
1

DroidTrace: A Ptrace Based Android Dynamic
Analysis System with Forward Execution Capability

Min Zheng, Mingshen Sun, John C.S. Lui
The Chinese University of Hong Kong
{mzheng,mssun,cslui}@cse.cuhk.edu.hk

Abstract—Android, being an open source smartphone operating
system, enjoys a large community of developers who create
new mobile services and applications. However, it also attracts
malware writers to exploit Android devices in order to distribute
malicious apps in the wild. In fact, Android malware are
becoming more sophisticated and they use advanced “dynamic
loading” techniques like Java reflection or native code execution
to bypass security detection. To detect dynamic loading, one has
to use dynamic analysis. Currently, there are only a handful
of Android dynamic analysis tools available, and they all have
shortcomings in detecting dynamic loading. The aim of this
paper is to design and implement a dynamic analysis system
which allows analysts to perform systematic analysis of dynamic
payloads with malicious behaviors. We propose “DroidTrace”, a
ptrace based dynamic analysis system with forward execution
capability. Our system uses ptrace to monitor selected system
calls of the target process which is running the dynamic payloads,
and classifies the payloads behaviors through the system call
sequence, e.g., behaviors such as file access, network connection,
inter-process communication and even privilege escalation. Also,
DroidTrace performs “physical modification” to trigger different
dynamic loading behaviors within an app. Using DroidTrace, we
carry out a large scale analysis on 36,170 dynamic payloads in
50,000 apps and 294 malware in 10 families (four of them are
zero-day) with various dynamic loading behaviors.

I. INTRODUCTION

In the past few years, Android malware are becoming more
sophisticated. They use advanced dynamic loading (or dynamic
library loading) techniques like Java reflection and native code
execution to bypass security detection. Note that dynamic
library loading is a common technique used by legitimate
Android apps developers. The main reason is that Java code
can be easily disassembled, in order to protect the software,
Android developers use Java reflection to dynamically load
encrypted jar packages, or they can use the Native Develop-
ment Kit (NDK) to develop applications in C or C++. Dynamic
library loading makes it more difficult for others to reverse
engineer the code, hence protecting the intellectual property of
the developers, but it also adds more complexity on security
analysis since malware writers also deploy this technique in
their malware development.

Briefly speaking, dynamic loading is a mechanism in which
a program can load a library (or dynamic payloads) into mem-
ory at runtime, retrieve the addresses of functions contained
in the dynamic library, execute these functions and unload the

library from the memory upon completion. It is a popular and
effective way to protect Android applications (or malware).
To illustrate how common this technique is being used, we
carried out the following study: As of March 2013, we have
collected 50,000 latest apps from the Google Play and third-
party markets. We have found that 32.8% (16,396 apks) of
apps have dynamic loading behaviors: 21.7% (10,841 apks)
of apps have dynamic library which is written in C/C++
via NDK,and 15.7% (7,836 apks) of apps contain dynamic
payloads like elf, so, jar, apk or dex files. Table I
summarizes our study. Note that because dynamic payloads
can be downloaded from the Internet when the applications
execute, the actual number of dynamic payloads is far more
than what we are reporting here. Yet, the take home message
is that dynamic library loading is a common and popular
technique for app development. Note that there can be more
than one dynamic payload file in an application file, and this
conservative statistical estimates already reveal the popularity
of using dynamic loading.

Applications (50,000 Apps)
of APK # of Dynamic Payload

so file 10,841 24,596
elf file 472 841
dex (jar, apk) file 7,364 10,733
Total Number 18,677 36,170
Unique MD5 Number 16,396 12,712

TABLE I. STATISTICS OF DYNAMIC PAYLOADS IN 50,000 APPS

To detect and examine malicious dynamic loading, one
needs to perform static and dynamic analysis of an apps.
Both of these techniques have advantages and disadvantages.
Static analysis is usually faster and can give analysts a more
comprehensive code coverage in analyzing the app since it can
explore different execution paths. However, static analysis is
not effective on dynamic loading. For example, most of the
recent Android analytic systems [1], [4], [10], [22] stated their
inefficiency in against dynamic loading. Dynamic analysis, on
the other hand, is useful to study the runtime behavior of an
app. But one drawback is in determining the code path in order
to trigger the dynamic loading. Furthermore, because Android
is a redesigned Linux system, Google adds many components,
e.g., UI surface, binder communication, . . ., etc, into Android.
Therefore, one cannot use the legacy Windows or Linux-
based dynamic analysis systems. Currently, there are only a
handful of Android dynamic analysis systems and they all
have shortcomings in handling dynamic loading. For example,
TaintDroid[3] is built on top of the Dalvik virtual machine,978-1-4799-0959-9/14/$31.00 c© 2014 IEEE

