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Abstract—Probabilistic maximum coverage (PMC) is an im-
portant problem that can model many network applications,
including mobile crowdsensing, network content delivery, and
dynamic channel allocation, where an operator chooses nodes
in a graph that can probabilistically cover other nodes. In this
paper, we study PMC under the online learning context: the
PMC bandit. For PMC bandit where network parameters are
not known a priori, the decision maker needs to learn the
unknown parameters and the goal is to maximize the total rewards
from the covered nodes. Though PMC bandit has been studied
previously, the existing model and its corresponding algorithm
can be significantly improved. First, we propose the PMC-G
bandit whose feedback model generalizes existing semi-bandit
feedback, allowing PMC bandit to model applications like online
content delivery and online dynamic channel allocation. Next,
we improve the existing combinatorial upper confidence bound
(CUCB) algorithm by introducing the variance-adaptive algorithm,
i.e., the VA-CUCB algorithm. We prove that VA-CUCB can achieve
strictly better regret bounds, which improves CUCB by a factor
of Õ(K), where K is the number of nodes selected in each round.
Finally, experiments show our superior performance compared
with benchmark algorithms on synthetic and real-world datasets.

I. INTRODUCTION

The probabilistic maximum coverage (PMC) problem [1]
is a simple yet powerful model that covers many practical
network applications, such as network content delivery [2],
mobile crowdsensing [3], and channel allocation [4]. Typically,
the PMC problem takes a bipartite graph G = (L, V,E) as
input, where L are nodes to be selected, V are nodes to be
covered, each edge (u, v) ∈ E is associated with a probability
p(u, v), and each node v ∈ V is associated with a weight w(v).
A target node v ∈ V can be covered by a node u ∈ L with an
independent probability p(u, v) and any successfully covered
node v would contribute w(v) reward. The decision maker’s
goal is to select at most K nodes from L so as to maximize
the total rewards given by the covered nodes in V .

In a content delivery network (CDN) [2], for example,
contents (e.g., pictures, videos) are cached across mirror servers
so that end users can access the contents swiftly via the nearby
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Fig. 1: An example of PMC for content delivery: the decision
maker chooses (orange) servers {u1, u3, u4} which cover users
{v1, v3} via successful (check mark) edges {(1, 1), (4, 3)}.

server. How to strategically choose a set of servers (of size K)
to improve the user experience can be modeled by PMC (Fig. 1),
where L models the set of candidate mirror servers sending
contents, V represents the set of users that consume contents.
For each edge (u, v) ∈ E, p(u, v) models the probability that
the content can be successfully delivered from server u to node
v in time (i.e., u covers v), and w(v) is the probability that
v ultimately consumes the contents. The goal of PMC is to
provide the best possible user experience, i.e., to maximize the
total number of users that ultimately consume the content.

For PMC, setting the correct parametric values (e.g., edge
probabilities) is vital to making optimal decisions. Previous
works assume that these parameters are known a priori [1], [5],
[6]. However, in realistic network applications, the parameters
are unknown and may even change on the fly. Take network
content delivery for instance [7], users may have random
demands and preference w(v) to consume the contents. Due to
varying geometric distances and possible network congestion,
the service quality of the mirror servers regarding p(u, v) is
also unknown. These parameters are not known a priori and
must be carefully estimated on the fly by the operator.

A. PMC Bandit with General Feedback

To relax the assumption that parameters are known, one can
consider PMC in an online learning context, i.e., the PMC
bandit [8]. Specifically, the PMC bandit assumes that each edge
(u, v) (or node v) is associated with an arm and each arm has
an unknown probability p(u, v) (or w(v)) to be learned in T
consecutive decision rounds. In each round t, the learning agent
(i.e., the decision maker) needs to select a set of arms which
we refer as actions, and the outcomes of these selected arms
will be observed as feedback. Then the agent leverages the arm



feedback to estimate the unknown parameters and to improve
future actions. Typically, such feedback is known as the semi-
bandit feedback [8]–[10]. The agent’s goal is to maximize
T -round expected rewards, or equivalently, to minimize the
expected regret, which is defined as the difference for the
overall expected rewards between always playing the best action
(i.e., the action with highest expected reward) and playing
according to the agent’s own policy.

For PMC bandit, a good learning algorithm must carefully
handle the exploration-exploitation trade-off: whether the agent
should explore arms in search of a better action, or should the
agent stick to the best action observed so far to gain rewards. To
deal with this trade-off, combinatorial upper confidence bound
algorithms (CUCB) are proposed [8]. Specifically, CUCB uses
the empirical mean as the unbiased estimator for each arm
and constructs a Chernoff-type confidence interval. Such an
interval serves as the exploration bonus to handle the parameter
uncertainty and helps to achieve sublinear regret bounds [8].

Although PMC bandit has been extensively studied, the
bandit model and its CUCB algorithm have obvious drawbacks
that can be significantly improved. For the model part, semi-
bandit feedback can only handle the direct feedback of
the deterministic arm selection, but not the feedback that
stochastically depends on the arm outcomes. In CDN, for
example, semi-bandit feedback cannot model the unknown
user consumption probability w(v), since they stochastically
depend on the outcome of the content delivery and can only
be observed given the content is successfully delivered. To
accommodate a broader range of applications, it is essential to
consider PMC bandit with a general feedback model. As for
the CUCB algorithm, it relies solely on the empirical mean and
fails to be variance-adaptive. Ignoring the variance produces a
loose confidence interval for each arm, which in turn causes
unnecessary exploration. Worse still, a single arm’s loose bound
will accumulate and amplify due to the selection of K arms
in each round. Therefore, one will get an additional K factor
multiplied in the regret, where K can be up to hundreds or
thousands depending on the applications.

B. Our Contributions

To address the aforementioned drawbacks, this paper makes
four contributions as follows.
(1) Model Formulation: We propose a new PMC bandit model
(i.e., the PMC-G model) that can handle the general feedback
by explicitly introducing the arm observation probability. We
show how our new model can cover three network applications,
namely online content delivery, mobile crowdsensing, and
dynamic channel allocation, which have probabilistic, semi-
bandit, and cascading feedback, respectively.
(2) Algorithm Design: We propose a novel variance-adaptive
combinatorial upper confidence bound algorithm (VA-CUCB).
VA-CUCB leverages the empirical variance to construct a
Bernstein-type confidence interval. Such an interval adaptively
shrinks CUCB’s Chernoff-type confidence interval when the
arm has a low (empirical) variance, effectively reducing
unnecessary exploration for tighter regret bounds.

