS)

π̂si





=
∑

v∈V
πv

∑

c∈C(v)

1(L(c) = lk)1(c ∈ CS)

π̂v

= Sπ

∑

v∈V

∑

c∈C(v)

1(L(c) = lk)1(c ∈ CS)

= Sπ

∑

c∈CS

1(L(c) = lk)

= Sπ Hωk .

Applying the law of large numbers, we have

lim
n→∞

1
n

n∑

i=1

∑

c∈C(si )

1(L(c) = lk)1(c ∈ CS)

π̂si

a.s.−−→ Sπ Hωk,
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where “a.s.” denotes “almost sure” converge, i.e., the event happens with probability one.
Similarly, we have limn→∞ SSCE

n
a.s.−−→ Sπ H . Therefore, ω̂SCE

k is an asymptotically unbiased
estimator of ωk .

3.3 Our unbiased estimator II: weighted copy estimator (WCE)

WCE estimates ω using all collected content copies C(si ) (1 ≤ i ≤ n). This estimator is
useful for networks (e.g., Sina Microblog and Renren) in which each copy of any content
c records the value of f (c), the number of copies c has in the network. Vertex v(c( j))
maintains the copy c( j) (1 ≤ j ≤ f (c)) of content c, and it is sampled with probability
πv(c( j)). Meanwhile, a random vertex maintains a copy of c with probability proportional to
f (c). Therefore, we assign a weight 1

π̂
v(c( j)) f (c)

for c( j) to remove the sampling bias. Finally,

we estimate ωk (0 ≤ k ≤ K ) as

ω̂WCE
k = 1

SWCE

n∑

i=1

∑

c∈C(si )

1(L(c) = lk)
π̂si f (c)

, (3)

where SWCE = ∑n
i=1

∑
c∈C(si )

1
π̂si f (c)

. The pseudo-code of WCE is shown in Algorithm 2.

Similar to SCE, the average time complexity of WCE is O
(
n

∑
v∈V πv |C(v)|

|V |
)
.

Algorithm 2: The pseudo-code of WCE.
input : sampling budget n.
output: ω̂WCE

0 , . . . , ω̂WCE
K .

i = 1; SWCE ← 0;
foreach k ∈ {0, 1, . . . , K } do

ω̂WCE
k ← 0;

end
/* Crawler can be any sampling method in Sect. 2 */
Crawler.initialize();
for i ≤ n do

s ← Crawler.sample_a_node();
i ← i + 1;
foreach c ∈ C(s) do

/* L(c).id is the label ID of content c, i.e., L(c) = lL(c).id. */
k ← L(c).id;
ω̂WCE
k ← ω̂WCE

k + 1
π̂s f (c)

;

SWCE ← SWCE + 1
π̂s f (c)

;

end
end
foreach k ∈ {0, 1, . . . , K } do

ω̂WCE
k ← ω̂WCE

k
SWCE ;

end
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ω̂WCE
k is an asymptotically unbiased estimator of ωk . To see that, we have the following

equation for each k = 0, . . . , K and i = 1, . . . , n

E




∑

c∈C(si )

1(L(c) = lk)
π̂si f (c)





=
∑

v∈V
πv

∑

c∈C(v)

1(L(c) = lk)
π̂v f (c)

= Sπ

∑

v∈V

∑

c∈C(v)

1(L(c) = lk)
f (c)

= Sπ

∑

c∈C

f (c)∑

j=1

1(L(c( j)) = lk)
f (c( j))

= Sπ

∑

c∈C
1(L(c) = lk)

= Sπ Hωk .

Then, we have

lim
n→∞

1
n

n∑

i=1

∑

c∈C(si )

1(L(c) = lk)
π̂si f (c)

a.s.−−→ Sπ Hωk .

Similarly, we have limn→∞ SWCE

n
a.s.−−→ Sπ H . Therefore, ω̂WCE

k is an asymptotically unbiased
estimator of ωk .

