
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023 1135

Dynamic Pricing and Placing for Distributed
Machine Learning Jobs: An Online

Learning Approach
Ruiting Zhou , Xueying Zhang , John C. S. Lui , Fellow, IEEE, and Zongpeng Li

Abstract— Nowadays distributed machine learning (ML) jobs

usually adopt a parameter server (PS) framework to train models

over large-scale datasets. Such ML job deploys hundreds of

concurrent workers, and model parameter updates are exchanged

frequently between workers and PSs. Current practice is that

workers and PSs may be placed on different physical servers,

bringing uncertainty in jobs’ runtime. Existing cloud pricing

policy often charges a fixed price according to the job’s runtime.

Although this pricing strategy is simple to implement, such

pricing mechanism is not suitable for distributed ML jobs whose

runtime is stochastic and can only be estimated according to

its placement after job admission. To supplement existing cloud

pricing schemes, we design a dynamic pricing and placement

algorithm, DPS, for distributed ML jobs. DPS aims to maximize

the cloud service provider’s profit, which dynamically calculates

unit resource price upon a job’s arrival, and determines job’s

placement to minimize its runtime if offered price is accepted

to users. Our design exploits the multi-armed bandit (MAB)

technique to learn unknown information based on past sales. DPS

balances the exploration and exploitation stage, and selects the

best price based on the reward which is related to job runtime.

Our learning-based algorithm can increase the provider’s profit

by 200%, and achieves a sub-linear regret with both the time

horizon and the total job number, compared to benchmark

pricing schemes. Extensive evaluations using real-world data also

validates the efficacy of DPS.

Index Terms— Machine learning, dynamic pricing, online

placement.

I. INTRODUCTION

N
OWADAYS, machine learning (ML) has become an
indispensable framework which trains models over large-

Manuscript received 9 April 2022; revised 5 September 2022;
accepted 30 November 2022. Date of publication 13 February 2023; date
of current version 17 March 2023. This work was supported in part by NSFC
under Grant 62072344 and Grant U20A20177 and in part by the National Key
Research and Development Program of China under Grant 2022YFB2901300.
The work of John C. S. Lui was supported in part by RGC’s GRF under Grant
14215722. (Corresponding author: Zongpeng Li.)

Ruiting Zhou is with the School of Computer Science Engineering, South-
east University, Nanjing 211189, China (e-mail: ruitingzhou@seu.edu.cn).

Xueying Zhang is with the School of Cyber Science and Engineering,
Wuhan University, Wuhan 430072, China (e-mail: snowyzhang@whu.edu.cn).

John C. S. Lui is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

Zongpeng Li is with the Institute for Network Sciences and
Cyberspace, Tsinghua University, Beijing 100084, China (e-mail:
zongpeng@tsinghua.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JSAC.2023.3242707.

Digital Object Identifier 10.1109/JSAC.2023.3242707

scale datasets. To train a large model, hundreds of concurrent
workers (typically implemented on virtual machines (VMs) or
containers) are deployed in parallel to update shared model
parameters, in particular, using the popular parameter server
(PS) architecture [1], [2]. In the PS framework, one or multiple
PSs store and maintain global model parameters. In each train-
ing iteration, the PSs pull computed gradients from workers
and update their maintained parameters respectively; and then
PSs push updated parameters back to the workers. Workers
and PSs of a ML job can be distributed on different physical
servers, when they cannot be completely placed on the same
server, or to maximize the utilization of expensive cloud
resources on servers [3].

This work targets distributed ML jobs, and designs dynamic
pricing and placement frameworks to efficiently utilize cloud
resources and maximize cloud provider’s profit. Different from
general cloud computing jobs, distributed ML jobs have their
distinct features. First, due to the frequent exchange of param-
eter updates between workers and PSs, the parameter transmis-
sion time accounts for a large proportion of job runtime, and
if workers and PSs are deployed on different servers, then it
will consume significant amount of inter-server bandwidth [4].
Furthermore, it is typically difficult for the job owner to
estimate how long a job may take, before the placement of
the job is determined. Second, running ML jobs that are often
deployed on GPU servers is time-consuming and costly. For
example, training a GoogLeNet model over the ImageNet-
1k dataset takes 23.4 hours on a Titan supercomputer server
with 32 NVIDIA K20 GPUs [5], and would cost more than
$172 by renting p2.8xlarge instances from Amazon EC2 [6].
For such jobs, preemption is not acceptable since it may further
delay their job completion time. It is also common that job
owners prefer to know the price before job admission, such
that the cost is within their budget.

However, existing cloud pricing mechanism is not suitable
for distributed ML jobs. Today’s cloud service providers often
adopt the pay-as-you-go pricing policy, where users pay a
fixed unit price for resource demand according to the job
runtime. Amazon EC2 [6], Google Cloud [7] and Microsoft
Azure [8] all adopt the per-hour charging model for on-demand
or preemptible VM instances (e.g., spot instances). Another
preferred pricing option is an advanced purchase of VMs for
one to three years in a specified region. For example, Amazon
EC2 provides significant discount (up to 75%) with savings

0733-8716 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1136 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

Fig. 1. An illustration of pricing and placement process.

plans and reserved instances [6]. Although above pricing
strategies are simple to implement, they cannot be applied
to distributed ML jobs directly, due to following reasons.
First, different users have different budgets with heterogeneous
demands. Fixed pricing fails to attract many customers and
cannot capture the changing supply and demand in the market.
As a result, either overpricing or underpricing would happen
and this jeopardizes users’ experience as well as the provider’s
profit. Although dynamic pricing is offered by Amazon EC2
spot instances, they are only recommended for jobs that can
tolerate preemption. Second, existing providers require job
owners to estimate job runtime, and pay in advance before the
job admission. The job owners will be further charged if they
underestimate the runtime. However, as mentioned before, the
runtime of a distributed ML job is uncertain and depends on
job placement.

Hence, a fundamental problem for the cloud service
provider is: Given limited resources, how to dynamically
charge and place distributed ML jobs, such that the job
runtime is minimized and the provider’s profit is maximized,
without knowing users’ budgets?

In order to complement the existing cloud pricing mod-
els, we propose a novel mechanism, DPS, which integrates
dynamic pricing and placement for distributed ML jobs. To the
best of our knowledge, this paper is the first formal study
that combines dynamic pricing and placement design in a
dynamic online setting for ML jobs. As shown in Fig. 1,
our online algorithm involves two stage decisions: (i) A
user arrives and informs the cloud service provider of its
job configuration. It specifies the type and the number of
workers and PSs needed, parameter size and the number of
required training epoch, but the user doesn’t need to submit
any information about the job’s runtime and budget. The cloud
service provider posts unit resource prices upon its arrival, and
calculates the cost to complete its jobs. The user evaluates
the price according to its budget. (ii) If the user accepts
the offered price, the cloud provider deploys this job on its
servers to minimize job runtime. We employ a multi-armed
bandit (MAB) framework to design a two-phase algorithm,
which is correlated in jointly obtaining pricing and placement
decisions. If a user accepts the offered price in the first phase,
the cloud provider deploys this job on its servers to minimize
job runtime. The algorithm calculates the reward based on

job runtime (phase two), to ensure that shorter runtime brings
higher profit (phase one). The detailed technical contributions
are as follows:

First, we formulate the profit maximization problem as a
mixed integer linear program (MILP). The program precisely
models the feature of ML jobs (uncertain runtime), and cap-
tures all factors that would influence the decisions (resource
capacity constraints and budget limitation). Even in the offline
setting with known information, this problem is proven to be
NP-hard. The challenges further escalate when both the budget
and the job runtime is stochastic and unknown. To overcome
these challenges, we divided our design into two steps: pricing
strategy and placement algorithm.

Second, the critical challenge in pricing design is that the
budget of each job is a private information and its runtime
is stochastic and hard to estimate before the job admission,
which makes it difficult to dynamically charge each job for
higher profit. To tackle this issue, we design an online learning
strategy based on the MAB framework, DPS. Specifically,
we first get the upper-bound of profit related to unit resource
prices as well as the runtime of jobs. Job runtime is calculated
according to the experience and its placement, and its exact
value is updated when a job is completed. The price interval
is appropriately discretized and we get a set of prices (arms)
for selection. Each price corresponds to a related reward
contributing to the total profit. The unit price with the highest
reward will be used for the current job. Then its reward is
adjusted according to the feedback (i.e., whether the user
accepts the offered charge and job runtime). Therefore, the
job that has a high budget and its resources occupation
(involving resources demand and job runtime) matches its
budget can be accepted, which means the higher profit can be
obtained.

Third, in the placement design, we aim to reduce the time
for parameter transmission among different physical servers.
We propose a placement algorithm, PA, which deploys as few
servers as possible to serve a job. Hence, we place jobs on
servers in a greedy manner so workers and PSs of a job are
placed as close as possible, which can reduce the job runtime.
In addition to the classic placement model, a more complex
placement model is considered and discussed, where the
bandwidth allocation is dynamic. We propose a new placement
algorithm, UPA, to address the dynamic bandwidth allocation
problem. The performance of two placement algorithms are
studied and compared in simulations.

Last but not the least, we conduct rigorous theoretical
analysis to examine our algorithm’s performance. DPS has a
polynomial time complexity. Moreover, we derive a sub-linear
upper-bound on the regret, which implies that our algorithm
has an asymptotically optimal performance. Furthermore,
we demonstrate the performance of DPS by comparing it with
existing state-of-the-art algorithms through extensive simula-
tions. The results show that DPS outperforms other benchmark
algorithms. The overall profit achieved by DPS is 125%,
115%, 122% and 238% of BFP’s, DPS-simple’s, TOP’s [9]
and Random’s, respectively. This percentage increases over
time, and the performance of DPS in practice is better than
the theoretical analysis.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1137

The rest of the paper is organized as follows. Sec. II reviews
related literature. The system model is introduced in Sec. III.
The learning-based algorithm and the extension to dynamic
allocation of bandwidth are presented in Sec. IV and Sec. V,
respectively. Simulations are conducted in Sec. VI. Sec. VII
concludes the paper.