(3) Theoretical Analysis: We prove that our proposed al-
gorithm achieves O(

∑
i∈[m]

|V | log2 K log T
∆i

min
) regret bound. It

significantly improves the regret bound of CUCB by a factor of
Õ(K) (where Õ hides logarithmic factors of K), and matches
the lower bound by logarithmic factors. We overcome several
technical challenges to prove the improved regret bounds for
PMC-G, such as dealing with the non-deterministic observation,
and bounding the variance adaptive over-estimation. Our key
strategy is to use a reward sensitivity lemma to distribute
the total regret to each arm’s over-estimation, which are re-
weighted by their variance and observation probability. For
each arm’s over-estimation, we use the peeling technique to
handle the observation probability and carefully design a series
of events to derive the final regrets. We believe our proof
techniques are tight and novel, which may be of independent
interest to improve other works that share the similar feedback
model or over-estimation terms.
(4) Experimental Evaluation: We conduct experiments on all
three applications mentioned above to validate our theoretical
results over synthetic and real-world datasets. Our empirical
results demonstrate that our proposed algorithms can achieve
more than 30% lower regrets than benchmark algorithms.

II. SYSTEM MODEL

The system model of PMC bandit with general feed-
back (or PMC-G in short) can be described by a tuple
(G, [m],S,D, Dobs, R) as follows: G = (L, V,E) is the
underlying bipartite graph, where L is the set of candidate
nodes, V is the target nodes to be covered by the L, and E
is the set of edges connecting L and V ; [m] = {1, 2, ...,m}
is the set of base arms and each base arm is associated with
an unknown parameter to be learned. Depending on different
application scenarios in Section V, the base arms for PMC-G
could refer to the edge set E, or the edge and target node
sets E ∪ V , therefore we use [m] to cover both cases; S is
the set of eligible actions and S ∈ S is action. Similar to
[m], S is application-dependent and can be either a collection
of subsets of [m], or subsets of L; D is the set of possible
Bernoulli distributions over the outcomes of base arms with
support {0, 1}m; Dobs is the observation function to model the
general feedback and R is the reward function, the definitions
of which will be introduced shortly.

In PMC-G, the learning agent interacts with the unknown
environment in a sequential manner as follows. First, the
environment chooses a distribution D ∈ D unknown to the
agent. Then, at round t = 1, 2, ..., T , the agent selects an action
St ∈ S and the environment draws from the unknown distribu-
tion D a Bernoulli outcome Xt = (Xt,1, ...Xt,m) ∈ {0, 1}m.
Intuitively, for e = (u, v) ∈ E, Xt,e = 1 means the target
node v ∈ V is covered when u ∈ L is selected and for v ∈ V ,
Xt,v = 1 means the target node yields one unit of reward
when v is covered. Similar to [8], we assume that the outcome
Xt,e on edge e ∈ E is independent with any other outcomes
Xt,i, i ∈ [m], i ̸= e, yet the outcomes Xv and Xv′ of nodes
v′, v ∈ V could be dependent. We remark that the independence
assumption is only for the convenience of deriving the expected



reward r(S;µ) as in Equation (2), which can be relaxed when
the closed form of r(S;µ) is available.

When the action St is played, the agent will receive a non-
negative reward R(St,Xt). For PMC-G, the reward at round
t is the total rewards received from the covered nodes,

R(St,Xt) =
∑

v∈V I{∃u ∈ St s.t. Xt,(u,v) = 1}Xt,v. (1)

Let µ = (µ1, ..., µm) denote the mean vector of base arms’
outcomes, which are unknown initially. Given the independence
assumption, the expected reward r(S;µ) ≜ E[R(S,Xt)] is

r(S;µ) =
∑
v∈V

µv

(
1−

∏
u∈S

(1− µ(u,v))

)
. (2)

Note that this expected reward function is highly non-linear in
µ and finding the optimal solution S∗ is NP-hard in general [1].
Fortunately, using submodular set function maximization
technique, one can achieve (1−1/e)-approximate solutions [1].

At the end of round t, the agent can observe some of
the arm outcomes as feedback, which are critical to improve
future decisions. In particular, base arms in a random set
τt ∼ Dobs(St,Xt) are observed, meaning that the outcomes
of arms in τt, i.e. (Xt)t∈τt are revealed as the feedback to the
agent, where function Dtrig is used to model general feedback
and is referred as the general feedback function. For notational
convenience, we define observation probability pD,Dobs,S

i as the
probability that base arm i is observed when the action is S, the
outcome distribution is D, and the feedback function is Dobs.
Since Dobs is always fixed in a given application context, we
ignore it in the notation for simplicity, and use pD,S

i henceforth.
We remark that the PMC-G model significantly enhances the
modeling power of previous PMC bandit [8] as it not only
models semi-bandit feedback that are deterministic but can
also model the probabilistic feedback when τt are randomly
determined, or even the partial feedback that depends on certain
stopping criteria, which will be discuss in details in Section V.

The goal of PMC-G is to accumulate as much reward as pos-
sible over T rounds, by learning the Bernoulli distribution D, or
equivalently the unknown mean vector µ. The performance of
an online learning algorithm A is measured by its regret, defined
as the difference of the expected cumulative reward between
always playing the best action S∗ ≜ argmaxS∈S r(S;µ) and
playing actions chosen by algorithm A. As mentioned before,
it could be NP-hard to compute the exact S∗ even when µ
is known, so similar to [8], [9], [11], we assume that the
algorithm A has access to an offline (α, β)-approximation
oracle, which for mean vector µ outputs an action S such
that Pr [r(S;µ) ≥ α · r(S∗;µ)] ≥ β. Formally, the T -round
(α, β)-approximate regret is defined as

Reg(T ;α, β,µ) = T ·αβ · r(S∗;µ)−E

[
T∑

t=1

r(St;µ)

]
, (3)

where the expectation is taken over the randomness of outcomes
X1, ...,XT , the observation sets τ1, ..., τT , as well as the
randomness of algorithm A itself.

