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Abstract— The efficiency of a large-scale edge computing sys-
tem primarily depends on three aspects: i) edge server provision,
ii) task migration, and iii) computing resource configuration.
In this paper, we study the dynamic resource configuration
for hybrid edge server provision under two decentralized task
migration schemes. We formulate the dynamic resource configu-
ration as an online cost minimization problem, aiming to jointly
minimize performance degradation and operation expenditure.
Due to the stochastic nature, it is an online learning problem with
partial feedback. To address it, we derive a deterministic mean
field model to approximate the stochastic edge computing system.
We show that the mean field model provides the increasingly
accurate full feedback as the system scales. We then propose
a learning policy based on the mean field model, and show
that our proposed policy performs asymptotically as well as the
offline optimal configuration. We provide two ways of setting
the policy parameters, which achieve a constant competitive
ratio (under certain mild conditions) and a sub-linear regret,
respectively. Numerical results show that the mean field model
significantly improves the convergence speed. Moreover, our
proposed policy under the decentralized task migration schemes
considerably reduces the operating cost (by 23%) and incurs
little communication overhead.

Index Terms— Edge computing, online learning, mean field
theory.

I. INTRODUCTION

A. Background and Motivation

THE recent proliferation of smart city and Internet-of-
Things (IoT) applications has been driving a rapid growth

of connected devices (e.g., IoT sensors and mobile users) [2].
These devices are the sources that repeatedly generate comput-
ing tasks of various delay-sensitive services. Edge computing,
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providing computation resource in close proximity to the
sources, is a promising paradigm to reduce the latency for
many network applications [3]. Moreover, the exponential
growth of artificial intelligent applications creates an urgent
need to unleash the benefit of the edge network [4]. The per-
formance of the large-scale edge computing system depends
primarily on three factors: 1) edge server provision, 2) task
migration scheme, and 3) dynamic resource configuration,
which are the main focus of our study in this paper.

1) Edge Server Provision: The edge computing resource is
typically the edge servers in close proximity to the sources.
In practice, the edge server could be a micro datacenter or
a server attached to an access point [5]. In general, the edge
servers may function in the passive mode or the active mode:

• The edge server in the passive mode will admit and
process the tasks offloaded by the sources (e.g., IoT
sensors). The interaction between the sources and the
passive-mode edge servers corresponds to the previous
studies on computation task offloading (e.g., [6]–[11]).

• The edge server in the active mode will not directly admit
the tasks offloaded by the sources, but will assist the
passive-mode edge servers to process the waiting tasks.
The interaction between the active-mode and passive-
mode edge servers corresponds to the previous studies
on edge collaboration (e.g., [12]–[17]).

We provide an illustrative edge network in Fig. 1, which
consists of M = 10 sources, N = 5 passive-mode edge
servers, and K = 1 active-mode edge server. The ratios
θ � N/M and η � K/M represent the network oper-
ator’s hybrid edge server provision. Given the above two
modes, a source’s computing task will first reach one of the
passive-mode edge servers, and may be extracted by an idle
active-mode edge server later. Therefore, the task execution
progress is closely related to the adopted task migration
scheme, which is discussed in the following.

2) Task Migration Scheme: The task migration scheme
should adapt to the aforementioned edge server provision.
An appropriate task migration scheme can significantly reduce
the task execution latency, thus improves the Quality of
Experience (QoE) perceived by the sources. There have
been many studies on task migration under the coordination
of the network operator who has the global information
(e.g., [14], [17]). In real-world applications, however, it is
costly to keep track of all the required information globally and
persistently, especially when the network scale (e.g., number
of sources and edge servers) is large. This motivates us to
consider the more practical migration scheme for the hybrid
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Fig. 1. An illustrative scenario with M = 10 sources, N = 5 passive-mode
edge servers, and K = 1 active-mode edge server. The edge servers can be
interconnected via a metropolitan-area-network or local-area-network.

edge server provision. In this paper, we will focus on two
load-balancing policies, i.e., Join-Shortest-Queue (JSQ) and
Longest-Queue-First (LQF). As shown in Fig. 1, the two
migration schemes work as follows:

• JSQ(d) with d ∈ {1, 2, . . . , N}: Upon generating a task,
the source probes d passive-mode edge servers uniformly
at random, and migrates the task to the least loaded one
among the d samplings.

• LQF(b) with b ∈ {1, 2, . . . , N}: Whenever an
active-mode edge server has any capacity, it probes b
passive-mode edge servers uniformly at random, and
extracts a waiting task from the one with the heaviest
workload among the b samplings.

Note that both JSQ(d) and LQF(b) aim to balance the work-
load among the passive-mode edge servers, thus improve the
resource utilization and expedite the task execution. Further-
more, as the parameters d and b increase, JSQ(d) and LQF(b)
are approaching to the classic join-the-shortest-queue and
serve-the-longest-queue disciplines, respectively. As one can
imagine, probing the edge servers results in communication
overhead, which increases linearly in the two parameters d
and b. The previous studies (e.g., [18], [19]) have shown
that a small value can already ensure a good performance
in the heavy-demand scenario. However, it is not clear yet
whether this still holds when the operator needs to config-
ure the available computing resource in a dynamic fashion
(i.e., the third focus in this paper).

3) Resource Configuration: Despite the extensive studies on
the task migration, the computing resource allocation has been
overlooked in edge computing. A fixed resource configuration
will inevitably result in either a low resource utilization or
a poor system performance due to the workload fluctuation
from the sources. Therefore, it is crucial to configure the
computing resource in a dynamic fashion for the edge servers.
Note that the “dynamic configuration” naturally relies on
the underlying computation demand and the expenditure of
running the resource. Both of them are priori unknowns
and possibly time-varying in practice. This means that it is
imperative to study the “online resource configuration” for the
edge servers. The above discussions lead to the following key
questions in this paper:

Question 1: How to optimize the resource configuration
under the hybrid edge servers provision in a dynamic fashion?

Question 2: Can one harness the benefits from JSQ(d) and
LQF(b) even when d and b are small in the dynamic scenario?

The major challenge of resolving the two key questions is
the partial feedback issue resulted from the large-scale edge
network. To overcome this challenge, we will introduce a
mean field model to estimate the large-scale edge network,

and propose an online mean field aided configuration policy.
We believe the results in this paper could lay the groundwork
for using the mean field theory to analyze and optimize the
dynamic hybrid edge server provision for the large-scale edge
computing network.

B. Main Results and Key Contributions

In this paper, we study the multi-period operation of the
large-scale edge computing system with hybrid edge server
provision, and we aim to minimize the total operating cost in
an online fashion. At the beginning of each period (e.g., every
hour), the network operator determines the resource configura-
tion for the edge servers of two modes. During this period, the
passive-mode edge servers admit computation tasks from the
sources under the migration policy JSQ(d). The active-mode
edge servers assist the passive-mode ones in executing the
waiting tasks according to the migration policy LQF(b). At the
end of each period, the network operator observes the cost of
operating the network within this period, and then determines
the resource configuration for the next period. Due to the
stochastic nature of the large-scale edge network, it is difficult
to anticipate the cost of other configuration decisions that were
not adopted. Therefore, the dynamic resource configuration
problem naturally exhibits the partial feedback issue. The
main results and key contributions in this paper are as follows:

• Problem Formulation: We investigate the dynamic
resource configuration for hybrid edge server provision
under two decentralized task migration schemes. The goal
is to jointly minimize the operation expenditure and the
performance degradation in an online fashion. To the
best of our knowledge, this is the first study on dynamic
resource configuration for edge computing.