2

and it cannot handle dynamic payloads (e.g. elf or so file)
since they run in native code level. DroidScope[20] is built on
top of a hypervisor and it simulates the hardware environment
so it cannot run on real smartphone device. Also, both of these
systems cannot automatically execute the app under study, so
analysts have to go through a tedious process of manually
triggering different code paths to explore malicious behaviors.

In this paper, we propose “DroidTrace”, a ptrace based
dynamic analysis system with forward execution capability,
and we focus on how to use DroidTrace to explore the behavior
of dynamic payloads. Ptrace (Process Trace) is a system call
and we use it to observe and control the execution of another
process. In DroidTrace, we use ptrace to monitor system
calls of the target process which is running the dynamic
payloads. Since the ptrace system call is part of the linux
kernel, so DroidTrace can monitor all the behaviors of dynamic
payloads, both at the java code level or at the native code level
(i.e., C or C++). In addition, DroidTrace can be executed on
real devices so analysts can test different hardware platforms
without resorting to emulation. Last but not least, DroidTrace
can perform physical modification to trigger different dynamic
loading behaviors.
Contributions: The contributions of our work are:
• We present the design and implementation of a ptrace-

based dynamic analysis system which can monitor all the
behaviors of dynamic payloads on both java and native
code level. In addition, DroidTrace can be executed on
real devices for all Android versions.

• We propose a forward execution methodology called
“physical modification” on DroidTrace so one can auto-
matically trigger most of the dynamic loading behaviors
and manually trigger all dynamic loading behaviors. This
significantly enhances the security analysis process to
discover malicious behaviors.

• To show the effectiveness of DroidTrace, we carried out
large scale experiments on 36,170 dynamic payloads
in 50,000 apps and 294 malware in 10 families (four
of them are zero-day) which have dynamic loading
behavior.

II. ANALYSIS METHODOLOGY

Let us present our analysis methodology. The main idea is
as follows: DroidTrace first uses static analysis to discover
functions which have the dynamic loading behavior, i.e.,
running an elf or so file, or downloading an executable
from the Internet. Then it sets these functions as “targets”
and generates the application control flow graph (ACFG) so
that the system can explore the possible execution paths to
these functions. By using the ACFG, DroidTrace generates
the forward execution paths for each target. Because some
information or malicious behaviors can only be obtained at
runtime, DroidTrace will automatically run the application via
each forward execution path and then use the ptrace based
dynamic analysis tool to analyze the dynamic payloads (e.g.,
so file, elf file, and dex file). In general, the methodology
consists of four steps:

A. Step 1: Set Functions as the Targets

In this step, DroidTrace disassembles the dex file of the
application into smali code. The smali syntax provides in-
formation of how variables and methods are being invoked.
Then DroidTrace determines the functions which have the
dynamic loading behavior (i.e., downloading a file from the
Internet or calling an elf or so file) as the targets and the
system will search for these functions in the smali code level.
Note that because some dynamic payloads may be invoked by
other dynamic payloads, so DroidTrace also handles the inter-
calling between dynamic payloads. The invoking relationships
between various components is illustrated in Figure 1. Let us
explain how we use the inter-calling relationships to explore
all dynamic behaviors within an app.

classes.dex

So File Elf File

Jar, Dex, Apk File

System.loadLibrary()

Dexclassloader,

PathClassLoader

Runtime.exec()

execv()

dlopen(), dlsym()

Start Point

execv()

Dexclassloader,

PathClassLoader

dlopen(), dlsym()

Fig. 1. Relationships between Dynamic Payloads Components

ListView

Thread

Condition

Service

Payloads Button 1

Button 2

Button 3

Load Elf File

Load So File

Load DexClassLoader

April 07, 2013

Button

Fig. 2. Screen Capture of an App under DroidTrace

To illustrate our methodology, consider an example app
which is depicted in Figure 2. The application starts with
the Main Activity which has five buttons. By click-
ing the Payloads, ListView or Condition button,
the application will jump to the corresponding activity.
By clicking the Thread or Service button, the ap-
plication will start a thread or a service running in the
background and trigger the dynamic loading behavior. The
application also has a broadcast receiver which receives
the android.intent.action.BOOT_COMPLETED mes-
sage. After receiving the message, the receivier will start a
service which has the dynamic loading behavior. The dynamic
payloads activity in our example application has three buttons:
elf file, so file, and DexClassLoader. When the
user clicks the elf file button, the application will run
an elf executable with a file operation behavior. For the so
File button, the application will load a so file which has a
networking behavior. For the DexClassLoader button, the
application will dynamically load a dex file which will in turn
run an elf file with a privilege elevation behavior.