Algorithm 1 VACUCB: Variance Adaptive Combinatorial
Upper Confidence Bound Algorithm for PMC-G

1: Input: Base arms [m], computation oracle ORACLE.
2: Initialize: For each arm i, T0,i ← 0, µ̂0,i = 0, V̂0,i = 0.
3: for t = 1, ..., T do
4: For arm i, compute ρt,i according to Eq. (4) and set

UCB value µ̄t,i = min{µ̂t−1,i + ρt,i, 1}.
5: Select action St = ORACLE(µ̄t,1, ..., µ̄t,m).
6: The agent plays St and observe arms τt ⊆ [m] with

outcome Xt,i’s, for i ∈ τt.
7: For every i ∈ τt, update Tt,i = Tt−1,i +

1, µ̂t,i = µ̂t−1,i + (Xt,i − µ̂t−1,i)/Tt,i, V̂t,i =
Tt−1,i

Tt,i

(
V̂t−1,i +

1
Tt,i

(µ̂t−1,i −Xt,i)
2
)

.
8: end for

III. ALGORITHM DESIGN

In this section, we provide the Variance-Adaptive Combina-
torial Upper Confidence Bound algorithm for PMC-G problem
in Algorithm 1, or VACUCB algorithm for short. Algorithm 1
maintains the empirical estimate µ̂t,i and V̂t,i for the true mean
and the true variance of the base arm outcomes, respectively.
As discussed earlier, we follow the principle of Optimism in the
Face of Uncertainty (OFU), and compute the upper confidence
bound (UCB) value µ̄i = µ̂t,i+ρt,i as an optimistic estimate of
µi. Intuitively, confidence interval ρt,i serves as a bonus term
to explore the unknown mean µi: when arm i is not observed
often (i.e., Tt,i is small), ρt,i will be large and encourages the
algorithm to select arm i.

Compared with the CUCB algorithm [8] which uses con-
fidence interval ρt,i =

√
3 log t
2Tt−1,i

based on Chernoff-type
concentration bound [12] for the PMC problem, the key
difference is that we leverage on the stronger Bernstein-type
concentration bound and use empirical variance V̂t−1,i to
construct the following “variance-adaptive” confidence interval:

ρt,i =

√
6V̂t−1,i log t

Tt−1,i
+

9 log t

Tt−1,i
(4)

As we will show in Section IV, the variance-adaptive interval
is the key to achieve tighter regret bounds, in that the expected
reward in Eq. (2) is more sensitive to arms whose mean is
close to 0 or 1, whose over-estimation (ρt,i) will cause a large
regret. However, these arms happen to have smaller variance,
which means that being variance-adaptive helps to reduce the
over-estimation and results in significantly smaller regrets.

To select the action St, the next step is to insert UCB values
into the computational oracle, which is typically an (1−1/e, 1)-
approximation greedy oracle [1], [13] for PMC-G applications
with the monotone submodular reward Eq. (2). After play
action St, the agent will observe a set of arms τt as feedback
and update the statistics accordingly.

IV. THEORETICAL ANALYSIS

In this section, we present our main theoretical result, its
analysis, and some discussions.



A. Main Result

To state the regret bound, we first give some definitions
followed by our main result.

Definition 1 (Suboptimality Gap). Fix a distribution D ∈ D
and its mean vector µ, for each action S ∈ S, we define the
(approximation) gap as ∆S = max{0, αr(S∗;µ)− r(S;µ)}.
For each arm i, we define ∆min

i = infS∈S:pD,S
i >0, ∆S>0 ∆S ,

∆max
i = supS∈S:pD,S

i >0,∆S>0 ∆S . As a convention, if there

is no action S ∈ S such that pD,S
i > 0 and ∆S > 0, then

∆min
i = +∞,∆max

i = 0. We define ∆min = mini∈[m] ∆
min
i

and ∆max = maxi∈[m] ∆
min
i .

Theorem 1. For a PMC-G problem in-
stance (G, [m],S,D, Dobs, R), the regret of
VACUCB (Algorithm 1) is upper bounded by
O
((∑

i∈[m]
|V |

∆min
i

+ log2
(

K
∆min

i

))
log2 K log T

)
.

B. Analysis

Our analysis uses several events to filter the total regret and
then bound these event-filtered regrets accordingly. Below we
give the definition of the event-filtered regret.

Definition 2 (Event-filtered regret). For any series of
events (Et)t≥0 indexed by round number t, we de-
fine the RegAα,µ(T, (Et)t≥0) as the regret filtered by
events (Et)t≥0, or the regret is only counted in t
if E happens in t. Formally, RegAα,µ(T, (Et)t≥0) =

E
[∑

t∈[T ] I(Et)(α · r(S∗;µ)− r(St;µ))
]
. For simplicity, we

will omit A,α,µ, T and rewrite RegAα,µ(T, (Et)t≥0) as
Reg(T, Et) when contexts are clear.

To give the concrete events that filters the leading regret,
we leverage on the following two lemmas. Intuitively, the first
lemma bound the reward difference by ℓ2 and ℓ1 norm of
each arm’s over-estimation xv and x1 given by our VA-CUCB
algorithm, and

√
V is to bound the non-linearity of r(S;µ).

Notice that both xv,i and x1,i are re-weighted by pD,S
i which

reduces the regret contribution from unlikely observed arms to
handle the general feedback model. The second lemma bounds
each arm’s actual over-estimation, and the

√
(1− µi)µi is the

key term to cancel the denominator in xv,i to give improved
regret bounds.

Lemma 1 (Reward sensitivity). For PMC-G with semi-bandit,
probabilistic, and cascading feedback model, and for any
parameter change ζ,η ∈ [0, 1]m s.t. µ′ = µ + ζ + η, the
reward sensitivity r(S;µ′)− r(S;µ) satisfies

r(S;µ′)− r(S;µ) ≤
√
|V | ∥xv∥2 + ∥x1∥1 , (5)

where xv ≜

(
pD,S
i ζi√

(1−µi)µi

)
i∈[m]

, x1 ≜
(
pD,S
i ηi

)
i∈[m]

.

Proof. See Section VIII-B for details. ■

Lemma 2 (Arm-level over-estimation). For every base
arm i ∈ [m] and every time t ∈ [T ], it holds with

probability at least 1 − 4mt−3 that µi ≤ µ̄t,i ≤
min

{
µi + 4

√
3
√

µi(1−µi) log t
Tt−1,i

+ 28 log t
Tt−1,i

, 1
}
.

Proof. See Section VIII-C for details. ■

Let S̃t = {i ∈ [m] : pD,St

i > 0} be the set of arms that
could be observed in round t. Now We have the following
lemma for the regret decomposition.

