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a b s t r a c t 
In-network caching is recognized as an effective solution to offload content servers and the network. A 
cache service provider (SP) always has incentives to better utilize its cache resources by taking into ac- 
count diverse roles that content providers (CPs) play, e.g., their business models, traffic characteristics, 
preferences. In this paper, we study the cache resource allocation problem in a Multi-Cache Multi-CP en- 
vironment. We propose a cache partitioning approach, where each cache can be partitioned into slices 
with each slice dedicated to a content provider. We propose a content-oblivious request routing algo- 
rithm, to be used by individual caches, that optimizes the routing strategy for each CP. We associate with 
each content provider a utility that is a function of its content delivery performance, and formulate an 
optimization problem with the objective to maximize the sum of utilities over all content providers. We 
establish the biconvexity of the problem, and develop decentralized (online) algorithms based on convex- 
ity of the subproblem. The proposed model is further extended to bandwidth-constrained and minimum- 
delay scenarios, for which we prove fundamental properties, and develop efficient algorithms. Finally, we 
present numerical results to show the efficacy of our mechanism and the convergence of our algorithms. 

© 2017 Elsevier B.V. All rights reserved. 
1. Introduction 

In recent years, we have witnessed a dramatic increase in traffic 
over the Internet. It was reported that global IP traffic has grown 
10 times from 2007 to 2015, and it will continue to increase three- 
fold by 2020 [1] . Among the various types of traffic generated by 
different applications, traffic from wireless and mobile devices ac- 
counts for a significant portion, i.e., according to [2] global mo- 
bile and wireless data traffic in 2016 amounted to 47 exabytes per 
month, that is 49% of the total IP traffic. 

Current Internet faces significant challenges in serving this “Big 
Data” traffic. The host-to-host communication paradigm makes it 
rather inefficient to deliver content to geographically distributed 
users due to repeated transmissions of content, which results in 
unnecessary bandwidth wastage and prolonged user-perceived de- 
lays. The connection-oriented communication model also provides 
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little or poor support for user mobility – an important feature of 
future networks. 

The overwhelming data traffic and limitations of the current 
Internet has led to a call for content-oriented networking solu- 
tions. Examples include CDNs (Content Delivery Networks) and 
ICNs [18] (Information-Centric Networks). Both advocate caching 
(either at network edge or network-wide) as part of network in- 
frastructure, where content can be opportunistically cached so as 
to bring significant benefits such as bandwidth saving, short de- 
lays, server offloading. Due to its fundamental role in global con- 
tent delivery, and the fact that cache storages are always scarce as 
compared to the amount of content transmitted over the Internet, 
how to efficiently utilize cache resources becomes a significant re- 
search topic. A furry of recent studies focus on this area, such as 
modeling and characterizing caching dynamics [24,33] , design and 
performance evaluation of caching mechanisms [4,14] , to name a 
few. 

In this paper, we envision that besides maximizing cache per- 
formance (measured in hit rate or miss probability) as most pre- 
vious work concentrated, we also study how cache resources in 
network should be utilized in a way that better supports general 
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management purposes (e.g., QoS, fairness). Particularly, since con- 
tent providers (CPs) have business relations with cache providers, a 
cache provider always has incentives to utilize its cache resources 
fully by taking into account diverse roles that CPs play in the mar- 
ket, e.g., their heterogeneous traffic characteristics, business mod- 
els, QoS requirements. Baring this in mind, in this paper we study 
the problem of allocating cache resources among multiple content 
providers. We consider the problem in a “Multi-CP Multi-Cache”
environment, where there are multiple cache resources distributed 
at different network locations serving user requests from multiple 
content providers. This is exactly the same setting for a variety 
of networking applications, such as CDNs, wireless/femtocell net- 
works, web-cache design, and most recently, ICNs. Since there are 
multiple paths between each content provider and its end-users 
through caches, it naturally leads to a problem of jointly optimiz- 
ing cache resource allocation and request routing. However, achiev- 
ing system optimum by this joint optimization with the objec- 
tives of, e.g., maximizing network utility, poses a significant chal- 
lenge since the problem is inherently combinatorial and NP-hard 
[7,17,32] , and thus some optimization algorithms are needed to 
solve these problems efficiently (with low complexity) and prac- 
tically (in a decentralized manner). 

In this work, we propose a joint cache partitioning and cache- 
level content-oblivious request routing scheme, where we allow a 
cache provider to partition its caches into slices with each slice 
dedicated to a content provider, and each content provider routes 
its requests to caches it connects so to maximize its own util- 
ity. Note that there are two advantages of the proposed scheme: 
1) cache partitioning restricts content contention for cache space 
into partitions for each CP, and hence it decouples the interactions 
among them and also provides a natural means for the cache man- 
ager to tune the performance for each CP; 2) besides its simplicity 
due to content-obliviousness (less state), cache-level request rout- 
ing provides a unified request pattern seen by caches, which leads 
to nice properties, i.e., the hit probability of each content is solely 
affected by allocated cache amount, and the hit rate of each CP is 
linear in traffic volume directed to caches. Overall, our scheme is 
easy-to-implement and is suitable for cache resource management. 

To abstract business relations between content providers and 
a cache provider, we associate with each CP a utility that is a 
function of its content delivery performance. We formulate an 
optimization problem in which the objective is to maximize the 
weighted sum of utilities over all content providers through proper 
cache partitioning and request routing. We prove that the formu- 
lated problem has a biconvexity structure, and hence can be ef- 
fectively solved by existing algorithms [15] . We further prove that, 
with our proposed routing scheme, the optimal solution to the for- 
mulated problem has a special request routing configuration, i.e., 
all requests of each CP are directed to one cache it connects. This 
property together with the convexity of the resource-allocation 
subproblem makes it possible to design decentralized (online) al- 
gorithms to achieve optimum. 

To illustrate that our model actually provides a general frame- 
work for cache resource allocation, we extend it to bandwidth- 
constrained and delay optimization scenarios, where there are 
bandwidth limitations between caches and content providers, and 
where the goal is to optimize content delivery latency. We for- 
mulate optimization problems for the two scenarios, and establish 
the same biconvexity property. In addition, we discover interesting 
phenomena, i.e., under bandwidth limitation the optimal solution 
is the one such that each CP directs its requests to at most one 
cache at the volume less than the maximum volume, and it either 
does not direct or directs requests at the maximum volume to the 
other caches. Based on these fundamental properties, efficient al- 
gorithms can be devised. 

In summary, we make the following contributions: 

• We propose a joint cache partitioning and cache-level content- 
oblivious request routing scheme in the context of multiple 
content providers and multiple caches, and formulate a utility- 
based optimization framework for cache resource management. 

• We prove fundamental properties of the formulated problem, 
obtain its optimal routing structure, and then develop decen- 
tralized algorithms. 

• Using utility-based framework, we further consider bandwidth- 
constrained and delay optimization scenarios. We formulate op- 
timization problems for the two extensions, show that they also 
have nice properties which lead to efficient algorithms design. 