• Resolving Partial Feedback via Mean Field: To address
the partial feedback, we introduce a deterministic mean
field model to represent the large-scale stochastic edge
network. We show that the original stochastic system
converges to the deterministic mean field model as the
system size and the period duration increase. As far as we
know, we are the first to integrate the mean field theory
and online learning with the partial feedback issue.

• Online Mean Field aided Configuration Policy: We devise
an online mean field aided configuration policy for the
large-scale edge computing system. Our proposed policy
first discretizes the metric space, and then continuously
explores and exploits the finite configuration candidates
based on the mean field cost. We show that the cost
incurred by our proposed policy is less than the sum
between a constant multiple of the offline minimal cost
and an extra constant. We provide two ways of setting the
policy parameters, which achieve the constant competi-
tive ratio (under certain mild condition) and the sub-linear
regret, respectively.

• Performance Evaluation: We carry out extensive evalu-
ation using the real-world electricity market data. The
results show that the mean field model can significantly
improve the convergence speed in the online resource
configuration. Moreover, our proposed mean field aided
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TABLE I

RELATED LITERATURES ON EDGE COMPUTING

configuration policy under the migration schemes JSQ(2)
and LQF(2), considerably reduces the total operating cost
(by 23%) and incurs little communication overhead.

The remainder of this paper is as follows. Section II reviews
related literature. Section III introduces the system model and
the problem formulation. Section IV derives a mean field
model. Section V proposes the online resource configuration
policy. Section VI provides the numerical results. We con-
clude this paper in Section VII.

II. LITERATURE REVIEW

We review three streams of studies related to this paper,
including edge computing, load balancing in multi-server
system, and online learning algorithms.

A. Edge Computing

There have been many excellent studies on edge comput-
ing [5]. We will focus on the recent studies that are mostly
related to ours. Table I summarizes the related literature in
terms of task migration, resource configuration, and other
modeling features.

1) Edge Server Provision & Task Migration: The passive-
mode edge server provision in this paper is related to the
previous studies on the task offloading problems. Chen et al.
in [6] study this problem as a potential game. The later studies
further take into account the energy-efficiency aspect (e.g., [7])
and the service caching (e.g., [8], [9]). Ng et al. in [10]
propose a two-phase stochastic coded offloading scheme,
which minimizes the cost of the network, energy consumption
by the UAVs. Asheralieva et al. in [11] further take into
account privacy-preserving design for coded offloading. The
active-mode edge server provision is related to edge collab-
oration. Sahni et al. in [12] study how to jointly schedule
the tasks and the network flows in the collaborative edge
computing. Galanopoulos et al. in [13] consider the cooper-
ative IoT data analytics on the edge nodes. More recently,
Tang et al. in [14] propose a general 3C resource sharing
framework, which takes into account communication, com-
putation, and caching. Ndikumana et al. in [15] propose an
edge server collaboration paradigm, and jointly consider the
computing, caching, communication, and control. Peng et al.
in [16] take the leasing cost into consideration, and design
intelligently joint caching and offloading strategies. Moreover,
Poularakis et al. in [17] formulate a static service placement
and request routing problem, which can generalize several

previous studies on edge computing. They also propose an
algorithm that achieves the close-to-optimal performance.

2) Resource Configuration: The resource configuration
problem has not been widely studied in edge computing
before. A few studies consider a static scenario. Zhang et al.
in [20] investigate how to allocate the computing resource of
edge and cloud servers, and propose a distributed optimization
framework. Kiani and Ansari [21] consider a hierarchical
model to allocate the computing resource based on an auction-
based method. Ng et al. in [22] propose a double auction
mechanism to allocate the resource of the edge servers under
the PolyDot codes. Chen et al. in [23] focus on the energy
consumption and study the optimal allocation of both com-
putation and communication resource. Meskar and Liang [24]
focus on the fairness issue of multi-resource allocation for
edge servers. Furthermore, the dynamic configuration in edge
computing is seldom studied. Zhou et al. in [25] investigate
the dynamic server provision in IoT data streaming, but do
not address the resource allocation problem.

Our study in this paper differs from the above works on
edge computing in the following three aspects.

• First, we resolve the dynamic resource configuration
problem in the online setting, taking into account the
computing demand uncertainty and the unknown oper-
ation expenditure. This is a critical issue for edge com-
puting deployment, but is seldom studied before.

• Second, we take into account the hybrid edge server
provision together with two decentralized task migration
schemes. Such a paradigm can generalize several previous
studies into a unified framework.

• Third, we investigate the limiting system performance
when the number of sources is large via the mean
field model. This is a practically important issue for the
large-scale edge network deployment.

Overall, the three aspects are mutually affected, which renders
the online configuration policy design highly non-trivial.

B. Load Balancing in Multi-Server System

The task migration schemes in this paper are related to
the load-balancing policies in multi-server systems, which
study how the dispatcher routes the incoming jobs to dif-
ferent servers [26]. In this problem, mean field approxima-
tion has been widely used to investigate the steady state of
the limiting system. Mitzenmacher in [18] characterizes the
average response time under JSQ(2) for the M/M/1 system,
which unveils an exponential improvement compared to the
random dispatching. Later works extend this study from the
perspective of batch-job arrival (e.g., [19]), general serving
time distribution (e.g., [27]), resource budget (e.g., [28]),
and resource pooling (e.g., [29]). The above studies only
show that the original system converges to the mean field
model as the system size increases, but do not analyze the
approximation error. More recently, Ying in [30] explicitly
derives the approximation error in terms of the system size.

In this paper, the task migration scheme from the sources
to the passive-mode edge severs shares a similar idea with the
above studies (e.g., [18]). Moreover, the migration scheme for
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the active-mode edge servers is a generalization of the resource
pooling study in [29].

C. Online Learning Algorithms

The dynamic resource configuration in this paper corre-
sponds to the online learning problem with partial feedback on
the metric space. To resolve this problem, this paper proposes
an online mean field aided policy, which consists of the
discretization and learning phases. Specifically, the mean field
model provides the approximated full feedback. Moreover, the
learning phase is primarily based on the multiplicative weight
update (MWU) method [31], which originates from the classic
problem “prediction with expert advices” [32]. However, the
presence of discretization phase renders the regret analysis
of the proposed algorithm substantially different from the
standard procedure of the classic MWU method.

III. SYSTEM MODEL

We consider a set M = {1, 2, . . . , M} of M sources
(e.g., IoT sensors or mobile users), which repeatedly generate
delay-sensitive computing tasks. The edge computing operator
adopts a hybrid edge server provision in proximity to the
sources. Specifically, there are a set N = {1, 2, . . . , N} of
N passive-mode edge servers and a set K = {1, 2, . . . , K}
of K active-mode edge servers. The task migration scheme
under the hybrid edge server provision is as follows:

• The sources can offload their computing tasks to one
of the N passive-mode edge servers, but cannot directly
access the active-mode edge servers on their own.

• The K active-mode edge servers will assist the
N passive-mode edge servers to process the waiting tasks
by extracting a waiting task.

For notation simplicity, we define θ � N/M and η � K/M .
Accordingly, the tuple (θ, η) represents the operator’s hybrid
edge server provision, which reflects the operator’s long-term
infrastructure deployment. For example, if the operator decides
to deploy 10 passive-mode edge servers and 1 active-mode
edge server for every 100 IoT sensors within the region of its
interest, then we have (θ, η) = (0.1, 0.01). Later on, we will
investigate how the edge computing system scales as M
increases. This captures the rapid growth of the delay-sensitive
applications in the future large-scale network.

Furthermore, the task generation rate of each source
m ∈ M could be time-varying and unpredictable in practice.
Therefore, given the hybrid edge server provision (θ, η), the
operator will dynamically configure the available comput-
ing resource of the N + K edge servers. We consider an
operation horizon with a set T = {1, 2, . . . , T} of periods
(e.g., 1000 hours). Each period t ∈ T has the equal time
duration δ (e.g., 1 hour), and we let τ ∈ [0, δ] be the
time index within each period t. The operator configures the
available resource of each edge server at the beginning of each
period t, and then the edge computing system runs under this
configuration until the end of this period.