Lemma 3 (Regret decomposition). We define two error terms

et,1(St) = 4
√
3
√
|V |

√√√√∑
i∈S̃t

(
log t

Tt−1,i
∧ 1

28
)(pD,St

i )2 (6)

et,2(St) = 28
∑
i∈S̃t

(
log t

Tt−1,i
∧ 1

28
)(pD,St

i ) (7)

and two events Et,1 = {∆St ≤ 2et,1(St)}, Et,2 = {∆St ≤
2et,2(St)}. The regret of Algorithm 1, when used with (α, β)
approximation oracle is bounded by

Reg(T ) ≤ Reg(T,Et,1) +Reg(T,Et,2) +
2π2

3
m∆max. (8)

Our final step are bounding Reg(T,Et,1) and Reg(T,Et,2),
which corresponds to the first term and the second term
in Theorem 1, respectively. Our idea main is to define a
cascade of infinitely-many mutually-exclusive events as [10],
[14]. Then we transform event Et,1, Et,2 to these events
and bound the number of times that these events could
happen. To handle the general feedback for each arm i,
our key ingredient is to use the peeling technique to divide
observation probability pD,S

i into geometrically separated bins
(1/2, 1], (1/4, 1/2]..., (2−j , 2−j+1), ...,, so that we can use
delicate analysis to avoid the exponential factors caused by
considering the combination of all possible actions S ∈ S that
can observe i. We defer the detailed proofs of Reg(T,Et,1)
and Reg(T,Et,2) in Section VIII-E and Section VIII-F.

C. Discussions

Looking at the above regret bound, the leading term is
O(
∑m

i=1
|V | log2 K log T

∆min
i

) when gaps are not too large, i.e.,

∆i
min ≤ |V |1−ϵ/ log2 K, for any ϵ > 0. The dependence over

K is O(log2 K). For PMC bandit with general feedback, [11]
is the closest work to ours, and following their CUCB algorithm
can only give O(

∑m
i=1

|V |K log T

∆min
i

) for PMC-G. Our result is

strictly better than theirs by a factor of O(K/ log2 K). For the
classical PMC bandit with semi-bandit feedback, [15] recently
gives a regret lower bound Ω(L|V |2

∆min
), which means our regret

bound is near-optimal (by setting m = L|V |,∆min ≤ ∆min
i )

and matches the lower bound up to O(log2 K).

V. APPLICATIONS FOR PMC-G

We consider three applications with semi-bandit, probabilis-
tic, and cascading feedback to illustrate the utility of our PMC-
G framework: mobile crowdsensing, online content delivery,
and dynamic wireless channel allocation. We compare the
regret of our VACUCB algorithm to two baselines: CUCB [9],



TABLE I: Summary of feedback and oracles for different
applications, where they all achieve O(

∑
i∈[m]

|V | log2 K log)T

∆min
i

)

regret and improve CUCB [11] by O(K/ log2 K).
Application Feedback (α, β)-Oracle

Mobile Crowdsensing Semi-bandit Greedy, (1− 1/e, 1)
Online Content Delivery Probabilistic Greedy, (1− 1/e, 1)

Dynamic Channel Allocation Cascading Greedy, (1, 1)

a state-of-the-art combinatorial bandit algorithm that does not
use variance-adaptive confidence intervals; and ϵ-greedy, which
explores new actions with fixed probability ϵ and otherwise
greedily chooses the empirically optimal action.

A. Mobile Crowdsensing

1) Problem Description: Today’s mobile devices (e.g.,
smartphones, tablets, wearable devices) are often equipped
with powerful sensor devices (e.g., GPS, accelerometers and
gravity sensors), which can collect and analyze environmental
data from users’ locations. To collectively utilize these mobile
devices, mobile crowdsensing provides a principled way of
carrying out a large sensing project, by recruiting a group of
individuals to cover (i.e., sense data at) different locations using
their own mobile devices, as they move through an area [3].
For example, a task organizer may want to organize a group of
participants, and use their cameras, gravity sensors, and GPS as
sensors to monitor dust levels [16] or a possible earthquake [17]
in a large city. Due to the different movement trajectories of
the crowdsensing participants and the varying manufacturing
quality of their mobile devices, the quality of the collected data
can vary randomly across different participants for different
locations [18]. The goal of the mobile crowdsensing task
organizer is to select a group of individuals to maximize the
amount of high-quality data collected from different locations
in the city.

The mobile crowdsensing application can be modeled by
our PMC-G problem. Consider a bipartite graph G(L, V,E),
where L is the set of candidate participants, V is the set of
locations in a city, and E models the data collection process.
At each time t, the agent (or the task organizer) wants to
choose at most K participants to conduct the sensing task.
For example, K may be chosen based on a budget for paying
fixed recruitment incentives to each chosen participant. Each
selected participant u ∈ St independently uploads their sensor
data at location v ∈ V , which is modeled as a Bernoulli
random variable Xt,(u,v) ∈ {0, 1} with probability µu,v that
the data can be used as valid information to cover location v.
In this case, we know the arms are exactly E. The agent can
get semi-bandit feedback, i.e., observe whether the uploaded
data is valid or not for (u, v) s.t. u ∈ St. Using the PMC-G
formulation, the observation probability pD,St

(u,v) = 1 if u ∈ St

or 0 otherwise. The reward is the weighted total number of
locations that is covered with valid information: r(S;µ) =∑

v∈V µv

(
1−

∏
u∈S(1− µ(u,v))

)
, where the known weight

µv represents the importance of covering location v to the
crowdsensing task. Busy areas, for example, may have higher

(a) Varying K (b) Varying x (µu,v ∼ U(0, x))
Fig. 2: Total regrets after 100000 rounds in different settings.

sensing importance as their environmental conditions affect
more people.

2) Performance Evaluation: We simulate the mobile crowd-
sensing problem using a complete bipartite graph with 20
candidate nodes (participants) and 30 target nodes (locations).
The importance weights of locations are sampled from the uni-
form distribution U(0, 0.5) and are known by the task organizer.
We first take K = 15 (the number of chosen participants) and
generate each µu,v using the uniform distribution U(0, 0.15).
Fig. 3a shows the cumulative regrets of different algorithms for
100, 000 rounds (we choose ϵ = 0.2 for the ϵ-Greedy algorithm
in all experiments). VACUCB achieves 30% and 42% less
regret than the CUCB and ϵ-Greedy algorithms. To verify
how K would affect the regrets, we then generate each µu,v

with U(0, 0.05) and show the total regrets for different K after
100, 000 rounds in Fig. 2a. Note that with the change of K, the
optimal reward will also change, which explains why the regret
of a small K is larger than that of a large K. We find that with
the increase of K, VACUCB’s improvement over the CUCB
baseline also increases (25% for K = 5 and 50% for K = 15),
which is consistent with our theoretical result in Theorem 1.
Fig. 2b compares the total regrets of CUCB and VACUCB
when varying the value of µu,v . We set K = 10 and generate
each µu,v with U(0, x), where x ∈ {0.05, 0.1, 0.15}. With
the increase of x, VACUCB’s improvement over the CUCB
baseline decreases; one potential reason is that the variance of
the Bernoulli variable Xt,(u,v), Vt,(u,v) = µu,v(1 − µu,v), is
small when µu,v is small, which helps our variance-adaptive
algorithm to control the exploration.