• We perform numerical studies to validate the efficacy of our 
mechanism, and demonstrate convergence of the proposed de- 
centralized algorithms to optimal solution. 
The remainder of this paper is organized as follows. We review 

related work in Section 2 . Section 3 describes problem setting and 
basic model. In Section 4 we formulate the joint cache resource al- 
location and request routing problem, prove its fundamental prop- 
erties by analyzing its problem structure. In Section 5 we de- 
velop decentralized (online) algorithm for implementing utility- 
maximizing cache allocation. Section 7 presents numerical results 
and Section 8 discusses future research directions. We conclude 
the paper in Section 9 . 
2. Related work 

The issue of cache resource allocation and management has 
been extensively studied in the context of CPU and memory caches 
(i.e., see [20,27] and the references therein). Clearly, the character- 
istics of the cache workload and problem settings are quite differ- 
ent from the networking environment, so that the techniques and 
design choices developed therein cannot be readily applied to our 
problem. 

In the context of web caching, Kelly et al. [19] proposed a bi- 
ased replacement policy for web caches to implement differenti- 
ated quality-of-service (QoS) by prioritizing cache space to servers. 
Ko et al. [21] presented a scalable QoS architecture for a shared 
cache storage which guarantees hitrates to multiple competing 
classes. Lu et al. [23] implemented an architecture for supporting 
differentiated caching services and adopted a control-theoretical 
approach to manage cache resources. Feldman and Chuang [9] pro- 
posed a QoS caching scheme that achieves service differentia- 
tion through preferential storage allocation and objects transitions 
across priority queues. A general cache partitioning model that in- 
tegrates both QoS classes, content priority and popularity is also 
presented in [10] . 

In recent years, a significant research effort has been dedicated 
to the cache resource management issue in information-centric 
networks. Rossi et al. [29] proposed to allocate content storages 
heterogeneously across the network by considering graph-related 
centrality metrics. Psaras et al. [26] proposed probabilistic caching 
scheme and their studies suggested to put more cache resources at 
the network edge. Similarly, Fayazbakhsh et al. [8] demonstrated 
through simulations that most of performance benefits can be 
achieved by edge caching. Wang et al. [30] studied the problem of 
optimal cache resource allocation to network nodes by formulating 
it as a content placement problem. 

Cache resource allocation among content providers in network 
for management purposes (e.g., QoS, fairness) is a new research 
topic. Araldo et al. in [3] adopted content-oblivious cache partition- 
ing approach to maximize the bandwidth savings provided by the 
ISP cache for handling content encryption. While they focused on 
single-cache allocation, the problem we study here is in a Multi- 
Cache (and possibly with multiple service providers) environment. 
Hoteit et al. in [16] proposed a game-theoretic cache allocation ap- 
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proach to implement fairness among CPs. Exact traffic information 
of each CP is required to solve the problem. In our previous work 
[6] , we proposed a cache partitioning approach to maximize ag- 
gregate network utilities over content providers, and demonstrated 
that cache partitioning actually provides performance gain as com- 
pared to sharing the cache with traditional LRU policy. In this 
work, we extend the problem setting to a broader Multi-Cache en- 
vironment with more general cache management policies (under 
some mild conditions), and which unavoidably involves content re- 
quest routing and cache selection issues. Therefore, the problem 
studied in [6] can be regarded as a special case. 

To the best of our knowledge, this is the first work that ad- 
dresses the joint cache resource allocation and request routing 
problem in the context of Multi-CP Multi-Cache network environ- 
ment. 
3. Problem description and basic model 
3.1. Design space of in-network caching systems 

When we consider in-network caching problems, two issues 
arise naturally: caching policy and routing strategy . The former 
refers to the rules how content objects are placed in cache storage, 
and the latter is how user requests are directed to caches. Different 
choices of the two parameters form a design space for in-network 
caching systems, and finding an appropriate design choice for the 
best system performance is always highly desired. Yet the problem 
is extremely challenging due to complex dynamics of the system. 
Take for example a simple caching system where there is only one 
cache serving user requests for content objects from one content 
provider (CP). It is well known that when the request stream is 
stationary, the best caching policy is to hold the top C most pop- 
ular content objects in cache, where C is the cache size; when the 
request stream is non-stationary, dynamic caching polices such as 
LRU, FIFO, etc, are preferred. 

Things get complicated when there are two or more content 
providers. Similar results can be obtained, i.e., static caching leads 
to the best system performance if the aggregate request stream is 
stationary. However, with multiple content providers, there is a 
new design choice with respect to how to utilize the cache re- 
source: partitioning vs non-partitioning (sharing) . Unlike the way 
that cache resource as a whole is contended by different providers, 
now the cache can be divided into multiple slices and each slice 
can be dedicated to a content provider. In this case, a new ques- 
tion arises: should we partition the cache or should it be used as 
a whole piece of storage? If the answer is “we should partition it”, 
then another question: how much cache resource should be allo- 
cated to each CP for the optimal system performance? In our pre- 
vious work [6] we have partially addressed these two questions. 
Surprisingly, it has been shown that for stationary request streams, 
sharing the cache with traditional policies such as LRU is statisti- 
cally equivalent to partitioning it into a specific way, which makes 
cache sharing sub-optimal as compared to cache partitioning. 

An even more complicated scenario is when there are multi- 
ple caches and multiple content providers, as shown in Fig. 1 . In 
addition to caching policy, routing strategy becomes an important 
design parameter for such networks. The routing strategy can be 
content-aware and content-oblivious , depending on whether each 
CP needs to maintain the information of where content objects 
are served. More specifically, under content-aware routing each CP 
routes requests for a content to the cache that serves it, while un- 
der content-oblivious routing it simply forwards user requests to 
caches that are allocated to it. Obviously, routing strategy should 
match caching policy so as to maximize system performance, i.e., 
static caching with content-aware routing leads to the best system 
performance for stationary request streams. Furthermore, caches 

Fig. 1. A network of multiple caches and content providers. 
can be cooperative or non-cooperative , where cooperative caching 
requires state exchange (and traffic if necessary) between caches. 
“Big Cache” [28] , for example, abstracts the multiple caches into 
one single big storage and caches work collaboratively to improve 
system performance. Finally, it is worthy to note that other factors 
from real world such as delay, bandwidth constraints also play im- 
portant roles in designing a practical caching system, which makes 
the problem even more complicated. 

In this paper, instead of fully exploring the design space of 
in-network caching systems, we mainly focus on non-cooperative 
Multi-Cache Multi-CP system with cache partitioning and content- 
oblivious routing schemes, and address the corresponding critical 
design problems within a general framework. 
3.2. Problem description 

We now formally introduce our problem. Consider a network 
(e.g., a single Autonomous System) where there are M (edge) 
caches that serve user requests for the content from K con- 
tent providers (CPs). These caches are managed by a third-party 
network provider, referred to as the cache manager (or cache 
provider) hereafter. Content providers have business relations with 
the cache manager and pay for cache resources. To efficiently uti- 
lize cache resources and maximize revenue, we allow the cache 
manager to partition its cache into multiple slices and allocate 
them to content providers. 

