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Abstract—Voice assistants support contactless smart device
control and thus act as a holy grail of human–computer
interaction. However, recent studies reveal that an adversary
can manipulate devices by vicious voice commands. This secu-
rity risk is caused by only executing one-time liveness detec-
tion and lacking safeguard modules after service activation.
Therefore, identifying speaker type (i.e., human articulators
or loudspeakers) is critical in protecting voice-driven services
during an entire interaction session. In this article, we pro-
pose a continuous voice liveness detection approach LiveProbe,
leveraging unique energy response patterns in frequency bands
induced by distinct voice generation mechanisms. The rationality
behind LiveProbe is presented in two aspects: human articulator
reshapes initial voices by exquisitely coordinated movements of
vocal organs, which act as band-pass filters generating unique
energy responses; nevertheless, the internal modules of loud-
speakers are position fixed and cannot reproduce this response
characteristic. To that end, we first work on voice generation
mechanisms behind two-type speakers that cause spectrum dif-
ferences. Then, we elaborately construct signal processing and
deep-learning modules to extract liveness features. Especially, our
approach does not interfere with normal voice interaction and
need not to carry customized sensors. The experiment presents
its effectiveness against potential attacks with a false acceptance
rate of 0.51%.

Index Terms—Continuous liveness detection, energy response
pattern (ERP), voice assistant (VA).
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I. INTRODUCTION

TECHNOLOGY advancements in natural language pro-
cessing [1] make contactless command implementation

by voice assistant (VA) practical. For most smart devices,
users leverage voice interfaces (e.g., Amazon Echo [2] and
Apple Siri [3]) to acquire services, such as sending private
messages [4] and completing online payments [5]. This non-
contact control way frees users from tediously manual command
inputting operations. Benefiting from intrinsic convenience and
efficiency, the installation capacity of VAs currently is more
than 4 billion [6] around the world, with a market size about 27
billion dollars [7]. Obviously, VA has become a critical module
for human–computer interaction and smart home ecosystem.
However, existing studies [8], [9], [10], [11] state that numer-
ous attacks have successfully deceived VA systems. Among
them, the replaying attack [12], [13], [14], [15] is recognized
as the most implementable approach since anyone can easily
launch. In this case, adversaries can utilize smartphones playing
prerecorded [16] or synthesized voices [17] to illegally control
devices through voice-enabled interfaces. To resist these attacks
during entire interaction sessions, researchers explore contin-
uous liveness detection mechanisms [18] for differentiating
speaker types. For instance, they employ accelerometer [12],
mmWave [13], and ultrasound [19] to sense throat vibration
and oral structure movements for representing liveness signs;
recent studies [14], [20] extract signal attenuation charac-
teristics/sound field fingerprint by multiple microphones, to
distinguish speaker type.

To sum up, existing methods require users to either
carry/configure additional sensors or obey cumbersome usage
restrictions like only allowing to emit voice commands in a
preset position. Thus, they impose burdensome involvements
on users and are unfriendly. By retrospecting on existing works,
a desired liveness detection approach should meet two basic
but critical demands: 1) security and 2) user-friendliness. First,
considering the drawbacks of one-time user authentication, the
continuous way is indeed needed for more secure protection. It
continuously verifies speaker type during entire interaction ses-
sions instead of only verifying wake-up words when the service
is activated. Second, for ensuring the service quality of VAs,
liveness detection processes need to be transparent to users,
without disturbing normal voice command control. Specifically,
it should not impose overmuch user involvement like carrying
customized liveness feature collection sensors [12].
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Fig. 1. Classical workflow of the VA system.

In this proposal, we adequately leverage passively collected
voices to distinguish speaker types driven by the unforgeability
of human articulators (i.e., physiological biometrics) and the
uniqueness of multiple vocal organs’ coordinated movements
(i.e., behavioral biometrics), for meeting the aforementioned
two demands. On the one hand, the vocal cord/tract and chest
cavity keep intrinsic differences in tissue structure and shape
among users. Thus, an adversary is hard to counterfeit such a
complicated articulator to imitate human-live voices. On the
other hand, to utter specific phonemes, relative positions and
states of vocal organs are continuously adjusted, which is a
dynamic process. Nevertheless, electronic submodules of loud-
speakers are position fixed and hence keeps static in working
periods. Relying on the above analysis, there is a question:
can we leverage the unforgeable human articulator structure
and the unique human-live voice generation mechanism for
continuous liveness detection?

In this article, LiveProbe extracts liveness traits, i.e., energy
response (variation) patterns, during entire human–device
interaction sessions. It only utilizes built-in microphones, with-
out imposing extra user involvement. As depicted in Fig. 1,
before transforming inputting audios into commands and pro-
viding corresponding services, VA verifies speaker type for
the security protection goal. To be specific, our method lever-
ages the static energy response pattern (ERP) of each voice
frame unit to capture differences in voice spectrum between
two-type speakers. The reason for ERP working is that it
reflects the special filter properties of human vocal structures
(described in Section II-A), which electronic speakers cannot
imitate. Furthermore, each phoneme can be disassembled into
multiple frames, and response pattern variations across them
effectively represent the dynamic vocal organ movement pro-
cess of human voice generation. By combining the static and
dynamic traits, LiveProbe sufficiently represents physiologi-
cal and behavioral biometrics of human speakers to complete
liveness detection.

Although this idea sounds straightforward, the implementa-
tion process faces three main challenges. The first one is that
voice spectrum derivant extracted by distinct ways are used for
distinct usage goals, such as Mel-frequency cepstral coefficient
(MFCC) [21] for voice recognition and energy statistic features
for activity detection [22]. Thus, elaborately defining and min-
ing ERP for effectively characterizing liveness traits is critical
and nontrivial. Second, the built-in microphones of most IoT

terminals possess a sampling rate of no less than 44.1 kHz. In
this case, processing units require to handle large-size samples
per second, which undoubtedly costs significant computing
resources and is unacceptable for a continuous detection mech-
anism. Last but not least, existing phoneme/voice segmentation
and recognition technologies just reach a low accuracy in prac-
tical application scenes [23] that do not satisfy the demand for
continuous liveness detection mechanisms.

To solve the aforementioned problems, we design the fol-
lowing pointed solutions. First, we analyze the structure
differences of two-class speakers and thereby revealing distinct
voice generation/reconstruct mechanisms; ERP is elaborately
defined to represent specific frequency filtering function of
human articulator. Second, each phoneme contains multiple
time frames, and much spectrum information is repeated
among adjacent ones, thus we extract critical frames utilizing
a similarity-based judgment approach to reduce computation
cost; moreover, we design matching algorithms employing
locality sensitive hashing (LSH) [24] for a quick pairing
among inputting and registered feature vectors. Third, through
confirmatory experiments, we learn that liveness detection fail-
ure always happens when using features of only one critical
frame; thus, LiveProbe classifies speaker type by multiple data
frames of one phoneme and then leverages the decision vot-
ing mechanism [25] to jointly determine the final detection
result, for improving classifier robustness. In summary, our
major contributions of LiveProbe are concluded as follows.