B. Online Content Delivery

1) Problem Description: We study the online content
delivery problem in content delivery networks (CDNs), which
widely appears in web services such as video streaming, web
loading, and software downloading [2], [7]. In contrast to the
traditional method, which stores contents on just one central
server, CDNs replicate and cache contents on multiple mirror
servers so that the end users can access the data that are
physically closest to them. This way, users can enjoy faster
and more reliable delivery services. Our model and algorithm
aim to help the content owners (e.g., media companies or e-
commerce vendors) to select a set of mirror servers to provide
the best possible experience for their end users.

The above application scenario naturally fits into our PMC-G
problem with a bipartite graph G(L, V,E), where L models
the set of candidate servers, V are the end users, and E models



(a) Mobile Crowdsensing (b) Online Content Delivery (c) Dynamic Channel Allocation
Fig. 3: Cumulative regrets in different applications. We show the average regrets with standard deviations over 20 experiments.

the user-server interactions as follows. At each time slot t, the
agent (or the content owner) needs to choose St ⊆ L mirror
servers that can send contents to users via the CDN network.
We assume the number of selected servers at each round is
less than K, i.e., |St| ≤ K, since the maintenance of each
server usually incurs certain costs, and the content owner has
limited budget. The selected servers u ∈ St then independently
send contents for each user v ∈ V with unknown success
rates µ(u,v), depending on varying geometric distances and the
network congestion [19]. By “success,” we mean the content is
delivered in time, which can be modeled by a Bernoulli random
variable Xt,u,v ∈ {0, 1} with mean µ(u,v). We suppose that
each user v attempts to preload content from the selected servers
to its device [20], and we use a Bernoulli random variable with
unknown mean µv to represent whether this preloaded content
is ultimately consumed (e.g., video is viewed) by the user.
To this end, we can see that arms correspond to the success
probability µ(u,v) for (u, v) ∈ E and the consuming probability
µv for users v ∈ V . The question is how to select K mirror
servers for content delivery to maximize the total number of
users that consume the contents with unknown success rates
and consuming probabilities. A good server selection policy
should prioritize successful delivery to users more likely to
consume the content.

As for the feedback, the agent can observe whether the
contents are successfully delivered from the selected servers,
i.e., Xt,(u,v) for u ∈ St, v ∈ V . We know that the observation
probability pD,St

(u,v) equals to 1 if u ∈ St and 0 otherwise, which
is known as the semi-bandit feedback. If user v successfully
receives the content, the agent (i.e., content owner or CDN
provider) can observe whether the user consumes the content,
i.e., Xt,v is observed when ∃v s.t. Xu,v = 1. Such feedback
is called the probabilistic feedback since it depends on other
random outcomes, and the observation probability pD,St

v =
1−
∏

u∈St
(1−µu,v). The expected reward is essentially Eq. (2)

and the agent’s goal is to minimize the total regrets in Eq. (3).
2) Performance Evaluation: For the online content delivery

experiments, we consider 10 mirror servers located at some
of the point-of-presence (POP) locations of Microsoft Azure
CDN in North America1. We assume the users are distributed
in 20 POP locations (including the servers’ locations). We

1https://docs.microsoft.com/en-us/azure/cdn/cdn-pop-locations

extract the average latency data between these locations2, and
assume the realized latency at each round is the average latency
plus a random delay ranging from 0ms to 30ms, which is
76% of the average observed delay. We simulate the random
delivery deadlines of the contents with the range from 10ms
to 20ms. The users will successfully receive the content if
their latencies to the mirror servers are less than the delivery
deadline. The probability that user v will consume the content,
µv, is sampled from U(0, 0.5) and is unknown to the server
selector. Figure 3b shows the cumulative regrets of different
algorithms for 100, 000 rounds. VACUCB achieves 32% and
65% less regret than CUCB and ϵ-Greedy.

C. Dynamic Channel Allocation

1) Problem Description: We consider a centralized dynamic
channel allocation problem where a central controller chooses
K channels from the candidate channel set L and allocates
them to a group of users V . Each channel i ∈ L can be
viewed as a base arm with unknown Bernoulli availability.
Similar to the centralized online channel allocation setting
in [4], we let the controller allocate disjoint lists of channels
to users to avoid collisions, and each user will get a reward
only if at least one of the allocated channel is available in
a given round. The overall expected reward of all users is
then

∑
j∈V

(
1−

∏
i∈Sj,t

(1− µi)
)

, where Sj,t is the set of
channels allocated to user j in round t and µi is the expected
availability of channel i. Different from the NP-hard offline
problem in [4], the offline optimization problem with such a
reward function can be exactly solved by a greedy algorithm
that sequentially allocates channels with the maximum marginal
returns to the users. Each user j will have an ordered list of
allocated channels, otj = (otj1, o

t
j2, · · · ) with length |Sj,t|. We

consider cascading feedback in this application, as each user
will sequentially check the availability of allocated channels
and stop when finding the first available one to send data. More
specific, only the outcomes of otjl for all l ≤ Lt are observed,
where Lt is the index of the first available channel in the list
(Lt = |Sj,t| if all channels in the list are unavailable).

2) Performance Evaluation: As in [4], we use a real wireless
data trace [21] that contains the availability of 16 channels.
We choose the most competitive 4 channels among them with

2https://wondernetwork.com/pings



Fig. 4: Illustration of centralized dynamic channel allocation.

average available probabilities µi less than 0.1, and consider 4
copies of each to build the candidate channel set with |L| = 16.
Notice that the real availability trace is no longer i.i.d. Bernoulli
distributed, so it is more challenging than the ideal setting. Also,
there is no real optimal online policy, so we adjust our regret
to compare with the optimal policy when assuming the channel
availability is uniformly sampled from the whole data trace, i.e.,
the expected availability is equal to the average availability. We
consider a central controller that chooses K = 8 channels from
the 16 candidate channels and allocate them to |V | = 4 users.
Figure 3c shows the cumulative regrets of different algorithms
for 100, 000 rounds. VACUCB achieves 57% and 68% less
regret than the CUCB and ϵ-Greedy baseline algorithms.

VI. RELATED WORK

There have been vast literature focusing on online learning
problems under the multi-armed bandit (MAB) model, which
is first studied by [22] and then extended by many other works
(cf. [23]–[25]). The principle of Optimism in the Face of Un-
certainty (OFU) [26] is one of the most fundamental concepts
in MAB, and has been widely used in MAB algorithms [25].
While most algorithms rely on Hoeffding-type concentration
bounds to build upper confidence bound (UCB) of an arm,
a few works [27]–[29], including ours, apply Bernstein-type
bounds and successfully show superior performance, both in
theory and in experiments.