Meanwhile, given cache slices, each content provider can deter- 
mine the route of its user requests to these storages for its own in- 
terest. In this work, we consider cache-level content-oblivious re- 
quest routing scheme, where each CP probabilistically distributes 
its user requests to the allocated caches. The highlights of this 
routing scheme is twofold: 1) it is simple and has low complexity 
(less state) and 2) the content popularity patterns seen by caches 
allocated to the same CP are identical, which further decreases the 
computational complexity of our proposed model. In the following 
section, we will show with formal proof that this routing scheme 
also leads to nice structural properties of the optimal solution. 

Given the above setting, we further associate with each con- 
tent provider a utility that is a concave, increasing function of its 
content delivery performance. We seek answers to the following 
two questions: 1) how should we partition and allocate cache re- 
sources to content providers? and 2) how should user requests be 
distributed to maximize the overall network cache utilization effi- 
ciency, or the weighted sum of utilities over all content providers 
(i.e., to implement different notion of fairness among CPs)? The 
problem is thus a joint cache resource allocation and request rout- 
ing problem. 
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3.3. Cache characteristic time 

Che et al. [5] introduced the notion of cache characteristic time. 
Based on this concept, the hit probability of a file 1 denoted as o in 
an LRU cache with Poisson arrivals can be approximated by 
o(λi , T ) = 1 − e −λi T , (1) 
where λi is the request rate for file i , and T is a constant denot- 
ing the characteristic time of the LRU cache with size C. T can be 
computed as the unique solution to the equation 

N ∑ 
i =1 o(λi , T ) = C, (2) 
where N is the number of files in system. The cache hit rate is 
expressed as 
h = N ∑ 

i =1 λi o(λi , T ) . 
The characteristic time approximation has proven to be an ef- 

fective tool for cache performance evaluation [13,22] . Besides LRU, 
it also applies to other caching policies such as FIFO, RANDOM, etc 
[14] . For example, FIFO and RANDOM have the same hit probability 
expressed as follows: 
o(λi , T ) = 1 − 1 

1 + λi T . (3) 
In this paper, we consider caching policies that can be well 

modeled using this characteristic time approximation. We rewrite 
o ( λi , T ) as o i ( λi , C ) to explicitly denote that the hit probability is 
for file i and it is a function of the cache size C . We assume that 
the hit rate h is concave and increasing in C . It can be proved that 
this assumption holds for policies such as LRU, FIFO and Random. 
Theorem 3.1. Hit rate is a concave function of cache size for LRU, 
FIFO and Random policies. 
Proof. See Appendix A . !

4. Joint cache resource allocation and request routing 
In this section, we present problem formulation for the joint 

cache resource allocation and request routing problem. We analyze 
the structural property of the problem, establish its biconvexity, 
and give the optimal request routing strategy. 
4.1. Problem formulation 

Assumptions. We make the following assumptions: 1) content 
providers serve equal-size disjoint files; 2) requests for each file 
arrive according to a Poisson process; and 3) each CP k is associ- 
ated with a utility U k ( h k ) that is a concave, increasing function of 
its aggregate request hit rate h k . 

Denote by F k = { f 1 k , f 2 k , . . . , f N k k } the set of N k different files 
that CP k serves, and λik the request rate for file f ik . Define A = 
[ a km ] as a zero-one matrix denoting the connections between CPs 
and caches, with a km = 1 if requests of CP k can be routed to cache 
m , and a km = 0 otherwise. Request routing strategy is described by 
a matrix P = [ p km ] , with 0 ≤ p km ≤ 1 being the fraction of requests 
of CP k routed to cache m . Let C m be the size of cache m , and C km 
be the size of cache slice that allocated to CP k from cache m (both 
measured as the number of files that can be cached). Also denote 

1 We use content and files interchangeably throughout this paper. 

by h km the request hit rate to the content of CP k that served by 
cache m . According to Section 3.3 , we have 
h km (C km , p km ) = N k ∑ 

i =1 λik p km o ik (λik p km , C km ) 
where o ik ( λik p km , C km ) is the hit probability, in the cache m , for file 
f ik of CP k . 
Lemma 4.1. As long as p km ̸ = 0, we have o ik (λik p km , C km ) = 
o ik (λik , C km ) . 
Proof. From Eqs. (1) –(3) , we can see that λi and T appear in their 
product form in these equations. As a result, for the same cache 
size C , multiplying λi by p km will not lead to any change in the hit 
probability, i.e., by letting T = T /p km we will have the same 1 −
e −λi T and 1 − 1 

1+ λi T . !

Lemma 4.1 indicates that given the cache size C , the hit proba- 
bility o ik is fully determined by file popularity pattern rather than 
the exact request volume. 

Based on the above lemma, we have the following expression 
for h km when p km ̸ = 0: 
h km (C km , p km ) = N k ∑ 

i =1 λik p km o ik (λik , C km ) 
Observe that when p km = 0 we have h km = 0 , and hence the above 
expression indeed characterizes h km . 

The aggregate request hit rate h k of CP k is thus 
h k = M ∑ 

m =1 h km = M ∑ 
m =1 

N k ∑ 
i =1 λik p km o ik (λik , C km ) . 

The joint cache resource allocation and request routing problem 
we study can be formulated as the following utility maximization 
problem: 
maximize K ∑ 

k =1 w k U k (h k ( C k , P k )) 
subject to 

K ∑ 
k =1 C km ≤ C m , ∀ m 

M ∑ 
m =1 p km = 1 , ∀ k 
0 ≤ p km ≤ a km , ∀ k, m 

(4) 

where C k = (C k 1 , C k 2 , . . . , C kM ) and P k = (p k 1 , p k 2 , . . . , p kM ) denote 
the cache allocation and request routing for CP k , respectively. 
w k > 0 is the weight to CP k , which is chosen to reflect business 
preferences such as financial incentives or legal obligations. In its 
most simple case where w k = 1 and U k (h k ) = h k , the objective be- 
comes that of maximizing the overall cache hit rate, which pro- 
vides a measure of the cache utilization efficiency. 

Note that the above formulation is a “mixed-integer” program- 
ming problem that is typically hard to solve. However, in practice 
caches are large and therefore we assume C km can take any real 
value, as the rounding error will be negligible. 
4.2. Solution 
Theorem 4.1. The optimal solution to problem (4) is such that all 
requests of each CP are routed to one cache that it connects. 
Proof. See Appendix B . !
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Theorem 4.1 states that the optimal solution to problem (4) is 

that requests of each CP are not splitted among caches, but rather, 
each CP directs all its requests to one cache it connects. This re- 
sult is counter-intuitive at the first glance, since to maximize util- 
ity, each content provider will try to obtain storages from multiple 
caches. However, this in fact makes sense in that if this is the case, 
then there are multiple copies of the same files cached in these 
storages, which results in content duplication and hence cache re- 
source wastage. Therefore, as a contribution of this work, here we 
in fact prove that cache-level content-oblivious probabilistic rout- 
ing is suboptimal as compared to non-probabilistic (deterministic) 
request routing in a multi-cache environment. 