1) We propose an easily deployable continuous liveness
detection approach LiveProbe for voice-enabled IoT
COTS, utilizing only built-in microphones; it does not
require additional user involvement and configuring
environments.

2) We analyze the differences in structure and voice gener-
ation mechanism between human articulators and elec-
tronic speakers, thereby extracting ERP-based liveness
traits.

3) We innovatively design a quick feature matching method
utilizing the LSH function, maximal overlap discrete
wavelet transform (MODWT)-based method to recon-
struct ERP even if environment factor changes, multi-
band spectral subtraction way to remove nonlinear
background noise, etc.

4) We conduct extensive experiments to evaluate the secu-
rity and effectiveness of LiveProbe in defending against
replaying attacks. The results reveal that our approach
can achieve the averaging false acceptance rate (FAR)
of 0.51% and false rejection rate (FRR) of 1.12% in
house-in and public data sets.

The remaining parts of this article are organized as follows.
Section II introduces voice generation mechanisms of two-
class speakers and the process of extracting liveness features.
Potential attack models and system overview are described
in Sections III and IV, respectively. We present the technical
modules of LiveProbe and their functions in Section V. The
experiment setting and performance evaluation are presented
in Section VI. Following that, we discuss limitations and
related works in Sections VII and VIII, we finally conclude
our work in Section IX.
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Fig. 2. Structure illustration of two speakers, presenting obvious differences.
(a) Human articulator. (b) Electronic loudspeaker.

II. BACKGROUND AND PRELIMINARIES

In this section, we introduce voice generation mecha-
nisms of human articulator and electronic loudspeakers. Then,
we verify the feasibility of distinguishing speaker type by
analyzing phoneme-level ERP.

A. Voice Generation Mechanism

The process of human-live voice generation consists of two
main stages: 1) initial voice formation and 2) reshaping. When
a user speaks, airflow is expelled from the lungs and then
passes through vocal cords. The contracted larynx blocks air-
flow, which drives vocal cords to vibrate and thereby generate
initial voices; the initial outcome only covers fundamental sig-
nal frequencies decided by the tension and length of vocal
cords. If the larynx is in a relaxed state, air can smoothly flow
through along with causing slightly vocal cord vibration and
a noise-like whispering. Subsequently, multiple vocal organs,
such as throat and palate in Fig. 2(a), jointly adjust postures
to construct a phoneme-specific airflow transmission pipe for
reshaping the initial voice. After reshaping, its amplitude and
frequency are adapted to carry user-specific voice biomet-
rics information and human articulator actually plays the role
of a filter [8], [26]. Finally, voice is emitted from human
mouth/nose cavities and spreads out in surrounding environ-
ments. The aforementioned description reveals that human-live
voice is a product of physiological and behavioral traits, for
uniquely representing user identity. Therefore, even if indi-
viduals utter identical words, there are inherent differences in
their voices.

In Fig. 2(b), we display a typical structure of electronic
loudspeakers deriving most existing audio equipment designs.
It as a common transducer converts electrical energy into
acoustic signals. As turning on a loudspeaker, internal ener-
gized voice coils are subjected to forces from surrounding
magnetic fields; the coil’s vibration direction and magnitude
are consistent with incoming currents. Meanwhile, voice coils
drive membranes to vibrate and collide with air, hence form-
ing voice waves radiating to surrounding spaces. Compared
with human articulators, loudspeakers emit sounds only rely-
ing on membrane vibration determined by currents, lacking

an initial voice reshaping stage. To spoof VAs, an adversary
replays electrical inputting sources like synthesized/recorded
audio samples by loudspeakers.

Summary: Unlike loudspeakers with fixed electronic com-
ponents, human-live voice generation requires coordinated
movements of multiple vocal organs. Even if outputting indi-
vidual phonemes, there exist dynamic adjustment processes
of vocal tract posture. For instance, to pronounce vowel /e/,
people have to open mouths and control their tongues close
to lower teeth; while they naturally stretch the tongue and
drive airflow to open lips for emit consonant /b/. Particularly,
resonant cavity posture changes affect initial voice forma-
tion and propagation paths, thereby bringing unique phonemic
spectrum variation patterns. However, loudspeakers only rely
on membrane vibration to output voices and hence cannot
reproduce this complex variation characteristic.

B. Energy Response Pattern Derived From Spectrum

Spectrum represents the amplitudes of signal harmonic
bands in frequency domain and thereby helping researchers
conduct component analysis. For instance, most existing
user authentication methods leverage features, such as lin-
ear prediction Cepstral coefficient (LPCC) [21], derived from
spectrum information. However, these features are ineffective
in directly applying to liveness detection tasks. In this section,
we define energy response (variation) pattern that contains
unique liveness characteristics of human-live voices.

Voice is regarded as a carrier conveying rapid variation
information and hence capturing its dynamic characteristic
requires high resolution methods. In this case, LiveProbe
applies continuous wavelet transform (CWT) [27] perform-
ing frequency decomposition refinement of signals, to output
spectrum information in millisecond time frames. Processing
original voice samples by CWT, we obtain spectrum vec-
tors denoted as {X1, X2, . . . , XN} from N frames. The energy
(amplitude) of frequency bands in the nth vector is expressed
as Xn = {x1

n, x2
n, . . . , xM

n }, where M is the number of frequency
bands. For extracting the ERP of the nth frame, named ERPn,
we first obtain the normalized energy ratio (NER) by the
following equation:

NERn =
{

x1
n

sum(Xn)
,

x2
n

sum(Xn)
, . . . ,

xM
n

sum(Xn)

}
(1)

where sum(·) is a accumulative function and xm
n is

the mth scalar of Xn. If a speaker owns equal energy
response distribution, it can be denoted as ERPn, that
is, {(11/M), (12/M), . . . , (1M/M)}. We implement a sub-
traction operation between NER and ERP for depicting
each speaker’s phoneme-level ERP, that is, {(x1

n/sum(Xn)) −
(1/M), [x2

n/sum(Xn)] −[1/M], . . . , [xM
n /sum(Xn)] − [1/M]}.