We introduce the network model and characterize the net-
work state in Section III-A and Section III-B, respectively.

TABLE II

KEY NOTATIONS

We then formulate the operator’s dynamic resource configu-
ration problem in Section III-C. Table II summarizes the key
notations.

A. Network Model

We characterize the edge computing network based on the
sources’ computation tasks, the migration schemes, and the
computing resource.

1) Computation Task: In each period t, source m ∈ M will
generate multiple computation tasks. We model the stochastic
nature of the task generation based on the generating time and
the computing intensity.

a) Generating time: We follow the previous studies
(e.g., [8]) and model the task generation of each source
m ∈ M as the Poisson process with the rate λm

t in period t.
Note that the rate λm

t may vary over different periods, which
captures the demand fluctuation of source m. Accordingly,
we let τm

t[i] ∈ [0, δ] denote the generating time of the i-th task
of source m in period t. To facilitate our later discussion,
we denote the average task generating rate in period t as
follows

λ̄[M]
t �

M�
m=1

λm
t

M
, ∀t ∈ T , (1)

where the superscript represents that the average is taken over
the M sources.

b) Computing Intensity: The computing intensity of a
task represents its complexity and can be roughly measured
by the required CPU cycles [6]. Mathematically, we let lmt[i]
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denote the computing intensity of the i-th task of source
m ∈ M in period t. We follow the previous empirical studies
(e.g., [33], [34]) and model lmt[i] as an exponentially distributed
random variable with a normalized mean value. Our later
analysis can be extended to the general distributions, which
will be elaborated at the end of Section IV.

The tuple φm
t[i] � {τm

t[i], l
m
t[i]} represents the i-th compu-

tation task of source m ∈ M in period t. We let φm
t �

{φm
t[1], φ

m
t[2], φ

m
t[3], . . .} denote the task profile of source m in

period t. Accordingly, Φt � (φm
t : ∀m ∈ M) represents the

task profile of the entire system in period t.
2) Passive-Mode Edge Server Provision: Each source

m ∈ M may offload its tasks φm
t to one of the N passive-

mode edge servers. Different from the previous studies on task
offloading (e.g., [6]–[9]), we will focus on a decentralized
migration scheme JSQ(d), where d ∈ {1, 2, . . . , N}. It works
in two steps as follows:

• Upon generating a task (e.g., φm
t[i] at time τm

t[i] ∈ [0, δ]),
the source m ∈ M inquires about the number of tasks
in d passive-mode edge servers, which are uniformly
selected at random.

• The source m migrates the task φm
t[i] to the one holding

the least tasks among the d samplings.

Note that the above procedure tends to balance the workload
among the N passive-mode edge servers. A larger parameter d
would lead to a better performance, but also increases the com-
munication overhead. Previous studies (e.g., [18], [19]) have
shown that a small parameter (e.g., d = 2) can already ensure
a good performance in the heavy-demand scenario. We will
further investigate the impact of the migration parameter d
in Section VI-B.

3) Active-Mode Edge Server Provision: The K active-
mode edge servers will assist the passive-mode edge servers
to execute the waiting tasks offloaded by the sources.
Different from the previous studies on edge collaboration
(e.g., [12]–[15], [17]), we focus on a decentralized scheme
LQF(b), where b ∈ {1, 2, . . . , N}. It works in two steps as
follows:

• Upon being idle, the active-mode edge server k ∈ K
selects b passive-mode edge servers uniformly at random,
and inquires about the number of tasks at the b selected
passive-mode edge servers.

• The active-mode edge server k will extract a waiting
task from the most loaded one among the b samplings
according to the FIFO rule.

Similarly, the procedure in LQF(b) tends to balance the work-
load among the N passive-mode edge servers. A larger b leads
to a better performance in terms of balancing the workload,
but also increases the communication overhead. Section VI
will show that a small parameter (e.g., b = 2) can already
ensure a good performance.

So far, we have elaborated the task migration scheme. Next
we move on to model the computing resource.

4) Computing Resource: Each edge server is equipped
with a certain amount of computing resource. The operator
needs to configure the available computing resource (e.g., the
number of VMs) at the beginning of each period t without

the knowledge of the upcoming tasks Φt. Mathematically,
we let xt denotes the CPU frequency (in cycles per second)
of each passive-mode edge server. Hence the total available
computing resource at the passive-mode edge servers is Nxt.
Similarly, we let yt denote the computing resource at each
active-mode edge server, thus the total computing resource at
the active-mode edge server is Kyt. The tuple zt = (xt, yt)
denotes the resource configuration in period t. The operator
chooses zt in the metric space Z , which is defined as

Z �
�
(x, y)

�� xL ≤ x ≤ xH, yL ≤ y ≤ yH
�
, (2)

where the feasible ranges [xL, xH] and [yL, yH] depend on the
hardware setup in practice. Recall that the operator has no task
information until the period end. That is, the operator would
decide zt ∈ Z without relying on Φt and λt.

B. Network Characterization

We characterize the network state and introduce the perfor-
mance metric based on the above network model.

1) Network State: In each period t, we let Qn
t (τ) ∈ B

denote the number of tasks in the passive-mode edge server
n ∈ N at time τ ∈ [0, δ], where B � {0, 1, . . . , B} and B is
the buffer size. Accordingly, Qt(τ) = {Qn

t (τ) ∈ B : ∀n ∈ N}
represents the network state at time τ in period t. Note that
{Qt(τ) ∈ BN : ∀τ ∈ [0, δ]} is an N -dimensional continuous
time Markov chain (CTMC). We have two-fold elaboration on
the dependency of the network state:

• Given the migration scheme JSQ(d), Qn
t (τ) depends on

the task profile of the passive-mode edge server n, as well
as the task profiles of other passive-mode edge servers.

• Given the migration scheme LQF(b), Qn
t (τ) depends on

the resource configuration at both the passive-mode and
active-mode edge servers.

To emphasize the above dependencies, we will sometimes
use Qn

t (τ, zt,Φt) to denote the number of tasks in the
passive-mode edge server n at time τ . Accordingly, the
average workload among the N passive-mode edge servers
at time τ ∈ [0, δ] is given by

L[N]
t (τ, zt,Φt) � 1

N

N�
n=1

Qn
t (τ, zt,Φt), (3)

where the superscript [N] represents that the average is taken
over the N passive-mode edge servers. Moreover, the time-
average workload in period t is given by

L[N][δ]
t (zt,Φt) � 1

δ

� δ

0

L[N]
t (τ, zt,Φt)dτ, (4)

where the superscript [δ] represents that the average is taken
over the period duration δ. Next we elaborate why the
time-average workload Eq. (4) is a crucial performance metric
for the operator to optimize.

2) Performance Metric: The operator aims to expedite the
task execution and improve the Quality of Experience (QoE) of
the M sources. Hence the execution latency (i.e., the time that
a task spends in the system) is a crucial performance metric
for the operator to optimize. Specifically, Eq. (4) implies that
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the time-average number of tasks in all the passive-mode edge

servers is NL[N][δ]
t (zt,Φt). The sources’ total task generating

rate is Mλ̄[M]
t . By Little’s Law [35], the average execution

latency of the tasks Φt in period t is

N · L[N][δ]
t (zt,Φt)
M · λ̄[M]

t

=
θ · L[N][δ]

t (zt,Φt)
λ̄[M]

t

, (5)

where θ = N/M is the passive-mode edge server provision
ratio. Therefore, the time-average workload in Eq. (4) is
proportional to the task execution latency. In Section III-C,
we will model the network performance degradation based
on it.