Based on Theorem 4.1 , Problem (4) can be reformulated as fol- 
lows: 
maximize K ∑ 

k =1 w k U k (h k ( C k , P k )) 
subject to 

K ∑ 
k =1 C km ≤ C m , ∀ m 

M ∑ 
m =1 p km = 1 , ∀ k 
p km ∈ { 0 , a km } , ∀ k, m 

(5) 

Since there is a limited number of caches and CPs, problem 
(5) can be solved by evaluation of a series of simpler problems 
which are determined by the special request routing configurations 
given by Theorem 4.1 . More specifically, we can convert problem 
(5) into a series of problems P r 1 , P r 2 , . . . , P r L , where L is the num- 
ber of request routing configurations, and each Pr i corresponds to a 
cache resource allocation problem with one specific request rout- 
ing, i.e., the one that all requests of each CP are directed to one 
cache that it connects. The optimal solution to problem (5) is sim- 
ply the one with the largest objective function value. 
Theorem 4.2. Given a request routing configuration where all re- 
quests of each CP are directed to one cache that it connects, problem 
(5) can be decomposed into a series of convex optimization problems, 
each for one cache. 
Proof. See Appendix C . !

Based on Theorem 4.2 , we know that each Pr i can be further 
divided into M subproblems, where each subproblem corresponds 
to a single-cache convex resource allocation problem. Let B k be the 
number of caches that CP k connects. We have L = B 1 B 2 . . . B K re- 
quest routing configurations. Meanwhile, solving each Pr i involves 
solving M convex single-cache resource allocation problem, and 
hence the time complexity of the algorithm is O (B 1 B 2 . . . B K M) . 

The above algorithm is efficient at solving problems with small 
number of caches and content providers. However, as it iterates 
over all possible request routings, the computational time grows 
exponentially with the problem size. In fact, as the following the- 
orem states, the considered problem is proved NP-hard. 
Theorem 4.3. Problem (5) is NP-hard. 
Proof. See Appendix D . !

To obtain practical solution mechanisms, we further analyze 
structural properties of the problem. Fortunately, the original prob- 
lem turns out to be a biconvex optimization problem, as proved in 
Theorem (4.4) . 
Theorem 4.4. Problem (4) is a biconvex optimization problem. 

Proof. In Theorem 4.2 we show that the objective function of 
problem (4) is concave in C km ’s given a fixed p km ’s. It is also easy 
to see that the objective function is concave in p km ’s given a fixed 
C km ’s, since h km is linear in p km . Therefore, the objective function 
is biconcave. Furthermore, as the space of the decision variables is 
the product of two independent convex sets, it is biconvex. As a 
result, problem (4) is a biconvex optimization problem. !

The following theorem states that any solution corresponding to 
the special routing configurations given by Theorem 4.1 is a partial 
optimum . 
Theorem 4.5. Let f be the objective function of problem (4) . Denote 
by X and Y be the variable space of caching and routing, respectively. 
Also let y ∗ be a routing configuration given by Theorem 4.1 , and x ∗( y ∗) 
be the corresponding optimal caching. Then (x ∗( y ∗), y ∗) is a partial 
optimum, i.e., f ( x ∗( y ∗), y ∗) ≥ f ( x, y ∗) ∀ x ∈ X, and f ( x ∗( y ∗), y ∗) ≥ f ( x ∗( y ∗), 
y ) ∀ y ∈ Y. 

Biconvex optimization problems [15] have been extensively 
studied during the past few decades, and efficient algorithms (e.g., 
ACS [31] for partial optimum, GOP [12] for approximate global opti- 
mum) exist in literature. The good news from our numerical stud- 
ies is that, even with local or partial optimum, the system perfor- 
mance can be significantly improved by the joint cache resource 
allocation and request routing optimization. 
5. Decentralized mechanism 

In this section, we present a decentralized mechanism to im- 
plement the optimal cache allocation and request routing. As com- 
pared to centralized solution, a decentralized mechanism is more 
desired in practice, i.e., when each CP does not want to reveal its 
utility function to the cache manager, or the cache manager cannot 
collect all traffic information of CPs. A decentralized mechanism 
also adapts to network changes naturally. Our proposed mecha- 
nism is based on our analysis in the above section, where the sys- 
tem problem can be decomposed into subproblems for the caches 
and for the individual content providers. 
5.1. Decentralized mechanism 

We have shown in Section 4 the routing configurations of par- 
tial optimums. Furthermore, each of these routing configurations 
corresponds to a convex resource allocation problem. Let CP ( m ) be 
the set of CPs that direct requests to cache m , and s ( k ) be the cache 
to which CP k forwards all its requests. Given a fixed request rout- 
ing P k ’s, we have the following convex resource allocation prob- 
lem: 
maximize K ∑ 

k =1 w k U k (h k ( C k )) 
subject to 

∑ 
k ∈ CP(m ) C km ≤ C m , ∀ m (6) 
where U k (h k ( C k )) = U k (h ks (k ) (C ks (k ) , 1)) , i.e., requests of CP k are 
solely directed to cache s ( k ). 

The key to the decomposition of the above problem is to exam- 
ine its dual. Let C = ( C 1 , C 2 , . . . , C K ) and λ = (λ1 , λ2 , . . . , λM ) . λ is 
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considered as the price vector of caches. Define Lagrangian 
L (C , λ) = K ∑ 

k =1 w k U k (h k ( C k )) + M ∑ 
m =1 λm (C m − ∑ 

k ∈ CP(m ) C km ) 
= K ∑ 

k =1 (w k U k (h k ( C k )) − M ∑ 
m =1 λm C km ) + M ∑ 

m =1 λm C m 
= K ∑ 

k =1 (w k U k (h k ( C k )) − λs (k ) C ks (k ) ) + M ∑ 
m =1 λm C m . 

The last equation holds since CP k routes all its requests to cache 
s ( k ) and it will not require resources from other caches. 

As the first term is separable, we have maximize 
C k ∑ K 

k =1 
(w k U k (h k ( C k )) − λs (k ) C ks (k ) ) = ∑ K 

k =1 maximize 
C k (w k U k (h k ( C k )) −

λs (k ) C ks (k ) ) . According to [25] , we can now readily formulate 
optimization problem for each CP k as follows: 

CP k ’s problem: 
maximize 

C k (w k U k (h k ( C k )) − λs (k ) C ks (k ) ) (7) 
Theorem 5.1. The cache resource allocation problem (7) has a unique 
optimal solution. 
Proof. Since h km is concave in C km , we know that h k is concave. 
Now because U k is also concave, the objective function of problem 
(7) is shown to be concave. Hence a unique maximizer, called the 
optimal solution, exists. !

Once each cache m receives the required cache amount by con- 
tent providers, its price can be adjusted as follows: 
λt+1 

m = [ λt 
m + γ ( ∑ 

k ∈ CP(m ) C t km − C m )] + (8) 
where γ > 0 is a step size, t denotes time, and [ x ] + = max { x, 0 } . 

In short, in the mechanism each content provider locally cal- 
culates its required cache amount from each cache based on their 
prices, and each cache adjusts its price based on the required re- 
sources from content providers. Meanwhile, as problem (7) is con- 
vex, there is no duality gap and hence the algorithm converges to 
the optimal solution. 