Probabilistic maximum coverage (PMC) problem [1] is
a widely studied topic with many applications in computer
science, and especially in the area of network optimization.
Besides the three applications mentioned in this paper, PMC
also covers many other applications, including wireless sensor
placement [30] and social network advertising [31], [32]. The
online learning version of the PMC problem (or PMC bandit)
is first proposed by [8], and are then followed by [9], [28].
Different from these works that only considers the semi-bandit
feedback, we proposes a new PMC-G model that generalizes the
semi-bandit feedback and can model broader applications with
the general probabilistic feedback and the cascading feedback.

The stochastic Combinatorial MAB (CMAB) has received
much attention recently [8], [9], [11], [15], [28], [33], [34], and
PMC bandit fits into CMAB framework. For CMAB with semi-
bandit feedback, [33] is the first study on stochastic CMAB,
and its regret bound has been improved by [10], [35]. Later
on, [9], [11] considers probabilistic feedback to generalize the
semi-bandit feedback model and . However, all above CMAB
frameworks suffers an additional O(K) factor in their regret

bound and the best of them only achieve O(
∑

i∈[m]
K log T
∆i

min
),

since they use combinatorial upper confidence bound (CUCB)
algorithms that ignores the variance of the arm.

Recently, [28] focuses on the PMC bandit and proposes
the BC-UCB algorithm with the Gini-smoothness condition to
achieve a similar improvement as our work. But their work
only works for the semi-bandit feedback and is essentially a
special case of our PMC-G. As a result, their technique is
different and much simpler than ours.

VII. CONCLUSION

In this paper, we propose the first PMC bandit with the
general feedback model that accommodates a broader network
applications. We provide the variance-adaptive online learning
algorithm, and conduct rigorous analysis to achieve strictly
better regrets. To validate our theoretical results, we conduct
experiments for mobile crowdsensing, content delivery and
channel allocation applications, showing superior performance
compared with benchmarks algorithms. For future directions,
it will be interesting to reduce the O(log2 K) dependency via
finer analysis and to explore the variance-adaptive algorithms
for applications beyond PMC problems.

VIII. APPENDIX

A. Facts and Definitions

We use the following tail bounds for our analysis.

Lemma 4 (Empirical Bernstein Inequality [27]). Let (Xi)i∈[n]

be n i.i.d random variables with bounded support [0, 1] and
mean E[Xi] = µ. Let X̂n and V̂n be the empirical mean and
empirical variance of (Xi)i∈[n]. Then for any n ∈ N and

y > 0, it holds that Pr
[
|X̂n − µ| ≥

√
2V̂ny
n + 3y

n

]
≤ 3e−y .

Lemma 5 (Bernstein Inequality [12]). Let (Xi)i∈[n] be n
independent random variables in [0, 1] with mean E[Xi] =
µ and variance Var[Xi] = V . Then with probability 1 − δ:
1
n

∑
i∈[n] Xi ≤ µ+ 2 log 1/δ

3n +
√

2V log 1/δ
n .

We define the following events for arm-level concentration.

Definition 3. We say that the sampling is nice at the beginning
of round t if: (1) for every base arm i ∈ [m], |µ̂t−1,i−µi| ≤ ρt,i,

where ρt,i =

√
6V̂t−1,i log t

Tt−1,i
+ 9 log t

Tt−1,i
; (2) for every base arm

i ∈ [m], V̂t−1,i ≤ 2µi(1−µi)+
3.5 log t
Tt−1,i

. We denote such event
as N s

t .

The following lemma bounds the probability that ¬N s
t .

Lemma 6. For each round t, Pr[¬N s
t ] ≤ 4mt−2.

Proof. Let N s,1
t ,N s,2

t be the event (1) and event (2) in
Definition 3. For Pr[¬N s,1

t ], we can bound it using Lemma 4
by setting y = 3 log t We then bound the probability that
second event ¬N s,2

t using the similar proof of Eq. (7) in
[28]. Fix Tt−1,i = τ and consider (Y 1

i , ..., Y
τ
i ), where Y k

i =
(Xk

i −µi)
2 ∈ [0, 1] and Xk

i is the random outcome of the k-th
i.i.d trial. In this case, one can verify that V̂t−1,i ≤ 1

τ

∑τ
k=1 Y

k
i ;



E[Y k
i ] ≤ (1 − µi)µi; and Var[Yi] ≤ E[Y k

i ] ≤ (1 − µi)µi.
By Lemma 5, it holds with probability at least 1 − t−3 that

V̂t−1,i ≤ µi(1−µi)+
2 log t

τ +
√

6(1−µi)µi log t
τ ≤ µi(1−µi)+

2 log t
τ + µi(1− µi) +

3 log t
2τ = 2µi(1− µi) +

3.5 log t
τ Now by

applying union bound over i ∈ [m] and τ ∈ [t], N s,1
t and

N s,2
t , we have Pr[¬N s

t ] ≤ 4mt−2. ■

To deal with the general feedback, we use the following
definitions and lemmas to peel the observation probability.

Definition 4 (Observation Probability (OP) group). For any
arm i and index j, define the observation probability (OP)
group (of actions) as SDi,j = {S ∈ S : 2−j < pD,S

i ≤ 2−j+1}.
Notice {SDi,j} forms a partition of {S ∈ S : pD,S

i }.

Definition 5 (Counter). For each OP group Si,j , we define a
counter Ni,j which is initialized to 0. In each round t, we have
the following recursive equation to define Nt,i,j as follows:
Nt,i,j = 0, if t = 0; Nt,i,j = Nt−1,i,j + 1, if t > 0 and
St ∈ SD

i,j; Nt,i,j = Nt−1,i,j , otherwise.

Definition 6 (Nice observation event N t
t ). Given a series

integers {jmax
i }i∈[m], we say that the observation is nice at the

beginning of round t, if for every observation group identified by
(i, j), as long as 6 ln t

1
3Nt−1,i,j2−j ≤ 1, there is Tt−1,i ≥ 1

3Nt−1,i,j ·
2−j . We denote this event as N t

t .

Lemma 7 (Appendix B.1, Lemma 4, [11]). For a series of
integers (jmax

i )i∈[m], we have Pr[¬N t
t ] ≤

∑
i∈[m] j

max
i t−2 for

every round t ∈ [T ].