C. Problem Formulation

We first define the operating cost, and then introduce the
problem formulation of the dynamic resource configuration.

1) Operating Cost: We model the operating cost based on
the operation expenditure and the performance degradation.

a) Operation expenditure: is the monetary cost of the
energy consumption for the operator. Such a cost has a
positive relation with the resource configuration decision zt =
(xt, yt). We will use a general polynomial convex structure to
model the operator’s monetary cost. To be specific, for each
passive-mode edge server, we model the monetary cost under
the resource configuration xt as follows

ξPt x
σ
t , (6)

where σ ≥ 1 and ξPt ∈ [0, ξPmax]. Similarly, given the computing
resource configuration yt, we model the cost incurred by each
active-mode edge server as

ξAt yσ
t , (7)

where ξAt ∈ [0, ξAmax]. We have two-fold elaboration regarding
the above cost structure.

• In the real-world network, the two coefficients ξPt and
ξAt depend on many unpredictable factors such as the
infrastructure management, the energy consumption, and
the electricity price. Hence the operator does not know
(ξPt , ξ

A
t ) until the end of period t.

• Our later analysis is applicable to any parameter σ ≥ 1,
which corresponds a general convex cost structure in
the polynomial form. Note that the quadratic structure
(i.e., σ = 2) could capture the power scaling phenom-
enon (as in [36]–[38]). Moreover, the linear structure
(i.e., σ = 1) could capture the case where each edge
server consists of multiple VMs (as in [39]).

Based on the above monetary cost, the resource configuration
zt = (xt, yt) incurs the operation expenditure ξPt Nxσ

t +ξAt Kyσ
t

in period t. As we will see later, it is practically important to
investigate how the system scales when the number of sources
M increases. To facilitate our later analysis, we will focus on
the following average operation expenditure in each period t

ξPt Nxσ
t + ξAt Kyσ

t

M
= ξPt θx

σ
t + ξAt ηyσ

t , (8)

where θ = N/M and η = K/M represent the operator’s
hybrid edge server provision.

b) Performance degradation: measures the sources’ QoE
reduction due to the increase in latency. In each period t,
we measure the QoE reduction based on the time-average
workload L[N][δ]

t (zt,Φt) defined in Eq. (4). Mathematically,
we adopt a general formulation and let G(L) denote the
degradation given the time-average workload L. Specifically,
G(L) is continuous and increasing in L with G(0) = 0.

Based on the discussion above, we define the operator’s cost
in period t as follows:

C[N][δ]
t (zt,Φt) � G

�
L[N][δ]

t (zt,Φt)
�

+ ξPt θx
σ
t + ξAt ηyσ

t , (9)

which comprises the performance degradation and the average
operation expenditure. The operator can flexibly choose the
function G(·) to balance how much it prioritizes the system
performance over the monetary expenditure. That is, given an
appropriate function G(·), the operator achieves its desired
outcome by minimizing the cost in Eq. (9) over zt ∈ Z .

2) Operator’s Problem: The operator determines the
resource configuration zt sequentially at the beginning of
period t, aiming to minimize the total cost during the T peri-
ods. However, the operator cannot observe the task profile Φt

and the per-unit operation expenditure (ξPt , ξ
A
t ) until the end

of period t. That is, the operator needs to solve the following
online cost minimization problem:

Problem 1 (Online Cost Minimization Problem):

min
T�

t=1

C[N][δ]
t (zt,Φt)

s.t., zt ∈ Z, ∀t ∈ T . (10)
Problem 1 is an online optimization problem on the metric

space. The key challenges to solve it are two-fold:
• Partial Feedback: Problem 1 exhibits the partial feed-

back issue in terms of the performance degradation.
Specifically, the operator can observe the performance
degradation after adopting the resource configuration zt.
However, it is hard for the operator to anticipate the
performance of other configuration due to the stochastic
nature of the large-scale edge network when there are a
great number of sources.

• Lack for Gradient Information: The operator does
not know the explicit gradient of the operating cost
C[N][δ]

t (zt,Φt) with respect to zt, let alone its convexity
or the Lipschitz condition. Therefore, the gradient-based
learning algorithms (e.g., online gradient decent [40]) do
not work in Problem 1. Moreover, we are not able to
follows the learning algorithms (e.g., [41]–[43]) that rely
on the Lipschitz constant.

To overcome the above challenges, we first introduce how to
tackle the partial feedback issue via the mean field theory in
Section IV. We then propose an online mean field aided policy
to address the unknown information in Section V.

IV. MEAN FIELD MODEL

In Section III, we characterize the hybrid edge network as
an N -dimensional stochastic CTMC. In this section, we intro-
duce a deterministic mean field model that approximates the
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N -dimensional stochastic CTMC. Mathematically, we want
to estimate the time-average workload L[N][δ]

t (z,Φt) for any
configuration z ∈ Z based on the mean field model. For
notation simplicity, we will focus on a generic period and
suppress the period index t in this section.

We first introduce the density-based state and the mean field
model in Section IV-A and Section IV-B, respectively. We then
study the relationship between the deterministic mean field
model and the original stochastic system in Section IV-C.

A. Density-Based State

Recall that Qn(τ) represents the number of tasks in
passive-mode edge server n ∈ N at time τ ∈ [0, δ]. That
is, Q(τ) = {Qn(τ) ∈ B : ∀n ∈ N} is a quantity-based state
characterization. Now we introduce a density-based state and
let S[N]

i (τ) denote the “fraction” of passive-mode edge servers
holding at least i tasks at time τ , i.e.,

S[N]
i (τ) � 1

N

N�
n=1

I
	
Qn(τ) ≥ i



, ∀i ∈ B, (11)

where I(·) is the indicator function and the superscript [N] rep-
resents that there are N passive-mode edge servers. According
to the definition Eq. (11), we have S[N]

0 (τ) = 1 for any τ ∈
[0, δ]. Moreover, S[N](τ) = {S[N]

i (τ) : ∀i ∈ B} is the density-
based state characterization for the system. Proposition 1
presents the relationship between Q(τ) and S[N](τ). The proof
follows directly from the definition in Eq. (11).

Proposition 1: The quantity-based state Q(τ) and the
density-based state S[N](τ) satisfy the following equality

1
N

N�
n=1

Qn(τ) =
B�

i=1

S[N]
i (τ), (12)

which represents the average workload L[N](τ, z,Φ).
Proposition 1 essentially introduces two ways of calculating

the average workload L[N](τ, z,Φ). As we will see later,
it is more convenient to depict the system dynamics based
on the density-based state S[N](τ). Therefore, we will derive
the mean field model based on the density-based state.

B. Derivation of Mean Field Model

To derive the mean field model, we first introduce the state
transition and the expected drift. Afterwards, we will formally
define the mean field model.

1) State Transition: The density-based state S[N](τ) in
our problem is associated with two types of transitions, i.e.,
task admission transition and task execution transition. Next,
we will introduce the two transitions based on the vector
ea = {ea

i : ∀i ∈ B} defined as ea
i � I(i = a)/N for any

i ∈ B.

• Task admission transition occurs whenever a
passive-mode edge server admits a new task from
the sources under the migration policy JSQ(d). If the
task admission transition occurs to a passive-mode edge
server holding a − 1 tasks at time τ , then S[N]

a (τ)
increases by 1/N , while the other elements of S[N](τ)

do not change. In this case, the density-based state
becomes S[N](τ) + ea.

• Task execution transition occurs whenever a task in a
passive-mode edge server is completed or migrated to
one of the active-mode edge servers. If the task execution
transition occurs at a passive-mode edge server holding
a tasks at time τ , then S[N]

a (τ) decreases by 1/N , while
the other elements of S[N](τ) do not change. In this case,
the density-based state becomes S[N](τ) − ea.