II. RELATED WORK

A. Dynamic Pricing for Cloud Resources

Compared with traditional cloud resource pricing methods,
dynamic pricing strategies which can enhance cloud provider
profit have been explored in recent years. Wang et al. [10] and
Shi et al. [11] study how to dynamically price VMs to pursue
overall profit or social welfare maximization in online auc-
tions. An auction-based online mechanism for virtual machines
pricing in clouds is proposed in [12]. Wang et al. [13] study
how to minimize the cost of service providers by choosing
different pricing options based on jobs’ demands, which
charges a job according to its priority (whether it is latency-
sensitive). Baek et al. [14] analyze three dynamic pricing
mechanisms for resource allocation of edge computing for
IoT environment. Omotehinwa et al. [15] design a dynamic
strategy-proof algorithm to price cloud services, which relies
on the market history to forecast a benchmark price for
ensuring truthful valuation from users. Those pricing strategies
either focus on posted price mechanism [16] or request the
user to determine the runtime of its job. However, the runtime
of a ML job is stochastic and unknown to users before its
completion. Wang et al. [17] design an algorithm to price
cloud resources for users according to their demands, the
system state and queue length, which does not take the
resource occupation time into account. Nambiar et al. [18]
propose a “random price shock” algorithm that estimates price
elasticity, while maximizing revenue. A pricing model for
virtual cloud providers is presented in [19] to dynamically
derive the energy costs per allocation unit and per work
unit for each time period. Those pricing methods are not
applied to our work, where the resource capacity should be
carefully considered. An occupation-oblivious pricing method
for cloud jobs is proposed in [9]. Yet, our work focuses on
a completely different problem. First, we address distributed
ML jobs based on the parameter server (PS) framework,
in which users can request diverse combinations of workers
and PSs. In addition, Zhang et al. in [9] assume that the
runtimes of all type-k jobs (i.e., running type-k VMs) are
regarded as i.i.d, which may not be feasible. Second, the
characteristic of PS framework is not captured by it, and
our proposed algorithm has a different structure. Specifically,
we design a two-phase algorithm, which is correlated in
jointly obtaining pricing and placement decisions. If a user
accepts the offered price in the first phase, the cloud provider
deploys this job on its servers to minimize job runtime.
The algorithm calculates the reward based on job runtime
(phase two), to ensure that shorter runtime brings higher profit
(phase one).

B. Multi-Armed Bandit Schemes
To address the unknown budget and runtime of jobs,

we design an our pricing algorithm based on MAB, which is
an effective online learning and optimization framework [20],
[21]. In an MAB problem, there is a set of arms and each of
them has a reward (unknown before the arm is pulled). In each
round, one arm is selected and its reward is revealed. Hence,
MAB framework is usually adopted to achieve the maximal
cumulative reward in the long term (i.e., multiple rounds).
Bubeck et al. [22] has proven that MAB is efficacious to get a
good trade-off between exploration and exploitation in sequen-
tial decisions. The basic MAB framework learns to choose
an optimal arm without considering any system constraints.
Besbes et al. [23] complement this literature by developing a
flexible non-parametric model for temporal uncertainty in the
rewards. A dynamic bandit algorithm is proposed in [24] to
improve the shortcoming of the basic MAB framework for
quickly detecting trends early enough. Mahdavi et al. [25]
extend the study of MAB where the learner aims to maximize
total reward, given that some additional constraints need to
be satisfied. However, they are not applicable to our system
where the resources can be reused after a job is completed.
Moreover, in our problem, resources are shared by jobs with
different arrival times, which means our online decisions made
at different times need to meet the global resource capacity
constraints.

C. Distributed Machine Learning Systems
A considerable amount of research about ML system has

been done during the last decade. Chen et al. [26] study
and propose a distributed intelligent video surveillance system
using deep learning algorithms and deploy it in an edge
computing environment. They address the problems of par-
allel training, model synchronization and workload balancing.
A parallel random forest algorithm is presented for big data
in a spark cloud computing environment [27]. Some studies
[28], [29], [30] focus on the resource allocation in distributed
ML system. Ghodsi et al. [28] propose a fair allocation strategy
of multiple resource types. An elastic ML framework is
designed in [29], which computes the optimal number of nodes
for a ML job to optimize its total runtime. Chen et al. [30] pro-
pose a performance-aware fair scheduler to identify resource
demand elasticity, which is used to improve the average job
performance. Some researchers [31], [32] [33], [34] focus
on ML job scheduling and placement. Xu et al. [31] design
a reinforcement learning-based job scheduling algorithm to
minimize the cost of big data analytics on geo-distributed
data centers. Mirhoseini et al. [32] propose a method to opti-
mize device placement for TensorFlow computational graphs.
Azar et al. [33] study online mechanisms for preemptive
scheduling with deadlines. A scheduler based on reinforcement
learning for a multi-resource cluster is proposed in [34] to
address the diversity and heterogeneity of jobs and machines
in modern cluster environments. Moreover, Chen et al. [35]
introduce task decomposition and scheduling strategies with
the objectives of thread-level load balancing and minimum
waiting time for critical paths. Different from above work,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1138 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

we combine dynamic pricing and online placement to pursue
the cloud provider profit maximization in the long term.

D. Placement, Scheduling and Task Offloading
In recent years, there has been an increasing amount of

literature on the job placement, job scheduling and task
offloading. Li et al. [36] study an ML broker service aggre-
gating geo-distributed ML jobs into cloud data centers for
volume discounts via dynamic online placement and scaling
of workers and parameter servers for long-term cost minimiza-
tion. In [37], a job scheduler is proposed based on a dynamic
grouping integrated neighboring search strategy, which can
balance the resource utilization and improve the performance
and data locality in heterogeneous computing environments.
Moreover, Lee et al. [38] propose a novel framework for online
fog network formation and task distribution in a hybrid fog-
cloud network. They have addressed the problem using an
online optimization formulation whose goal is to minimize the
maximum latency of the nodes in the fog network in presence
of uncertainty about fog nodes’ arrivals. A a probablistic user
selection scheme is studied and proposed in [39], which jointly
considers user selection and resource allocation for the mini-
mization of federated learning convergence time while while
optimizing the performance. In our work, we not only consider
the placement of distributed ML jobs, but also integrate it
with pricing. Based on this, an online learning algorithm is
proposed.

III. PROBLEM MODEL

A. System Model and Job Information
Suppose the cloud service provider provides K types of

workers and M types of parameter servers (PSs), and they
are deployed on S different physical servers. Let [X] denote
the integer set {1, 2, . . . X}. Ck (Cm) denotes the maximum
number of available type-k workers (type-m PSs), 8k 2 [K]
(8m 2 [M]). The system operates in discrete time slots t =
1, 2, . . . , T . There are N users arriving during the timespan
and each user comes with a machine learning (ML) job to
be processed. Each job needs to train a ML model over a
large input dataset, using synchronous training method. Let ti
denote the arrival time of job i. The configuration of job i
includes the following information: (i) the worker type ki and
the PS type mi; (ii) the number of type-ki workers (type-mi

PSs) dik (dim); (iii) the size of the gradients/parameters wi;
(iv) required training epochs ↵i. Moreover, users usually have
their budgets for completing jobs, which are private and will
not be revealed to the cloud provider. We denote job i’s budget
as vi. Let Bi denote the information of job i:

Bi = {ki, dik, mi, dim, wi, ↵i}.

B. Stochastic Assumptions
The budgets of users are usually related to their demands

of resources. We assume that the budget and the demand of
jobs which require same type of worker and PS follow a
jointly unknown distribution. For each resource combination

(k,m), the (demand, budget) pairs of users who request type-
k workers and type-m PSs are independently and identically
distributed, namely, (dik, dim, vi) are i.i.d., and drawn from
an unknown distribution Fk,m.

C. Runtime of Jobs

In the parameter server architecture, the runtime of an
epoch for a ML job consists of the following two parts:
(i) computation time, which is the sum of computation time
at the workers (i.e., the data training time and gradients
computation time) and at the PSs (i.e., the parameters updating
time); (ii) transmission time, which is the time for workers to
push gradients to PSs and pull updated parameters from PSs.
According to job i’s configuration as well as the historical
knowledge, the computation time �i can be estimated. Next,
we analyze job i’s transmission time. If a worker is deployed
on a server where there is no PS, the data transmission time
(i.e., the worker exchanges gradients with all PSs) in an
epoch is 2wi/bi, where bi is the bandwidth between the PS
and worker. We assume that each type-k worker (type-m PS)
reserves bandwidth, and the amount of the reserved bandwidth
is denoted as hk (Hm). Hence, bi = min(hki , Hmi/dik).
Note that the bandwidth bi is simplified to be static here, and
the dynamic allocation of bandwidth is discussed in Sec. V.
When all PSs and workers are located on the same server,
the bandwidth to exchange gradients/parameters is abundant
between them and the transmission time is negligible. Let qi

represents whether all workers and PSs serving job i are in
the same server (1) or not (0). Hence, the runtime of job i:

⌧i = ↵i�i + ↵i(1� qi)(2wi/bi). (1)

D. Decision Variables

After receiving job i’s request, the cloud provider prices the
resources and informs user the current unit prices pik and pim

for type-ki worker and type-mi PS. When its overall payment,
i.e., pik⇥dik +pim⇥dim, is no larger than its budget vi, the
user accepts the offered price and the provider need to decide
how to place this job on available servers; otherwise, the user
will leave without purchasing anything. Suppose the number
of type-ki workers serving job i on server s is xski and the
number of type-mi PSs serving job i on server s is zsmi.
Let Xski (Zsmi) denote the number of idle type-ki workers
(type-mi PSs) on server s when job i arrives.

