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Abstract—Viral marketing is becoming important due to the
popularity of online social networks (OSNs) and the fact that
many users have integrated OSNs into their daily activities,
e.g., they provide recommendations to their friends on the
products they purchased, or they make decision based on received
recommendations. Nevertheless, this also opens door for “shill
attack”: dishonest users may give wrong recommendations so as
to distort the normal sales distribution. In this paper, we propose
a detection mechanism to discover these dishonest users in OSNs.
In particular, we present two fully distributed algorithms to
detect attackers in both (1) the baseline shill attack and (2)
the intelligent shill attack. We quantify the performance of
our algorithms by deriving the probability of false positive,
probability of false negative and distribution function of time
needed to detect these dishonest users. Extensive simulations are
carried to illustrate the impact of shill attack and the effectiveness
of our detection algorithms. The methodology we present here
will enhance the security level of viral marketing in OSNs.
Index Terms—Shill Attack; Online Social Networks; Perfor-

mance Evaluation

I. Introduction
In the past few years, we have witnessed an exponential

growth of user population in OSNs. Popular OSNs such as
Facebook, MySpace and Twitter have attracted millions of
active users. Moreover, many users have integrated these sites
into their daily activities, e.g., users interact with their friends
frequently and they often seek or receive recommendations
from their friends before they do any purchase. On the other
hand, when one buys a product, she may make recommen-
dations to her friends such that they may be influenced to
do further purchase. Such word-of-mouth effect makes the
purchase behavior spread very fast just like a virus. This
phenomenon is called viral marketing, and it is very effective
to increase sales and revenue for companies [5], [6], [9], [13].
However, viral marketing also opens door for potential

security attack as people may behave maliciously to make
wrong recommendations. For example, firms may hire some
users in an OSN to promote their products, worse yet, they
may even consider paying users in an OSN to provide mis-
leading recommendations on their competitors’ products. Such
dishonest recommenders are known as shills [4], [8], and
due to the misleading recommendations they made, even if
a product is of low quality, people may still be misled to
purchase that product. Furthermore, products which have high
intrinsic quality may lose out since some potential buyers are
diverted to other low-quality products. This is known as the
shill attack and the aim of this paper is to address the problem

of such attack in OSNs, in particular, how can a user in an
OSN discover and detect foes from a set of friends during a
sequence of purchases? The contributions of our work are:

• To the best of our knowledge, this is the first work that
provides a mathematical model to describe how to detect
dishonest recommenders in OSNs.

• We allow shill attackers to be intelligent in sense that
they may probabilistically act as honest persons in the
hope to avoid being detected.

• We propose fully distributed and randomized algorithms
to detect shills in OSNs, and also provide analytical
results on the performance of our detection algorithms.

• Via extensive simulation, we show the severe impact of
shill attack and also validate the performance analysis of
our detection algorithms.

The outline of the paper is as follows. In Section II, we
formalize the model of recommendations in OSNs and state
two forms of shill attacks. In Section III, we present two
distributed detection algorithms, and derive the performance
measures of the algorithms. In Section IV, we show the impact
of shill attacks, as well as the effectiveness of our algorithms.
Related work and conclusion are given in Section V.

II. Model for Viral Marketing and Shill Attack

In this section, we first provide the notations for viral mar-
keting, then we explore and define the attack strategies. Since
we address the problem of detecting dishonest recommenders
in an OSN, we model it as an undirected graph G = (V, E),
where V is the set of nodes and E is the set of undirected
edges. Due to the fully distributed nature of our detection
algorithms, we only focus on a particular node, e.g., node
i, which is called the detector. Without loss of generality, we
assume detector i has N neighbors, or |N i| = N .
Let P = {P1, P2, . . . , PM} be a set of M substitutable

products. Two items are substitutable if they are compatible,
e.g., polo shirts from brand X and brand Y are substitutable
goods from customers’ points of view. In particular, firm Fi

produces product Pi. These firms manufacture their products
and compete in the same market. We assume people have
a long term demand on these products and they will decide
which product to purchase at regular time interval. Therefore,
P may represent the set of products like: daily products, milk,
cereal or distilled water, etc., in which people perform regular
weekly purchase. Let q be the evaluation function that reveals



the intrinsic quality of a product and we assume that each
product is either of high quality or of low quality. We have

q(P ) =

{

1 if product P is of high quality,
0 if product P is of low quality. (1)