The set E � {±ea : ∀a ∈ B} contains all the state transitions.
Next we introduce the expected drift of the density-based state
S[N](τ) based on the state transitions above.

2) Expected Drift: The expected drift of the density-based
state S[N](τ) at time τ is defined as

Fi

	
S[N](τ)



� lim

Δ→0

E

�
S[N]

i (τ + Δ) − S[N]
i (τ)

�
Δ

, ∀i ∈ B,

(13)

which measures the increasing rate of S[N]
i (τ) on average.

Note that the expected drift {Fi(·) : ∀i ∈ B} depicts how the
density-based state S[N](τ) behaves on average. We present the
expression of {Fi(·) : ∀i ∈ B} in Proposition 2 and elaborate
the rationale in the following proof sketch.

Proposition 2: Given the resource configuration (x, y) and
the average task arrival rate λ̄[M], the expected drift at the
density-based state s = {si ∈ [0, 1] : ∀i ∈ B} is given by
F0(s) = 0 and

Fi(s) =
λ̄[M]

θ

	
sd

i−1 − sd
i



− x (si − si+1)

−η

θ
· y

�
(1 − si+1)

b − (1 − si)
b
�
, ∀i ≥ 1, (14)

where the tuple (θ, η) represents the hybrid edge server
provision and we let sB+1 = 0 for consistency. Moreover, d
and b are the parameters in the task migration schemes JSQ(d)
and LQF(b), respectively.

Proof: For case i = 0, F0(s) = 0 directly follows
from the definition in Eq. (11). For case i ≥ 1, to derive
Eq. (14), we consider a time interval [τ, τ + Δ] and compute
the following term

E


S[N]

i (τ + Δ) − S[N]
i (τ)

�
. (15)

Based on the previous discussion, the task admission transition
ei and the task execution transition −ei lead to the increment
1/N and the decrement −1/N for S[N]

i (τ), respectively.
To calculate Eq. (15), we consider the expected times that
the transitions ±ei occur during the interval [τ, τ + Δ]. Next
we introduce an event (i.e., SAi) leading to the task admission
transition ei and another two events (i.e., PEi and AEi) leading
to the task execution transition −ei.

• Source-task-admission event SAi means that a new task
from the sources arrives at one of the passive-mode edge
servers holding exactly i − 1 tasks under the migration
scheme JSQ(d). First, each source m ∈ M generates
new tasks at the rate λm, thus there are Δ

�M
m=1 λm

arrival tasks during the interval [τ, τ + Δ] on average.
Second, under the migration scheme JSQ(d), a new
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task is eventually migrated to a passive-mode edge
server holding exactly i − 1 tasks with the probability
[S[N]

i−1(τ)]d − [S[N]
i (t)]d. Hence event SAi leads to the

following increment for Eq. (15):

1
N

ΔMλ̄[M]

��
S[N]

i−1(t)
�d

−
�
S[N]

i (t)
�d

�
. (16)

• Passive-execution event PEi means that one of the
passive-mode edge servers holding i tasks completes a

task. First, there are [S[N]
i (t) − S[N]

i+1(t)]N passive-mode
edge servers holding i tasks. Second, the exponentially
distributed computing intensity (i.e., lmt[i] ∼ Exp(1)) and
the CPU frequency x of the passive-mode edge server
indicate that event PEi occurs at rate x. That is, there
are Δx tasks completed during the interval [τ, τ + Δ]
on average. Hence event PEi leads to the following
decrement for Eq. (15):

− 1
N

Δx
�
S[N]

i (t) − S[N]
i+1(t)

�
N. (17)

• Active-execution event AEi means that the active-mode
edge server completes a task for a passive-mode edge
server holding i tasks under the migration scheme
LQF(b). First, the heaviest load among the b samplings
is i with the probability [1 − S[N]

i+1(t)]
b − [1 − S[N]

i (t)]b.
Second, the exponentially distributed computing intensity
(i.e., lmt[i] ∼ Exp(1)) and the CPU frequency Ky of all the
active-mode edge servers indicate that event AEi occurs
at the rate Ky. Hence event AEi leads to the following
decrement for Eq. (15)

− 1
N

ΔKy

��
1 − S[N]

i+1(t)
�b

−
�
1 − S[N]

i (t)
�b

�
. (18)

Eq. (15) equals to the summation of (16)∼(18). Substituting
it into Eq. (13) leads to the expression in Eq. (14).1 �

3) Mean Field Model: Next we will formally define the
mean filed model. For notation clarity, we will use the lower-
case notations {si(τ) : ∀i ∈ B} to denote the mean field.

Definition 1: The mean field model s(τ) = {si(τ) ∈ [0, 1] :
∀i ∈ B}, is defined by the following three types of conditions:

• Initial condition s(0) = s0.
• Boundary condition s0(τ) = 1, ∀τ ≥ 0.
• Drift condition ds(τ)

dτ = F (s(τ)) where the set of func-
tions F (s) = {Fi(s) : ∀i ∈ B} are given in (14).

Note that the mean field model in Definition 1 is a set
of ordinary differential equations, which are deterministic.
Specifically, the initial condition specifies where the mean
field starts to evolve. The boundary condition coincides with
the definition of the density-based state in Eq. (11). The drift
condition is the same as the expected drift of the original
stochastic system S[N](τ). Next we introduce the connection
between the deterministic mean field model s(τ) and the
original stochastic system S[N](τ).

1The mean field model is not limited to the exponentially distributed
computing intensity. We elaborate this in detail at the end of Section IV.

C. Fixed Point and Convergence

We first present the fixed point of the mean field model.
We then introduce the convergence relation between the deter-
ministic mean field model and the original stochastic system.

1) Fixed Point: The fixed point of the mean field model is
a state s̃, at which the mean field model does not change
anymore. That is, we have s(τ �) = s̃ for any τ � ≥ τ if
s(τ) = s̃. Theorem 1 presents the fixed point of the mean
field model. The proof is given in our technical report [44].

Theorem 1: The fixed point s̃ = {s̃i : ∀i ∈ B} of the mean
field model in Definition 1 is given by

s̃i =

⎧⎪⎨
⎪⎩

1, if i = 0,

g(s̃i+1; γ), if 1 ≤ i < B,

g(0; γ), if i = B,

(19)

where the function g(s; γ) is

g (s; γ) �
�
θxs − ηy(1 − s)b + γ

λ̄[M]

� 1
d

. (20)

Moreover, the constant γ solves g(1+B)(0; γ) = 1, where the
function g(1+B)(·, γ) is the (1 + B)-th iterate of g(·; γ).

Based on Theorem 1, one can efficiently calculate the
fixed point s̃ given the resource configuration (x, y) and
the average take generating rate λ̄[M]. Accordingly, we often
use s̃(x, y, λ̄[M]) to emphasize the dependency. Recall that
this section aims to estimate the time-average workload
L[N][δ](x, y,Φ) defined in Eq. (4) based on the mean field
model. For this goal, we define l(x, y, λ̄[M]) based on the fixed
point as follows

l
	
x, y, λ̄[M]



�

B�
i=1

s̃i

	
x, y, λ̄[M]



. (21)

As we will show later, l
	
x, y, λ̄[M]



is an accurate estimation

of L[N][δ](x, y,Φ). Although neither the fixed point s̃ nor
l(x, y, λ) has a closed-form expression in general, Corollary 1
presents a closed-form expression of l(x, y, λ) in a special
case. We provide the proof in our technical report [44].