Moreover, ERPs are variable induced by the posture adjust-
ment of vocal organs as speaking, which is a critical
trait employed to capture dynamic liveness characteristics.
Therefore, we propose the energy response variation pattern
(ERVP) among multiple critical time frames1 of phonemes to

1The ERPs corresponding to adjacent time frames exhibit high similarity,
thus we screen out only representative ones named critical time frame to
further extract liveness characteristics of human-live voices.
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Fig. 3. Voice spectrum of five vowels and a phase “Hi, Siri; read my new message” consisting six words is uttered by (a) user and (b) and (c) replayed by
two loudspeakers; moreover, the corresponding ERPs of vowel /a/ are displayed in the second-row subfigures.

describe this dynamic process, which is defined as follows:

ERVP = {ERP2 − ERP1, ERP3 − ERP1, . . . , ERPN − ERP1}. (2)

As depicted in (2), we execute a subtraction operation
between the nth and 1st frames. The rationality for employ-
ing ERP/ERVP to achieve liveness detection is summarized
in two respects: first, human vocal cavities act as band-pass
filter banks remaining user-specific frequency parts [8], [28]
and leading spectrum energy to concentrate in low-frequency
bands; due to intrinsic structure differences as described in
Section II-A, loudspeakers lack such frequency filter mod-
ules of the human articulator, and electromagnetic noise [29]
generated by internal electronic components inevitably inter-
feres with original voices and spread to higher frequencies.
Second, even if uttering individual phonemes, people make
evident human cavity structure adjustment, which does not
occur in electronic speakers. This process leads ERPs to vary
in multiple voice frames and thereby rendering ERVP to
represent unique liveness characteristics.

C. Feasibility of Designing LiveProbe

In this section, we explore the feasibility of employing
ERP/ERVP to tell apart two-class speaker types. A user first
utters five vowels (i.e., /a/, /e/, /i/, /o/, /u/) and an example
sentence “Hi, Siri. Read my new message.” Meanwhile, the
microphone SONY ECM-W2BT with high-fidelity frequency
response performance records and saves this audio at a
sampling rate of 44.1 kHz. Then, with controlling other envi-
ronment variation interference factors like speaker position, we
leverage two common portable devices (i.e., HUAWEI Meta30
Pro and iPad 8th-Gen) to play the recorded audios. Following
that, we apply the CWT method to convert human-live and
replaying voices to the frequency domain, for presenting sig-
nal components in continuous time frames. In this process,
original voices are divided into multiple data segments with a
window length of 25 ms, and the overlapping length between
adjacent segments is set as 10 ms. In addition, a Hanning
window multiplies segmented data to smooth the boundary
samples and thereby alleviating the impact of spectrum leak-
age. For ease of analysis, we reserve time intervals between
words/letters. The first row figures in Fig. 3 depict that spec-
trum energy of human-live voices are mainly concentrated in
a fraction of frequency bands (i.e., less than 2 kHz); while the

Fig. 4. There are extracted ERVPs of human articulator (blue line), HUAWEI
Meta30 Pro (red), and Apple iPad 8th-Gen (green); each ERVP consists of
ten ERPs, named from ERP1–ERP10.

energies of replaying audios are scattered over a much wider
range (i.e., up to 6 kHz).

To further quantify this energy response difference, the sec-
ond row of Fig. 3 displays the averaging NERs of one critical
frame of vowel /a/ emitted by a user and two loudspeak-
ers. The horizontal red line y = (1/140)x is on behalf of
equal energy response of 140 frequency bands as drawn. For
LiveProbe, a large difference between one response distribu-
tion and y = (1/140)x means that spectrum energy is only
concentrated in a few bands. We count difference values by
comparing the three NERs with y = (1/140)x to obtain ERPs,
respectively, and the value 0.352 referring to the human voice
is significantly larger than replaying ones (i.e., 0.196 and
0.181). This result is consistent with our aforementioned anal-
ysis, that is, vocal organs act as a band-pass filter, and voice
energy mainly concentrates in only a few bands. Subsequently,
we extract the ERVP of one critical frame /a/ and other 10
ones as shown in Fig. 4. There are two evident distinctions
in terms of envelope and amplitude among the three speakers’
ERVPs. To measure the ERP variation of ten frames, we count
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Fig. 5. Technical module overview of LiveProbe, consisting of Signal Preprocessing, Spectrum Segmentation, Feature Extraction, and Detection Model.

the amplitude of three speakers’ ERVPs. Human-live speakers
own the largest value 3.13 that larger than 1.26 and 0.91
belonging to loudspeakers. The result illustrates that human
articulator generates greater intraclass ERP variation than elec-
tronic ones during speaking, which verifies our inference about
the effects on energy response induced by articulator structure
adjustment in Section II-B.

III. THREAT MODEL

Our approach focuses on resisting spoofing attacks, which
originate from replaying recorded and synthesized human-live
voices. Referring to the source of malicious voices, attacks
can be classified into two main types as follows.

Recording Attack: To deceive VAs, an adversary collects
victim voices and replays them through electronic speakers. VAs
may be unable to distinguish human-live and spoofing samples,
hence being manipulated by malicious commands. The victim
voice can be readily obtained in multiple ways [11], [30], [31],
such as conversations in daily life, online video conferences,
and phone calls. To be specific, benefiting from easy acquisition
of voice samples and without requiring customized devices,
this recording way is currently one of the most practical.

Synthesizing Attack: In addition to directly recording
authentic users’ voices, the adversary leverages synthesiz-
ing technology to modify captured audios for deceiving
VAs. Existing methods can be divided into three categories,
namely, ultrasonic modulation [17], voice spectrum modifi-
cation [10], and deepfake-driven spoofing [32]. For instance,
DolphinAttack [17] modulates voice baseband signals onto
a high-frequency carrier wave (i.e., larger than 20 kHz) to
operate target devices; Wang et al. [10] carefully analyzed
the nonuniform frequency response caused by loudspeaker
hardware defects before launching attacks, and then modified
spectrums to “reproduce” human-live voices. Nevertheless, the
synthesizing-based approaches require an adversary to devote
enormous efforts to exploring hardware characteristics and
configuring cumbersome environments.

Consistent with previous works, we assume that an adver-
sary has obtained victim voices and launches attacks without
spatiotemporal restriction. In LiveProbe, we verify security pro-
tection performance under potential threats in Section VI-D,
including modulated spectrum [10], DolphinAttack [17], and
deepfake-driven spoofing [32] attacks.

IV. LIVEPROBE OVERVIEW

The basic idea of LiveProbe is to detect spoofing samples by
comparing newly inputting audios with previously registered
profiles of users with claimed identities. As depicted in Fig. 5,

it consists of four modules and ten data processing units. In the
Registration Phase, users utter phonemes to register personal
identity under operation guidance. Then, LiveProbe removes
the background noise and detects effective voice inputting
events. In Spectrum Segmentation, denoising audio signals are
segmented into phonemes and we abstract critical frames of
each phoneme by removing redundant parts. Subsequently,
fine-grained features, including statistics, local, and wave char-
acteristics, are extracted to present liveness traits in Feature
Extraction. Finally, these registered features on behalf of user
identity are stored in our database.

The usage period shares similar process modules with reg-
istration phase except for adding Critical Frame Matching
and ERP&ERVP Reconstruction units. As obtaining newly
inputting feature vectors, LiveProbe requires to match it with
the most similar one in registered profiles. Moreover, due to
variations in environment factors, we leverage an MODWT-
based approach to reconstruct the polluted ERP/ERVP and
hence ensuring the consistent of matched feature pairs. Finally,
we feed these pairs into the trained support vector machine
(SVM) to judge whether they are belonging to the same user
in Detection Model.