3

B. Step 2: Generate Application Control Flow Graph
After setting the targeted functions, DroidTrace generates a

control flow graph (CFG) for each function and a function call
graph (FCG) for the application. Then DroidTrace combines
them together into an application control flow graph (ACFG).
By using the ACFG, DroidTrace can determine various ex-
ecution paths from the start point to different targets. Here,
we need to address several challenges. Firstly, unlike the
main() function in C language, there are many entries in an
Android app: entries via activity, service, broadcast
receiver, ..., etc. Hence, the ACFG will have several start
entries. Secondly, DroidTrace not only needs to connect the
function calls (e.g., method A in class B invokes method C in
class D) together, but also needs to handle special components
like threads and runnables, intents and receivers, buttons and
button listeners, ..., etc. These special components do not have
direct connection in the source code, but they can communicate
through the Android API. Thirdly, some dynamic loading
behaviors are triggered by specific conditions (e.g., date and
event), hence, DroidTrace needs to consider the conditional
executions in the ACFG.

1) Application Entries: In DroidTrace, the system parses the
AndroidManifest.xml to get information of all entries
(e.g., activities, services) of the apk file. Every
Android application has an AndroidManifest.xml file in
its root directory. It names the classes that implement each of
the components and publishes their capabilities (e.g., which
Intent messages they can handle).

2) Components Connections: In Android, components may
not be directly connected but they can communicate through
the Android API. In order to get the full application control
flow graph, DroidTrace connects them based on the Android
API mechanism. For example, user Input controls are the
interactive components in an app’s user interface. Android
provides a variety of controls one can use in an application
user-interface (UI), such as buttons, listview, seek bars, and so
on. For example, when a user clicks a button, the Button
object receives an on-click event. To handle this event, de-
velopers need to create a View.OnClickListener object
and assign it to the button by calling the setOnClickLi-
stener(). In DroidTrace, the system connects all the UI
components with their handlers in the ACFG. In this example,
the system connects the click button1 event with the related
OnClickListener’s onClick() function.

3) Conditional Execution: In DroidTrace, the system han-
dles the conditional execution like if...else... statement
and switch statement. Firstly, DroidTrace records the con-
ditional expressions and forks a new execution path for each
condition. Secondly, DroidTrace determines which value in the
conditional expressions is a constant value, and which is a
variable value.

C. Step 3: Perform Forward Execution
Android application is UI-based, so analysts cannot simply

provide input parameters to run the mobile app, but rather, they
need to provide user events such as clicks, touches, or gestures
to the related UI components on the smartphone screen.

There are several ways to carry out the forward execution in
Android. Google provides developers a monkeyrunner API[7]
to simulate the user events. The monkeyrunner tool provides an
API for writing Python programs that can control an Android
device or emulator. However, monkeyrunner is complicated
to integrate for auto-execution because the ID of the UI
components can only be obtained at runtime. So it cannot
determine the execution path before running. In addition,
several researchers need to modify the Android emulator in
order to dothe forward execution (e.g., [21]). In DroidTrace, we
propose a new methodology which uses physical modification
to perform the forward execution: For each forward execution
path to a function with dynamic behavior, the system first
disassembles the appliciaton, adds the forward trigger code
and then generates a new and separated apk file. For each
rebuilt apk file, DroidTrace installs the apk in the emulator,
then the installed application will automatically run one of its
dynamic loading functions and trigger the behavior of dynamic
payloads. The advantage of using physical modification is the
system only modified the apk file, so DroidTrace can run
on both emulator and real android devices. In addition, the
system can explore various execution paths before running.
For perform such forward execution, we have to consider the
following events:
Application Entries: Activity Manager (AM) is an Android
SDK tool which can be used to start activities and services
at the command line, or send intents to running applications.
DroidTrace uses AM to start the target activities, services or
broadcast receivers.
User Events: In DroidTrace, the system uses physical modi-
fication to achieve forward execution. The methodology is to
modify the apk file before the application runs via techniques
of reverse engineering. DroidTrace will add user events trigger
codes into the apk file. For example, when a user clicks
a button, the application will call the onClick() function
of the corresponding OnClickListener. Therefore, Droid-
Trace adds the trigger code into the application by reverse
engineering so that the application will automatically trigger
the on-click button event without any human interactions, for
example:
b u t t o n 1 . s e t O n C l i c k L i s t e n e r (c l i c k L i s t e n e r) ;
/ / add ing t h i s l i n e o f code
c l i c k L i s t e n e r . o n C l i c k (b u t t o n 1) ;