E. Problem Formulation

To pursue the maximum overall profit over the system
timespan, the cloud provider dynamically prices resources
upon user arrives, and decides the placement for this job if the
user accepts the price. This offline optimization problem can
be formulated as the following mixed integer linear program
(MILP):

maximize
X

i2[N]

(
X

k2[K]

pikdik +
X

m2[M]

pimdim)fi (2)

subject to: fi = {dik + yi
k  Ck, dim + yi

m  Cm,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1139

TABLE I
SUMMARY OF NOTATIONS

X

k2[K]

pikdik+

X

m2[M]

pimdim  vi, 8k, 8m}, (2a)

yi
m =

X

j2[i�1]:
tj+⌧j�ti

djmfj , 8m 2 [M], 8i 2 [N],

(2b)

yi
k =

X

j2[i�1]:
tj+⌧j�ti

djkfj , 8k 2 [K], 8i 2 [N],

(2c)X

s2[S]

xski = dikfi, 8i 2 [N], (2d)

X

s2[S]

zsmi = dimfi, 8i 2 [N], (2e)

0  xski  Xski, 8s 2 [S], 8i 2 [N], (2f)
0  zsmi  Zsmi, 8s 2 [S], 8i 2 [N], (2g)
xski 2 N, zsmi 2 N, 8s 2 [S], 8i 2 [N], (2h)
pik, pim � 0, 8i 2 [N], 8m 2 [M], 8k 2 [K].

(2i)

{X} is an indicator function, which equals 1 if X is true
and 0 otherwise. Variable fi in constraint (2a) indicates that
job i runs if there are enough resources and the user accepts
the price. In constraint (2b)/(2c), we use j to refer jobs
that are still running upon the arrival of job i. yi

k (yi
m) in

constraint (2b)/(2c) is the total number of type-k workers
(type-m PSs) that have been occupied at the time of job i’s
arrival. Constraints (2d) and (2e) guarantee the number of
type-k workers (type-m PSs) allocated to job i is consistent
with its request. The resource capacity of physical servers
for running PSs and workers is formulated by constraints
(2f) and (2g).

Theorem 1: MILP (2) is NP-hard.
Proof: When we delete variables zsmi, pik, pim and their

corresponding constraints and let fi = 1, djk = 1 in MILP
(2), the simplified MILP (2) is the classical knapsack problem
which is NP-hard [40]. Therefore, we can reduce the classical
knapsack problem to MILP (2), and MILP (2) is NP-hard. ut

Fig. 2. An illustration of our algorithm structure.

F. Challenges
MILP (2) is an NP-hard problem even in the offline setting.

In addition, the budgets of jobs are unknown to the cloud
provider. Furthermore, when a job arrives, its runtime is
stochastic, which is not only related to the resource con-
figuration but also related to the placement of workers and
PSs. To overcome these challenges, we design an online
learning-based algorithm to integrate dynamic pricing and the
placement of jobs for profit maximization.

IV. ALGORITHM DESIGN AND ANALYSIS

Our learning-based algorithm consists of two subroutines.
We introduce the pricing mechanism and placement strategy
in Sec. IV-A. Related discussion and the theoretical analysis
are presented in Sec. IV-B and Sec. IV-C respectively.

Main Idea: Fig. 2 shows the main structure of our algorithm
including two main steps. At step 1, we analyze the relation-
ship between the total profit and prices of resources. Then, a
Price-Profit function is derived. Based on this function, the
reward of each price is defined. These variables will be used
in next step. As you can see, step 2 is our learning-based
algorithm (DPS), which is the core of this work. In the high
level, DPS consists of the following parts: (i) discretizing
price stage; (ii) price decision stage; (iii) placement algorithm;
(iv) updating parameters stage. In the discretizing stage, the
price interval is discretized and a set of candidate prices for
each type worker (PS) is obtained. Each price is associated
with a reward from step 1. In the price decision stage, a price
is selected from the candidate set for the current job based
on MAB framework, which makes a good balance between
the exploration and exploitation phase. If the user accepts the
price, a placement algorithm PA is involved to deploy the
job. Furthermore, the reward of the selected price and the
information of idle resources (workers and PSs) are updated,
i.e., global variables in step 1 are updated. Based on the
online learning strategy, prices are dynamically offered to
users according to the learned distribution of users’ budgets.

A. Algorithm Design
1) Dynamic Pricing Mechanism:

a) Design rationale: In order to set prices to maximize
the profit, the core idea is to estimate the likelihood that a
user will accept the offered price without the knowledge of
the (demand, budget) distribution as well as the runtime of
jobs, so that the best prices can be set. We propose an online
algorithm DPS based on UCB (Upper Confidence Bound)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1140 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

to dynamically determine prices. Specifically, DPS learns the
runtime and the distribution of users’ budgets according to
past jobs, and sets prices for arriving jobs based on the learned
knowledge.

Without loss of generality, pk and pm are normalized into
[0, 1], i.e., pk(pm) 2 [0, 1]. Suppose fixed-price strategy is
adopted, i.e., same prices pk and pm are offered to jobs
requesting type-k workers and type-m PSs during the system
timespan, which can be viewed as the expectation of realized
prices. Let Qk(pk) denote the expected number of type-k
workers sold at price pk to any job who requests type-k
workers, i.e., Qk(pk) = E(dik,dim,vi)⇠Fk,m

[d̂ik], where d̂ik =
dik if vi � pkdik + pmdim and d̂ik = 0 otherwise. We denote
the total number of jobs requesting type-k workers in [1, T]
as nk. Similarly, we have Qm(pm) and nm for type-m PSs.

We first analyze the upper-bound of the overall profit under
the fixed-price strategy. The analysis can be divided into two
cases: (i) the resources are always sufficient to serve all jobs;
(ii) the resources are insufficient, which means current running
jobs occupy all resources. In the first case, the total expected
profit of type-k workers (type-m PSs) with a fixed price
pk (pm) is nkpkQk(pk) (nmpmQm(pm)). To simplify the
description, we focus on workers in the following analysis.
In the second case, at most Ck type-k workers are available
at any time slot due to the resource capacity. In each time
slot, if type-k workers have been exhausted, the maximum
expected number of type-k workers which can be allocated to
new jobs is Ck(1�Ei:ki=k[⌧i]/T) (job i runs in ⌧i slots, then
if its workload is averaged over T slots, job i runs ⌧i/T slot in
each slot). Thus, the average maximum total profit of type-k
workers with a fixed price pk is pkCk(T � Ei:ki=k[⌧i]). Let
µi = T � ⌧i. Then, the expected profit can be formulated as
pkCkµk, where µk = Ei:ki=k[µi]. Let A(pK ,pM) denote the
expected overall profit under fixed prices pK and pM , where
pK = {p1, p2, · · · , pK} and pM = {p1, p2, · · · , pM}. Under
this price strategy, we have

A(pK ,pM) min(
X

k2[K]

pkCkµk +
X

m2[M]

pmCmµm,

X

k2[K]

nkpkQk(pk) +
X

m2[M]

nmpmQm(pm)).

(3)

To maximize the long-term profit, the prices that maximize
the upper-bound, i.e., RHS of (3), should be set. However,
it is intractable to determine such prices, because both the
budget distribution and the runtime are unknown in the online
setting. Therefore, we design an online learning algorithm
based on multi-armed bandit (MAB) to estimate the uncertain
distributions and set dynamic prices to maximize the profit
upper-bound in expectation. At the beginning, the price inter-
val [0, 1] is discretized, and DPS gets a candidate price set Pk

(Pm) for type-k workers (type-m PSs). Upon the arrival of
job i, price pki 2 Pki and pmi 2 Pmi are chosen for this job.
For each price pk 2 Pk (pm 2 Pm), there is an associated
reward contributing to the overall profit. The prices with the
highest reward are selected for the current job. The reward of

price is defined as follows:

R̂ik(pk) = min(nkpkQU
ik(pk), pkCkµU

ik) (4)
R̂im(pm) = min(nmpmQU

im(pm), pmCmµU
im). (5)

Intuitively, R̂ik(pk) and R̂im(pm) are estimates of the
upper-bound of the expected profit of type-k workers and
type-m PSs. Here, QU

ik(pk) (QU
im(pm)) is the UCB of Qk(pk)

(Qm(pm)) estimated before job i arrives; µU
ik (µU

im) is the
UCB of µk (µm) estimated before job i arrives, as defined
below:

µU
ik = µ̂ik + ri(µ̂ik), µU

im = µ̂im + ri(µ̂im), (6)

QU
ik(pk) = Q̂ik(pk) + ri(Q̂ik(pk)), (7)

QU
im(pm) = Q̂im(pm) + ri(Q̂im(pm)), (8)

where µ̂ik, µ̂im, Q̂ik(pk) and Q̂im(pm) are the current average
values of their realizations of µk, µm, Qk(pk) and Qm(pm),
respectively. These parameters can be computed as follows:

Q̂ik(pk) =
total # of type-k workers sold at pk

of times pk has been used
, (9)

Q̂im(pm) =
total # of type-m PSs sold at pm

of times pm has been used
, (10)

µ̂ik =

P
i0<i:ki0=k µi0fi0 (ti0 + ⌧i0 < ti)P

i0<i:ki0=k fi0 (ti0 + ⌧i0 < ti)
, (11)

µ̂im =

P
i0<i:mi0=m µi0fi0 (ti0 + ⌧i0 < ti)P

i0<i:mi0=m fi0 (ti0 + ⌧i0 < ti)
. (12)

And ri(X) is the confidence radius of the random variable X
such that for XU = X̂ + ri(X̂), inequality |X � X̂|  ri(X)
holds with high probability. Therefore, suitable confidence
radius needs to be designed, since a smaller confidence radius
implies a more accurate estimate of the parameter X . Let
Nk

i (pk) (Nm
i (pm)) be the number of times that pk (pm) has

been used to price jobs requesting type-k workers (type-m
PSs) before job i arrives. The confidence radius1 is:

ri(Q̂im(pm)) =
⌘

1 + Nm
i (pm)

+

s
⌘Q̂im(pm)

1 + Nm
i (pm)

, (13)

ri(µ̂im) =
⌘

1 +
P

i0<i:mi0=m fi0 (ti0 + ⌧i0 < ti)