We model the purchase experience of detector i as a
discrete time process. We take the duration between her two
continuous purchases as one round, and time proceeds in
rounds t = 1, 2, .... In other words, at each round, detector
i only purchases once, and after she purchases a product,
e.g., Pj , she knows the quality of this product, i.e., q(Pj).
Moreover, during the period of one round, she may also receive
recommendations from her neighbors in N i: some may give
high or low rating on a given product.
Definition 1: A positive recommendation on product P
(RP (P )) always gives high rating on P regardless of its
quality. A negative recommendation on product P (RN (P ))
always gives low rating on P regardless of its quality. For-
mally, we have

RP (P ) = H,RN (P ) = L,

where H means high rating and L means low rating.
Definition 2: A correct recommendation on product P
(RC(P )) gives high rating on P if it is of high quality and low
rating on P if it is of low quality. A wrong recommendation
on P (RW (P )) gives low rating on P if it is of high quality
and high rating on P if it is of low quality. Formally,

RC(P )=

{

H if q(P ) = 1,
L if q(P ) = 0. RW (P )=

{

L if q(P ) = 1,
H if q(P ) = 0.

We define FC(t) ∈ N i as the set of neighbors of detector i
who give her correct recommendations at round t. Similarly,
we define FW (t) ∈ N i as the set of neighbors of detector
i who give her wrong recommendations at round t. At each
round, some neighbors of i may not give any recommendation
at all, we denote this set as FN(t). Obviously,

N i = FC(t) ∪FW (t) ∪FN(t) ∀i ∈ V, t = 1, 2, 3, . . . . (2)

The activities of honest users can be described as follows.
When an honest user gives recommendations to her friends,
if she knows the true value of the product (e.g., she buys
the product), then she gives correct recommendations. On the
other hand, even if she does not know the true value (e.g.,
she does not buy it), she may still give recommendations
based on recommendations received from friends, e.g., giving
recommendations based on majority rule, i.e., if more than half
of her friends give her positive (or negative) recommendations,
then she also gives positive (or negative) recommendations to
others, otherwise, she gives no recommendation. In this case,
her given recommendation may not be correct. Therefore, if
detector i receives wrong recommendations, she can not be
sure whether the recommenders are dishonest or not. In other
words, neighbors who give wrong recommendations are not
definitely dishonest, but just potentially dishonest. Since it
is also possible that dishonest neighbors do not provide any

recommendation, the set of all potential dishonest neighbors
at round t is:

D(t) = FW (t) ∪ FN(t) t = 1, 2, 3, . . . . (3)

Let us now define the activities of dishonest users. We
consider two potential attack strategies. As stated before,
dishonest users want to promote a particular product, e.g.,
product P1, and mislead other users to purchase it. A simple
strategy for dishonest users is to recommend to others that P1

is of high quality regardless of its real quality, and at the same
time, recommend other products as of low quality (or bad-
mouthing). If a product which is not promoted by dishonest
users is of low quality, then dishonest users have no benefit
to give high rating on it, therefore, all recommendations on
this product must be correct and it has no impact on our
algorithms. Without loss of generality, we assume that all other
products, i.e., P2,...,PM , are of high quality. Denote Ra as the
recommendation of the attacker. Therefore, the baseline shill
attack can be formally stated as:

Ra = RP (P1) ∧
[

∧M
j=2RN (Pj)

]

. (4)

Another more intelligent attack strategy for dishonest users
is to probabilistically give correct recommendations on other
products instead of keeping performing bad-mouthing. The
reason why a dishonest node chooses such attack strategy is to
confuse the detector so as to make the detection more difficult.
Denote R∗

a as the recommendation of the attacker using such
strategy. Formally, we define this intelligent shill attack as:

R∗
a = RP (P1)∧

[

∧M
j=2

(

δRC(Pj) ∨ (1− δ)RN (Pj)
)]

, (5)

where δRC(Pj) means giving correct recommendation on
product Pj with probability δ, and the second term represents
the bad-mouthing action. We will show in later section how δ
may influence our detection mechanism.