ExtendWCE to estimate graph structure statistics We also note that, compared with previous
sampling methods [14,40], WCE is a more cost effective method to estimate graph structure
statistics for OSNs (e.g., Sina Microblog and Xiami) which carry such meta-information.
As shown in Fig. 2, the webpage of a user in Sina Microblog maintains a summary for each
of its neighbors (both followers and following), which includes graph properties such as the
number of followers, the number of following, and the number of posts. Hence, one can
obtain properties of any vertex v and all its neighbors by simply sampling v. Compared with
previousworks formeasuring structure characteristics, we can obtainmore accurate estimates
by utilizing the meta-information of sampled vertices. It is important to point that when we
use this meta-information, we are biased toward vertices with a large number of neighbors
(even when using UNI). Therefore, we need a way to unbias this error. Denote outdeg(v)
as the number of vertices that vertex v follows, and indeg(v) as the number of vertices that
follow v. To remove the sampling bias for observing high-degree vertices’ graph properties,
we use WCE to estimate vertex label density τ = (τ0, . . . , τK ′) defined in Sect. 2, where τk
(0 ≤ k ≤ K ′) is the fraction of vertices with vertex label l ′k . The property summary of each
vertex v can be viewed as content with f ′(v) = indeg(v)+outdeg(v)+1 copies maintained
by followers, following of v, and v itself. For a collected vertex v, define its associated
vertices C ′(v) as the collection of its following, followers, and itself. Note that C ′(v) might
contain duplicated elements because a vertex can be both a following and follower of v. We
use WCE to estimate τk (0 ≤ k ≤ K ′) as follows

τ̂WCE
k = 1

S′

n∑

i=1

∑

v∈C ′(si )

1(L ′(v) = l ′k)
π̂si f ′(v)

, (4)
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Fig. 2 Graph properties maintained by a vertex v

where S′=∑n
i=1

∑
v∈C ′(si )

1
π̂si f

′(v) . Note that τ̂
WCE
k is an asymptotically unbiased estimator

of τk . To see that, we have the following equation for each k = 0, . . . , K ′ and i = 1, . . . , n

E




∑

v∈C ′(si )

1(L ′(v) = l ′k)
π̂si f ′(v)





=
∑

u∈V
πu

∑

v∈C ′(u)

1(L ′(v) = l ′k)
π̂v f ′(v)

= Sπ

∑

u∈V

∑

v∈C ′(u)

1(L ′(v) = l ′k)
f ′(v)

= Sπ

∑

u∈V
1(L ′(v) = l ′k)

= Sπ |V |τk .

Then, we have

lim
n→∞

1
n

n∑

i=1

∑

v∈C ′(si )

1(L ′(v) = l ′k)
π̂si f ′(v)

a.s.−−→ Sπ |V |τk .

Similarly, we have limn→∞ S′
n

a.s.−−→ Sπ |V |. Therefore, τ̂WCE
k is an asymptotically unbiased

estimator of τk .

4 Data evaluation

Our experiments are performed on a variety of real-world networks, which are summarized
in Table 3. Xiami is a popular Web site devoted to music streaming and recommendations.
Similar to Twitter, Xiami builds a social network based on follower and following relation-
ships. Each user has a numeric ID that is sequentially assigned.We crawled its entire network
graph and have made the dataset publicly available (http://www.cse.cuhk.edu.hk/%7ecslui/
data). Flickr and YouTube are popular photograph and video sharing Web sites. In these
Web sites, a user can subscribe to other user updates such as blogs and photographs. These
networks can be represented by a direct graph, with vertices representing users and a directed
edge from u to v represents that user u subscribes to user v. Further details of these datasets
can be found in [33]. Our experiments are conducted on a Dell Precision T1650 workstation
with an Intel Core i7-3770 CPU 3.40 GHz processor and 8 GB DRAM memory.
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Table 3 Overview of directed graph datasets used in our simulations

Graph Xiami YouTube Flickr

Vertices (LCC) 1,748,010 1,134,890 1,624,992

Edges (LCC) 16,015,779 2,987,624 15,476,835

Directed edges (LCC) 16,568,449 4,942,035 22,477,015

“Directed edges” refers to the number of directed edges in a directed graph, “edges” refers to the number of
edges in an undirected graph, and “LCC” refers to the largest connected component of a given graph