It is worthy to note that the above procedure is for one spe- 
cific request routing. To obtain the global optimal solution (i.e., 
when the problem size is small), all possible routings need to be 
explored. We emphasize that this process can be efficiently im- 
plemented in a parallel manner. More specifically, at each time t , 
each content provider locally calculates and maintains the infor- 
mation of ( utility, required_cache_size, routing ) and broadcasts them 
to the caches connected. On the other hand, with these informa- 
tion provided by CPs, each cache perceives all possible global rout- 
ings and then after calculation it broadcasts the information of 
( aggregate_utility, prices, global_routing ) back to the CPs. The opti- 
mal prices and cache allocations will be the one with the largest 
(weighted) aggregate utility when all procedures converge. 
6. Bandwidth-constrained formulation and delay-Oriented 
optimization 
6.1. Bandwidth-constrained formulation 

Problem formulation (4) does not take into account bandwidth 
constraints. However, we argue that in practice, the volume of re- 
quests that each CP can forward to caches are limited, i.e., due to 
their bandwidth-based contracts. In this subsection, we consider 
such a scenario where there are bandwidth constraints between 
content providers and caches. 

6.1.1. Problem formulation 
We start by giving bandwidth constraints. Let V km be the max- 

imum volume of requests that CP k can forward to cache m . We 
explicitly assume that ∑ M 

m =1 V km ≥ ∑ N k 
i =1 λik , ∀ k, as all requests of 

each CP needs to be served by the cache network. The band- 
width constraints between content providers and caches can be 
expressed as the following inequation: 
N k ∑ 

i =1 λik p km ≤ V km , ∀ k, m 
which states that each CP cannot route requests to a cache at the 
volume exceeding its maximum. Incorporating this constraint into 
problem formulation (4) , we have the bandwidth-constrained for- 
mulation as follows: 
maximize K ∑ 

k =1 w k U k (h k ( C k , P k )) 
subject to 

K ∑ 
k =1 C km ≤ C m , ∀ m (c1) 

M ∑ 
m =1 p km = 1 , ∀ k (c2) 

0 ≤ p km ≤ a km , ∀ k, m (c3) 
N k ∑ 

i =1 λik p km ≤ V km , ∀ k, m (c4) 
(9) 

where contraints (c1) ∼ (c3) are exactly the same constraints as 
that in the original problem formulation. 

For the above optimization problem, we have the following 
routing structure for its optimal solution. 
Theorem 6.1. The optimal solution to problem (9) is the one such 
that each CP directs its requests to at most one cache at the volume 
less than the maximum volume, and it either does not direct or directs 
requests at the maximum volume to the other caches. 
Proof. From Appendix B , we know that by moving requests of each 
CP from one cache to another which allocates a larger cache slice, 
the hit rate can be increased. Furthermore, since there is band- 
width limitation between each CP and each cache, when the band- 
width limitation to a cache is reached, each CP will try to route its 
remaining requests to another cache which allocates to it the next 
largest cache slice so as to maxmize its hit rate, until the band- 
width limitation is reached. This process goes on and terminates 
when all requests of the CP are routed, with a routing configura- 
tion given by the theorem. !

Similarly, with small problem sizes, we can devise efficient al- 
gorithm to solve problem (9) by converting it into a series of sub- 
problems P r 1 , P r 2 , . . . , P r L where each Pr i corresponds to a cache 
resource allocation problem with one specific request routing, 
i.e., the request routing of each CP is as such that described by 
Theorem 6.1 . Note that each Pr i is convex as we have proved in 
Appendix C . The optimal solution to problem (9) is the one with 
the largest objective function value. 

Likewise, we can prove the problem has a biconvexity structure 
and hence obtain its efficient solution algorithms. However, not 
all solutions corresponding to the routing configurations given by 
Theorem 6.1 are partial optimums. Instead, they can be obtained 
using algorithm ACS (Alternate Convex Search) [31] by first optimiz- 
ing cache allocation variables, with starting points whose routing 
configurations are given by Theorem 6.1 . 
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6.1.2. Decentralized mechanism 

Based on Theorem 6.1 and using the same Lagrangian-based 
dual decomposition technique as in Section 5.1 , we can formulate 
CP k ’s problem with a given request routing P k ’s as 

CP k ’s problem: 
maximize 

C k (w k U k (h k ( C k )) − ∑ 
m ∈ H(k ) λm C km ) (10) 

where 
• U k (h k ( C k )) = U k ( ∑ 

m ∈ I(k ) h km (C km , V km 
∑ N k 

i =1 λik ) + h ks (C ks , 1 −
∑ 

m ∈ I(k ) V km 
∑ N k 

i =1 λik )) ; 
• I ( k ) is defined as the set of caches to which CP k directs its 

requests at the maximum volume; 
• s is the cache to which CP k directs its residual requests. 

Note that ( I ( k ), s ) is determined by P k . 
Using the same reasoning as in the proof of Theorem 5.1 , we 

can prove the following theorem. 
Theorem 6.2. The cache resource allocation problem (10) has a 
unique optimal solution. 

The size of cache slice that CP k requires from cache m is thus: 
arg { maximize 

C km ,m ∈ I(k ) ∪{ s } w k U k (h k ( C k ) − ∑ 
m ∈ I(k ) ∪{ s } λm C km } (11) 

Note that C km = 0 if m ̸∈ I ( k ) ∪ { s } as CP k will not require cache re- 
sources from these caches. The algorithm for each cache to update 
its price remains unchanged as that given by Eq. (8) . 
6.2. Latency optimization 

This subsection considers user-centric problem formulation. In 
particular, we consider the scenario where the objective is to opti- 
mize user-perceived content delivery latency. 
6.2.1. Problem formulation 

Let d km be the network delay of fetching content of CP k from 
cache m if the requested file is cached, and d 0 

km be the delay of 
fetching it from content custodians (remote servers), i.e., when the 
request is missed and cache m forwards it to the back-end server, 
downloads the file and forwards it back to the user. For each CP k , 
denote by t km its average latency of fetching content through cache 
m , and t k the overall average content delivery latency. We have 
t km (C km , p km ) = d km h km + d 0 

km ( ∑ N k 
i =1 λik p km − h km ) 

∑ N k 
i =1 λik p km 

and 
t k = M ∑ 

m =1 t km p km = M ∑ 
m =1 

d km h km + d 0 
km ( ∑ N k 

i =1 λik p km − h km ) 
∑ N k 

i =1 λik 
Furthermore, associated with each CP k is a utility U k ( t k ) that 

is a concave, decreasing function of t k . We have the latency- 
optimization formulation as follows: 
maximize K ∑ 

k =1 w k U k (t k ( C k , P k )) 
subject to 

K ∑ 
k =1 C km ≤ C m , ∀ m 

M ∑ 
m =1 p km = 1 , ∀ k 
0 ≤ p km ≤ a km , ∀ k, m 

(12) 

Since t km is linear in h km , and U k ( t k ) is a concave decreas- 
ing function of t k , we can prove that problem (12) has simi- 
lar properties as problem (4) , i.e., Theorem 4.1, Theorem 4.2 and 
Theorem 4.4 hold for problem (12) . Therefore, the same central- 
ized algorithm with the same complexity can be applied to obtain 
solutions. 
6.2.2. Decentralized algorithm 

Using Lagrangian-based dual decomposition technique as in 
Section 5.1 , we can formulate CP k ’s problem with a given request 
routing P k ’s as: 

CP k ’s problem: 
maximize 

C k (w k U k (t k ( C k )) − λs (k ) C ks (k ) ) (13) 
where we define U k (t k ( C k )) = U k (t ks (k ) (C ks (k ) , 1)) , i.e., CP k routes 
all its requests to cache s ( k ) and the required cache amount is such 
that it leads to the smallest content delivery latency. 