V. LIVEPROBE DESIGN

In this section, we introduce the technical details of
LiveProbe from inputting voices to liveness feature extraction,
and finally completing speaker-type detection.

A. Signal Preprocessing

Background Noise Removal: Environment noise carried by
electromagnetic interference and daily activities is ubiquitous
in human daily lives. Thus, voices perceived by microphones
are always polluted to some extent. For mitigating its impacts
on the following voice analysis, denoising operation on orig-
inal inputting voices is a critical step. In terms of spectrum
energy variation patterns, noise can generally be divided into
two types, namely, steady and unsteady modes. Nevertheless,
the second one imposes negligible impacts on liveness detec-
tion performance due to sustaining for only a short time
compared with human voice and being filtered in the Invalid
Command Filtering module. Subsequently, we only focus on
eliminating the steady noise. Considering that noise affects
frequency bands covered by human voices is nonuniform and
we have to subtract spectrum increment brought by it in
each frequency band. To solve this issue, we leverage multi-
band spectral subtraction [33] to enhance target command
voices disturbed by additive noise, and simultaneously without
introducing new distortion. Note that the premise of successful
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Fig. 6. Background noise patterns from a living room. (a) Spectrum of back-
ground noise. (b) Euclidean distance ratio between 1st frame and subsequent
ones.

denoising is background noise being in steady state. We collect
voice for 30 s as noncommand inputting in a 65-m2 restroom.
Fig. 6(a) depicts background noises always keeping steady
spectrum patterns except for unsteady ones emerging such as
sounds of the closing door and a dog barking. Moreover, we
further measure the steady state by calculating Euclidean dis-
tances among frames as shown in Fig. 6(b), which displays
that noises in steady state have consistent distance ratios and
hence are stable. Relying on this observation, we acquire an
enhanced spectrum of inputting voice in the mth frequency
band of data segmentation Xn

∣∣∣∣
∧

xm
n

∣∣∣∣
2

=
∣∣xm

n

∣∣2 − αmβm
∣∣ψm

n

∣∣2 (3)

where xm
n

∧ is the energy pattern of denoising voice, ψm
n is

the estimated noise, and m is the frequency band index. αm
is an over-subtraction weight and βm is empirically cho-
sen leveraging 1-s noninputting audio. αm is updated as
λ1 · log10([|xm

n |2/|ψm
n |2]) + λ2. The details of λ1 and λ2 value

selection can refer to [33]. After the nonuniform spectrum
energy subtraction, the enhanced voice version is derived
from original inputting. Note that our noise removal approach
acts as a complementation module of built-in noise sup-
pression technologies of COTS devices, to jointly remove
noise interference.

Liveness Detection Activation: For IoT devices equipping
with built-in VAs, their microphones silently monitor inputting
behind the scenes. Once voice inputting audios rather than
background noise are detected, signal processing modules turn
into running states and then complete speaker authentica-
tion/command recognition. As new voices present, captured
signal energy bursts in the time domain and thus we employ
a threshold-based approach to detect them. LiveProbe calcu-
lates the mean energy of samples in a 25-ms window. If its
energy is higher than the preset threshold u + 3 · σ referring
to normal distribution [34], LiveProbe immediately activates
subsequent voice processing modules. u and σ are the mean

and standard deviation of sample energies in noncommand
inputting windows, respectively.

Invalid Command Filtering: Existing VAs on IoT devices
activate voice-enabled services after verifying wake-up words
like “Hi, Siri.” Subsequently, LiveProbe implements liveness
detection during interaction sessions no matter what users speak.
However, valid user commands and unsteady noises like pet
barking always co-exist in one space. Therefore, LiveProbe
conducts a filtering operation on original voices to remain only
effective inputting, to avoid costing extra computing resources.
We first obtain daily human commands and steady noise audios
in public data sets [35], [36]; their labels are set as 1 and 0,
respectively. Moreover, we collected two-class audios in daily
life as supplements. The number of positive and negative sam-
ples are both 1300. Then, common LPCC and statistical features
(i.e., standard deviation, mean absolute deviation maximum,
standard deviation, variance, mean, and entropy) are leveraged
to represent two-class audio characteristics. Finally, consider-
ing the excellent performance of the SVM in the small-size
sample classification tasks [37], we select it as a classifier to
complete the validness judgment of original inputting audios.
Model parameters called radial basis function (RBF) and class
weight are set to “nonlinear kernel” and “balanced.” SVM is
trained offline and hence time efficient.

B. Spectrum Segmentation

Word and Phoneme Determination: Phonemes determina-
tion is the basis for further extracting ERP/ERVP from original
inputting commands. In LiveProbe, this process is divided into
two steps. We first utilize an offline automatic speech recog-
nition model CMUSphinx [38] to identify words in inputting
commands. Due to each word consisting of fixed phonemes,
our task is to match critical frames and their features with
corresponding phonemes. Following that, LiveProbe obtains
a feature vector, including 12 MFCC coefficients and its
new delta version [39] from each frame. To recognize each
phoneme from its framewise feature vector, we trained a DNN
model with two hidden layers and each with 300 units; since
TIMIT2 consists of 61 phonemes, we construct 3-states HMM
with for each phoneme and hence 183 classes altogether. All
the labels of frames are obtained by an alignment from a
joint HMM-DNN system. For the DNN module, parameters
are set as follows: stochastic gradient descent is utilized with
a mini-batch size of 128; the learning rate is 0.1 for each
mini-batch; cross-entropy is selected as a training criterion;
the sigmoid is set as activation function. In Fig. 7, we present
the likelihood of each phoneme state of another popular wake-
up word “Alexa.” In LiveProbe, we take the frame with the
highest probability as the first critical frame. All remaining
ones having likelihoods larger than experimentally acquired
threshold 0.08 are regarded as alternative keyframes.

Critical Time Frame: LiveProbe leverages a loop to deter-
mine other critical frames in turn in this unit. Each phoneme
consists of multiple time frames, and adjacent parts share sim-
ilar spectrum information. Therefore, it is needed to prune

2English speech contains a limited set of 61 basic phonemes, as described
in the TIMIT Acoustic Speech Corpus [35].
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Fig. 7. Phoneme recognition employing an HMM-DNN model.

redundancy frames and retain only critical ones, which reduces
the computational resource consumption and meanwhile repre-
sents liveness information. The most direct and effective way
to find critical frames is by calculating the similarity of any
two frames. High similarity means that the information they
contain is duplicated and hence just retaining one of them is
reasonable. We first put the 1st frame f1 of a phoneme into
the set Sframe and choose the latest frame in Sframe as cur-
rent frame. Then, we calculate the similarity between retaining
frames and the current one. Finally, adding the frame to Sframe
if its cosine similarity is small. LiveProbe loops this process
until all critical frames are added in Sframe.