+

s
⌘µ̂im

1 +
P

i0<i:mi0=m fi0 (ti0 + ⌧i0 < ti)
,

(14)

where ⌘ = ⇥(log nm).
b) Online pricing algorithm: Our dynamic pricing strat-

egy, DPS, is summarized in Alg. 1. In the initialization phase,
DPS elaborately designs �k and �m to discretize the prices
interval and gets sets of candidate prices. Note that param-
eters �k and �m have a significant impact on our algorithm
performance, and we will illustrate this impact in Sec. VI.
Inspired by the trade-off between exploration and exploitation
in classic MAB framework, nil prices are set for jobs at the

1Only variables ri(Q̂im(pm)) and ri(µ̂im) are presented here since
ri(Q̂ik(pk)) and ri(µ̂ik) are defined the same way.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1141

Algorithm 1 Dynamic Pricing Strategy (DPS)
Input:

K, M, T, {Ck}k2[K], {Cm}m2[M], {nk}k2[K], {nm}m2[M]

Initialize:

✓k = (TCk log nk) 2
3 /nk, ✓m = (TCm log nm) 2

3 /nm, �k 2
(0, 1), �m 2 (0, 1),Pk = {�k(1 + �k)z \ [0, 1] : z 2
Z},Pm = {�m(1 + �m)z \ [0, 1] : z 2 Z}
Upon: job i comes with its information Bi

1: Set k = ki, m = mi;
2: if

Pi
i0=1 (ki0 = k)  ✓knk or

Pi
i0=1 (mi0 = m) 

✓mnm then

3: pik, pim = 0;
4: (xki,zki) = PA(Bi, {Xski}, {Zsmi});
5: Update the number of occupied resource:
6: yi+1

k = yi
k + dik, yi+1

m = yi
m + dim;

7: else

8: if dik + yi
k  Ck and dim + yi

m  Cm then

9: Pick pik 2 arg maxpk2Pk R̂ik(pk);
10: Pick pim 2 arg maxpm2Pm R̂im(pm);
11: Inform the user price pikdik + pimdim;
12: if user accepts the offered price then

13: (xki,zki) = PA(Bi, {Xski}, {Zsmi});
14: Compute runtime ⌧i according to (xki,zki)

and (1);
15: Update the number of occupied resource:
16: yi+1

k = yi
k + dik, yi+1

m = yi
m + dim;

17: According to (2d)-(5), update parameters:
18: QU

ik(pk), QU
im(pm), µU

ik, µU
im;

19: end if

20: else

21: Reject this user’s request;
22: end if

23: end if

Upon: job j is completed

1: Release and update the resource:
2: yj+1

kj
= yj+1

kj
� djk, yj+1

mj
= yj+1

mj
� djm;

3: {Xsk(j+1) = Xsk(j+1) + xskj}s2[S];
4: {Zsm(j+1) = Zsm(j+1) + zskj}s2[S];
5: Reshape the estimates µ̂ik and µ̂im according to (2i)(3);

beginning stage (lines 2-6). Here, “nil prices” means that the
unit price of the resource is temporarily set to zero such that
users can accept the price. In the beginning, we have no any
knowledge about users’ budgets and the runtime of different
distributed ML jobs. Therefore, we set zero price to make
sure that each user will accept the deal in this stage, so that
DPS can get more information about system environment and
make more correct estimation as soon as possible. This is
conducive to improving the learning rate of our algorithm.
The smaller ✓k and ✓m, the shorter is the exploration time.
Hence, parameters ✓k and ✓m indicate the balance between
exploration and exploitation: a shorter exploration stage means
less loss of profit but larger risk on the estimation error;
in contrast, a longer exploration stage means larger loss of
profit but smaller risk of estimation error. Here, ✓k and ✓m

are derived carefully to reach a good balance between them.
After the exploration phase, DPS starts the exploitation stage.
If there are enough available resources to serve job i, the
reward of each price in candidate sets is calculated based
on the historical knowledge and the prices with the highest
rewards are chosen (lines 7-11). If the user accepts the price,
the placement algorithm PA is invoked (line 13) to decide
how to deploy this job on servers, which is described in detail
in next subsection. According to the placement strategy and
the experiences of the computation time, job i’s runtime ⌧i is
approximately calculated in line 14. Meanwhile, the estimated
parameters QU

ik(pk), QU
im(pm), µU

ik and µU
im (lines 14-18) as

well as the amount of occupied resources are updated, which
will be used to calculate the rewards of prices when the
next job arrives. Once a job is completed and the occupied
resources are released, DPS updates parameters (i.e., µ̂ik and
µ̂im) related to the exact runtime.

2) Placement Policy: The correlation between DPS and the
placement algorithm can be confirmed by Eq. (2a). Specifi-
cally, we design a two-phase algorithm, which is correlated
in jointly obtaining pricing and placement decisions. If user i
accepts the offered price in the first phase, the cloud provider
deploys this job on its servers to minimize job runtime.
The algorithm calculates the reward based on job runtime
(phase two), to ensure that shorter runtime brings higher profit
by determine pricing strategy (phase one). The placement
problem for job i can be formulated as:

minimize ⌧i

subject to: constraints (2d) ⇠ (2h), (15)

where fi = 1. If there is a server having enough resources
to serve job i, placing this job on the server results in the
shortest runtime. We focus on another case, i.e., qi = 0. In this
case, we try to use as few servers as possible to serve a job.
As shown in Alg. 2, all servers are sorted according to their
current idle resources. Lines 2-10 determine whether there is
a server on which all workers and PSs requested by job i can
be deployed. If there is no such server, workers and PSs are
deployed in a greedy manner to serve job i (lines 12-23).

B. Discussion
Note that parameters nk and nm are used as input in our

Alg. 1, which are not known in the online setting. However,
they can usually be estimated by studying and analyzing
the historical arrived jobs. Namely, we estimate nk (nm) by
calculating the empirical arrival rate of jobs needing type-
k worker (type-m PS) based on history and multiplying the
arrival rate by T . In practice, it is found that this estimation
method can make relatively accurate predictions, and the
difference between estimated values and actual values does
not have a big impact on the length of the exploration period
in simulations. Moreover, a set of candidate prices in our
pricing mechanism are provided to choose. Therefore, the
optimal prices of workers and PSs may not fall into our sets.
There maybe a gap between the profit achieved by DPS and
the maximum profit. The gap is analyzed in the following
subsection.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1142 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

Algorithm 2 Placement Algorithm (PA)
Input: wi, dik, dim, Hmi , hki , {Xski}s2[S], {Zsmi}s2[S]

Initialize: xki = 0,zki = 0, c = 1

1: Sort all servers in descending order of Xski and Zsmi, the
result sequence is denoted as {s1, s2, · · · , sS};

2: for s = s1, s2, · · · , sS do

3: if Xski � dik and Zsmi � dim then

4: /* Deploy all workers and PSs on server s */
5: xski = dik, zsmi = dim;
6: /* Update current idle resources */
7: Xsk(i+1) = Xski � dik,Zsm(i+1) = Zski � dim;
8: Return xki,zki

9: end if

10: end for

11: /* Multiple servers are used */
12: while

Pc
j=1 Xsjki < dik do

13: xscki = Xscki,Xsck(i+1) = 0;
14: c = c + 1;
15: end while

16: xscki = dik �
Pc�1

j=1 Xsjki,Xsck(i+1) = Xscki � xscki;
17: c = 1;
18: while

Pc
j=1 Zsjmi < dim do

19: zscmi = Zscmi,Zscm(i+1) = 0;
20: c = c + 1;
21: end while

22: zscmi = dim�
Pc�1

j=1 Zsjmi,Zscm(i+1) = Zscmi� zscmi;
23: Return xki,zki

C. Theoretical Analysis

1) Runtime: First, we analyze the time complexity of DPS.
We prove that DPS runs in polynomial time.

Theorem 2: DPS determines the price pik, pim and makes
placement decision in O[2(TCmax log N)1/3 + S2] time for
each job, where Cmax = max(Ck, Cm),8k 2 [K],8m 2 [M].

Proof: See Appendix. A. ut
2) Regret Analysis: In order to verify the efficiency of

our algorithm, now we theoretically analyze the regret of
DPS, which is an important evaluation criterion for measuring
algorithms. The benchmark used in our work is the best
fixed-price strategy, which knows all information in advance
and offers fixed unit prices for resources to all jobs with
the maximal expected profit2. Hence, the regret denotes the
difference between the expected overall profit obtained by our
algorithm and that by the best fixed-price strategy. Theorem 3
below shows that the regret of DPS is sub-linear with both the
timespan and the total job number, which means our algorithm
is learning the best pricing strategy from the history as time
goes on or the number of jobs increases. When T or N is
large enough, DPS has an asymptotically optimal performance.
Theorem 3 indicates that our algorithm can provide the best
pricing policy and bring the highest profit for the cloud service
provider.

2Such benchmark has been widely used in the regret analysis in online
learning-based algorithm.

Let pK
⇤ and pM

⇤ denote the price vectors of the best fixed-
price mechanism. Therefore, the regret of our algorithm can
be defined as follows:

Regret(L) = A(pK
⇤ ,pM

⇤)� E[A(L)]

=
X

k2[K]

Ak(pk
⇤) +

X

m2[M]

Am(pm
⇤)

� E(
X

k2[K]

Ak(L) +
X

m2[M]

Am(L))

=
X

k2[K]

[Ak(pk
⇤)� E[Ak(L)]]

+
X

m2[M]

[Am(pm
⇤)� E[Am(L)]], (16)

where A(L) is the total expected profit achieved by DPS.
Combining (16) with (3), we can find that Regret(L) is not
only affected by resource prices, but also related to users’
bugdgets. However, this information is private for us and we
can not know it in advance. Hence, it’s difficult to directly
get the exact value of Regret(L). Therefore, we derive the
upper bound of it by decomposing the process. Specifically,
the derivation process of regret Regret(L) is divided into the
following three steps: (i) we analyze the upper bound of the
difference between the total expected profit of the best fixed
candidate prices (namely, the best prices in candidate sets Pk

and Pm in Alg.1) and the profit of our policy without consider-
ing resources capacity (namely, the condition in line 7 in Alg.1
is ignored); (ii) the upper bound of the difference between
the best fixed candidate prices and our policy considering the
resources capacity is derived; (iii) finally, the upper bound of
Regret(L) (namely, the gap between the best fixed prices and
DPS) is obtained.