Conditional Execution: As we mentioned in Step 2 of
generating the ACFG, DroidTrace will record the conditional
expressions and fork a new execution path for each condition.
In order to execute the conditional path, DroidTrace also uses
the physical modification methodology to add the trigger code
into the apk file.

D. Step 4: Suspicious Behavior Detection
Android is a derivative based on a modified Linux 2.6 with a

Java programming interface. If any Android application needs
to request services (e.g., accessing the flash drive), it has to
rely on system calls provided by the kernel. Therefore, by
monitoring the system calls of a process, DroidTrace can
obtain the runtime information of the process. There are

4

several ways to monitor system calls, for example, modifying
the kernel by injecting the monitoring code[3], running the
Android OS on a hypervisor to obtain the information of the
underlying process[20], ..., etc. We choose to use ptrace,
a system call that can control and observe the execution of
another process. The advantage of using ptrace in dynamic
analysis is that one does not need to modify the kernel,
so future update by Google on Android OS will not affect
DroidTrace. Furthermore, DroidTrace can be executed on real
devices so analysts can precisely determine the impact of apps
on a particular device.

The dynamic analysis module of DroidTrace is built on top
of Strace[13]. Strace is a system call tracer for Linux which can
print out the system calls made by another process/program.
However, using Strace to do dynamic analysis has a number of
problems. Firstly, a process usually makes many system calls.
If we use Strace to monitor all system calls, the overhead
will be unacceptable as the application will be running at
an order of magnitude slower than the normal mode, hence,
slowing down the analysis process. Secondly, most parameters
of system calls are memory addresses. For example, the Binder,
one of the most important inter-process communication (IPC)
mechanisms in Android OS, uses iotcl() system call to
transform the information using memory. Using Strace to do
dynamic analysis cannot provide the structural information
except the memory addresses, and it is futile to carry out
dynamic analysis if the system does not parse the structure
information at these addresses.

To overcome these problems, we propose a behavior rule
mechanism. Based on this mechanism, DroidTrace classifies
the system call sequence into different behaviors. This
mechanism offers several advantages. Firstly, DroidTrace
will not directly show all system calls information to the
analysts because the raw output data are large and they may
obscure the analysis. DroidTrace classifies the system calls
information based on the behavior rule table, then outputs
the suspicious behaviors of the dynamic payload. Secondly,
for some special system calls (e.g., ioctl()), DroidTrace
extracts the related information from the memory addresses.
In addition, analysts can extend the behavior rules so to
support more detailed analysis tasks, e.g., if a mobile app
uses the open() system call to open the contact list file
(/data/data/com.android.providers.contacts-
/databases/contacts2.db), and then uses the read()
system call to get the contact list. This can be classified as
accessing contact information behavior. When this behavior
is in the behavior rule table, DroidTrace will show this
particular behavior of the dynamic payload (e.g., reading the
contact information) to the analysts, so making the analysis
more readable and insightful. Currently, DroidTrace supports
four kinds of behaviors detection, they are: behavior on
(a) file operation, (b) network connection, (c) inter-process
communication, and (d) privilege escalation.

III. Case Study and Evaluation
In this section, we summarize the statistics of our large

scale malware experiment and one case study to illustrate the
effectiveness of DroidTrace.