III. Distributed Detection Algorithms
In this section, we present our detection algorithms in detail,

as well as the performance analysis of the algorithms. We first
present the detection algorithm for the baseline shill attack,
then we generalize it to handle the intelligent shill attack.

A. Detecting Baseline Shill Attack
In this case, dishonest users give positive recommendations

on the product they aim to promote, e.g., P1, and give negative
recommendations on all other products. The baseline attack is
not only simple to realize by an attacker, but more importantly,
we want to use it to illustrate our detection framework so
that readers can gain a better understanding on the detection
process. Let Si(t) represent the set of potentially dishonest
neighbors of detector i until round t. Initially, detector i is
conservative and considers all her neighbors as potentially
dishonest persons, i.e., Si(0) = N i. As time proceeds in
rounds, the suspicious set shrinks, i.e., |Si(t)| ≤ |Si(t − 1)|,
and after sufficient number of rounds, we expect that it only
contains dishonest neighbors. Based on the above description,
we formalize the detection algorithm at round t as follows.



Alg. A1: Detection Algorithm for the Baseline Shill Attack

if (FW (t) is empty): /* there is no wrong recommendation */
Si(t)← Si(t− 1);

else: Si(t)← Si(t− 1) ∩D(t);

The rationale of this algorithm is as follows. If detector i
does not receive wrong recommendation, she can not shrink
the suspicious set, as her dishonest friends may also make
correct recommendations, e.g., product P1 is of high quality
and i buys it. On the other hand, if detector i receives some
wrong recommendations, then all her dishonest friends must
be in the set D(t), and Si(t) can shrink to Si(t− 1) ∩D(t).
To quantify the correctness of our detection algorithm, we

propose two performance measures: (a) probability of false
negative Pfn(t), and (b) probability of false positive, Pfp(t).
Pfn(t) is the probability that a dishonest node is wrongly
regarded as an honest one at the end of round t. Note that,
after t rounds, detector i claims that a node j ∈ N i is dishonest
if and only if j ∈ Si(t). Therefore, Pfn(t) can be computed
as the probability that a dishonest neighbors of detector i is
not in Si(t) after t rounds, i.e.,

Pfn(t)=
# of dishonest neighbors of i that are not in Si(t)

total # of dishonest neighbors of detector i
.

(6)
On the other hand, Pfp(t) characterizes the error that an

honest node is wrongly regarded as a dishonest one. To
formally define this measure, observe that, all neighbors of
detector i are initially included in Si(0). After t rounds, if an
honest node still remains in the suspicious set Si(t), she will
be wrongly classified as a dishonest node. Therefore, we can
compute Pfp(t) as the probability of an honest node not being
removed from the suspicious set after t rounds, i.e.,

Pfp(t)=
# of honest neighbors of i which are in Si(t)

total # of honest neighbors of detector i
. (7)