Using real entire graph topologies which are publicly available, we generate benchmark
datasets for our simulation experiments by manually generating content and distributing
them over these graphs. In the following experiments, we generate 107 distinct content and
distribute each content c using four different content distribution schemes (CDSes): CDS I
to CDS IV, which model information distribution mechanisms for undirected and directed
graphs. CDSes I and II distribute content with a target content distribution by the number
of copies. Define the truncated Pareto distribution as φk = α

γ kα+1 , k = 1, . . . ,W , where

α > 0, γ = ∑W
k=1

α
kα+1 , andW is the maximum number of copies. The number of copies for

each content c is randomly selected from set {1, . . . ,W } according to the truncated Pareto
distribution with parameter α and W for CDSes I and II. Then, copies of c are distributed as
follows

• CDS I We distribute each content copy to a randomly selected vertex in Gd (one of the
directed graph in Table 3).

• CDS II When content has k copies, we first randomly select a vertex v that can reach at
least k − 1 other vertices. Here, two vertices are reachable if there is at least one path
between them in the undirected graph G, which is derived from Gd by ignoring the
direction of edges. Then, we assign the special (or original) copy of this content to v, and
assign k − 1 duplicated copies to the top k − 1 nearest vertices in G which are reachable
from v.
CDSes III and IVboth distribute each content c using the independent cascademodel [15],
that is

• CDS III We distribute c over the associated undirected graph G. We first distribute the
special copy of c to a randomly selected vertex v. Then we distribute copies of c to other
vertices iteratively.When a new vertex first receives a copy of c, it is given a single chance
to distribute a copy of c to each of its neighbors currently without c with probability pS .

• CDS IVWe distribute c similar to CDS III but on the direct graph Gd . The difference is:
when a new vertex first receives a copy of c, it is given a single chance to distribute a copy
of c to each of its incoming neighbors (followers) currently without c with probability
pS .

We would like to point out that α and pS are parameters for generating our simulation
datasets and they are irrelevant to content sampling methods. In the following experiments,
we evaluate the performance of our methods for estimating ω, the content distribution by the
number of copies. Let

NMSE(ω̂ j ) =

√
E[(ω̂ j − ω j )2]

ω j
, j = 1, 2, . . . ,
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Fig. 3 (Xiami) Average of content distribution estimates for different estimators. a W = 20. b W = 100

be a metric that measures the relative error of the estimate ω̂ j with respect to its true valueω j .
In our experiment, we average the estimates and calculate their NMSE over 1000 runs. Let
B denote the sampling budget, which is the number of distinct sampled vertices per run. We
set default parameters as: sampling budget B = 0.01|V | and the number of random walkers
T = 1000 for FS. To simplify notations, graph sampling method A combined with content
estimator B is denoted as method A_B.

Figure 3 shows the average of content distribution estimates of 1000 runs for methods
DCE, MLE, SCE, and WCE, where the graph sampling method is UNI, and the content
distribution scheme is CDS I with α = 1 and W = {20, 50}. We observe that DCE is highly
biased, while SCE and WCE are unbiased. MLE needs to sample most vertices to reduce
biases, especially for largeW . Note that SCE and WCE practically coincide with the correct
values.