A. Statistics on large scale experiments

To show the effectiveness of DroidTrace, we perform large
scale experiments on 50,000 legitimate apps and 294 malware
we collected which have dynamic loading behavior in 10
malware families (with four malware families being zero-day
malware, meaning, they were just injected into the wild.) Table
I shows the summary statistics of dynamic payloads of these
50,000 apps. Using DroidTrace, we first used static analysis
to filter those applications without dynamic loading APIs and
only kept 16,396 applications with dynamic loading behavior.
Then the system used both static analysis and dynamic analysis
techniques to trigger and monitor the behaviors of the dynamic
payloads. Note that most of the processes are automatic, but
some applications may require manual input (e.g., register and
login for some mobile apps) in order to trigger the behaviors.
Table II shows the detailed statistics of malware with dynamic
loading behavior. For example, the ARAlarmReceiver, which is
a zero-day malware family, has four samples and these samples
have a payload which can install malware silently and steal
user information with root exploit.

124

2 1

86

0

20

40

60

80

100

120

140

File
Operation

Network IPC Privilege
Escalation

Behavior distribution of elf files (131) in the malware
set

163

79

21
10

0

20

40

60

80

100

120

140

160

180

File
Operation

Network IPC Privilege
Escalation

Behavior distribution of elf files (710) in the
legitimate application set

Fig. 3. Behavior Distribution of elf Files

There are 131 elf files in the malware set and 710 elf files
in the legitimate application set. From Figure 3, we can see
that both legitimate applications’ and malware’s elf files have
various file operation behavior. However, most of malware’s
elf files have significantly more privilege escalation behavior
but only a few elf files of legitimate applications (e.g., secu-
rity software) have the privilege escalation behavior. Therefore,
analysts should first focus on the elf files with privilege
escalation behavior, because there is a high probability that
it is a dynamic payload of the malware.

91

7

53

1
0

10

20

30

40

50

60

70

80

90

100

File
Operation

Network IPC Privilege
Escalation

Behavior distribution of so files (159) in the malware
set

5780

1191

2096

285

0

1000

2000

3000

4000

5000

6000

7000

File
Operation

Network IPC Privilege
Escalation

Behavior distribution of so files (24,337) in the
legitimate application set

Fig. 4. Behavior Distribution of so Files
There are 159 so files in the malware set and 24,337

so files in the legitimate application set. From Figure 4,
we can discover that the so files in the malware set and
legitimate application set have a similar distribution (although
the magnitude on each operation is different). The reason is
that most malware are repackaged, and the malware writers

5

Families Zero-day File Number Description of Malware Behavior
AndroidBot No 1 The malware has Root Exploit and silently install a botnet app for SMS charging
ARAlarmReceiver Yes 4 Botnet (for silent installation, steal user info, ..., etc.) with Root Exploit
BaseBridge No 45 The malware has Root Exploit and silently install a botnet app for SMS charging
CIAppmaster No 8 Botnet (for silent installation) with Root Exploit
CIAppmaster2 (variant) Yes 1 Botnet (for silent installation) with Root Exploit
DroidKungFu No 7 Botnet (for advertisement, silent installation, ..., etc.) with Native Code and Root Exploit
GASmart No 3 Botnet (for silent installation) with Root Exploit
NetIusys828 Yes 1 Botnet (for silent installation) with Native Code and Root Exploit
CEPlugnew Yes 1 Botnet (for SMS charging, silent installation, ..., etc.) with DexClassloader
Plangton No 223 Botnet (for silent installation, steal user info, ..., etc.) with DexClassloader
All 294

TABLE II. USING DROIDTRACE TO DISCOVER MALWARE WITH DYNAMIC LOADING BEHAVIOR

repackage the malicious java code into some legitimate appli-
cations which have so files. But this repackaging process has
no effect on those so files. Therefore, most of the so files are
benign. As a matter of fact, in our malware database, only the
DoridKungfu family uses so file to defend against malware
detection. This is the main reason why the distributions of so
files in the malware set and legitimate application are very
similar.

0

55 53

0
0

10

20

30

40

50

60

File
Operation

Network IPC Privilege
Escalation

Behavior distribution of dex (apk, jar) files (69) in
the malware set

1041

9104

6967

0
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

File
Operation

Network IPC Privilege
Escalation

Behavior distribution of dex (apk, jar) files (10,653) in the
legitimate application set

Fig. 5. Behavior Distribution of dex, apk, jar Files

There are 69 dex (or apk,jar) files in the malware set and
10,654 dex (or apk,jar) files in the legitimate application
set. From Figure 5, we can discover that both malware’s
and legitimate application’s dex (or apk,jar) files have
high number of IPC and network behaviors but no privilege
escalation behavior. For malware, malware writers tend to
use Java reflection to dynamically load the malicious logic
from the dex (or apk,jar) files in order to defend against
malware detection. For legitimate applications, developers tend
to use Java reflection to dynamically load the software plug-in
components from the dex (or apk,jar) files for application
extension. In addition, because of the Dalvik virtual machine
(DVM) mechanism, the java code in the DVM does not have
instructions to alter the uid of the DVM process, so there are
no dex (or apk,jar) files with privilege escalation behavior.