Theorem 3: Let �k = (TCk)�1/3(log nk)2/3 and �m =
(TCm)�1/3(log nm)2/3 in Alg.1. Then, the regret of DPS is
O[(K + M)((N log N)1/2 + (TCmax log N)2/3)].

For ease of description, we denote the overall expected profit
of the best fixed candidate prices as A(pcK

⇤ ,pcM
⇤) and that of

our policy without considering resources capacity is denoted
as A(L0). In the rest of the proof, we mainly focus on PSs
(the profit of workers can be analyzed the same way).

Lemma 1 (The Upper-Bound of Am(pcm
⇤)�Am(L0)): Let

�(pim) denote the discrepancy between the expected profit per
job requesting type-m PSs achieved by pcm

⇤ and that achieved
by offering our price pim for job i, namely, �(pim) =
max{Am(pcm

⇤)/nm � pimQm(pm), 0}. We have:

Am(pcm
⇤)�Am(L0)

 ✓mnm +
X

pm2Pm:
�(pm)��m

�(pm)N(pm)

+
X

pm2Pm:
�(pm)<�m

�(pm)N(pm)

 �mnm + ✓mnm + |Pm|O(log nm)(1 + CmµU
m/(�mnm)),

(17)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1143

where �m = �mCmµm/nm, N(pm) is the number of times
that pm has been picked during the whole timespan and µU

m

is the UCB of µm when price pm is picked at the last time.
Claim 1: With probability at least 1� n�2

m holds, for each
job i with mi = m:

Am(pcm
⇤)  pim ·min(nmQ0

m(pm), Cmµ̄0m), (18)

where Q0
m(pm) = Qm(pm) + 2ri(Q̂im(pm)), µ̄0m = µ̄m +

2ri(µ̂im).
Proof: See Appendix. B. ut

In view of Claim 1, we have a straightforward corollary
as shown in Claim 2, which implies that the profit achieved
by selling type-m PSs with our algorithm DPS is at least
Am(pcm

⇤) if the actual sold number of type m PSs is at least
maxi2[nm] Cmµ̄0m. This conclusion will be used later.

Claim 2: Let pim denote the price for job i designed by our
algorithm without considering the resources capacity. We have

Pr[pim � Am(pcm
⇤)/(Cmµ̄0m)] � 1� n�2

m , 8i : mi = m.

(19)

As mentioned in Lemma 1, �(pm) is defined at any
candidate price pim = pk and equals zero if price pm has
never been chosen. Then, we have

Am(pcm
⇤)�Am(L0) 

X

pm2Pm

�(pm)N(pm). (20)

Intuitively, if the distribution Qm(pm) is accurately known
for all pim 2 Pm,8i : mi = m, we can accurately estimate
the term nmpmQU

im(pm) in (5). Then, pimnmQm(pm) can
be used to upper bound Am(pcm

⇤) (as shown in (18)). Hence,
such an upper bound exactly equals pimQm(pm). Namely,
�(pim) will equal zero if Qm(pm) is known to us, which
means that the existence of non-zero �(pim) results from
Qm(pm)’s incorrect estimate. Therefore, �(pim) is actually
upper bounded by ri(Q̂im(pm)). Next, we upper bound
�(pim) to further upper bound �(pm)N(pm) in the RHS of
(20).

Claim 3: For each job i, we have �(pim)  pim ·
O(ri(Q̂im(pm))). Furthermore, we have

�(pm)N(pm)  O(pm log nm)(1 + CmµU
m/(nm�(pm))).

(21)

Proof: See Appendix. C. ut
Since the profit loss caused by DPS compared to Am(pcm

⇤)
consists of two parts: (i)

P
pm2Pm

�(pm)N(pm) calculated
by (21); (ii) prices are set to nil, in the exploration stage where
the loss of profit can be upper bounded by ✓mnm. Combining
them with Claim 2 and Claim 3, Lemma 1 is proofed. ut

Lemma 2 (The Upper-Bound of Am(pcm
⇤) � E[Am(L)]):

Let dm
max denote the maximum number of type-m workers

requested per job and rmax(X) denote the maximum confi-
dence radius on X after the exploration stage. We have

Am(pcm
⇤)� E[Am(L)]

 �mnm + ✓mnm + |Pm|O(log nm)(1 + CmµU
m/(�mnm))

+ O[
p

nm log nm + Cmµm(
2rmax(µm)

µm + 2rmax(µm)
+

dm
max

Cm
)].

Proof: See Appendix. D. ut
Lemma 3 (The Upper-Bound of

P
m2[M][Am(pm

⇤) �
E[Am(L)]]): For each �m > 0, we have

X

m2[M]

[Am(pm
⇤)� E[Am(L)]]


X

m2[M]

[�mnm + ✓mnm

+ |Pm|O(log nm)(1 + CmµU
m/(�mnm))

+ O(
p

nm log nm + Cmµm/(1 +
µm

O(rmax(µm))
)

+ dm
maxµm + �mCmµm)].

Proof: See Appendix. E. ut
Finally, we prove Theorem 3 based on Lemma 3, as shown

in Appendix. F. ut

V. EXTENSION TO DYNAMIC ALLOCATION
OF BANDWIDTH

In this section, we extend the static bandwidth allocation in
Sec. III to dynamic bandwidth allocation, where the minimum
transmission bandwidth between PSs and workers is not only
relevant to the resource configuration but also to the way of
current job’s placement. The transmission time in the dynamic
allocation of bandwidth model is analyzed in Sec. V-A and the
placement policy is presented in Sec. V-B.

A. Transmission Time
Since parameters are usually evenly distributed on PSs in the

PS architecture, the size of gradients/parameters transmitted
between a PS and a worker is wi/dim. If a PS and a worker
are located on different servers, the data transmission time
between them in an epoch is wi/(dim ·bi), where bi is the min-
imal bandwidth between a worker and a PS among all servers.
Hence, bi = mins2[S]{hki/(dim � zsmi), Hmi/(dik � xski)},
where dim�zsmi is the number of PSs which are not placed on
server s. So the bandwidth that is reserved for a type-ki worker
on server s, hki, is shared by all remote PSs, to communicate
between each PS-worker pair. The bandwidth allocated to each
remote PS is hki/(dim � zsmi). Similarly, Hmi/(dik � xski)
is the bandwidth between each remote worker and a type-mi

PS on server s. Therefore, the runtime of job i can be denoted
as:

⌧i = ↵i�i +
2↵i(1� qi)wi

dim · bi
. (22)

Then, if the offered price for job i is accepted by the user,
i.e., fi = 1, its placement problem (ILP (15) in Sec. IV) can
be reformulated as:

minimize ↵i�i +
2↵iwi

dimbi
(23)

subject to: bi 
hki

dim � zsmi
, 8s 2 [S], (23a)

bi 
Hmi

dik � xski
, 8s 2 [S], (23b)

(2d) ⇠ (2h).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1144 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

B. Placement Algorithm
As shown in (23), this is a Min-Max Regret Integer Linear

Programming problem (MMR-ILP). Since the min-max regret
has, at least, the same complexity of its deterministic counter-
part [41], MMR-ILP is also an NP-hard optimization problem.
To minimize the runtime of jobs, apart from the PA proposed
in Sec. IV, we design another placement policy UPA as shown
in Alg. 3. The core idea is to use the smallest number of
servers to host the job, such that the number of PSs (workers)
are deployed on each of these servers is as equal as possible.
The performance evaluation of UPA and PA is presented in
Sec. VI-C. The simulations show that UPA performs better
when resources are scarce, and PA has better performance
with sufficient resources.

Algorithm 3 Uniform Placement Algorithm (UPA)
Input: wi, dik, dim, Hmi , hki , {Xski}s2[S], {Zsmi}s2[S]

Initialize: xki = 0,zki = 0, c = 1

1: Sort all servers in descending order of Xski and Zsmi, the
result sequence is denoted as {s1, s2, · · · , sS};

2: for s = s1, s2, · · · , sS do

3: if Xski � dik and Zsmi � dim then

4: /* Deploy all workers and PSs on server s */
5: xski = dik, zsmi = dim;
6: /* Update current idle resources */
7: Xsk(i+1) = Xski � dik,Zsm(i+1) = Zski � dim;
8: Return xki,zki

9: end if

10: end for

11: /* Place job on multiple servers uniformly */
12: while

Pc
j=1 Xsjki < dik do

13: c = c + 1;
14: end while

15: for c0 = c, c� 1, · · · , 1 do

16: xsc0ki = bdik/cc;
17: Xsc0k(i+1) = Xsc0ki � xsc0ki;
18: end for

19: c = 1;
20: while

Pc
j=1 Zsjmi < dim do

21: c = c + 1;
22: end while

23: for c0 = c, c� 1, · · · , 1 do

24: zsc0mi = bdim/cc;
25: Zsc0m(i+1) = Zsc0mi � zsc0mi;
26: end for

27: Return xki,zki

Similarly, we first sort all servers in descending order of
their current resource availability (available PSs and workers).
Then our algorithm determines whether there exists a server
having enough resources to serve the current job (lines 1-8).
If there is a such server, it is deployed to run the job.
Otherwise, the job is placed on multiple servers uniformly
(lines 12-27). For each job, we check whether the resources
on the first c servers are sufficient to serve the job (starting
with c = 1) as shown in lines 12-14 and lines 19-22. If so,
we place parameter servers and workers in the job evenly

on the c servers (lines 15-18); otherwise, we check the first
c+1, c+2, · · · servers until enough servers are found to place
the job. Then current idle resources of servers are updated.

VI. PERFORMANCE EVALUATION

To evaluate the performance of DPS, we conduct exten-
sive numerical simulations based on real-world data. The
simulation setup and four benchmark algorithms are intro-
duced in Sec. VI-A, and the simulation results are analyzed
in Sec. VI-B.