C. Feature Extraction

In this section, LiveProbe rapidly and accurately matches
inputting voice and registered profiles in Critical Frame
Matching. Subsequently, we introduce the process of choosing
the signal part with high robustness when environment factor
changes, for completing ERP/ERVP reconstruction. Finally,
LiveProbe extracts effective fine-grained liveness features and
then feeds them into our classifier model for distinguishing
speakers.

Critical Frame Matching: On the one hand, voice-enabled
devices always support multiple users to register for expand-
ing usage base, hence increasing data storage cost. On the
other hand, obtaining more voice samples about authentic
users means being more comprehensive to characterize iden-
tity information; thus we add legitimate samples after each
successful liveness detection to the database (as described in
Section V-D). The above two steps undoubtedly take incre-
ments in data matching time and hence a compromise for user
experience. To get out of this dilemma, we utilize a quick and
accurate data matching approach relying on LSH and its LSH
Function Family [24] is defined as follows: & = {' : $ → µ}
is expressed by (D, cD, θ1,θ2), which is sensitive for any
ρ1, ρ2 ∈ $:

1) ‖ρ1, ρ2‖s ≤ D then Pr& ['(ρ1) == '(ρ2)] ≥ θ1;
2) ‖ρ1, ρ2‖s ≥ cD then Pr& ['(ρ1) == '(ρ2)] ≤ θ2.

where ‖ρ1, ρ2‖s is the distance of feature vectors ρ1 and ρ2
and $ is the domain of all feature vectors. In LSH, c is larger
than 1 and ρ1 > ρ2. Given a feature vector pair µ, we project
two vectors in a hash table by the Euclidean distance-based
LSH function ha,b : Rn → µ

ha,b(ν) =
⌊

aTν + b
W

⌋
(4)

where a is a random vector with all elements chosen inde-
pendently from a Gaussian distribution and W is the width

of each hash bucket. b is a real number randomly selected
from the bucket interval [0, W). As two vectors belong to the
same speaker, they have identical hashed addresses and hence
leading to a bucket collision in hashing. Referring to [24], the
probability of ρ1 and ρ2 collision for the defined LSH in (4) is

Pr
a,b

[
ha,b(ρ1) = ha,b(ρ2)

]
=

∫ W

0

1
d
χs

( t
d

)(
1 − t

W

)
dt (5)

where ‖ · ‖s measures the distance of two vectors, and χs(·) is
the probability density function of s-stable distribution. We can
learn from (5) that with a distance W, the probability becomes
larger when d is smaller. Jointly considering (4) and (5), the
LSH project similar feature vectors into the same hash bucket.
In LiveProbe, we input the matched vectors into ERP/ERIP
reconstruction module for restoring polluting parts induced by
environment factor changes.

ERP/ERVP Reconstruction: The main environment factor
is relative position changes between users and voice-enabled
devices, which makes ERP/ERVP differences across inputting
voices and registered ones becoming larger, hence rejecting
successful detection of authentic users. The forming process
of these differences is complex and unpredictable, determined
by the multipath effect and energy attenuation. To overcome
its interference, we first employ MODWT [40] to perform
multiscale and high-resolution difference analysis of sensed
signals at multiple positions. MODWT essentially decomposes
original signals into multiple scales containing detail υk and
approximation ςk coefficients in frequency bands as follows:

υ
(L)
k =

∑

z∈Z

xzg
(L)

n−2LLk
(6)

ς
(l)
k =

∑

z∈Z

xzh
(l)
n−2lLk

(7)

where L is the number of decomposition levels (set as 8 in
LiveProbe) and l ∈ {1, 2, . . . , L}. By experiment analysis, dis-
tinct positions present υk and ςk variations only in a few bands.
We attribute this case to a reason: the energy distribution of
human voice is concentrated in a few frequency bands, and
they can still ensure the dominant status on energy distribution
even if the position changes. Based on this observation, we cal-
culate relative coefficient changes of inputting and registered
ones at each level (making υ(1)

k as an instance)

diff =
sum

(
υ

(1)
k − υ

(1)
k

)

sum
(
υ

(1)
k

) (8)

where υ(1)
k is the detail coefficient of an inputting frame. Then,

we replace coefficients of the inputting data using the regis-
tered one when their relative changes diff larger than 0.86. This
empirical choosing is decided by our experiments as described
in Section VI-E. Finally, the coefficients of all levels are
obtained, and the inverse transformation is used to complete
time signal reconstruction using current coefficients. Fig. 8
displays ERPs of one inputting voice frame captured from four
positions (i.e., 0◦&1 m, 90◦&1 m, 0◦&2 m, and 90◦&2 m) rel-
ative the device HUAWEI Meta30 Pro and their reconstructed
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Fig. 8. Original ERPs of one critical frame in /a/ depicted in (a) and their
reconstructed versions presenting in (b).

versions. We can observe that they share consistent envelopes
even if relative positions change.

Fine-Grained Feature Extraction: After obtaining recon-
structed ERP/ERVP, fine-grained features are extracted to
represent uniquely static articulator structure and dynamic
human vocal organ adjustment. LiveProbe completes each
ERP’s feature extraction from envelopes in both time (sig-
nal morphology) and frequency (signal composition) domains.
We first focus on statistic features due to their stability on
local anomalies, which capture value/distribution properties of
ERP envelope. To be specific, LiveProbe applies skewness to
measuring the symmetry of value distribution’ left and right
areas, kurtosis to estimating the tailedness differences com-
pared to a normal distribution, and crest factor to counting the
extreme peak significance for one distribution. Following that,
we divide 140 frequency bands into 14 subblocks and calculate
their local features. This operation is inspired by that the enve-
lope and amplitude across frequency bands are significantly
different as shown in Figs. 3 and 4, thus their contributions
to the uniqueness of ERP/ERVP are distinct. The local feature
vector consists of mean absolute value, median absolute devi-
ation, variance, entropy, power, interquartile range, and root
mean square. Furthermore, we search for the local minimums to
locate and segment each wave cycle in ERP envelopes and then
extract features as the aforementioned local part. To sum up,
the feature vector of each ERP covers three components, that
are statistics, local, and wave characteristics. Considering that
LiveProbe is mounted on smart terminals with limited com-
putation resources and traditional machine learning models
cannot handle high-dimensional data, we choose cost-effective
feature parts to feed into our detection model. To achieve this
goal, we leverage principal component analysis [41] that is a
common way to remove data redundant information for com-
plete dimensionality reduction and retain top-71 feature for
each ERP. We also visualize final feature vectors from five
speakers in 2-D space using t-SNE [42] in Fig. 9. We can
observe that the distributions of human and electronic speakers
are significantly diverse, indicating the effectiveness of our
feature extraction and dimensionality reduction.