B. Case Study: CEPlugnew
CEPlugnew is a zero-day malware which could not be

detected by any anti-virus software until May, 2013. It is an
advanced malware using DexClassLoader to dynamically
decrypt and load the encrypted jar file. At first, we did not
find any dynamic payloads in its attachment files. However,
DroidTrace reported that this app has a dynamic loading
behavior in its com.a.a.a.d() function. In order to trigger
this function, DroidTrace explores the ACFG and uses the AM

to send a android.intent.action.USER_PRESENT
message to the malware. When the malware receives this mes-
sage, it starts two services. One service dynamically registers
a SMS receiver with the 2147483647 priority number (the
largest priority number). Another service uses DES to decrypt
the rt2.jar file in its app_TYPE_JAR folder. After the
decryption, the malware generates a appmgr.jar, a real jar
file in the app_sim_index folder. Then the malware uses
DexClassLoader to dynamically load the appmgr.jar
and reflects several methods in this appmgr.jar.

We then use the ptrace in DroidTrace to attach to the process
of the dynamic payload and then find that appmgr.jar has
several behaviors. First, the malware decrypts a configure file,
smsrpt.i, from the attached config file and stores it in
its service folder. Second, based on the smsrpt.i con-
figure file, the malware uses the imsi (International Mobile
Subscriber Identity) as the id to request a command from
several remote servers (e.g. 42.121.120.*, 42.121.98.*). The
most important command is to send some codes to some
value-added telecom service numbers which belong to the
hackers. For example, a user sends a SMS message ”001”
to the number ”10086”, then the user will receive newspapers
everyday and pay this service for one dollar per month. Thirdly,
the malware checks whether the smartphone is rooted or
not. If the smartphone is rooted, the malware remounts the
/system folder, and replaces the xsu with its own xsu file
in its attachment folder. After that, the malware can silently
download and install any application without any notification
to the user. The detail of ptrace based dynamic analysis results
can be referred to Table III.

IV. Related Work
Two common methodologies to detect and analyze malware

are static [2], [18] and dynamic analysis [14], [16].
Static Analysis: When the Android malware started propa-
gating in 2011, malware researchers mainly focused on per-
mission analysis. Stowaway[5] provides a detailed table of
permissions for each API call. Felt et al. [6] shows the attacks
and defenses on the permission system on Android. After
the prevailing of Android malware, researchers disassemble
the applications and reveal the malicious codes by reverse
engineering tools like smali and ded [12], [4]. Based on
disassembled codes of malware, DroidMOSS [22] can detect
repackaged applications by using fuzzy hashing. With these

6

System Authorized File Access - /data/data/com.example.plugnew/service/smsrpt.i
mkdir ”/data/data/com.example.plugnew/service”, 0700
open ”/data/data/com.example.plugnew/service/smsrpt.i”, O CRE | O EXC
write ”configurl=http://42.121.120.87:9800/reg/reg.jsp?....”

System Unauthorized File Access - /system/bin/xsu
execve ”/system/bin/mount”, [”mount”, ”-o”, ”remount,rw”, ”-t”, ”yaffs2”, ”/dev/block/mtdblock3”, ”/system”]
execve ”/system/bin/cp”, [”cp”, ”/data/data/com.example.plugnew/service/xsu”, ”/system/bin/xsu”]

Network Connection - Http to 42.121.120.87
getsockname port=htons(59509), addr=inet addr(”0.0.0.0”)
connect port=htons(9800), addr=inet addr(”42.121.120.87”)
write info=”GET /reg/reg.jsp?version=40005...”