One thing we need to mention is that, detector i only
knows her neighbors’ behaviors in each round, i.e., what
recommendations her neighbors provide. However, she does
not know which neighbors are dishonest, so she cannot count
the number of dishonest neighbors. In other words, Pfn(t)
and Pfp(t) can not be derived by definition, i.e., Equations (6
- 7). In the following, we focus on the derivation of Pfn(t)
and Pfp(t) only based on the information that detector i can
gain. In each round, after the purchase, detector i knows the
intrinsic value of the product she just purchased and which
friends provide her which type of recommendations (positive
or negative). Therefore, detector i can accurately decide every
received recommendation is a correct recommendation or a
wrong recommendation. Based on our detection algorithm A1,
if detector i does not receive any wrong recommendation at
round t, then that round is not effective in detection and
we say round t is not detectable. We use a notation d(t)
to indicate whether round t is detectable or not, d(t) = 1
means round t is detectable, and 0 otherwise. Furthermore,

detector i also knows the set D(t) for round t. We use a
tuple (d(t), D(t)) to represent the information i obtains at
round t. The set of all tuples until round t constitutes the
detection history of i, and we use notation H(t) to represent
it, i.e., H(t) = {(d(1), D(1)), (d(2), D(2)), ..., (d(t), D(t))}.
Now, we can derive Pfn(t) and Pfp(t) based on the detection
history H(t), and the results are summarized in Theorem 1.
Theorem 1: For the case of the baseline shill attack and
using algorithm Alg. A1 for detection, after t rounds, we have
Pfn(t) = 0 and Pfp(t) ≈

∏t
τ=1,d(τ)=1

|D(τ−1)∩D(τ)|
|D(τ−1)| .

Proof: please refer to the technical report [10].
Remark: Pfn(t) = 0 implies that dishonest recommenders
will be identified with probability one. Since Pfp(t) → 0 as
t → ∞, it implies that all honest friends will be removed
from the suspicious set eventually. Therefore, after sufficient
rounds, one can claim with high probability that a node is
dishonest only when she is in the suspicious set.
Now let us focus on quantifying the efficiency of the

detection process. In particular, we seek to determine the
expected number of rounds detector i needs to shrink the
suspicious set Si(t) until it only contains dishonest nodes.
Let R be the random variable denoting the number of rounds
needed for detection, and we have the following theorem.
Theorem 2: When the baseline detection algorithm Alg. A1
is used, R follows the distribution of P (R = r) =
∑r

u=1

(

r−1
u−1

)

pu
d(1−pd)r−u((1 − (1− phc)u)N−k − (1− (1−

phc)u−1)N−k), where phc is the probability of an honest
node giving correct recommendations at each round, pd is the
probability of a round being detectable and k is the number
of dishonest neighbors of the detector.
Proof: please refer to the technical report [10].
To derive phc, we assume that, when honest people make

recommendations based on their friends’ recommendations,
they adopt the commonly used majority rule [2], [12], which
is a special case of the linear threshold model [7]. Specifically,
for an honest person j, if more than half of her friends give
positive (negative) recommendations to her, she also gives
positive (negative) recommendations to others. Otherwise, she
does not give any recommendation. Based on this majority
rule, an honest person j gives correct recommendations if and
only if she buys a product or more than half of her friends give
her correct recommendations. By employing the local mean
field technique proposed in [14], [15], we can derive phc.
Lemma 1: If honest people adopt majority rule to provide
recommendations when they do not know the real value of the
product, then phc can be derived by following equations.

1−E[Y ] =(1−µ)
∞
∑

k=0

⌊ 1

2
(k+1)⌋

∑

j=0

P1(k+1)Cj
kE[Y ]j(1−E[Y ])k−j , (8)

1−phc =(1−µ)
∞
∑

k=1

⌊ 1

2
k⌋

∑

j=0

P0(k)Cj
kE[Y ]j(1− E[Y ])k−j . (9)

where µ is the market share of the product, P0(k) is the degree
distribution of the social network and P1(k) is the degree
distribution of descendant nodes in the social network.