It can be proved that problem (13) is convex and as a result, 
the same decentralized algorithm as in Section 5.1 can be applied 
to obtain the optimal request routing and cache allocations. 
7. Numerical studies and evaluation 

In this section, we present numerical results to show: 1) the 
efficacy of our joint cache resource allocation and request routing 
mechanism and 2) the convergence of our decentralized algorithms 
to optimal solution. 
7.1. Evaluation setup 

We consider a cache network which comprises of 3 caches and 
2 content providers. CP 1 connects to Cache 1 and Cache 2, while 
CP 2 connects to Cache 2 and Cache 3. Thus Cache 2 is shared 
by both content providers. The three caches adopt LRU policies 
and are of size C 1 = 500 , C 2 = 1200 , and C 3 = 500 , respectively. 
The two content providers serve N 1 = 10 4 and N 2 = 2 × 10 4 con- 
tent files. File popularities for the two providers follow Zipf distri- 
butions with parameters α1 = 0 . 6 and α2 = 0 . 8 , respectively. Re- 
quests for the files from the two content providers arrive as Pois- 
son processes with aggregate rates R 1 = 10 and R 2 = 15 . We set 
w 1 = w 2 = 1 assuming that the two content providers are equally 
important to the cache manager. The utilities of the two providers 
are expressed as U 1 (h ) = U 2 (h ) = h so that the goal is to maximize 
the cache utilization efficiency (aggregate cache hit rates). 
7.2. Results for basic model 
7.2.1. Efficacy of the mechanism 

In order to validate its efficacy, we compare the overall utility 
observed by our mechanism to that by simple static routing, i.e., 
when both content providers route their requests to the connected 
caches at equal probabilities. Note that even under simple static 
routing, cache resource allocation is obtained by solving the corre- 
sponding convex optimization problem. Fig. 2 shows how the util- 
ity changes as the capacity of Cache 2 varies. It can be seen that 
under all cache capacities our mechanism outperforms. Moreover, 
the larger the shared cache, the more utility gain. 

Fig. 3 shows traffic distributions of the two content providers, 
from which we observe obvious hand-overs. More specifically, 
it can be seen that when the size of shared cache is small 
(300 ≤ C 2 ≤ 500), both content providers use its dedicated cache 
only; when the shared cache becomes larger (500 < C 2 ≤ 3100), 
CP 2 routes all its traffic to Cache 2; and when it continues to 
grow ( C 2 > 3100), both providers route all their traffic to the shared 
cache. 
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Fig. 2. Efficacy of our model as compared to static routing. 
Fig. 4 shows how the shared source is allocated to the two 

providers. As expected, it can be seen that all the cache resource is 
allocated to CP 2 when only CP 2 directs requests to it. The cache 
resource is shared when both providers route their traffic to the 
cache. Note that the amount of resource allocated to them is de- 
termined by the optimization model. 

From Fig. 5 we observe that the hit rate of a content provider 
will not keep monotonically increasing as the shared cache re- 
source increases. In particular, we observe that the hit rate of CP 2 
decreases when the capacity of Cache 2 varies from 30 0 0 to 3100. 
This phenomena is due to the fact that when the size of Cache 2 is 
less than 3100, only CP 2 routes its traffic to Cache 2 and hence the 
resource is solely allocated to it; when the size of Cache 2 reaches 
3100, CP 1 begins to route its traffic to it and hence the resource is 
shared among both providers, which certainly results in a decrease 
of the hit rate for CP 2. Nevertheless, the overall hit rate keeps in- 
creasing, as expected. 
7.2.2. Impact of different parameters 

We next look at the effect of various parameters on the com- 
peting process for the shared cache resources by the two content 
providers. To achieve this, we set C 2 = 50 0 0 (large enough) so that 
both providers will have the opportunity to direct their requests 
to Cache 2. We fix the parameter of CP 2, and study the effect of 
changing the aggregate request rate R 1 of CP 1, the weight param- 
eter w 1 , and the skewness parameter of the Zipfian file popularity 
distribution. Fig. 6 shows the effect of these different parameters 
on the observed hit rates and allocated cache amount of Cache 2 
to the two providers. 

(1) Request rate: as R 1 increases, more cache resource is al- 
located to CP 1, until Cache 2 is solely occupied by CP 1. Conse- 
quently, the hit rate of CP 1 increases. Note that the hit rate of CP 

Fig. 4. Resource allocation of Cache 2 to the two content providers. 

Fig. 5. Observed hit rates as a function of the shared cache size. 
1 grows exactly in linear with its request rate when R 1 > 20 since 
from then on the allocated cache resource to CP 1 does not change 
anymore. The results indicate that if the goal is to maximize the 
overall hit rate, then content providers with a larger request rate 
will have priority over the others in the competing process. 

(2) Skewness parameter: when α1 increases, less cache re- 
source is allocated to CP1. This is because with a large α1 , a small 
fraction of files generates most of the traffic. Also it is surpris- 
ingly to observe that the hit rate of CP 1 increases and so does the 
overall hit rate. From this point of view, we conclude that a larger 
skewness of traffic distribution not only benefit content providers 
generating the traffic, but also others in system. 

(3) Weight: Clearly, the weight of content providers signifi- 
cantly influences the competing process for the shared cache re- 
sources. It is observed that: i) the hit rate of CP 1 as well as cache 
resource allocated to it grows with the increase of its weight w 1 , 
until CP 1 fully occupies Cache 2; ii) although the overall hit rate 
also grows as we show in the figure, we argue that this is not the 
case in general. In fact, since there are only two content providers, 

Fig. 3. Traffic distribution of the two content providers. 