A. Simulation Setup
We evaluate our algorithm over a timespan of 10000 time

slots (i.e., T = 10000) and each time slot is 5 minutes.
The numbers of worker types and PS types are 15 and
10 respectively. The bandwidth of each type worker ranges
between 100 Mbps and 5 Gbps and that of each type PS
ranges between 5 Gbps and 20 Gbps. We assume there are
50 physical servers. The number of each type workers (PSs)
deployed on each server is in [0, 30] ([0, 18]). Then, the total
resource capacity (i.e., Ck and Cm) can be calculated. The
arrival time, resource demand and other information of jobs
are set according to the real-world traces [42]. In particular,
we analyze the users’ preference of resources and their prices
in the real-world traces to estimate and simulate budgets of
users. The total number of arrived jobs is around 10000. We set
the price of each type worker (PS) according to Amazon EC2
pricing [6] and normalize it into [0, 1].

Benchmarks: We compare DPS with four alternatives:
• Best fixed-price strategy (BFP): The optimal fixed unit

price of each resource is set with the priori knowledge
of all jobs’ full information. The best fixed price is
the fixed prices (i.e., pk, pm) which maximize the right
hand side of (3) (overall profit), and also consider the
available resource capacity as shown in (3). In the offline
setting (assuming the distribution of users’ budgets and
the average of jobs’ runtime are known in advance), the
best fixed prices are computed by Nelder-Mead Simplex
algorithm [43] based on RHS of (3).

• DPS-simple: This is a variant of DPS, where the explo-
ration stage (lines 2-6 in Alg.1) is omitted.

• TOP: It is adapted from an online pricing algorithm for
cloud jobs [9]. Since this algorithm only involves pricing
virtual instances, we slightly modify it to fit our system
model and add placement module for it.

• Random: This algorithm randomly picks unit price from
interval [0, 1] upon each job’s arrival, and making place-
ment decision according to PA.

B. Simulation Result
1) Performance Metric: Our performance metric is the

regret of algorithms, which is the cumulative profit of BFP
minus the cumulative profit of the algorithm.

Fig. 3 shows that DPS outperforms other algorithms. In the
first few time slots (t < 1120), the regret of DPS increases
since the price is set nil in the exploration stage and the relation

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1145

Fig. 3. The regret comparison with other algorithms.

Fig. 4. Overall profit comparison with other algorithms.

Fig. 5. Regret of DPS under different parameter N .

between users’ budget and demands is unknown. Note that this
growth curve is concave at the beginning, which implies that
our algorithm is gradually learning from the past and makes
better pricing decisions. After this, the regret of DPS decreases
and equals zero at t = 3140, i.e., the profit achieved by DPS is
comparable to BFP’s. The negative regret means our algorithm
exceeds BFP and this superiority grows over time. The regret
of DPS-simple shows that the exploration stage plays an import
role, which makes the estimation of job runtime accurate.
The overall profits of algorithms are presented in Fig. 4.
At the end of timespan, total profit achieved by DPS is 125%,
115%, 122% and 238% of BFP’s, DPS-simple’s, TOP’s and
Random’s, respectively.

2) The Impact of Parameters: Next, we investigate the
impact of different parameters. The regret of DPS under
different total job numbers (at different ratios, 0.1, 5 and 10
of the default N) is drawn in Fig. 5. At the beginning, the

Fig. 6. Regret of DPS while Ck and Cm varying.

Fig. 7. Regret of DPS while �k and �m varying.

Fig. 8. Regret of DPS while ✓k and ✓m varying.

regret is smaller when N is smaller. Intuitively, a smaller N
indicates a lower job arrival rate per time slot, which results
in a smaller regret. As time goes on, the larger N , the faster
the regret decreases. Similarly, Fig. 6 shows the regret of DPS
under different resource capacities (0.5C, 5C and 10C).3 The
smaller C, the smaller the regret is, which means that our
algorithm performs better when resources are more scarce.
These are consistent with our Theorem 3.

Fig. 7 shows the effect of the value of � (i.e., �k and �m)
on DPS’s regret. When �’s value is too small, the number of
candidate prices in Pk (Pm) becomes larger. Hence, learning
period gets longer. When � is too large, the regret is growing.
It is shown that the regret obtained by our choice of � is
the smallest. Then, we analyze the impact of ✓’s value on the
performance of DPS. As shown in Fig. 8, when ✓ gets smaller,

3Here, 0.5C means 0.5Ck and 0.5Cm,8k 2 [K], m 2 [M].

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

Fig. 9. The performance of placement strategy.

Fig. 10. The cumulative runtime and profit of jobs as time goes.

the regret is smaller at the beginning stage but it decreases
more slowly in the later. A larger ✓ makes the exploration
phase longer and leads to a larger regret in this phase. Our
choice of ✓ shows a good trade-off between the exploration
and exploitation.

3) Performance of Placement Algorithm (PA): We compare
our placement strategy with random placement (RS) algorithm
to show its efficiency. The pricing mechanism in Alg. 1
with random placement method (instead of PA) is used for
comparison, which is denoted as DPS-RS. As shown in Fig. 9,
the overall profit obtained by DPS is larger than that by DPS-
RS and BFP when T = 4000, and the difference increases
over time. The total runtime of all completed jobs under
PA is always shorter than that under RS. Furthermore, the
discrepancy between them become significantly larger as the
number of completed jobs increases. Moreover, combining
Fig. 4 and Fig. 9, we know dynamic pricing strategy usually
performs better than static pricing method.

To present the influence of DPS on jobs’ runtime, Fig. 10
shows the cumulative runtime and cumulative profit of DPS
and DPS-RS as time goes. In the initial phase, the difference
between cumulative runtime of completed jobs caused by DPS
and DPS-RS is relatively small. However, we can find that
cumulative runtime of DPS is far shorter than that of DPS-RS
with the arrival of subsequent jobs. It means that our algorithm
DPS has good effect in minimizing the overall runtime of

Fig. 11. Regrets of UPA and PA under different resources intervals.

Fig. 12. The performance of UPA, PA and PACHA under different resources
capacity.

jobs. Meanwhile, observing the curves about runtime as well
as profit, it shows that shorter runtime brings higher profit for
cloud provider.

C. Simulation for Dynamic Bandwidth Allocation

We compare three placement algorithms: UPA in Alg. 3,
PA in Alg. 2, and consistent hashing algorithm (CHA) [44].
Here, CHA is a cloud-optimized consistent hashing algo-
rithm that takes the advantage of cloud environments: scaling
management and auto-healing. First, CHA performs hash
according to the type and amount of resources requested. If the
server’s resources matched by the hash are insufficient, the
next server will be selected.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1147

Fig. 13. The bandwidth consumption of UPA, PA, CHA and Random as
time goes.

Fig. 11 analyzes the regret while resource capacity of each
server changes. As shown in Fig. 11(a), when the number of
each server’s workers is up to 5, i.e., Xsk0 2 [0, 5], the regrets
of UPA and PA in the early stage are similar. After t = 890,
UPA’s regret reduces faster. And the regret of UPA is smaller
than PA’s. This implies that UPA performs better than PA when
resources are scarce, which can also be validated in Fig. 12.
In Fig. 12, the number of each type worker deployed on each
server, i.e., Xsk0, is in the range of [0, 5], [0, 15], [0, 20] and
[0, 30] respectively. Correspondingly, the number of each type
PS deployed on each server ranges in [0, 3], [0, 9], [0, 12] and
[0, 18] respectively. When Xsk0 2 [0, 5] and Xsk0 2 [0, 10],
the total runtime of processed jobs under PA is shorter than
UPA. Similarly, profit obtained by the former is higher than the
latter. Combining Fig. 11(b), Fig. 11(c) and Fig. 12, we find
that the performance of UPA and PA is comparable when the
amount of available resource slightly increases. When the total
available resource continues to increase, PA has less regret and
achieves higher profit, as shown in Fig. 11(d) and Fig. 12. This
indicates that PA performs better with sufficient resources.
In addition, compare to CHA, both UPA and PA achieve
smaller profits at the beginning. Nevertheless, after that, their
profits are larger than that of CHA.

Finally, we analyze the bandwidth consumption of UPA,
CHA, CHA and Random algorithm. Fig. 13 shows their
bandwidth consumptions at different time slots, and the unit
is GB. At the beginning, UPA’s bandwidth consumption is
slightly larger than that of PA and CHA. However, as time
goes on, it consumes smaller bandwidth than other algorithms.
Moreover, the bandwidth consumption of UPA becomes more
and more stable, which indicates that it provides an efficient
placement strategy.

VII. CONCLUSION

This paper is the first paper that addresses the dynamic
pricing problem for distributed machine learning jobs, while
jointly taking the placement into consideration. Our pro-
posed algorithm estimates unknown input by leveraging a
multi-armed bandit online learning framework, and calculates
rewards based on feedback of job runtime. Our algorithm
consists of two subroutines: (i) a dynamic pricing mechanism
that determines the best price upon the arrival of each job,
with a goal of maximizing provider’s profit; (ii) a placement

strategy that minimizes the runtime of accepted jobs. Through
theoretical analysis, we show that our algorithm achieves a
sub-linear regret with both the timespan and the total job num-
ber. Large-scaled simulation study based on real world data
also verifies good performance of our algorithm, compared to
state-of-the-art pricing mechanisms.