IPC - Getting IMSI
ioctl com.android.internal.telephony.IPhoneSubInfo get IMSI

Privilege Escalation
fork child pid = 351
execve ”/system/xbin/su”
getuid32 = 0

TABLE III. RESULTS OF DROIDTRACE ANALYSIS ON CEPLUGNEW

static information, Grace et al. developed RiskRanker [9] to
rank the suspicious applications and attempted to figure out
the zero-day malware. And there are other static analysis
systems [8], [23], [24], [10] to detect the vulnerabilities on
Android system. In general, all these static analysis systems
cannot handle the dynamic payloads and obtain the runtime
information.
Dynamic Analysis: In Section I, we discussed some dy-
namic analysis systems [3], [20], [19] for Android system.
Both DroidScope [20] and CopperDroid [15] are based on
hypervisor to monitor system behaviors. TaintDroid [3] is
a realtime analysis system to monitor the privacy leakage.
And some systems (e.g. [17], [11]) utilize TaintDroid to
enhanced dynamic analysis. But TaintDroid can not monitor
the malicious behaviors implemented by native code, which is
part of the dynamic behavior we aim to address.

V. Conclusion
To study the malicious behaviors of malware with dynamic

payloads, we propose DroidTrace, a ptrace based Android
dynamic analysis system with forward execution. The system
uses ptrace to monitor the system calls of the target process
which is running the dynamic payloads and classifies the pay-
loads behaviors through the system call sequence. In addition,
DroidTrace performs forward execution so to trigger different
dynamic loading behaviors. We demonstrate the effectiveness
of DroidTrace by carrying out large scale experiments on
50,000 legitimate apps and 294 malware in 10 families (four
of them are zero-day) which have dynamic loading behavior.

REFERENCES

[1] K. Z. Chen, N. Johnson, V. D’Silva, S. Dai, K. MacNamara, T. Magrino,
E. X. Wu, M. Rinard, and D. Song. Contextual policy enforcement in
android applications with permission event graphs. In Proceedings of
NDSS 2013, February 2013.

[2] M. Christodorescu and S. Jha. Static analysis of executables to detect
malicious patterns. In Proceedings of SSYM’03, 2003.

[3] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
OSDI’10, 2010.

[4] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX conference on
Security, SEC’11, 2011.

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android
permissions demystified. In Proceedings of CCS 2011, 2011.

[6] A. P. Felt, S. Hanna, E. Chin, H. J. Wang, and E. Moshchuk. Permission
re-delegation: Attacks and defenses. In In 20th Usenix Security
Symposium, 2011.

[7] Google. Monkeyrunner. http://developer.android.com/tools/help/
monkeyrunner concepts.html.

[8] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic detection of
capability leaks in stock Android smartphones. In Proceedings of NDSS
2012, Feb. 2012.

[9] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker:
Scalable and Accurate Zero-day Android Malware Detection. In
Proceedings of the 10th international conference on Mobile systems,
applications, and services, 2012.

[10] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of WISEC
2012, 2012.

[11] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications. In Proceedings of CCS 2011, 2011.

[12] Jesusfreke. smali. https://code.google.com/p/smali/.
[13] P. Kranenburg and D. Levin. Strace. http://sourceforge.net/projects/

strace/.
[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings
of PLDI ’05, 2005.

[15] A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors. In Proceedings of EUROSEC 2013, Prague, Czech Republic,
2013.

[16] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena. Bitblaze: A new
approach to computer security via binary analysis. In Proceedings of
ICISS ’08. Springer-Verlag, 2008.

[17] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani, R. Geambasu, and
N. Sarda. Cleanos: limiting mobile data exposure with idle eviction.
In Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation, OSDI’12, 2012.

[18] D. Wagner and D. Dean. Intrusion detection via static analysis. In
Proceedings of SP ’01, Washington, DC, USA, 2001. IEEE Computer
Society.

[19] R. Xu, H. Saı̈di, and R. Anderson. Aurasium: practical policy enforce-
ment for android applications. In Proceedings of USENIX Security
2012, 2012.

[20] L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
Proceedings of USENIX Security’12, 2012.

[21] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. Smart-
droid: an automatic system for revealing ui-based trigger conditions in
android applications. In Proceedings of SPSM ’12, 2012.

[22] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. DroidMOSS: Detecting
Repackaged Smartphone Applications in Third-Party Android Market-
places. In Proceedings of the second ACM conference on Data and
Application Security and Privacy, 2012.

[23] Y. Zhou and X. Jiang. Systematic detection of capability leaks in stock
android smartphones. In Proceedings of NDSS 2013, 2013.

[24] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proceedings of NDSS 2012, 2012.