In the following experiments, we set α = 1 and W = 105 for CDSes I and II, and
pS = 0.01 for CDSes III and IV. We evaluate the performance of SCE and WCE combined
with different graph sampling methods based on the datasets generated by four different
CDSes. Figure 4a–d shows the complementary cumulative distribution function (CCDF) of
the expectation of content distribution estimates provided by DCE, SCE, and WCE, where
the graph is Xiami and the graph sampling method is UNI. We find that DCE exhibits large
errors, and SCE and WCE are quite accurate. Similar results are obtained when we use the
other four graph samplingmethods described in Sect. 2. Figure 4e–t shows the NMSE of SCE
and WCE combined with different graph sampling methods for measuring content statistics.
The results show that WCE is significantly more accurate than SCE over most points. In
particular, WCE is almost an order of magnitude more accurate than SCE for the number of
copies larger than 100, and nearly two orders of magnitude more accurate than SCE for the
number of copies larger than 1000. Figure 5 shows the compared results for different graph
samplingmethods where the graph used is Xiami. The results show that UNI is quite accurate
and MHRW exhibits large errors for content with a small number of copies. The compared
results for WCE show that MHRW is much worse than the other graph sampling methods,
while RW and FS have almost the same accuracy. The results for graph YouTube are similar.
We show them in Appendix. The time cost of sampling B vertices consists of two parts: (1)
computational time and (2) the query response time. In practice, the query response time
is usually the bottleneck, because most network service providers impose a query rate limit
on crawlers. We can easily find that four graph sampling methods UNI, RW, MHRW, and
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Fig. 4 (Xiami) NMSEs of content distribution estimates for different estimators and graph samplingmethods.
a CDS I. b CDS II. c CDS III. d CDS IV. e UNI, CDS I . f RW, CDS I. gMHRW, CDS I. h FS, CDS I. i UNI,
CDS II. j RW, CDS II. kMHRW, CDS II. l FS, CDS II.m UNI, CDS III. n RW, CDS III. oMHRW, CDS III.
p FS, CDS III. q UNI, CDS IV. r RW, CDS IV. s MHRW, CDS IV. t FS, CDS IV

FS have the similar computational complexity. Moreover, we observe that four estimators
DCE, MLE, SCE, and WCE almost exhibit the same computational time. Table 4 shows the
computational time for different sampling budget B, where the query response time is not
considered. We can see that the computational time increases linearly with B.

Figure 6 shows the distributions of users inXiami using different labels,where the province
numbers and corresponding names are shown in Table 5. The fraction of users with more
than 104 followers, following, or recommendations is smaller than 2 × 10−6. The top three
popular provinces are Guangdong, Beijing, and Shanghai. Figures 7, 8, 9 and 10 show the
results of our methods for estimating vertex label densities. The results show that WCE
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Fig. 5 (Xiami) Compared NMSEs of content distribution estimates for WCE using different graph sampling
methods. a CDS I. b CDS II. c CDS III. d CDS IV

Table 4 Computational time
(seconds) for different sampling
budgets and graphs

B = Xiami YouTube Flickr

0.01|V | 0.035 0.024 0.039

0.1|V | 0.349 0.238 0.389

0.9|V | 3.146 2.145 3.51
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Fig. 6 (Xiami) The distributions of users by different labels. a # followers, # following, and # recommenda-
tions. b Location

significantly outperforms previous methods over almost all points. This is because WCE
uses neighbors’ graph property summaries of sampled vertices. In particular for UNI_WCE,
which is an order of magnitude more accurate than UNI for follower/following counts larger
than 100. Figure 11 shows the compared results for different graph sampling methods where
the graph used is Xiami. The results show that MHRW is quite accurate. RW and FS almost
have the same accuracy. For the follower and recommendation count distributions, UNI is
more accurate for follower and recommendation counts with small values. Figures 12 and 13
show the results for estimating out-degree distribution for YouTube and Flickr, respectively.
We observe that WCE is better than previous methods over almost all points.

5 Applications

We now apply our methodology to a real OSN, Sina Microblog network, to characterize
various content, e.g., the average number of retweets or replies per tweet, types of tweet
messages, as well as the associated top rank statistics. By crawling webpages of 148,313
random accounts selected by UNI, we obtain 19.7 million tweets and retweets. Note that in
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Table 5 (Xiami) Province
numbers and corresponding
names

1. Beijing 2. Tianjin 3. Hebei

4. Shanxi 5. Inner Mongolia 6. Liaoning

7. Jilin 8. Heilongjiang 9. Shanghai

10. Jiangsu 11. Zhejiang 12. Anhui

13. Fujian 14. Jiangxi 15. Shandong

16. Henan 17. Hubei 18. Hunan

19. Guangdong 20. Guangxi 21. Hainan

22. Chongqing 23. Sichuan 24. Guizhou

25. Yunnan 26. Tibet 27. Shannxi

28. Gansu 29. Qinghai 30. Ningxia

31. Xinjiang 32. Taiwan 33. Hong Kong

34. Macao 35. Null 36. Overseas
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Fig. 7 NMSEs of following count distribution estimates for different graph samplingmethods and estimators.
a UNI. b RW. c MHRW. d FS
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Fig. 8 (Xiami) NMSEs of follower count distribution estimates for different graph sampling methods and
estimators. a UNI. b RW. c MHRW. d FS
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Fig. 9 (Xiami) NMSEs of recommendation count distribution estimates for different graph samplingmethods
and estimators. a UNI. b RW. c MHRW. d FS