Corollary 1: Suppose that (d, b) = (1, 1), then the fixed
point s̃ is given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s0 = 1,

si = ρi − ρB+1�B
k=0 ρk

i−1�
k=0

ρk, ∀i ∈ {1, 2, . . . , B},

sB+1 = 0,

(22)

where ρ � λ̄[M]/(x + y). Moreover, we have

l(x, y, λ̄[M]) = 1
1−ρ + B − 1+B

1−ρ1+B . (23)
Corollary 1 leads to the following two implications.
• First, the expression in Eq. (23) is the same as the average

queue length in an M/M/1/B queuing system with the
arrival rate λ̄[M] and the serving rate x + y.

• Second, JSQ(1) implies that each source will ran-
domly select a passive-mode edge server,2 and LQF(1)

2The case of JSQ(1) could capture the phenomenon where the moving
mobile devices (i.e., sources) migrate the computing task to the closest edge
servers without inquiring the number of waiting tasks.
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implies that the active-mode edge server assists each
passive-mode edge server with equal probability. In this
case, the N passive-mode edge servers can be equiva-
lently viewed as N independent M/M/1/B queuing sys-
tems under the migration parameters (d, b) = (1, 1).

Therefore, in the case (d, b) = (1, 1), the mean field model in
Definition 1 provides an perfect approximation or representa-
tion for the stochastic system on average. A natural question
is how about the cases (d, b) �= (1, 1)? We will answer this
question via the following convergence results.

2) Convergence: Theorem 2 presents the relationship
between the original stochastic system and the deterministic
mean field model. Proof is given in our technical report [44].

Theorem 2: Given the edge server provision (θ, η) for the
M sources, the limiting system (i.e., M → ∞) satisfies

lim
M→∞
N=Mθ

lim
δ→∞

��L[N][δ](x, y,Φ) − l
	
x, y, λ̄[M]


�� = 0, (24)

where δ is the duration of a single period.
Theorem 2 shows that the mean field model provides an

accurate approximation of the time-average workload if the
system size M and the period duration δ are large. The
intuitions are two-fold:

• The original stochastic system is characterized by a
CTMC {S[N](τ) : τ ∈ [0, δ]} in each period. As the
period duration δ increases, the CTMC is approaching to
its steady state.

• The drift condition in the mean field model is defined
based on the expected drift of the original stochastic
system. As N increases, the CTMC {S[N](τ) : τ ∈ [0, δ]}
will behave closer to its expectation (i.e., the mean field
model) by the Law of large number [30].

So far, we have introduced the connection between the
deterministic mean field model and the stochastic edge net-
work. Although the above analysis assumes that the computing
intensity follows the exponential distribution, one can obtain
similar results under the general distributions with decreasing
hazard rate based on asymptotic independence or propagation
of chaos [45]. We refer interested readers to Section 9.1 of [26]
for more details.

V. AN ONLINE MEAN FIELD POLICY

This section proposes an online mean field aided configura-
tion policy A, which leverages the mean field model to address
the partial feedback issue in Problem 1. To proceed, we first
define the mean field cost of each period t as follows

Ct

	
zt, λ̄

[M]
t



� G

�
l
	
zt, λ̄

[M]
t


�
+ ξPt θx

σ
t + ξAt ηyσ

t , (25)

which replaces the time-average workload L[N][δ]
t (zt,Φt) with

the deterministic formula l(zt, λ̄
[M]
t ). Moreover, the mean field

cost in Eq. (25) has the following features.

• Theorem 2 implies that the mean field cost in Eq. (25)
is an accurate estimation for the operator’s real cost
in Eq. (9).

• At the end of period t, the operator can efficiently
compute the mean field cost for any configuration z ∈ Z

after observing the average task generating rate λ̄[M]
t and

the per-unit expenditure (ξPt , ξAt ).
The mean field cost exhibits an explicit expression in

Eq. (25), however, one can check that it is non-convex
in zt, and the gradient may not be bounded. Therefore,
the gradient-based online convex optimization algorithms
(e.g., OGD [40]) cannot preserve the no-regret perfor-
mance in our problem. Moreover, the learning algorithms
(e.g., [41]–[43]) that rely on Lipschitz condition do not work
here. To overcome these challenges, we will propose our
approach in Section V-A and analyze the performance in
Section V-B.

A. Online Mean Field Aided Policy

1) Basic Idea: Our proposed policy A works in two phases:
(a) discretization phase and (b) learning phase. In the dis-
cretization phase, we discretize the metric space Z into a finite
set A of resource candidates. In the learning phase, we learn
about the optimal resource candidate based on the mean field
model, which enables us to obtain the full feedback in the
learning phase. Moreover, we will show that the discretization
phase only incurs a bounded performance loss. We summarize
the proposed policy A in Algorithm 1 and elaborate it in the
following.

2) Discretization Phase: We discretize the metric space Z
based on a parameter β > 0, i.e., Line 1 and Line 2 in
Algorithm 1. Specifically, for the passive-mode edge servers,
we define x[i] as follows

x[i] � min
	
xH, xL(1 + β)i



, ∀i ∈ {1, 2, . . . , Ax}, (26)

where Ax �
�
log1+β

xH
xL

�
depends on the parameter β and 
·�

is the ceil function. Note that the set {x[i] : ∀1 ≤ i ≤ Ax}
includes all the powers of 1+β in the range [xL, xH]. Similarly,
for the active-mode edge servers, we define y[j] as follows:

y[j] � min
	
yH, yL(1 + β)j



, ∀j ∈ {1, 2, . . . , Ay}, (27)

where Ay �
�
log1+β

yH
yL

�
.

Based on the discussions above, the set A � {(i, j) : ∀1 ≤
i ≤ Ax, 1 ≤ j ≤ Ay} contains all the resource configuration
candidates after discretizing Z based on the parameter β.
We provide an illustrative example in Fig. 2 where we obtain
the red crosses (i.e., A) from the shaded region (i.e., Z) with
Ax = Ay = 5. Note that a smaller parameter β leads to a more
precise discretization, thus a larger set A. In Section V-B,
we will show how the parameter β affects the theoretical
performance of the proposed policy A in Algorithm 1. Next
we introduce the learning phase based on the set A.

3) Learning Phase: The learning phase of policy A fol-
lows the multiplicative weight update (MWU) method [31].
Specifically, we maintain a weight matrix wt = {wt(i, j) ∈
[0, 1] : ∀(i, j) ∈ A} in each period t. As we will see later,
the weight wt(i, j) in period t is negatively related to the
total mean field cost incurred by the candidate (x[i], y[j])
before period t. Hence a larger weight corresponds to a better
resource configuration. Moreover, our proposed policy A uses
the weight matrix wt to calculate the probabilistic selection
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Fig. 2. An illustration for proposed policy A.

matrix pt = {pt(i, j) : ∀(i, j) ∈ A}, and determines the
resource configuration probabilistically based on pt. Overall,
the resource configuration candidate with a larger weight is
selected with a higher probability.

As shown in Algorithm 1, the learning phase includes
Lines 3∼9. Specifically, policy A will initialize the weight
matrix equally and repeat the following two steps:

• Line 5∼Line 6: We calculate the probabilistic selection
matrix pt based on the weight matrix wt as follows:

pt(i, j) � wt(i, i)�
(i�,j�)∈A wt(i�, j�)

, ∀(i, j) ∈ A. (28)

We then determine the resource configuration (x[it], y[jt])
in period t by randomly drawing a tuple (it, jt) ∈ A
according to the probability distribution pt.