W. Chu et al. / Computer Networks 131 (2018) 1–14 9 

Fig. 6. Effect of the parameters on hit rates and cache resources allocated to content providers. 
the figures can also be interpreted as if we change the weight of 
CP 2 while fixing that of CP 1. Then the hit rate of the two con- 
tent providers as well as that of the system will go into the reverse 
direction. Indeed, as the objective function of problem (4) shows, 
the overall hit rate not only depends on the weights of content 
providers, but also depends on their traffic characteristics. 
7.2.3. Convergence of decentralized algorithm 

To investigate the performance of our decentralized algorithm, 
we fix the size of Cache 2 as C 2 = 1900 and choose the initial 
prices for the three caches as λ0 

1 = λ0 
2 = λ0 

3 = 0 . The step size is 
set as r = 10 −6 . Fig. 7 shows system dynamics as time goes on 
(here “CP k - Cache m ” means CP k routes all its traffic to Cache 
m ). It can be seen that our algorithm converges under all four re- 
quest routings, and the optimal solution is the one with the re- 
quest routing “CP 1 - Cache 1, CP 2 - Cache2”, that is, CP 1 directs 
all its requests to Cache 1 and CP 2 directs all its requests to Cache 
2. Looking back at Figs. 3 and 4 , we can see that this result is in 
accordance with the centralized solution. Therefore, our algorithm 
converges to the optimal solution. 
7.3. Bandwidth-constrained scenario evaluation 

For bandwidth-constrained scenario, we set the maximum vol- 
ume between CP 1 and the two caches as V 11 = 6 , V 12 = 8 , and that 
of CP 2 as V 22 = 10 and V 23 = 8 . Fig. 8 shows the observed utility as 
the capacity of Cache 2 varies. It can be seen that even with band- 
width limitation, our mechanism outperforms static routing in this 
case, i.e., when both content providers route their requests to the 
connected caches at equal probabilities and so the traffic between 
them does not exceed any volume limitation. 

Fig. 9 shows the optimal request routings for the two content 
providers, and it is interesting to observe that when Cache 2 is 
small ( C 2 < 500), CP 1 routes its requests to Cache 1 at the maxi- 
mum volume and CP 2 routes its requests to Cache 3 at the maxi- 
mum volume. When Cache 2 becomes larger (500 < C 2 < 1500), CP 
2 begins to route its requests to Cache 2 at the maximum volume. 
When it continues to grow ( C 2 > 1500), both providers route their 
requests to the shared cache at the maximum volume. 

Fig. 10 shows how the cache prices change under all four rout- 
ings. Again we observe that our decentralized algorithm converges 
to the optimal solution. 

We also perform numerical studies for the delay optimization 
scenario, and obtain similar results. To avoid redundancy and keep 
concise, we omit the corresponding figures. Nevertheless, we de- 
rive a consistent conclusion that our mechanism is efficient and 
the decentralized algorithms converge to the optimal solutions. 
7.4. Performance on more complex networks 

Here we report the performance of our mechanism on some 
more complex cache networks. In these networks, each CP con- 
nects to 2 ∼ 5 caches. Content population of CPs and their corre- 
sponding Zipf parameters are set as 1 × 10 3 ∼ 5 × 10 3 and 0.6 ∼ 0.8, 
respectively. The request rate of CPs are chosen as 10 ∼ 15, and the 
size of caches as 200 ∼ 500. All parameters follow a uniform distri- 
bution. 

For each network setting with different number of CPs and 
caches, we conduct numerical experiment for 20 times, and give 
the average observed hit rate in Table 1 . The results clearly illus- 
trate that under all three different settings, our mechanism im- 
proves system performance by 30% at least. Note that the joint op- 
timization model is solved by SLSQP (sequential least squares pro- 
gramming) — a nonlinear programming solver that returns local 
optimum for the general NLP problem. A higher performance gain 
is thus expected if global algorithm, e.g., GOP [12] , is applied. 

Last, we emphasize that to evaluate our mechanism compre- 
hensively it is better for us to use real-life large-scale network 
topologies, such as the abilene network topology (9 routers, 26 
links), the dtelekom network topology (68 routers, 546 links), the 
geant network topology (22 routers, 66 links), to name a few. 
The problem of using these real-life networks is that the number 
of connections between content providers and caches/routers are 
large and grows exponentially. In that case, it makes sense to re- 
strict content provider—cache connections within a small subset, 
i.e. each content provider can only route requests to caches within 
the neighborhood of its end-users. In that case, it suffices to de- 
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Fig. 7. Dynamics of decentralized algorithm. 
Table 1 
Performance on more complex networks . 

# Caches # CPs Aggre. Hitrate by Stat. Routing Aggre. Hitrate by Joint Opt. Perf. Improvement 
3 5 24.8 32.7 31.8% 
5 10 48.6 63.4 30.4% 
8 20 86.8 114.5 31.5% 

compose the problem to a set of smaller sub-problems, each for a 
local network that is within the same order of the network that 
we considered in the numerical studies. 
8. Discussion 

In this section, we explore some implications of our framework 
and present some future research directions. 

(1) Non equal-size disjoint content. Following the common 
practice, in this work we assume files are of equal sizes. How- 

ever, files can be of variable sizes in real networks. In that case, 
we can divide each file into a number of small fixed-size chunks, 
and still treat these chunks as if they were independent disjoint 
files in large-scale caching systems, i.e., when the number of users 
accessing them are large enough. Nevertheless, this assumption 
needs to be carefully validated and its impact precisely measured. 
Another question is on the violation of the assumption of non- 
overlapping content, i.e., a video file can be served by multiple 
content providers. How to deal with these common files is another 
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Fig. 8. Efficacy of our model with bandwidth limitation as compared to static rout- 
ing. 
question that needs to be addressed before we apply our frame- 
work in such cases. 

(2) Adaptive online algorithms. Our framework provides a 
means to compute optimal cache partitioning and request rout- 
ing. However, it is impractical to solve the optimization prob- 
lems offline and then implement the optimal policy, since in real 
networks, system parameters can change over time, i.e., network 
traffic is generally unstable. As a result, adaptive algorithms are 
needed. Based on the fact that network topologies/connections are 
more stable than traffic, here we propose a two-layer adaptive al- 
gorithm. In the upper layer, the cache manager periodically mea- 
sures the connectivity of CPs and caches, the corresponding latency 
of content delivery, and the statistics of requests from CPs. With 
these measurements, the cache manager decides to recalculate re- 
quest routings if there are too much change in these statistics; in 
the lower-layer, the cache manager collects limited traffic informa- 
tion for each CP and tunes the cache partitioning for them under 
the given routing so as to adapt to traffic changes. Of course, it re- 
mains to develop/implement such dynamic online algorithms and 
evaluate them in real network environment, and we leave them for 
our future work. 

(3) Fairness. We can use different utility functions in the frame- 
work to implement different fairness among content providers. For 
example, the family of β-fair utility function expressed as U k (h k ) = 
h 1 −β

k 
1 −β can be used to implement some interesting fairness. When 
β → 1, we have U k (h k ) = log h k , and the goal is to implement pro- 
portional fairness; when β → ∞ , it yields the objective max min 

k h k , 
which corresponds to max-min fairness. With such notions of fair- 
ness associated with utility functions, we actually provide a gen- 
eral and unified framework for implementing fair network resource 
allocation and request routing for different content providers. 

9. Conclusion 
In this paper, we study the problem of cache resource alloca- 

tion in a Multi-CP Multi-Cache environment. We propose a joint 
cache partitioning and content-oblivious request routing scheme, 
and formulate an optimization problem in which the objective is 
to maximize network utilities through proper cache partitioning 
and request routing. We give the optimal request routing strategy 
for each content provider, establish the biconvexity property of the 
formulated problem, and further develop distributed (online) al- 
gorithms. We also extend our model to the bandwidth-constrained 
and delay optimization scenarios to show that it provides a general 
framework for cache resource management in a Multi-CP Multi- 
Cache network. From an economic perspective, we believe that 
our framework also helps to build a viable market model for in- 
network caching services. 
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Appendix A. Proof of Theorem 3.1 

We rely on the characteristic time approximation for LRU, FIFO 
and Random policies to prove that hit rate under these policies is 
a concave function of the cache size. 