Fig. 9. Feature vector distributions of five speakers in 2-D space.

Fig. 10. Structure of the liveness detection model in LiveProbe (features of
one phoneme’s critical frames as inputting).

D. Detection Model

Compared to existing common one-time mechanisms,
LiveProbe’s detection model needs to meet extra two goals:
1) ensuring user experience when detection failures occur (not
caused by spoofing samples) in a few frames and 2) securely
utilizing newly adding authentic samples that may dilute the
similarities of registered profiles. Fig. 10 displays the structure
of our liveness detection model, making four registered users
an example. Subsequently, we introduce its workflow after
receiving inputting feature vectors corresponding to critical
frames of one phoneme. Due to multiple user data stored in
our database, LiveProbe leverages the LSH function to project
inputting vectors into hash buckets. Then, the Euclidean dis-
tances between unlabeled and registered users’ features are
obtained. A registered user has the smallest distance (i.e., the
largest similarity) is selected as the inputting vector’s candidate
identity and his/her features combined with inputting ones are
formed feature pairs. Finally, they are fed into trained SVM,
and the detection result is output as 0/1. The role of SVM
is to judge if two feature vectors of one pair belong to the
same user.

Goal One: Voice signals are sensitive to surrounding envi-
ronments and thus detection failure inevitably occurs even
inputting authentic user voices. For LiveProbe, ensuring the
successful passing of authentic samples is critical to user expe-
rience. Inspired by the decision voting mechanism [25], our
model adequately considers the detection results of multiple
frames in each phoneme to improve model robustness. If the
number of outputting detection results 1 is more than 0, current
users are authentic, and vice versa.

Goal Two: In common cases, the number of registered sam-
ples determines the comprehensiveness of representing user
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identity information. Nevertheless, LiveProbe only requires
users to utter a few voice commands to shorten registration
times and the total expenditure takes about 2 min. This case
makes our method obtaining not enough registration data and
thus LiveProbe chooses to add successfully verified inputting
feature vectors to the database after each liveness detection.
Note that newly added samples should not dilute the similari-
ties of existing registration ones, for ensuring system security.
Thus, we first obtain the averaging values of all dimensions in
registration features belonging to each phoneme and thereby
obtain the centroid feature vector. Then, LiveProbe calcu-
lates the Pearson correlation coefficient (PCC) [43] of newly
inputting and centroid vectors and then adds inputting samples
to the database if their PCC is larger than the experimentally
empirical similarity threshold 0.9.

SVM Training: The role of SVM in LiveProbe is to
judge two matched feature vectors whether belonging to
the same user. We traverse every register feature vector
and select five nearest ones in the hash bucket while their
PCC larger than 0.9, labeled as 1. Then, the same num-
ber of spoofing samples are random selected and combine
with registered ones to form feature vectors, labeled as 0.
After feeding these samples into initial SVM, it leverages
the standard grid search method to adjust parameters, i.e.,
loss: {epsilon_insensitive, squared_epsilon_insensitive}, tol:
{0.2, 0.15, 0.1, 0.05, 0.01}, max_iter: {200, 500, 1000}.

VI. IMPLEMENTATION AND EVALUATION

In this section, we introduce experiment setups, such as
utilized IoT device types and performance evaluation environ-
ments. Subsequently, the process of constructing human voice
and spoofing sample data sets is described. Finally, we dis-
play overall liveness detection performance, the effectiveness
of LiveProbe to defend potential attacks, and the impacts of
experiment factor adjustment.

A. Experiment Setup

LiveProbe collects registered voices of authentic users in a
quiet office (with background noise about 20 dB) and then
evaluates detection performance at a living room of personal
residences (about 30 dB) and a standard lab (about 45 dB)
at our school. HUAWEI Mate30 Pro is denoted as the legal
recording device and authentic users hold it with habitual posi-
tions to complete registered voice inputting. Other devices,
including smartphones (Samsung A9 star, Apple IPhone12,
and HUAWEI P30), loudspeakers (Newmine BT51, Baidu
DuSmart, SONY SRS-XB13, and JBL GO2), and tablet
PC (HUAWEI MatePad Pro and Apple iPad 8th-Gen), are
leveraged to replay spoofing audios. Relying on real usage
scenarios, users adjust the relative distances between speakers
and devices from 1 to 4 m with an interval of 1 m. For the
built-in microphones of these devices, we set the default sam-
pling rate as 44.1 kHz. For obtaining every detection result,
LiveProbe inputs all matched frames of one phoneme. Last
but not least, we do not apply any time and space limitation
to attackers to fully measure LiveProbe security.

B. Data Collection

In this section, we introduce the data set construction of
LiveProbe, which consists of two parts, i.e., self-collected
house-in and public.

House-in Data Collection: There are 24 users (12 males
and 12 females) participating in the experiments whose ages
ranged from 22 to 34. They are undergraduate/graduate stu-
dents recruited by our institute. Before data collection, we
inform them about the purpose of LiveProbe and ask them to
emit voices as usual for operating VAs. Participants can freely
select commands from full list3 of the Apple VA. Each of
them chooses 45 commands from 15 categories in the personal
office, and 15 commands are used as registration profiles while
others as verification ones. Each user also offers 30 commands
in the residence and lab, respectively, for evaluating detection
performance across environments. Finally, the human voice
data set contains commands with a total number amounting
to 2520 (i.e., 15 × 3 × 24 and 15 × 2 × 24 × 2) commands.
Moreover, we obtain spoofing commands by replaying col-
lected human voices employing nine electronic speakers and
recording them with the same smartphone Meta30 Pro. By
adjusting the relative distance of 1, 2, 3, and 4 m, every device
replays randomly selected 15 verification commands of all
participants. We totally obtain 12 960 (i.e., 4 × 9 × 15 × 24)
spoofing voice samples by the self-collected way. Note that as
verifying the effects of experiment setting parameters on detec-
tion performance, we will collect additional data as supplement
parts that are described in the corresponding sections.

Public ASVspoof 2017 Data Set: To comprehensively eval-
uate LiveProbe performance, we also utilize human voices
and spoofing samples of a public replaying attack database
ASVspoof 2017. The spoofing voice samples collected span
about 170 sessions with distinct environment settings. It
employs 26 malicious devices consisting of professional audio
equipment, smartphones, tablets, etc. We select a subdata
set named “Evaluation” to test LiveProbe, due to it owning
the largest number of samples (i.e., 1298 registered profiles
and 12 008 spoofing ones from 24 speakers). After filtering
unrecognized/low-similarity parts, we finally obtain 952 reg-
istered and 10 249 spoofing samples. 50% of human voices is
leveraged to register identity information and the remaining
part to verify liveness detection performance.