• Line 7∼Line 9: At the end of period t, the operator
observes the average task generating rate λ̄[M]

t , and cal-
culates the normalized mean field cost ct(i, j) based on
the mean field model as follows:

ct(i, j) �
Ct(x[i], y[j], λ̄

[M]
t )

C̄
, ∀(i, j) ∈ A. (29)

where C̄ � G(B) + xσ
HξPmax + yσ

HξAmax represents the
potential maximal mean field cost. Finally, we update the
weight matrix wt+1 for the next period:

wt+1(i, j) = wt(i, j) · (1 − 
)ct(i,j), ∀(i, j) ∈ A. (30)

where 
 ∈ (0, 1) is initialized in Line 1.

So far we have introduced the proposed policy A in
Algorithm 1. Next we move on to the performance analysis.

B. Performance Analysis

Recall that Theorem 2 unveils the convergence relationship
between the original stochastic edge network and the deter-
ministic mean field model. Hence our performance analysis in
this section will focus on the mean field cost. Specifically, the
total mean field cost incurred by our proposed policy A is

CA
T =

T�
t=1

E

�
Ct

	
x[it], y[jt], λ̄

[M]
t


��� pt

�
, (31)

where the expectation is taken over the randomness in Line 6
of Algorithm 1. We will analyze the performance gap between

Algorithm 1: Mean Field Aided Policy A

Output: Decisions (x[it], y[jt]) for each period t.
1 Initial 
 ∈ (0, 1) and β > 0.
2 Define the resource candidate (x[i], y[j]) for any tuple

(i, j) ∈ A based on Eq. (26) and Eq. (27).
3 Initial w1(i, j) = 1 for any tuple (i, j) ∈ A
4 for t = 1 to T do
5 Calculate the selection probability distribution

pt = {pt(i, j) : ∀(i, j) ∈ A} according to Eq. (28)
6 Determine (x[it], y[jt]) by randomly drawing a tuple

(it, jt) ∈ A according to the distribution pt

7 Calculate the mean field cost Ct(x[i], y[j], λ̄
[M]
t ) for

any tuple (i, j) ∈ A.
8 Calculate the normalized mean-field cost ct(i, j) for

any (i, j) ∈ A based on Eq. (29)
9 Update weight matrix wt+1 according to Eq. (30)

10 end

the proposed policy A and the offline optimal configuration
(x∗, y∗), defined as

(x∗, y∗) � argmin
(x,y)∈Z

T�
t=1

Ct

	
x, y, λ̄[M]

t



. (32)

Accordingly, we let C∗
T �

�T
t=1 Ct(x∗, y∗, λ̄[M]

t ) denote the
offline minimal mean field cost.

The performance gap between C∗
T and CA

T depends on the
two parameters 
 and β in Algorithm 1. Roughly speaking,
the performance loss of our proposed policy A consists of the
discretization loss and the learning loss, which are presented
in Lemma 1 and Lemma 2, respectively. We provide the proofs
in our technical report [44].

Lemma 1 (Discretization Loss): There exists a tuple
(i∗, j∗) ∈ A satisfying the following conditions

x[i∗−1] ≤ x∗ ≤ x[i∗], (33a)

y[j∗−1] ≤ y∗ ≤ y[j∗]. (33b)

Moreover, we have

T�
t=1

Ct

	
x[i∗], y[j∗], λ̄

[M]
t



≤ (1 + β)σC∗

T , (34)

where σ ≥ 1 is the exponent of operation expenditure.
Lemma 1 shows that the discretization scheme in policy A

increases at most a constant factor of (1 + β)σ compared to
the offline minimal cost C∗

T . The numerical example in Fig. 2
illustrates the relationship in Eq. (33) between (i∗, j∗) and
(x∗, y∗). Specifically, suppose that the black star represents
(x∗, y∗), then the resource candidate labeled by a blue square
represents (x[i∗], y[j∗]). According to Eq. (34), one should
adopt a smaller β > 0 to reduce the discretization loss.
However, as shown by Lemma 2, a smaller parameter β will
lead to a larger learning loss, since a smaller β enlarges the
set A.
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Lemma 2 (Learning Loss): For any tuple (i, j) ∈ A,
we have

CA
T ≤ Ψ(
, β) +

1



ln
�

1
1 − 


� T�
t=1

Ct(x[i], y[j], λ̄
[M]
t ), (35)

where
�T

t=1 Ct(x[i], y[j], λ̄
[M]
t ) is the total mean field cost

incurred by (x[i], y[j]). Moreover, the constant Ψ(
, β) is

Ψ(
, β) � C̄
� ln

��
1 +

ln
�

xH
xL

�

ln(1+β)

� �
1 +

ln
�

yH
yL

�

ln(1+β)

��
. (36)

Lemma 2 indicates that the learning loss of policy A jointly
depends on the two parameters 
 and β. Note that the con-
stant Ψ(
, β) decreases in 
, while the coefficient 1

� ln
	

1
1−�



increases in 
. Hence there is a trade-off in choosing the
parameter 
. Moreover, the constant Ψ(
, β) decreases in the
parameter β, thus a smaller β reduces the discretization loss,
but increases the learning loss.

Theorem 3 presents the relationship between CA
T and C∗

T

by combining Lemma 1 and Lemma 2.
Theorem 3: For any 
 ∈ (0, 1) and β > 0, the policy A in

Algorithm 1 attains the following performance

CA
T ≤ Ψ(
, β) +

1



ln
�

1
1 − 


�
(1 + β)σC∗

T . (37)

Theorem 3 shows that the expected mean field cost incurred
by the policy A is no greater than the sum of a constant
multiple of the offline minimal cost C∗

T and an extra constant
Ψ(
, β). To have a better understanding on Theorem 3, we will
illustrate how to set the two parameters 
 and β from different
angles in Corollary 2 and Corollary 3, respectively.

Corollary 2: For any α ∈ (0, 2σ+1], suppose that the offline
minimal mean field cost satisfies C∗

T ≥ Cthr, where Cthr is

Cthr � 41+σC̄

α2

�
2 ln

�
22+σ

α

�
+ J

�
, (38)

and the constant J � ln
	
ln 2xH

xL



+ ln

	
ln 2yH

yL



+ 2 ln(2). Let


 = β = α
21+σ , then our proposed policy A in Algorithm 1

attains the following performance

CA
T ≤ (1 + α)C∗

T . (39)
Corollary 2 shows that policy A is (1 + α)-competitive if

the inequality condition C∗
T ≥ Cthr holds. Specifically, this

condition requires that the offline minimal mean field cost C∗
T

should be no smaller than the threshold Cthr, which does not
scales in T . Recall that C∗

T corresponds to the offline optimal
result across the T periods, thus it would linearly increase in T .
This means that the condition in Eq. (38) will automatically
hold when the number of periods T is large, thus it is a mild
condition.

Corollary 3: With the parameters 
 =
�

ln(T )
T and β =

1√
T

, our proposed policy A in Algorithm 1 achieves

CA
T − C∗

T ≤ C̄
�

T ln(T )
�
21+σ +

J

ln(T )

�
, (40)

where J � ln
	
ln 2xH

xL



+ ln

	
ln 2yH

yL



+ 2 ln(2).

Corollary 3 presents another way of setting the two para-
meters 
 and β. We elaborate this corollary from two aspects:

• First, the inequality (40) indicates that our proposed
policy A attains a sub-linear regret in the order

O(
�

T ln(T )). This means that the resource configura-
tion decisions {(x[it], y[jt]) : ∀t ∈ T } generated by our
proposed policy A performs asymptotically as well as the
offline optimal configuration (x∗, y∗).

• Second, the regret order O(
�

T ln(T )) is slightly greater
than the well-known lower bound O(

√
T ) for the regret

in online convex optimization (e.g., [40]).3 As far as
we know, the learning algorithm proposed by Yang et
al. in [43] matches such a lower bound in the general
Lipschitz expert problem [42]. However, it relies on the
Lipschitz condition, which is not available in our prob-
lem. To sum up, Corollary 3 indicates that our proposed
policy A requires less idealistic condition (i.e., Lipschitz
condition) at the price of slightly increasing the regret
compared to the lower bound by O(

�
ln(T )).