B. Detecting Intelligent Shill Attack
Let us consider a more complicated but more advanced case

in which we allow dishonest nodes to be intelligent: they may
also give correct recommendations for products P2, . . . , PM .
In particular, these dishonest nodes give correct recommenda-
tions on P2 to PM with probability δ at each round. As stated
before, the goal of dishonest people is to attract more people
to purchase P1. Therefore, giving positive recommendations
on {P2, . . . , PM} goes against their objective. The reason
why a dishonest node wants to pretend as an honest node
is to reduce the possibility of being detected. In this case,
if detector i does not receive any wrong recommendation
at one round, she faces with the same situation as in the
baseline attack case, and she cannot shrink Si(t). On the other
hand, even if detector i receives wrong recommendations, she
still faces the difficulty of distinguishing friends from foes.
Because her dishonest neighbors may also give her correct
recommendations on {P2, . . . , PM}. Fortunately, this cannot
be the long-term action of the attackers since this goes against
their objective. To address the above challenge, we propose a
randomized detection algorithm which is stated as follows:

Alg. A2: Randomized Detection Algorithm for Intelligent
Shill Attack

if (FW (t) is empty): Si(t)← Si(t− 1);
else:
with probability p: Si(t)← Si(t− 1) ∩D(t);
with probability 1− p: Si(t)← Si(t− 1);

One thing we need to emphasize is that the randomized
detection algorithm can also handle other sophisticated attack
scenarios.To quantify the performance of Alg. A2, we still use
the same notations and performance measures defined before.
The results are stated in the following theorem.
Theorem 3: When Alg. A2 runs for t rounds, Pfn(t) =
1−( 1−δ

1−δk(1−phw)N−k )
P

t

τ=1
d(τ), where phw is the probability that

an honest node gives wrong recommendations on {P2, ..., PM}
at each round, Pfp(t) ≈

∏t
τ=1,d(τ)=1

|D(τ−1)∩D(τ)|
|D(τ−1)|

and R follows the distribution of P (R = r) =
r
∑

u=1

(

r−1
u−1

)

pu
d(1−pd)r−u

(

(1−(1−phc)u)N−k−(1−(1−phc)u−1)N−k
)

.

Proof: please refer to the technical report [10].
Remark: We can see Pfp(t) → 0, which means that the
suspicious set only contains dishonest recommenders. How-
ever, Pfn(t) does not converge to 0, which implies that the
dishonest recommenders may evade the detection, but one can
still effectively detect dishonest nodes (as we will show in Sec.
IV) as long as Pfn(t) is not too large when Pfp(t) converges
to 0. Therefore, we can identify all dishonest recommenders
by performing the detection process multiple times.
To compute phw, note that, an honest node gives wrong

recommendations only when more than half of her friends give
her wrong recommendations. Moreover, all dishonest nodes
give wrong recommendations on the products they do not
promote. By applying the model in [14], [15], we have:

Lemma 2: If honest nodes use the majority rule to provide
recommendations when they do not know the real value of the
product, phw can be derived through the following equations.

1−E[Y ] =(1−η)
∞
∑

k=0

⌊ 1

2
(k+1)⌋

∑

j=0

P1(k+1)Cj
kE[Y ]j(1−E[Y ])k−j , (10)

1−phw =(1−η)
∞
∑

k=1

⌊ 1

2
k⌋

∑

j=0

P0(k)Cj
kE[Y ]j(1 − E[Y ])k−j . (11)

where η is the probability of a person being dishonest.
To estimate pd, the probability of a round being detectable,

note that, for Alg. A1, a round is detectable when FW (t) ̸=
Ø. But for Alg. A2, a detectable round happens only when
detector i receives wrong recommendations, i.e., FW (t) ̸= Ø,
and it is not ignored by the randomized algorithm. Therefore,

pd =

{

P (FW ̸= Ø) for Alg. A1,
P (FW ̸= Ø)p for Alg. A2. (12)

Note that, one can estimate P (FW ̸= Ø) via the detection
history, e.g., approximate it as the fraction of rounds wherein
detector i receives wrong recommendations.

C. Overall Detection Algorithm
In previous subsections, we present the detection algorithms

at round t for different attack scenarios. Observe that, when
we execute the detection algorithm for t rounds, we claim that
all nodes in Si(t) are dishonest nodes. This claim is accurate
with very high probability as long as the algorithm runs for
enough rounds. To balance the detection accuracy and detec-
tion efficiency, we terminate the algorithm when probability
of false positive Pfp(t) is lower than a predefined threshold
P∗

fp. The termination criterion can be justified because even if
the computation of Pfp(t) is not an exact result, it is a good
approximation, which is also shown by simulation.