the following analysis, tweets refer to the original tweets. Each tweet or retweet records its
original tweet’s information such as the number of retweets and replies. Figure 14 shows the
results of estimating the distribution of tweets from retweets and replies using DCE, SCE,
and WCE, where the special content is defined as the original tweet for SCE. The estimates
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Fig. 10 (Xiami) NMSEs of location distribution estimates for different graph sampling methods and estima-
tors. a UNI. b RW. c MHRW. d FS
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Fig. 11 (Xiami) Compared NMSEs of graph label density estimates for WCE using different graph sampling
methods. a # following. b # follower. c # recommendation. d Location

100 102 104 10610−2

10−1

100

101

102

out−degree

N
M

SE

UNI
UNI_WCE

(a)

100 102 104 10610−2

10−1

100

101

out−degree

N
M

SE

RW
RW_WCE

(b)

100 102 104 10610−2

10−1

100

101

102

out−degree

N
M

SE

MHRW
MHRW_WCE

(c)

100 102 104 10610−2

10−1

100

101

out−degree

N
M

SE

FS
FS_WCE

(d)

Fig. 12 (YouTube) NMSEs of out-degree distribution estimates for different graph sampling methods and
estimators. a UNI. b RW. c MHRW. d FS_WCE versus FS
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Fig. 13 (Flickr) NMSEs of out-degree distribution estimates for different graph sampling methods and esti-
mators. a UNI. b RW. c MHRW. d FS

for the average number of retweets and replies per tweet are shown in Table 6. We observe
that the estimates of SCE and WCE are close to each other, but the estimates obtained by
DCE significantly deviate from SCE andWCE. This is consistent with previous experimental
results which show that DCE exhibits a large bias. Furthermore, as shown in Fig. 14, we can
see that the maximum number of retweets or replies given by SCE is the smallest because it
only uses information of sampled original tweets, and the original tweets of popular tweets
are not always sampled.

Let us explore the “type” of tweets. We classify tweets into three types: text tweet, image
tweet, and video tweet. Table 7 shows their statistics measured by WCE. We find that 60.1%
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Fig. 14 Distributions of tweets by the number of retweets and replies. a # retweets. b # replies

Table 6 Our estimates of the
average number of retweets and
replies per tweet

Avg. # retweets Avg. # replies

DCE 423 89.8

SCE 2.01 3.93

WCE 1.60 4.60

Table 7 (Sina Microblog) Statistics of tweets by different categories

Fraction of tweets (%) Avg. # retweets per tweet Avg. # replies per tweet

Text 60.1 0.31 2.30

Image 37.6 3.33 7.91

Video 2.3 7.05 10.91

Table 8 (Sina Microblog) Statistics of video tweets

Source Fraction of video tweets (%) Avg. # retweets per tweet Avg. # replies per tweet

youku.com 42.7 5.57 9.68

tudou.com 26.3 9.87 13.73

sina.com 10.0 9.09 11.32

yinyuetai.com 6.2 5.06 9.36

56.com 4.4 11.29 26.64

ku6.com 2.9 11.29 13.02

sohu.com 1.7 4.56 1.29

kandian.com 1.6 0.13 0.16

baomihua.com 1.6 0.31 0.08

ifeng.com 0.9 5.77 4.36

are text tweets, 37.6% are image tweets, and 2.3% are video tweets. On average, image and
video tweets have more retweets and replies than text tweets. Table 8 shows the statistics
of video tweets by their associated external video source Web sites. We find that the top
five popular videoWeb sites are youku.com (42.7%), tudou.com (26.3%), sina.com (10.0%),
yinyuetai.com (6.2%), and 56.com (4.4%).
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6 Related work