C. Metrics

We apply three metrics to evaluate the experiment
performance of LiveProbe. FAR measures the rate of a spoof-
ing voice wrongly accepted by LiveProbe and being classified
as a legal identity. FRR presents the rate of authentic samples
falsely rejected by the liveness detection and regarded as a neg-
ative label. Accuracy is on behalf of the overall probability that
our approach accurately accepts authentic and rejects spoof-
ing samples. One satisfactory liveness detection mechanism
should keep a high accuracy while low FAR and FRR.

3https://www.insightcruises.com/pdf/mm17_pdfs/LeVitus/Full_list_Siri_
Commands.pdf
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Fig. 11. Liveness detection performance of LiveProbe on house-in and public
data sets in (a), while the FARs under three potential attacks in (b).

D. Overall Performance Evaluation

Verifying Overall Liveness Detection Performance: We ver-
ify the performance of LiveProbe in two data sets, which
are house-in and public. The voice samples of all users and
electronic devices are feeding into our models and we com-
pare their output labels with the true ones. Fig. 11(a) depicts
the averaging values of three metrics. In self-collected data,
LiveProbe owns the FAR of 0.51%, FRR of 1.12%, and
Accuracy up to 99.17%. Nevertheless, FRR is increased to
4.42% as inputting public data, and FAR is increased by
0.56%. By analyzing the original voice signals, we reveal
the reason as follows: compared with in-house data, users
utter registered voice phrases much more quickly in the pub-
lic one and LiveProbe cannot obtain enough time frames
and liveness features to represent speaker-type information.
Fortunately, although the performance evaluated by ASVspoof
2017 is a little worse, it still owns satisfactory security and
user-friendliness. Moreover, LiveProbe can further improve
the accuracy by combining labels of multiple phonemes as
described in Impact of Utilized Phoneme Amount.

Detecting Potential Attacks: Replaying attacks is regarded
as the most practical way to spoof existing user authentica-
tion/liveness detection systems. These malicious voice samples
are always from four sources (i.e., prerecording authentic user
voices in public scenarios/private areas, modulating baseband
signals to frequency ranges greater than 20 kHz for ultrasound
versions [17], modifying collected voice spectrum to relieve
the distortion induced by electronic speakers [10], and gen-
erating spoofing fake samples by deep learning [32]) and all
launched by replaying way. We regard 15 verification samples
of each registered user as original voices, then modulate and
modify them referring to [10] and [17], while generating 1000
faking samples by [32]. Finally, we emit these spoofing voices
and detect them by LiveProbe. The FARs under four attacks
are shown in Fig. 11(b) and the simplest replaying prerecord-
ing voices is 0.71 in surprise, while others are 0.56, 0.62,
and 0.49. By analyzing the working principles behind the last
three ways, although trying to keep the initial characteristics of
human voices, they inevitably introduce new distortion caused
by nonlinear frequency responses of electronic devices and
imperfect spectrum trim. In fact, the value of FAR should be
lower because we currently have no time and space limitations
for attackers, which is impossible in real scenes. To sum up,
LiveProbe can ensure liveness detection security due to the
averaging FAR being 0.63% as defending against potential
attacks.

Fig. 12. FARs using nine different replaying devices.

Fig. 13. Detection performance as speakers at different positions.
(a) Illustration of speaker position. (b) FARs and FRRs on distinct positions.

E. Effects of Experiment Factor On Liveness Detection

Impact of Electronic Speaker Type: Electronic speakers
replaying audio cause distinct degrees of distortion because
of hardware defects. Thus, we investigate the detection
performance by employing nine portable devices of smart-
phones (i.e., 1) HUAWEI Mate30 Pro; 2) Xiaomi Mi 10s;
3) OPPO Reno6; 4) Samsung Galaxy S7; 5) Samsung Galaxy
S6), laptops (i.e., 6) Dell Inspiron 3511; 7) Lenovo New Air
14), and loudspeakers (i.e., 8) Newmine BT51; and 9) SONY
SRS-XB12) to lunch attacks. The built-in microphones of
these devices vary in size and quality, thus we leverage them
to fully evaluate LiveProbe’s performance. In Fig. 12, FAR
values across devices own small fluctuation (i.e., 0.38%). The
result indicates that employing common replaying loudspeak-
ers presents consistent attack abilities and their types have little
impact on detection accuracy.

Impact of Device Position: As we know, when relative
position changes, emitted voices experience attenuation and
multiple path effects, thereby making received signals vary.
Thus, the same speaker launches command at different posi-
tions and may lead to inconsistent detection results. To over-
come this issue, we have proposed ERP/ERVP Reconstruction
in LiveProbe. In this section, we evaluate its effective-
ness when launching voices at 15 positions as displayed in
Fig. 13(a). There is a 1-m interval between any two adjacent
positions. We let users or place electronic speakers at red spots
in order and account corresponding FAR/FRR. By analyzing
experimental results, we reveal that larger relative distances
bring a slight FRR increase, because of energy attenuation
affecting ERP/ERVP. For instance, the FRR values of 3rd and
15th positions are 1.32% and 2.76%. Nevertheless, such a
small fluctuation takes negligible impacts on user experiences
when joint liveness detection by multiple phonemes.

Impact of Utilized Phoneme Amount: For obtaining enough
features to represent user identity and improve system robust-
ness as failure judgment occurring in a few time frames,
LiveProbe leverages feature vectors from multiple phonemes
to complete liveness detection each time. We adjust the number
of phonemes from 1 to 7 and then calculate the performance
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Fig. 14. Detection performance of FAR and FRR as using distinct amounts
of phonemes.

Fig. 15. FRRs under three environment noise levels.

of LiveProbe. As shown in Fig. 14, both FAR and FRR are
decreased with increasing phoneme amount. When setting it as
7, FAR is 0.24% and FRR is 0.45%, presenting a satisfactory
accuracy. Nevertheless, processing more phonemes each time
brings large resources and time costs. Thus, choosing phoneme
amount is a balance issue according to practical scenarios. In
LiveProbe, the amount is selected as 4 relying on experiment
results and computation resources.

Impact of Environment Noise Level: The liveness detec-
tion performance of LiveProbe in distinct noise environments
is one critical indicator of measuring system robustness.
Therefore, we let users register personal voices in a quiet
office (20 dB) and then evaluate FRR in other two rooms,
i.e., a living room (30 dB) and a lab (45 dB). Each user
offers extra 30 voice commands in each environment in addi-
tion to the basic database. We can observe in Fig. 15 that
FRR becomes large with noise decibel increasing, but the
averaging difference value is only 0.28%. Thus, after the pro-
cess of Background Noise Removal module, the effects of the
background noise of common usage scenarios are significantly
relieving.