APPENDIX

A. Proof of Theorem 2
Proof: Lines 1-6 in Alg. 1 can be done in a constant

time. In Lines 9-10, our algorithm computes the reward over
all the candidate prices in Pki and Pmi . Now, we focus on
Pki . Since Pk is initialized as {�k(1 + �k)z \ [0, 1] : z 2 Z}
for type-k worker, we have �k(1 + �k)|Pk| � 1 and �k(1 +
�k)|Pk|�1 < 1, which means |Pk| = dlog1+�k

��1
k e. Let �k =

(TCk)�1/3(log nk)2/3, then we have |Pk|  ��1
k log nk. Thus,

Line 9 in Alg. 1 can be done in O((TCk log nk)1/3) time.
Similarly, Line 10 can be done in O((TCm log nm)1/3) time.
If user accepts the price, the algorithm updates parameters
(Lines 15-18), which can also be operated in a constant time.
Hence, upon job i arrives, our algorithm can produce price
for it in a polynomial runtime, i.e., O(T 1/3(C1/3

ki
log1/3 nki +

C1/3
mi log1/3 nmi)). Next, we analyze the runtime of placement

algorithm PA in Alg. 2. In the worst case, the sorting time
(line 1) is O(S2). And the rest of the algorithm (lines 2-23)
can be completed in O(S) time. Therefore, for each job, the
runtime of our algorithm is O[2(TCmax log N)1/3 + S2].

B. Proof of Claim 1
Proof: As shown in Line 10 in Alg. 1, the price with

the highest reward R̂im(pm) in the candidate price set Pm is
chosen in each round. Hence, for each user i with mi = m,
we know R̂im(pim) = maxpim2Pm R̂im(pm), which implies

R̂im(pim) � R̂im(pcm
⇤), 8pim, pcm

⇤ 2 Pm. (24)

Moreover, we know that the probability of inequalities µU
im �

µmi
and Qim(pmi)U � Qmi(pmi) holding is at least 1�n�2

m

based on [20]. Therefore, we have R̂im(pcm
⇤) � Am(pcm

⇤)
with high probability at least 1� n�2

m . Then, we have

Pr[R̂im(pim) � Am(pcm
⇤)] � 1� n�2

m , 8pim, pcm
⇤ 2 Pm.

(25)

According to the definition of R̂im(pim), we have that

R̂im(pim)  pim ·min{nmQ0
m(pm), Cmµ̄0m} (26)

with probability at least 1 � n�2
m . Combining (25) and (26),

the Claim 1 follows.

C. Proof of Claim 3
Proof: According to �(pim)’s definition, if there is

estimate error (namely, �(pim) > 0), we know Am(pcm
⇤) >

nmpimQm(pim),8m 2 [M]. Combining this inequality with
the property of (19), we obtain

Qm(pim) < Cmµ̄0m/nm, 8m 2 [M]. (27)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1148 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

There is an attractive property behind (27): if the profit
achieved by the best candidate price is larger than the expected
profit obtained by our DPS without considering the resources
capacity, the expected sold amount under our strategy must
be relatively small. Let Jm denote the set of jobs requesting
type-m PSs. According to Claim 1, we know

Am(pcm
⇤)  pimnmT (Qm(pim) + 2ri(Q̂im(pm))),

8i 2 Jm.

Combining it with the definition of �(pim), we obtain
�(pim)  2pimri(Q̂im(pm)), namely,

�(pim)  pim ·O(ri(Q̂im(pm))). (28)

Then, we upper bound the confidence radii ri(Q̂im(pm)) and
ri(µ̂im). According to the result in [20], when ⌘ = ⇥(log nm),
we know ri(X̂)  3⌘/(1+Ni(X))+3

p
⌘E[X]/(1 + Ni(X))

holding with probability at least 1�n�2
m . Therefore, with high

probability at least 1� n�2
m , we have

ri(Q̂im(pm))  max{ O(log nm)
1 + Nm

i (pm)
,

s
Qm(pm)O(log nm)

1 + Nm
i (pm)

},

(29)

ri(µ̂im)  max{ O(log nm)
1 +

P
i0<i:mi0=m fi0 (ti0 + ⌧i0 < ti)

,

s
µmO(log nm)

1 +
P

i0<i:mi0=m fi0 (ti0 + ⌧i0 < ti)
}.

(30)

Combining (28) (29) with (27), for all job i 2 Jm, we get

�(pim)  O(pim ·max(
log nm

1 + Ni(pim)
,

s
log nmQm(pim)

1 + Ni(pim)
)).

(31)

Removing its dependency on i and rearranging this inequality,
the Claim 3 follows.

D. Proof of Lemma 2

Proof: The total profit of type-m PSs (i.e., Am(pim))
achieved by our DPS in expectation is E(

P
i2Jm

pimdimfi) if
the resource is always sufficient (namely, without considering
the resources capacity). Taking the resources capacity into
account, our DPS will stop offering resources when type-m
PSs are not enough to serve the job, even if the price for
job i is within the user’s budget. Based on Azuma-Hoeffding
inequality, we know that

P
i2Jm

|pimdimfi�pimQm(pim)| 
O(nm log nm) holds with high probability at least 1 � n�2

m .
Hence, we have

E(
X

i2Jm

pimdimfi) �
X

i2Jm

pimQm(pim)�O(nm log nm).

(32)

Moreover, there exists such a case where the workload is high
so that E(

P
i2Jm

dimfi) � µm(Cm � dm
max). We denote the

set of jobs accepting the deal in the cases where the resource
is sufficient as J 0

m. Then, we obtain

E[
X

i2J 0
m

pimdimfi|
X

i2J 0
m

dimfi

� µm(Cm � dm
max)]

�
X

i2J 0
m

Am(pcm
⇤)fi/(CmµU

m � ✓mnm)

� Am(pcm
⇤)(1�O(

2rmax(µm)
µm + 2rmax(µm)

+
dm

max

Cm
))� ✓mnm,

(33)

where the last inequality holds due to Claim 2 and the
definition of µU

m. Combining (32) and (33), we can get the
lower-bound of the expected profit obtained by our DPS for
selling type-m PSs:

E[Am(L)]

� min{Am(pcm
⇤)(1�O(

2rmax(µm)
µm + 2rmax(µm)

+
dm

max

Cm
))

� ✓mnm,Am(L0)�O(
p

nm log nm)}.

Combining this inequality and Lemma 1, we have Lemma 2.

E. Proof of Lemma 3
Proof: As shown in the initialization in Alg. 1, the prices

of type-m PSs in the candidate set Pm are within the interval
[�m, 1], i.e., pm 2 [�m, 1],8pm 2 Pm. If pm

⇤  �m, then we
know Am(pm

⇤) � Am(pcm
⇤)  �mCmµm. Let p0m denote the

highest price in Pm that is no higher than the best fixed price
pm
⇤ , which indicates p0m � pm

⇤ /(1 + �m). Hence, we have
X

m2[M]

Am(pcm
⇤) �

X

m2[M]

Am(p0m)

�
X

m2[M]

Am(pm
⇤ /(1 + �m))

�
X

m2[M]

Am(pm
⇤)(1� �m)

�
X

m2[M]

Am(pm
⇤)�

X

m2[M]

�mCmµm,

where the last inequality holds because Qm(pm) is a
non-increasing function towards pm. Combining the above
inequality with Lemma 2, Lemma 3 is derived.

F. Proof of Theorem 3
Proof: In the exploration stage in Alg. 1, if the expected

number of jobs requesting type-m workers is denoted as
�(✓mnm), then we have �(✓mnm) � ✓mnm � nm⌧max/T .
Further, we have rmax(µm)  O(log nm/(⌧max�(✓mnm))).
Due to ⌧max  (T 5C2

m log2 nm)1/3/(2nm), we obtain
�(✓mnm) � (T 5C2

m log2 nm)1/3/2. Moreover,
we know |P|m  (log nm)/�m. Therefore, when
�m = (TCm)�1/3(log nm)2/3 and �m = �mCmµm/nm,
according to Lemma 3, we have

X

m2[M]

[Am(pm
⇤)� E[Am(L)]]

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

ZHOU et al.: DYNAMIC PRICING AND PLACING FOR DISTRIBUTED ML JOBS: AN ONLINE LEARNING APPROACH 1149


X

m2[M]

O(✓mnm + (TCm)�1/3 log2/3 nmµm

+
p

nm log nm

+ (TCm log nm)2/3µU
m/µm + Cmrmax(µm) + µmdm

max)


X

m2[M]

O(
p

nm log nm +
µU

m(TCm log nm) 2
3

µm

+ Cmrmax(µm)) (34)

 O(
X

m2[M]

p
nm log nm + (TCm log nm)2/3). (35)

Inequality (34) holds since we assume dm
max 

T�1/3(Cm log nm)2/3. Due to rmax(µm) 
O((1+µm) log nm

1+�(✓mnm)), we know Cmrmax(µm) 
(TCm)2/3(log nm)1/3. Moreover, µU

m/µm asymptotically
approaches O(1). Putting them together, the last inequality
(35) can be established. Similarly,

P
m2[M][Ak(pk

⇤) �
E[Ak(L)]] is derived. Thus, the regret Regret(L) of our DPS
algorithm is O[(K+M)((N log N)1/2+(TCmax log N)2/3)].

REFERENCES

[1] M. Li, “Scaling distributed machine learning with the parameter server,”
in Proc. 11th USENIX Symp. Operating Syst. Design Implement. (OSD),
Aug. 2014, pp. 583–598.

[2] Q. Ho et al., “More effective distributed ML via a stale synchronous
parallel parameter server,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 1–9.

[3] Y. Bao, Y. Peng, and C. Wu, “Deep learning-based job placement in
distributed machine learning clusters,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2019, pp. 505–513.

[4] L. Mai, C. Hong, and P. Costa, “Optimizing network performance
in distributed machine learning,” in Proc. USENIX HotCloud, 2015,
pp. 1–7.

[5] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “FireCaffe:
Near-linear acceleration of deep neural network training on compute
clusters,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 2592–2600.

[6] (2019). Amazon EC2 Pricing. [Online]. Available: https://aws.amazon.
com/ec2/pricing/

[7] (2019). Google Cloud Pricing. [Online]. Available: https://cloud.google.
com/pricing/

[8] (2019). Linux Virtual Mach. Pricing. [Online]. Available:
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

[9] X. Zhang, C. Wu, Z. Huang, and Z. Li, “Occupation-oblivious pricing of
cloud jobs via online learning,” in Proc. IEEE Conf. Comput. Commun.,
Apr. 2018, pp. 2456–2464.