Little attention has been given to develop a formal crawlingmethodology to estimate statistics
of content over large networks. Zafar et al. [53] conduct an extensive measurement study on
comparing the performance of using expert tweets and random sampled tweets on Twitter for
applications such as topical search and breaking news detection. Unlike Twitter, in this paper
we assume the network of interest does not support an API to sample content at random. Our
problem is closely related to research on crawling and sampling large networks. In this paper,
we differ crawling and sampling methods as: (1) crawling methods assume that the network
of interest is not given in advance, and they aim to accurately estimate network statistics
from as few queried nodes as possible because service providers usually impose a rate limit
on crawlers; (2) unlike crawling methods, sampling methods assume that the entire network
is given in advance, and they aim to design sampling methods to reduce the computational
cost of calculating network statistics such as the number of triangles in the network.

Crawling methods for reducing query cost Previous crawling work focuses on designing
accurate and efficient methods for measuring graph characteristics, such as vertex degree
distribution [14,38,40,41,45] and the topology of vertices’ groups [24]. Most previous OSN
graph crawling and sampling work focuses on undirected graph since each vertex in most
OSNs maintains both its incoming and outgoing neighbors, so it is easy to convert these
directed OSNs to their associated undirected graphs by ignoring the directions of edges.
Breadth-First-Search (BFS) is easy to implement but it introduces a large bias toward high-
degree vertices, and it is difficult to remove these biases in general [1,25,26]. Random
walk (RW) is biased to sample high-degree vertices, however its bias is known and can be
corrected [17,42].Comparedwith uniformvertex sampling (UNI),RWhas smaller estimation
errors for high-degree vertices, and these vertices are quite common for many OSNs like
Facebook,Myspace, and Flickr [40]. Furthermore, it is costly to applyUNI in these networks.
Metropolis–Hastings RW (MHRW) [14,45,54] modifies the RW procedure, and it aims to
sample each vertex with the same probability. The accuracy of RW and MHRW is compared
in [14,38]. RW is shown to be consistently more accurate than MHRW. The mixing time of
RWdetermines the efficiencyof the sampling, and it is found tobemuch larger than commonly
believed formanyOSNs [34]. There are a lot ofwork on how to decrease themixing time [3,7,
11,13,23,40,55]. Avrachenkov et al. [3] observes that random jumps increase the spectral gap
of the randomwalk, which leads to faster convergence to the steady state distribution. Kurant
et al. [23] assigns weights to nodes that are computed using their neighborhood information,
and develops aweightedRW-basedmethod to perform stratified sampling on social networks.
Dasgupta et al. [11] randomly samples nodes (either uniformly orwith a known bias) and then
uses neighborhood information to improve its unbiased estimator. Zhou et al. [55] modifies
the regular random walk by “rewiring” the network of interest on-the-fly in order to reduce
the mixing time of the walk. To sample a directed graph with latent incoming links (e.g., the
Web graph and Flickr), Ribeiro et al. [41] use a RW with jumps under the assumption that
vertices can be uniformly sampled at random from directed graphs. In addition to node/edge
label distribution estimation, Chen et al. andWang et al. [9,48] present crawling methods for
characterizing graphlets (i.e., small connected subgraph patterns) in large networks.

Sampling methods for reducing computational time Recently, counting triangle in a large
graph attracts a lot of attention. Seshadhri et al. and Wu et al. [43,51] present sampling
algorithms for estimating triangles in a large static graph, which is given in advance and
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its size can be fitted into memory space. [2,4,8,19,20,37,44,47] develop several streaming
algorithms for estimating the global count of triangles in a large graph represented as a stream
of edges. Jha et al. [19] develop a wedge sampling-based algorithm to estimate the number
of triangles in a graph stream. Tsourakakis et et al. [47] present a triangle sparsification
method by sampling each and every edge with a fixed probability, which can also be used to
estimate triangle counts. Ahmed et al. [2] present a more general edge sampling framework
for estimating a variety of graph statistics including the number of triangles. Stefani et
al. [44] use a fixed user-specified memory space to sample edges by the reservoir sampling
technique. Moreover, [5,27,29,44] develop algorithms for estimating local (i.e., incident to
each vertex) counts of triangles in a large graph stream. In addition to triangle counting,
a number of algorithms [6,21,36,49,50] have been developed for estimating high-order
graphlet concentrations/counts in a large graph, which is more computationally intensive.