Proof. We refer the readers to Lemma 4 in Appendix B.1 from
[11] for detailed proofs. ■

B. Proof of Lemma 1

For cascading feedback, without loss of generality, let
the action in group i ∈ V be {µi,1, ..., µi,K}, then the
reward function is r(S;µ) =

∑
j∈V 1 −

∏K
i=1(1 − µi,j)

and the observation probability is pD,S
i,j =

∏i−1
ℓ=1(1 − µℓ,j).

Let µ̄ = (µ̄i,j)i∈[K],j∈V and µ = (µi,j)i∈[K],j∈V , where
µ̄ = µ + ζ + η with µ̄,µ ∈ (0, 1)[K]×V , ζ,η ∈ [0, 1][K]×V .
Now we can derive r(S; µ̄)− r(S;µ) equals to

∑
j∈V,i∈[K]

(µ̄i − µi)

i−1∏
ℓ=1

(1− µℓ,j)

K∏
ℓ=i+1

(1− µ̄ℓ,j). (9)

≤
∑
j∈V

∑
i∈[K]

(ζi,j)(

i−1∏
ℓ=1

(1− µℓ,j)

K∏
ℓ=i+1

(1− µℓ,j))

+
∑
j∈V

∑
i∈[K]

(ηi,j)

i−1∏
ℓ=1

((1− µℓ,j)). (10)

≤

√√√√ ∑
j∈V,i∈[K]

ζ2i,j(p
D,S
i,j )2

(1− µi,j)µi,j
·

√√√√ ∑
j∈V,i∈[K]

K∏
ℓ=i+1

(1− µℓ,j)µi,j

+
∑
j∈V

∑
i∈[K]

ηi,jp
D,S
i,j , (11)

where the first inequality is by definition of ζi,j , ηi,j and
µ̄i,j ≥ µi,j , the second inequality is by Cauchy-Schwarz
inequality and definition of pD,S

i,j , concluding the lemma by√∑
j∈V (1−

∏K
ℓ=1(1− µℓ,j)) ≤

√
|V |.

For probabilistic feedback, let effective base arms
µ = (x,y) ∈ (0, 1)(K|V |+|V |), µ̄ = (x̄, ȳ) ∈ (0, 1)(K|V |+|V |),
where x̄ = ζx + ηx + x, ȳ = ζy + ηy + y, for
ζ,η ∈ [−1, 1](n|V |+|V |). For the target node j ∈ V , the per-
target reward function rj(S;x,y) = yj(1−

∏
i∈[n](1− xi,j)).

Denote p̄D,S
j = 1 −

∏
i∈[n] (1− x̄i,j). Now we can derive

r(S; µ̄) − r(S;µ) =
∑

j∈V rj(S; x̄, ȳ) − rj(S;x,y) =∑
j∈V ȳj

(∏
i∈[n](1− xi,j)−

∏
i∈[n](1− x̄i,j))

)
+∑

j∈V (ȳj − yj)p
D,S
j . For the first summation, we follow

exactly the derivation of the cascading feedback, we have

RHS ≤
√∑

j∈V,i∈[n](
ζ2
x,i,j

(1−xi,j)xi,j
) +

∑
j∈V

ζ2
y,j(p

D,S
j )2

(1−yj)yj

·
√∑

j∈V ȳ2j + (1− yj)yj + (
∑

j∈V,i∈[n] |ηx,i,j | +∑
j∈V |ηy,j | p

D,S
j ) and replacing

√∑
j∈V ȳ2j + (1− yj)yj ≤√

|V | concludes the proof.
For semi-bandit feedback, it is easy to follow the cascading

feedback but set pD,S
i,j = 1 if i ∈ S and 0, otherwise.

C. Proof of Lemma 2

Proof. Under event Ns,1
t , we have |µi − µ̂t,i| ≤ ρt,i by

Lemma 6, hence the first and the second inequality in
Lemma 2 holds. For the last inequality, it holds under event
Ns,2

t to replace V̂t−1,i with 2µi(1 − µi) +
3.5 log t
Tt−1,i

). Since
N s

t = N s,1
t

⋂
N s,2

t and by Lemma 6, Lemma 2 holds with
probability at least 1− 4mt−2. ■

D. Proof of Lemma 3

Proof. Under event N s
t , by Lemma 2, it is easy to check

that µ̄t,i ≤ min{µt−1,i + 4
√
3
√

µi(1−µi) log t
Tt−1,i

+ 28 log t
Tt−1,i

, 1} ≤

µt−1,i + 4
√
3
√
µi(1− µi)(

log t
Tt−1,i

∧ 1
28 ) + 28( log t

Tt−1,i
∧ 1

28 ).
Therefore, it holds that

αr(S∗;µ) ≤ αr(S∗; µ̄t) ≤ r(St; µ̄t) (12)
≤ r(St;µ) + et,1(St) + et,2(St), (13)

where the first inequality is because the reward function is
monotone and second inequality is due to the computation ora-
cle, the third inequality is because of the inequality above and
Lemma 1 by plugging in ζi = 4

√
3
√

µi(1− µi)(
log t

Tt−1,i
∧ 1

28 )

and ηi = 28( log t
Tt−1,i

∧ 1
28 ). So Reg(T,N s

t ) ≤ Reg(T,Et,1) +

Reg(T,Et,2). Now for Reg(T,¬N s
t ), by Lemma 6 it holds

that Reg(T,¬N s
t ) ≤

∑T
t=1 Pr[¬N s

t ] ≤
∑T

t=1 4mt−2 ≤
2π2

3 m∆max, which concludes the lemma. ■

E. Upper bound of Reg(T,Et,1)

Let c1 = 4
√
3 be a constant and Ot = {i ∈ S̃t : jSt

i ≤
jmax
i } where the threshold jmax

i = 1
2 (⌈log2

c21|V |K
(∆min

i )2
⌉ + 1).

Let α1 > α2 > ... > αk > ... > α∞ and 1 = β0 >



β1 > ... > βk > ... > β∞ be two infinite sequences of
positive numbers that are decreasing and converge to 0. Recall
S̃t = {i ∈ [m] : pD,St

i > 0}. For positive integers k and t, we
define At,k = {i ∈ S̃t ∩ OSt

: N
t−1,i,j

St
i
≤ αk

g(K,∆St )f(t)

∆2
St

},
where g(K,∆St) and f(t) are going to be tuned for later
use. Moreover, we define the complementary set Āt,k =

{i ∈ S̃t ∩ Ot : N
t−1,i,j

St
i

> αk
g(K,∆St )f(t)

∆2
St

}. Now we are
ready to define the events Gt,k = {|At,k| ≥ βkK;∀h <
k, |At,h| < βhK}. Let Gt =

⋃∞
k=1 Gt,k and by definition

its complementary Gt = {|At,k| < βkK, ∀k ≥ 1}. We first
introduce a lemma that uses finite many events to conclude
infinitely many events.