Alg. A3: Overall Detection Algorithm

t← 0;
do {

t← t + 1;
execute the detection algorithm at round t;
compute the probability of false positive Pfp(t);

} while (Pfp(t) > P∗
fp)

blacklist all people in Si(t) from the neighbor list;

IV. Simulation and Model Validation
Our model aims to detect dishonest nodes who give wrong

recommendations in OSNs. Since each user in an OSN
performs her own activities continuously, i.e., purchasing a
product, providing recommendations to her friends and making
decisions on what to purchase based on received recommen-
dations, the OSN evolves dynamically. We first synthesize
a dynamically evolving social network which simulates the
behaviors of users, then we examine the impact of shill
attack and validate the performance analysis of our detection
algorithms based on the synthetic dynamic network.



A. Synthetic Dynamically Evolving OSNs
In this subsection, we synthesize a dynamic OSN to simu-

late the behaviors of users. To achieve this, we need to make
assumptions on (1) how people make recommendations to their
friends, (2) how people make decisions on purchasing which
product, and (3) how fast the recommendations spread.
Firstly, only two types of users exist, i.e., honest users and

dishonest users, and their activities are defined in Section II.
Specifically, dishonest users follow the baseline attack strategy
or the intelligent attack strategy. For an honest user, if she buys
a product, she gives correct recommendations, otherwise, she
adopts majority rule, i.e., if more than half of her neighbors
give her positive (or negative) recommendations, then she
also gives a positive (or negative) recommendation to others,
otherwise, she gives no recommendation.
Secondly, to simulate the behaviors of people on deciding to

purchase which product, we assume that, when an honest user
decides to purchase, she will buy the product which is recom-
mended with the maximum number of effective recommenda-
tions. We define the number of effective recommendations as
the number of positive recommendations minus the number of
negative recommendations. The rationale is that one buys the
product on which people give high rating as many as possible
and give low rating as few as possible.
Lastly, we assume that recommendations broadcast much

faster than users’ purchasing rate. Specifically, after one gives
a positive/negative recommendation to her friends, they update
their numbers of received positive/negative recommendations,
if the numbers satisfy majority rule, then they further make
recommendations to their friends, and this process continues
until no one in the system can make a recommendation, and
the whole process finishes before the next purchase instance
in the whole system.
To model the evolution of OSN, we assume that it starts

from the “uniform” state in which all products have the same
market share, and during one detection round of detector i,
products are purchased 10%|V | times where |V | is the total
number users in the system, i.e., between two successive
purchases of detector i, 10%|V | purchases happen. We need
to emphasize that the assumptions we make in this subsection
are just for simulation purpose.

B. Impact of Shill Attack
In this subsection, we explore the impact of shill attack

based on the synthetic system. We employ the GLP model
proposed in [3] which is based on preferential attachment
[1] to generate a scale-free graph with power law degree
distribution and high clustering coefficient. The generated
graph has around 8,000 nodes, 70,000 edges and clustering
coefficient of around 0.3. The system starts from “0” state
where no one has purchased any product and evolves until
10,000 purchases are made. We assume that there are five
products, {P1, . . . , P5}. Our objective is to count what is the
fraction of purchases for each product out of the total 10,000
purchases. We run the simulation multiple times to take the
average value, and results are shown in Figure 1.
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Fig. 1: Shill Attack: dishonest people recommend P1

We first consider the case where P1 is of high quality, which
is called malicious competition case, and it is shown in Figure
1a. Observe that, if all users behave honestly, all five products
will be purchased with similar probability, or 0.2. However,
if 0.1% of the population are dishonest users, and they just
simply employ baseline attack strategy to promote product
P1, then P1 is purchased with a much higher probability
which is over 0.5. Figure 1b corresponds to the case where
the promoted product P1 is of low quality, which is called
the malicious cheating case. Firstly, if there is no dishonest
users to disturb the market, P1 is only purchased with a small
non-zero probability. The reason why the probability is not
zero is that if a person does not receive any recommendation,
she just randomly purchases a product. However, if 5% of
the population are dishonest users, then P1 will be purchased
with probability greater than 0.15. In summary, shill attack
can distort the normal sales distribution severely.