[10] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic
auctions in IaaS cloud markets,” in Proc. IEEE/ACM 21st Int. Symp.
Quality Service (IWQoS), Jun. 2013, pp. 1–6.

[11] W. Shi, C. Wu, and Z. Li, “RSMOA: A revenue and social welfare
maximizing online auction for dynamic cloud resource provisioning,”
in Proc. IEEE 22nd Int. Symp. Quality Service (IWQoS), May 2014,
pp. 41–50.

[12] L. Mashayekhy, M. M. Nejad, D. Grosu, and A. V. Vasilakos, “An online
mechanism for resource allocation and pricing in clouds,” IEEE Trans.
Comput., vol. 65, no. 4, pp. 1172–1184, Apr. 2015.

[13] X. Wang et al., “Maximizing the profit of cloud broker with priority
aware pricing,” in Proc. IEEE 23rd Int. Conf. Parallel Distrib. Syst.
(ICPADS), Dec. 2017, pp. 511–518.

[14] B. Baek, J. Lee, Y. Peng, and S. Park, “Three dynamic pricing schemes
for resource allocation of edge computing for IoT environment,” IEEE
Internet Things J., vol. 7, no. 5, pp. 4292–4303, May 2020.

[15] T. O. Omotehinwa and J. S. Sadiku, “A dynamic strategy-proof algorithm
for allocation and pricing of cloud services,” Int. J. Cloud Comput.,
vol. 8, no. 2, pp. 166–182, 2019.

[16] J. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld,
“Posted price mechanisms for a random stream of customers,” in Proc.
ACM Conf. Econ. Comput., Jun. 2017, pp. 169–186.

[17] Z. Wang, J. Wu, Y. Wu, S. Deng, and H. Huang, “QoS aware dynamic
pricing and scheduling in wireless cloud computing,” in Proc. IEEE 56th
Annu. Conf. Decis. Control (CDC), Dec. 2017, pp. 3702–3707.

[18] M. Nambiar, D. Simchi-Levi, and H. Wang, “Dynamic learning and
pricing with model misspecification,” Manage. Sci., vol. 65, no. 11,
pp. 4980–5000, Nov. 2019.

[19] P. Liu, G. Bravo, and J. Guitart, “Energy-aware dynamic pricing model
for cloud environments,” in Proc. GECON, 2019, pp. 71–80.

[20] R. Kleinberg, A. Slivkins, and E. Upfal, “Multi-armed bandits in metric
spaces,” in Proc. 14th Annu. ACM Symp. Theory Comput., May 2008,
pp. 681–690.

[21] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,” Mach. Learn., vol. 47, nos. 2–3,
pp. 235–256, 2002.

[22] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochastic and non-
stochastic multi-armed bandit problems,” Found. Trends Mach. Learn.,
vol. 5, no. 1, pp. 1–122, 2012.

[23] O. Besbes, Y. Gur, and A. Zeevi, “Optimal exploration-exploitation in
a multi-armed bandit problem with non-stationary rewards,” Stochastic
Syst., vol. 9, no. 4, pp. 319–337, 2019.

[24] S. Nobari, “DBA: Dynamic multi-armed bandit algorithm,” in Proc.
AAAI, 2019, pp. 9869–9870.

[25] M. Mahdavi, T. Yang, and R. Jin, “Efficient constrained regret mini-
mization,” 2012, arXiv:1205.2265.

[26] J. Chen, K. Li, Q. Deng, K. Li, and P. S. Yu, “Distributed deep
learning model for intelligent video surveillance systems with edge
computing,” IEEE Trans. Ind. Informat., early access, Apr. 4, 2019, doi:
10.1109/TII.2019.2909473.

[27] J. Chen et al., “A parallel random forest algorithm for big data in a
spark cloud computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 4, pp. 919–933, Apr. 2017.

[28] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX NSDI, 2011, pp. 1–14.

[29] B.-G. Chun et al., “Dolphin: Runtime optimization for distributed
machine learning,” in Proc. ICML ML Syst. Workshop, 2016, pp. 1–6.

[30] C. Chen, W. Wang, and B. Li, “Performance-aware fair scheduling:
Exploiting demand elasticity of data analytics jobs,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2018, pp. 504–512.

[31] C. Xu, K. Wang, P. Li, R. Xia, S. Guo, and M. Guo, “Renewable
energy-aware big data analytics in geo-distributed data centers with
reinforcement learning,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1,
pp. 205–215, Jan. 2020.

[32] A. Mirhoseini et al., “Device placement optimization with reinforcement
learning,” in Proc. ACM ICML, 2017, pp. 2430–2439.

[33] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv,
“Truthful online scheduling with commitments,” in Proc. 16th ACM
Conf. Econ. Comput., Jun. 2015, pp. 715–732.

[34] M. Cheong, H. Lee, I. Yeom, and H. Woo, “SCARL: Attentive rein-
forcement learning-based scheduling in a multi-resource heterogeneous
cluster,” IEEE Access, vol. 7, pp. 153432–153444, 2019.

[35] J. Chen, K. Li, K. Bilal, X. Zhou, K. Li, and P. S. Yu, “A bi-layered
parallel training architecture for large-scale convolutional neural net-
works,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 965–976,
May 2018.

[36] X. Li, R. Zhou, L. Jiao, C. Wu, Y. Deng, and Z. Li, “Online place-
ment and scaling of geo-distributed machine learning jobs via volume-
discounting brokerage,” IEEE Trans. Parallel Distrib. Syst., vol. 31,
no. 4, pp. 948–966, Apr. 2020.

[37] C.-T. Chen, L.-J. Hung, S.-Y. Hsieh, R. Buyya, and A. Y. Zomaya,
“Heterogeneous job allocation scheduler for Hadoop MapReduce using
dynamic grouping integrated neighboring search,” IEEE Trans. Cloud
Comput., vol. 8, no. 1, pp. 193–206, Jan. 2020.

[38] G. Lee, W. Saad, and M. Bennis, “An online optimization framework for
distributed fog network formation with minimal latency,” IEEE Trans.
Wireless Commun., vol. 18, no. 4, pp. 2244–2258, Apr. 2019.

[39] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time opti-
mization for federated learning over wireless networks,” IEEE Trans.
Wireless Commun., vol. 20, no. 4, pp. 2457–2471, Apr. 2021.

[40] P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidi-
mensional knapsack problem,” J. Heuristics, vol. 4, no. 1, pp. 63–86,
Jun. 1998.

[41] H. Aissi, C. Bazgan, and D. Vanderpooten, “Min–max and min–max
regret versions of combinatorial optimization problems: A survey,” Eur.
J. Oper. Res., vol. 197, no. 2, pp. 427–438, 2009.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

1150 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

[42] P. Minet, E. Renault, I. Khoufi, and S. Boumerdassi, “Analyzing traces
from a Google data center,” in Proc. 14th Int. Wireless Commun. Mobile
Comput. Conf. (IWCMC), Jun. 2018, pp. 1167–1172.

[43] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Con-
vergence properties of the Nelder-Mead simplex method in low dimen-
sions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, 1998.

[44] Y. Nakatani, “Structured allocation-based consistent hashing with
improved balancing for cloud infrastructure,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 9, pp. 2248–2261, Sep. 2021.

Ruiting Zhou received the Ph.D. degree from
the Department of Computer Science, University
of Calgary, Canada, in 2018. She is currently
an Associate Professor with the School of Com-
puter Science Engineering, Southeast University.
She has published research papers in top-tier com-
puter science conferences and journals, including
IEEE INFOCOM, ACM MOBIHOC, IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE JOUR-
NAL ON SELECTED AREAS IN COMMUNICATIONS,
and IEEE TRANSACTIONS ON MOBILE COMPUT-

ING. Her research interests include cloud computing, machine learning, and
mobile network optimization. She serves as the TPC Chair for INFOCOM
Workshop-ICCN (2019–2023). She also serves as a Reviewer for interna-
tional conferences and journals, such as IEEE ICDCS, IEEE/ACM IWQoS,
IEEE SECON, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICA-
TIONS, IEEE TRANSACTIONS ON NETWORKING, IEEE TRANSACTIONS ON
MOBILE COMPUTING, and IEEE TRANSACTIONS ON CLOUD COMPUTING.

Xueying Zhang received the B.E. degree from the
School of Computer Science, Wuhan University,
China, in 2018, where she is currently pursuing the
master’s degree with the School of Cyber Science
and Engineering. Her research interests include the
areas of network optimization, online learning, and
online scheduling.

John C. S. Lui (Fellow, IEEE) received the Ph.D.
degree in computer science from UCLA. He is
currently the Choh-Ming Li Chair Professor with
the Department of Computer Science and Engineer-
ing (CSE), The Chinese University of Hong Kong
(CUHK). After his graduation, he joined the IBM
Laboratory and participated in research and develop-
ment projects on file systems and parallel I/O archi-
tectures. He joined the CSE Department, CUHK. His
research interests include films and general reading.
His current research interests include online learning

algorithms and applications (e.g., multi-armed bandits and reinforcement
learning), machine learning on network sciences and networking systems,
large scale data analytics, network/system security, network economics, large
scale storage systems, and performance evaluation theory. He received various
departmental teaching awards and the CUHK Vice-Chancellor’s Exemplary
Teaching Award. He also received the CUHK Faculty of Engineering Research
Excellence Award (2011–2012). He is an Elected Member of the IFIP WG
7.3, a fellow of ACM, a Senior Research Fellow of the Croucher Foundation,
and a fellow of the Hong Kong Academy of Engineering Sciences (HKAES),
and was the Past Chair of the ACM SIGMETRICS (2011–2015).

Zongpeng Li received the B.Sc. degree in computer
science and technology from Tsinghua University
in 1999 and the Ph.D. degree from the University
of Toronto in 2005. He is currently a Professor at
Tsinghua University. His research interests include
computer networks, network coding, network algo-
rithms, and cyber security. He received the Outstand-
ing Young Computer Science Researcher Award
from the Canadian Association of Computer Science
in 2015. He received best paper awards from five
international conferences.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:58:43 UTC from IEEE Xplore. Restrictions apply.