Lemma 8 (Lemma 7, [14]). If there exists k0 such that βk0
≤

1/K, then Gt =
⋃k0

k=1 Gt,k and Gt = {|At,k| < βkK,∀1 ≤
k ≤ k0}.

Now we bound et,2(St) under events Gt and N t
t .

Lemma 9. Under the event Gt and N t
t and if

∃ k0 such that βk0 ≤ 1/K, then (et,1(St))
2 <

6c21|V |2(−j
St
i

+1) log t∆2
St

K

g(K,∆St )f(t)
(
∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
) +

∆2
St

8 .

Proof. By definition of et,1(St) and event N t
t ,

(et,1(St))
2 =

∑
i∈S̃t

c21|V |(p
D,St

i )2 min{ log t

Ti,t−1
,
1

28
} (14)

≤
∑
i∈S̃t

c21|V |(p
D,St

i )2 min{ log t
1
3Nt−1,i,j

St
i
2−j

St
i

,
1

28
}. (15)

≤
∑

i∈S̃t∩OSt

c21|V |(2−j
St
i +1)2

log t
1
3Nt−1,i,j

St
i
2−j

St
i

+
1

28

∑
i∈S̃t∩ŌSt

c21|V |(2−jmax
i +1)2. (16)

By setting the k0 be the largest number that βk0
≤ 1/K,

Eq. (16) ≤
k0∑
k=1

∑
i∈Āt,k\Āt,k−1

6c21|V |2(−j
St
i +1) log t

N
t−1,i,j

St
i

+
∆2

St

8

<

k0∑
k=1

6c21|V |2(−j
St
i +1) log t∆2

St
|Āt,k\Āt,k−1|

αkg(K,∆St
)f(t)

+
∆2

St

8
(17)

where the second inequality uses the definition of
Āt,k. The lemma is then concluded by Eq. (17)<
6c21|V |2(−j

St
i

+1) log t∆2
St

K

g(K,∆St )f(t)
(
∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
) +

∆2
St

8 , using
the similar reason of Lemma 8 from [14]. ■

Now we set g(K,∆St
) = 2(−j

St
i +1)Kl, where l =∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
and f(t) = 48c21|V | log t. By Lemma 9,

under event N t
t , if Et,1 holds, then Gt must hold.

For any arm i, let arm related event Gt,k,i = Gt,k

⋂
{i ∈

S̃t, Nt−1,i,j
St
i
≤ αk

g(K,∆St )f(t)

∆2
St

, jSt
i ≤ jmax

i }. When Gt,k

happens, we have I{Gt,k} ≤ 1
βkK

∑
i∈[m]{Gt,k,i}. We have

Reg(T,Et,1

⋂
N t

t ) ≤
T∑

t=1

k0∑
k=1

∆St
I{Gt,k} (18)

≤
T∑

t=1

k0∑
k=1

m∑
i=1

∆St

Kβk
I{Gt,k,i}. (19)

Let θk = αkKlf(t), and (∆i,ℓ)ℓ∈[Di] be
all possible gaps that are decreasing, RHS
≤

∑m
i=1

∑∞
j=1

∑k0

k=1
1

Kβk

∑T
t=1

∑Di

n=1 ∆i,nI{i ∈
S̃t, Ni,j

St
i ,t−1

≤ θk2
(−j+1)

∆2
i,n

,∆St
= ∆i,n, j

St
i =

j} ≤
∑m

i=1

∑∞
j=1

∑k0

k=1
1

Kβk

∑T
t=1

∑Di

p=1 ∆i,pI{i ∈
S̃t, Ni,j

St
i ,t−1

∈ ( θk2
(−j+1)

∆2
i,p−1

, θk2
(−j+1)

∆2
i,p

],∆St
= ∆i,n,∆St

>

0, jSt
i = j}. Now if we bound the number of times the event

happen to the length of interval Eq. (19) can be bounded by
m∑
i=1

∞∑
j=1

k0∑
k=1

2(−j+1)

Kβk
(
θk
∆i,1

+ θk

Di∑
p=2

∆i,p(
1

∆2
i,p

− 1

∆2
i,p−1

))

≤
m∑
i=1

∞∑
j=1

k0∑
k=1

2(−j+1)

Kβk
(

θk
∆i,Di

+ θk

∫ ∆i,1

∆i,Di

x−2dx) (20)

≤
m∑
i=1

∞∑
j=1

k0∑
k=1

2θk2
(−j+1)

Kβk∆i,Di

(21)

≤
m∑
i=1

(
1920c21|V |

)
⌈ logK
1.61

⌉2 log T
∆min

i

, (22)

where the last inequality uses Lemma 11, Appendix C of
[14] by setting αk = βk = 0.2k and

∑k0
k=1

αk

βk
l ≤ 5⌈ logK

1.61 ⌉
2,

which concludes the lemma by adding Reg(T,¬N t
t ) ≤∑T

t=1

∑
i∈[m] j

max
i t−2∆max.

F. Upper bound of Reg(T,Et,2)

Bounding Reg(T,Et,2) is very similar to that of
Reg(T,Et,1), we only state the key differences here and leave
the proof to full technical reports. Let c2 = 28 be a constant and
Ot = {i ∈ S̃t : jSt

i ≤ jmax
i } with jmax

i = ⌈log2 4c2K
∆min

i
⌉ + 1.

We also have At,k, Āt,k,Gt,Gt,k,Gt,k,i, but with different
g(K,∆St

) and f(t) which are settled by the following lemma.

Lemma 10. Under the event Gt and N t
t and if ∃ k0 such that

βk0 ≤ 1/K, then et,2(St) <
6c2 log t∆2

St
K

g(K,∆St )f(t)
(
∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
) +

∆St

4 .

Let g(K,∆St) = K∆St l, where l =∑k0

k=1
βk−1−βk

αk
+

βk0

αk0
and f(t) = 24c2 log T . We

have Reg(T,Et,2

⋂
N t

t ) ≤
∑T

t=1

∑k0

k=1 ∆St
I{Gt,k} ≤∑m

i=1

∑jmax
i
j=1

∑k0

k=1
1

Kβk
(θk + θk

∫∆i,1

∆i,Di
x−1dx) ≤

120c2
∑m

i=1

(
log2

c2K
∆min

i

)(
1 + log

∆max
i

∆min
i

)
⌈ logK

1.61 ⌉
2
log T ,

similar to the proof after Lemma 9
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