7 Conclusions

In this paper, we study the problem of estimating characteristics of content distributed over
large graphs. Our analysis and experimental results show that existing graph sampling meth-
ods are biased to sample content with a large number of copies, and there can be a huge bias
in statistics computed by using collected content in a direct manner. To remove this bias, the
MLE method is applied. However, we observe that MLE needs to sample most vertices in
the graph to obtain an accurate estimate. To address this challenge, we develop two accurate
methods SCE and WCE using available meta-information in sampled content and prove that
they are asymptotically unbiased. We perform extensive experiments and demonstrate that
WCE is more accurate than SCE. Furthermore, we useWCE to estimate graph characteristics
when vertices maintain their neighbors’ graph properties and conduct experiments to show
that WCE is more accurate than regular sampling methods. Our methods SCE and WCE fail
to estimate characteristics of content distributed over large graphs when the meta-data of a
content do not provide a special copy indicator or the number of copies that the content holds.
In future, we plan to solve this limitation.
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Appendix

MLE method

We present the MLE of ω only for graph sampling method UNI, because it is not easy to
derive theMLE ofω for other graph samplingmethods such as RW,MHRW, and FS. Suppose
that the graph size is known (this can be estimated by sampling methods proposed in [22]),
n < |V | vertices are sampled and then each copy of c is sampled with the same probability
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p = n
|V | . For simplicity, we assume that content is distributed over networks uniformly

at random. Let M be the maximum number of copies that content has. Denote Pi, j as the
probability of sampling i copies for content totally having j copies, where 1 ≤ i ≤ j ≤ M .

Let q = 1− p, we have Pi, j = ( ji)p
i q j−i

1−q j . We compute the MLE of ω from sampled content
copies in respect to the following two cases:
Case 1When the content label under study is the number of copies associated with content.
For randomly sampled content, let αi (1 ≤ i ≤ M) be the probability that it has i copies
sampled. Among sampled content, let xi be the fraction of content with i copies sampled.
We have E(xi ) = αi . Thus, xi is an unbiased estimate of αi . Next, we present a method to
estimate ω based on the relationship of αi and ω. The likelihood function of αi is

αi =
M∑

j=i

ω j Pi, j . (5)

This is similar to packet sampling-based flow size distribution estimation studied in [12],
where each packet is sampled with probability p. Here a flow refers to a group of packets
with the same source anddestination, and theflowsize is the number of packets that it contains.
In our context, content corresponds to a flow, and its copies correspond to packets in the flow.
Therefore, we can develop a maximum likelihood estimate ω̂MLE

k of ωk (1 ≤ k ≤ M) similar
to the method proposed in [12].
Case 2When the content label under study is independent with the number of duplicates and
it is available in each content copy, which is not a latent property such as the number of copies
content has, we use the following approach to derive the MLE. Define βk, j (0 ≤ k ≤ K ,
1 ≤ j ≤ M) as the fraction of the number of content with label lk and j copies over the
number of content with label lk . For sampled content, let αk,i (1 ≤ i ≤ M) be the probability
that its content label is lk and has i copies sampled. Then, the likelihood function of αk,i is

αk,i =
M∑

j=i

βk, j Pi, j .

αk,i can be estimated based on sampled content copies. That is, among sampled content, let
xk,i be the fraction of content with label lk that has i copies sampled.We haveE(xk,i ) = αk,i .
Therefore, xk,i is an unbiased estimate of αk,i . Similar to (5), we then develop a maximum
likelihood estimate β̂k, j of βk, j , 1 ≤ j ≤ M . Since

αk = ωk

M∑

i=1

M∑

j=i

βk, j Pi, j ,

we have the following estimator of ωk

ω̂MLE
k = α̂k

SMLE
∑M

i=1
∑M

j=i β̂k, j Pi, j
, 0 ≤ k ≤ K ,

where α̂k is the fraction of sampled content with label lk , and

SMLE =
K∑

k=0

α̂k∑M
i=1

∑M
j=i β̂k, j Pi, j

.
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