C. Analysis Validation

In this subsection, we run simulation based on the synthetic
system to validate our model and performance analysis. We
carry out the simulation many times and take the average
value as the final result. We first focus on the performance
measures of Pfn(t) and Pfp(t). The results are shown in
Figure 2. In both figures, the horizontal axes are the number
of detection rounds and the vertical axes represent probability.
For the baseline detection algorithm (Alg. A1), since the
dishonest user cannot evade the detection, i.e., Pfn(t) = 0, we
only show the probability of false positive Pfp(t) in Figure
2a. From this figure, we can see that, after only a small
number of rounds (< 15), the probability of false positive
quickly converges to 0, which means that the detected users
are really dishonest with very high probability after a small
number of rounds. We have similar result for randomized
detection algorithm, which is shown in Figure 2b. Intuitively,
if detectors cooperate with each other to share their detection
histories, probability of false positive must converge much
faster. Therefore, our detection algorithm is very effective in
detecting foes and at the same time, quite efficient since it
only takes a small number of rounds. However, for the case
of intelligent attack, the probability of false negative may
not be 0, which means that only a part of dishonest people



are detected in one detection experiment. One way to solve
this problem is to run our detection algorithm multiple times,
and at each time, remove a subset dishonest users who are
detected before proceeding to the next experiment. Eventually,
all dishonest people can be detected with high probability.
In our simulation, by running the detection algorithm three
times, we are able to detect all dishonest neighbors of the
detector. Another way is to adjust the shrinkage probability
p in the randomized detection algorithm so as to decrease
Pfn(t), however, when p decreases, the expected number of
total rounds needed for detection may increase, which shows
the tradeoff between the detection accuracy and efficiency.
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(b) Randomized detection alg.

Fig. 2: Probability of false positive and false negative.

Let us now consider the distribution of R, which is the
number of rounds needed for detection until the suspicious
set does not contain honest nodes. The simulation results and
theoretical results are shown in Figure 3. Figure 3a shows the
results of the baseline attack case where Alg. A1 is used,
while Figure 3b corresponds to the intelligent attack case
where Alg. A2 is used. In both figures, the horizontal axes
are the number of rounds needed for detection and the vertical
axes indicate corresponding probabilities. One can observe that
our analytical results capture the probability density functions
closely and the average estimate, E[R], is also very accurate.
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Fig. 3: Probability mass function of R.

V. Related Work and Conclusion
Viral marketing is becoming very popular due to the large

population base in OSNs. Various work shows its impor-
tance and the information spread effect in OSNs [5]–[7], [9],
[13]–[15]. However, it opens the door for shill attacks in

which malicious users make wrong recommendations to distort
the sales market. In [4], [8], authors discuss the impact of
misleading comments in recommendation systems, in which
there is a centralized agent to determine the weights and
correctness of all recommendations. In this paper, we defend
against shill attack in OSNs based on the idea of shrinking
suspicious set [11], and we consider both the baseline shill
attack and the intelligent shill attack. We develop a set of
distributed and randomized detection algorithms to identify
dishonest users who give misleading recommendations in
OSNs. Our detection algorithm allows each honest user to
independently perform the detection so as to discover her
dishonest friends. We provide mathematical analysis on our
detection algorithm to quantify the effectiveness and efficiency
of our detection mechanism. We also validate our models via
extensive simulation. Our detection framework can be viewed
as a valuable tool to maintain the viability of viral marketing.
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