Impact of ERP/ERVP Reconstruction Threshold: In
ERP/ERVP Reconstruction, LiveProbe requires to set a thresh-
old whether should be replaced to judge coefficients in the
current frequency range. In fact, the threshold setting is the
result of jointly considering security and user-friendliness of
LiveProbe. To be specific, if it is small, lots of original
information of inputting voice is discarded and hence the ratio
of successful spoofing events becomes large; on the contrary,
some authentic samples cannot pass the liveness detection
because of a few differences between it and registered ones.
We adjust the threshold from 0.70 to 1.00 with a step of 0.02
and the values of FAR/FRR are presented in Fig. 16. As it is
0.86, there are similar values of two metrics, which is the best
choice to balance detection accuracy referring to the definition
of Equal Error Ratio. Therefore, the default value of threshold
is 0.86 in LiveProbe.

Fig. 16. Detection performance variation as adjusting the ERP/ERVP
reconstruction threshold.

VII. DISCUSSION AND LIMITATION

Current audios are collected when devices and users co-
locate in one room. Nevertheless, some users hope to manip-
ulate devices in a long range such as crossing multiple rooms.
In this case, voice signals will encounter severe multipath
interference and energy attenuation, which induces ERP distor-
tion. However, not only for liveness detection, the performance
of all voice-related services are compromised in non-line-
of-sight (NLOS) scenarios. Thus, we should track the latest
progress of voice recognition in NLOS scenes to ensure the
performance of liveness detection mechanism.

LiveProbe extracts liveness features relying on voice sig-
nals sensed by a built-in microphone. Nevertheless, current
voice-enabled devices own different numbers of built-in micro-
phones. For example, Bluetooth loudspeakers always have
more than six ones. A large number of microphones means
that the devices can obtain more voice signals propagating
from multiple directions and positions to represent human
liveness traits. Therefore, in future work, we should make
LiveProbe compatible with distinct device types to further
improve system implementability.

Except for verifying the effectiveness of typical attacks
(i.e., recording, spectrum modulation, ultrasound injection, and
deepfake types), a recent study [44] proposed laser injec-
tion for attacking VA systems, which can physically convert
light to sound and make VAs conduct malicious commands.
The implementation of this attack needs complicated device
settings, including a telephoto lens, laser mount, audio ampli-
fier, laser current driver, etc. Therefore, we fail to replicate
such a complex experiment configuration. In future work, we
will continue to replicate it and verify the effectiveness of
LiveProbe in resisting it.

VIII. RELATED WORK

The cases of spoofing VAs through replaying [45], syn-
thesizing [10], and modulating [17] ways increasing the risk
of privacy leakage, receive human continuous and extensive
attention. Among them, the implementation strategy of replay-
ing is simple and surprisingly effective, resulting in 31% equal
error rate (EER) [46]. Therefore, researchers put significant
efforts into building liveness detection modules to defend
against this attack type. Existing detection works are usu-
ally divided into two categories classified by distinct security
levels, namely one-time and continuous mechanisms.

The earliest studies verifying user identity always lack con-
tinuous protection measures during entire interaction sessions.
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VoiceLive [9] proposes that human speaking motion brings
dynamic time-difference-of-arrival changes reflected by audio
signals, which is unique and only exists in human voices.
Another study VoiceGesture [47] employs a smartphone to
transmit high-frequency sounds from a built-in speaker and
sense the reflections by a microphone, to represent Doppler
shifts induced by human articulatory motion as liveness traits.
Moreover, Shiota et al. [48] and Wang et al. [49] declared that
distinguishing speaker types by detecting exhalation noises
of human utterance is effective, while they need to keep
mouth very close to microphones. Recent works also leverage
extra sensing approaches, such WiFi [45], [50] and mmWave
[13], [51] to capture user-specific oral organ movements
induced by speaking. Expect for analyzing structural differ-
ences between electronic speakers and humans, some existing
systems require users to reproduce/utter random actions [16] or
phases [52] to ensure that they are authentic users. Compared
with a continuous detection mechanism verifying user iden-
tity during interaction sessions, the above-mentioned one-pass
methods possess lower security. Moreover, the collection of
liveness traits used in them requires either exquisitely con-
figuring environments or equipping with customized sensing
sensors.

As is well known, after wake-up word activation, VAs
backstage monitor voice inputting and execute correspond-
ing instructions. Therefore, continuous authentication/liveness
detection is critical for voice-enabled systems’ user privacy
protection. However, such research is just emerging and exist-
ing works still face challenges in moving toward practical
scenarios. For instance, Lin et al. [53] declared that using
continuous-wave radar can construct a user-specific high-
resolution cardiac motion-sensing platform to continuously
verify user identity. VAuth [12] installs an accelerometer on
wearable devices like eyeglasses attaching to human skin for
sensing voice-dependent body surface vibrations for ensuring
the commands belonging to the owner. However, the above
two works need customized sensors and hence cannot be
directly applied to voice-enabled COTS devices. Furthermore,
CaField [8] and EarArray [14] propose that a physical acoustic
field is created as the sound propagates over the air, and
energy attenuation level can readily distinguish speaker types.
Recently, VibLive [54] transmits ultrasounds and receives
reflected versions to obtain bone-conducted vibrations and air-
conducted voices when users speak. Although these methods
perform well on detection accuracy, they require speakers at
preset/registered positions toward microphones across distinct
liveness detection sessions and hence inevitably compromising
user experiences.

Problem Definition: After reviewing the existing works,
there are two critical problems that should be solved, which
impede the implementation of desired voice liveness detec-
tion mechanism. On the one hand, wearing extra/customized
sensors for feature collection can extremely compromise user
experience. On the other hand, one-pass mechanisms cannot
protect user privacy security during entire service sessions.
To overcome the two challenges, LiveProbe improves the
performance (i.e., security and user-friendliness) of continu-
ous detection mechanisms in the following two aspects: first,

the proposed ERP effectively representing structure differ-
ences between human articulator and electronic loudspeaker,
can continuously track speaker type and hence ensuring high
security; second, it only employs the built-in microphone for
liveness trait collection without modifying devices; users need
not carry any additional sensors hence user-friendliness.

IX. CONCLUSION AND FEATURE WORK

In this article, we have proposed a continuous liveness
detection mechanism named LiveProbe relying on unique
ERPs for voice-enabled IoT COTS. To overcome the chal-
lenges induced by environment factor variation and limited
computation resources, we have proposed a series of ingenious
approaches. For instance, we have leveraged the MODWT-
based method to reconstruct polluted voices in multiscale
frequency bands and utilize the LSH-based to quickly match
similar feature vectors. Finally, we have conducted experi-
ments using in-house and public data sets to evaluate the
detection performance of LiveProbe, with a satisfactory 0.51%
FAR and 1.12% FRR. With recent advances in beamform-
ing technology in voice recognition, IoT devices can cap-
ture high-quality and targeted human audio, thereby further
improving existing liveness detection mechanism performance.
Especially, inspired by the study focusing on AI for next gen-
eration computing [55], the edge computing technology can
help devices with limited computation resources endow voice-
driven services. Moreover, along with the progress of AI,
the neural network structure and performance can be further
optimized, which will promote the development of VAs.
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