VI. NUMERICAL RESULTS

We carry out extensive evaluation on the proposed policy A
based on some empirical data. We will consider a hybrid edge
server provision mode (θ, η) = (0.5, 0.1) and investigate the
impact of network scale (i.e., the number of sources M ).4

Specifically, we will start with the single-period demonstration
in Section VI-A, and then carry out the multi-period evaluation
in Section VI-B.

A. Single-Period Demonstration

We consider a single period and compare the mean field
model to the stochastic edge network. Specifically, we will fix
the resource configuration (x, y) = (1, 5) and the Poisson task
generating rate λm = 0.9 for each source m ∈ M.

Fig. 3(a) shows how the mean field model s(τ) evolves
from the initial state s0 = 0. The vertical axis represents
the average workload

�B
i=1 si(τ) and the three curves cor-

respond to different migration parameters (d, b), respectively.
As time τ increases, the mean field model converges to the
fixed point s̃ defined in Theorem 1.

Fig. 3(b)-3(d) plot the average workload L[N](τ, x, y,Φ)
of the stochastic edge network, and the three sub-figures
correspond to different migration parameters, respectively.
In each sub-figure, the three solid curves represent different
numbers of sources, i.e., M ∈ {20, 100, 1000}. The black dash
curve is the same as that in Fig. 3(a). Note that the three solid
curves are all centered on the black dash curve with some
fluctuation. Moreover, a larger system size corresponds to a
smaller fluctuation. These observations are consistent with the
convergence results in Theorem 2.

Comparing the three sub-figures in Fig. 3, we find it
significantly reduces the average workload by changing the
parameters (d, b) from (1, 1) to (2, 2). However, it merely
leads to a tiny reduction by further increasing to (3, 3). This
means that the migration schemes JSQ(2) and LQF(2) slightly

3Note that our problem with the mean field feedback corresponds to the
online non-convex learning, which is more general than the online convex
optimization (OCO). Hence the regret lower bound in OCO still holds in our
problem.

4Given the hybrid edge server provision (θ, η) = (0.5, 0.1), every
M = 10 sources correspond to N = 5 passive-mode edge servers and
K = 1 active-mode edge server.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 24,2022 at 02:44:44 UTC from IEEE Xplore.  Restrictions apply. 



2358 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 40, NO. 8, AUGUST 2022

Fig. 3. Average workload in the stochastic edge network.

Fig. 4. Electricity prices.

increase the communication overhead, but can reduce the
average workload considerably. We will verify this claim under
the dynamic setting with multiple periods in Section VI-B.

B. Multi-Period Evaluation

We evaluate the proposed policy A based on the real world
electricity market prices in US [46]. Fig. 4 plots the hourly
prices of the first three months in 2020. We consider a total
of T = 2208 periods (i.e., hours), and let pt denote the
electricity price in period t. As for the operation expenditure,
we consider σ = 1, and quantify the per-unit operation
expenditure according to ξPt = 0.1pt and ξAt = 0.08pt.
Furthermore, we first generate the sources’ task generation rate
in different periods according to a uniform distribution on the
support [0, 1]. We then randomly generate the task profile Φt

accordingly. We consider the feasible resource range [0.2, 2]
for each edge server, and use G(l) = 30l to measure the
performance degradation. We evaluate the proposed policy A
with the parameters (
, β) = (0.2, 0.5) and compare the
following three cases:

• Case Mfm corresponds to the mean field model and
measures the mean field cost incurred by Algorithm 1.

• Case Alg(N) corresponds to the original stochastic edge
computing network with N = θM passive-mode edge
servers, and measures the real operating cost incurred by
Algorithm 1.

• Case Bch(N) is the benchmark scheme of case Alg(N)
and does not rely on the mean field model. That is,
Bch(N) adopts the same discretization phase as in
Algorithm 1, but only relies on the observed partial
feedback in the learning phase.

We run the evaluation for one hundred times and visualize
the results in Fig. 5. The three sub-figures correspond to
different migration parameters, i.e., (d, b) = (1, 1), (d, b) =
(2, 2), and (d, b) = (3, 3). In each sub-figure, the black

dash line represents the time-average offline minimal mean
field cost, i.e., C∗

T /T . The black circle curve corresponds
to the case Mfm. The blue and red curves with markers
represent case Alg(5) and case Alg(10), respectively. The
blue and red curves without marker represent case Bch(5)
and case Bch(10), respectively. The shaded region represents
the three-sigma regime over the one hundred simulation runs.
We have the following observations from each sub-figure
in Fig. 5:

• Performance of Proposed Policy: The black circle
(i.e., Mfm) curve gradually converges to the black dash
line, which verifies the asymptotic optimality of our
proposed policy A in Algorithm 1.

• Accuracy of Mean Field Model: Both the blue trian-
gle curve (i.e., case Alg(5)) and the red square curve
(i.e., case Alg(10)) have a slight difference compared to
black circle curve (i.e., case Mfm). This is due to the mean
field approximation gap. Note that the red square curve
(i.e., case Alg(10)) is even closer to the black curve than
the blue triangle curve (i.e., Alg(5)). This observation
shows that the approximation gap decreases in the system
size, which is consistence with the convergence result in
Theorem 2.

• Advantage of Mean Field Model: Comparing the two
blue curves shows that case Bch(5) would take much
longer time to converge to the offline optimal outcome
C∗

T /T than case Alg(5). The two red curves also lead
to a similar observation. These observations indicate that
the mean field model can significantly speed up the
convergence to the offline optimal outcome in the online
resource configuration problem.

By comparing the three sub-figures in Fig. 5, we note that
the larger migration parameters (d, b) lead to a smaller operat-
ing cost. This motivates us to investigate the impact of (d, b).
Fig. 6 investigates the influence of the migration parameters
focusing on case Mfm and case Alg(10). Specifically, Fig. 6
plots the time-average performance degradation (PeDe) and
the operation expenditure (OpEx) over the T periods. At the
top of each bar, we label the percentage of the cost reduction
compared to (d, b) = (1, 1). Fig. 6 leads to the following two-
fold implications:

• First, increasing the migration parameters (d, b) can
reduce the operator’s total operating cost up to
45%. In this progress, however, the communication
overhead also increases linearly in the two parameters d
and b.
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Fig. 5. Time-average operating cost in cases Mfm, Alg(N), and Bch(N).

Fig. 6. Impact of parameters in JSQ(d) and LQF(b).

• Second, the cost reduction when (d, b) = (2, 2) is already
greater than half of that when (d, b) = (7, 7).

The above observations show that the migration schemes
JSQ(2) and LQF(2) under our proposed policy A can con-
siderably reduce the operating cost with a small increase in
the communication overhead.

VII. CONCLUSION

In this paper, we focus on the large-scale hybrid edge server
provision under two decentralized task migration schemes, and
study how to configure the computing resource in an online
dynamic fashion. Specifically, the dynamic resource configu-
ration of a large-scale stochastic edge network corresponds to
an online cost minimization problem with the partial feedback
issue. To address the partial feedback, we derive a deter-
ministic mean field model, which enables us to estimate the
performance of the stochastic system. Based on the mean field
model, we propose an online mean field aided configuration
policy. Our analysis shows that the proposed policy can attain a
constant competitive ratio or a sub-linear regret under different
policy parameters. That is, our proposed policy asymptotically
performs as well as the offline optimal configuration. To our
knowledge, we are the first to integrate mean field theory
and online learning with partial feedback. We believe that our
results in this paper can improve the efficiency of edge server
provision and facilitate the large-scale implementation.
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