Based on Eqs. (1) and (3) , we can see that 
∂o(λi , T ) 

∂T ≥ 0 and ∂ 2 o(λi , T ) 
∂T 2 ≤ 0 

For a cache of size C , we have 
C = ∑ 

i o(λi , T ) 
Taking derivatives with respect to T from the two sides of the 

above equation, we get that 
∂C 
∂T ≥ 0 and ∂ 2 C 

∂T 2 ≤ 0 
The above inequalities imply that C is a non-decreasing concave 

function of T which then means T is a non-decreasing convex func- 
tion of C , i.e., 
∂T 
∂C ≥ 0 and ∂ 2 T 

∂C 2 ≥ 0 

Fig. 9. Traffic distribution of the two content providers with bandwidth limitation. 
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Fig. 10. Cache prices with bandwidth limitation under all four routings. 
Using the equation C = ∑ 

i o(λi , T ) , and taking derivatives with 
respect to C we obtain that 
0 = ∑ 

i 
∂ 2 o(λi , T ) 

∂C 2 
We need to show 

∑ 
i λi ∂ 2 o(λi , T ) 

∂C 2 ≤ 0 
Lemma A.1. Under LRU, FIFO and Random policies, for two files f i 
and f j such that λi ≥λj , ∂ 2 o(λ j ,T ) 

∂C 2 < 0 implies that ∂ 2 o(λi ,T ) 
∂C 2 < 0 . 

Proof. Starting with the Eqs. (1) and (3) and taking derivatives 
with respect to C we obtain 
∂ 2 o(λi , T ) 

∂C 2 = −λ2 
i e −λi T (∂T 

∂C 
)2 

+ λi e −λi T ∂ 2 T 
∂C 2 , (14) 

for LRU policy, and 
∂ 2 o(λi , T ) 

∂C 2 = − 2 λ2 
i 

(1 + λi T ) 3 
(

∂T 
∂C 

)2 
+ λi 

(1 + λi T ) 2 ∂ 
2 T 

∂C 2 , (15) 
for FIFO and Random policies. 

For LRU policy (14) implies that 
∂ 2 o(λi , T ) 

∂C 2 < 0 if ∂ 2 T 
∂C 2 < λi (∂T 

∂C 
)2 

On the other hand, 
∂ 2 T 
∂C 2 < λ j (∂T 

∂C 
)2 

if ∂ 2 T 
∂C 2 < λi (∂T 

∂C 
)2 

, 
since λj ≤λi and hence 
∂ 2 o(λi , T ) 

∂C 2 < 0 if ∂ 2 o(λ j , T ) 
∂C 2 < 0 . 

Similarly, for FIFO and Random policies, (15) implies that 
∂ 2 o(λ j , T ) 

∂C 2 < 0 if ∂ 2 T 
∂C 2 < 2 λ j 

1 + λ j T 
(

∂T 
∂C 

)2 
, 

since λj ≤λi and 2 λ
1+ λT is an increasing function of λ. Therefore 

∂ 2 o(λi , T ) 
∂C 2 < 0 if ∂ 2 o(λ j , T ) 

∂C 2 < 0 . 
!

Lemma A.2. Under LRU, FIFO and Random policies, for two files f i 
and f j such that λi ≥λj , ∂ 2 o(λi ,T ) 

∂C 2 > 0 implies that ∂ 2 o(λ j ,T ) 
∂C 2 > 0 . 

Lemma A.2 can be proved with similar steps as in proof of 
Lemma A.1 . 

Now, starting with the equation 
C = ∑ 

i o(λi , T ) , 

and taking derivative with respect to C from both sides of the 
equation, we obtain 
0 = ∂ 2 o(λi , T ) 

∂C 2 
Cache hit rate is expressed as 

h = ∑ 
i λi o(λi , T ) 

and taking the derivative with respect to cache size from both 
sides of the equation we obtain 
∂h 
∂C = ∑ 

i λi ∂o(λi , T ) 
∂C ≥ 0 (16) 

Taking a second derivative yields 
∂ 2 h 
∂C 2 = ∑ 

i λi ∂ 2 o(λi , T ) 
∂C 2 . 

Since ∑ 
i ∂ 2 o(λi ,T ) 

∂C 2 = 0 , Lemma A.1 and A.2 imply that 
∂ 2 h 
∂C 2 = ∑ 

i λi ∂ 2 o(λi , T ) 
∂C 2 ≤ 0 (17) 

From (16) and (17) , we conclude that hit rate is an increasing 
concave function of the cache size. 
Appendix B. Proof of Theorem 4.1 

We have h k = ∑ M 
m =1 ∑ N k 

i =1 λik p km o ik (λik , C km ) . Since o ik ( λik , C km ) 
is increasing in C km and λik is constant, it can be seen that h k is 
increased by moving requests from one cache with a small o ik to 
the cache with a larger one, i.e., by moving requests from cache 
m to cache s if o ik ( λik , C km ) < o ik ( λik , C ks ). The largest value of h k 
can be obtained by routing all requests of CP k to the cache with 
the largest o ik , or equivalently, to the cache from which CP k is 
allocated the largest slice. 
Appendix C. Proof of Theorem 4.2 

Given a routing configuration, let CP ( m ) be the set of CPs that 
route requests to cache m . When all requests of each CP are 
directed to one cache it connects, we can reformulate problem 
(5) as: 
maximize M ∑ 

m =1 
∑ 

k ∈ CP(m ) w k U k (h km (C km , 1)) 
subject to ∑ 

k ∈ CP ( m ) C km ≤ C m , ∀ m (18) 
Since the objective function of the above problem is separable, 

and the variables are not coupled, problem (18) can be further de- 
composed into M subproblems, one for each cache. For cache m , 
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the subproblem becomes: 
maximize ∑ 

k ∈ CP(m ) w k U k (h km (C km , 1)) 
subject to ∑ 

k ∈ CP ( m ) C km ≤ C m (19) 
Lemma C.1. The single-cache resource allocation problem (19) has a 
unique optimal solution. 
Proof. Since h km is concave in C km and U k is also concave, the ob- 
jective function in (19) is concave. Furthermore, as the feasible so- 
lution set is convex, a unique maximizer, called the optimal solu- 
tion, exists. 

!

Appendix D. Proof of Theorem 4.3 
We have proved that the optimal solution is such that each CP 

directs all requests to one cache. Now if we regard bins as caches, 
items as CPs, the budget of bins as the capacity of caches, the 
weight of items as the allocated cache amount to CPs, and the 
profit of each item as the resulting utility of each CP, then we can 
see that the Separable Assignment Problem (SAP [11] ) is a special 
case of Problem (5) (note that the weights and profits in the con- 
sidered problem are not fixed, while in SAP they are fixed). SAP 
is a general class of maximum assignment problem with packing 
constraints, and it has been proved to be NP-complete since the 
knapsack problem is its special case [11] . 
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