
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Submodular Optimization over Streams with Inhomogeneous Decays

Junzhou Zhao,1 Shuo Shang,2 Pinghui Wang,3 John C.S. Lui,4 Xiangliang Zhang1∗
1King Abdullah University of Science and Technology, KSA

2Inception Institute of Artificial Intelligence, UAE
3Xi’an Jiaotong University, China

4The Chinese University of Hong Kong, Hong Kong
{junzhou.zhao, xiangliang.zhang}@kaust.edu.sa, jedi.shang@gmail.com, phwang@mail.xjtu.edu.cn, cslui@cse.cuhk.edu.hk

Abstract

Cardinality constrained submodular function maximization,
which aims to select a subset of size at most k to maxi-
mize a monotone submodular utility function, is the key in
many data mining and machine learning applications such as
data summarization and maximum coverage problems. When
data is given as a stream, streaming submodular optimiza-
tion (SSO) techniques are desired. Existing SSO techniques
can only apply to insertion-only streams where each element
has an infinite lifespan, and sliding-window streams where
each element has a same lifespan (i.e., window size). How-
ever, elements in some data streams may have arbitrary differ-
ent lifespans, and this requires addressing SSO over streams
with inhomogeneous-decays (SSO-ID). This work formulates
the SSO-ID problem and presents three algorithms: BASIC-
STREAMING is a basic streaming algorithm that achieves an
(1/2 − ε) approximation factor; HISTAPPROX improves the
efficiency significantly and achieves an (1/3 − ε) approx-
imation factor; HISTSTREAMING is a streaming version of
HISTAPPROX and uses heuristics to further improve the effi-
ciency. Experiments conducted on real data demonstrate that
HISTSTREAMING can find high quality solutions and is up to
two orders of magnitude faster than the naive GREEDY algo-
rithm.

Introduction
Selecting a subset of data to maximize some utility function
under a cardinality constraint is a fundamental problem fac-
ing many data mining and machine learning applications. In
myriad scenarios, ranging from data summarization (Mitro-
vic et al. 2018), to search results diversification (Agrawal et
al. 2009), to feature selection (Brown et al. 2012), to cover-
age maximization (Cormode, Karloff, and Wirth 2010), util-
ity functions commonly satisfy submodularity (Nemhauser,
Wolsey, and Fisher 1978), which captures the diminishing
returns property. It is therefore not surprising that submod-
ular optimization has attracted a lot of interests in recent
years (Krause and Golovin 2014).

If data is given in advance, the GREEDY algorithm can be
applied to solve submodular optimization in a batch mode.
However, today’s data could be generated continuously with
∗Shuo Shang and Xiangliang Zhang are the corresponding au-

thors.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

∞∞∞∞∞∞∞∞
t

∞∞∞∞∞∞∞∞∞
t+ 1

insertion-only
remaining
lifespan

0 0 0 0 1 2 3 4
t

0 0 0 0 0 1 2 3 4
t+ 1

sliding-window
(homogeneous decay)

remaining
lifespan

0 01 3 2 4 1 5
t

0 0 0 02 1 3 4 2
t+ 1

0 0 0 0 01 2 3 1 3
t+ 2

inhomogeneous decay

remaining
lifespan

Figure 1: Insertion-only stream: each element has an infi-
nite lifespan. Sliding-window stream: each element has a
same initial lifespan. Our model: each element can have an
arbitrary lifespan.

no ending, and in some cases, data is produced so rapidly
that it cannot even be stored in computer main memory,
e.g., Twitter generates more than 8, 000 tweets every sec-
ond (Internet Live Stats 2018). Thus, it is crucial to design
streaming algorithms where at any point of time the algo-
rithm has access only to a small fraction of data. To this end,
streaming submodular optimization (SSO) techniques have
been developed for insertion-only streams where a subset is
selected from all historical data (Badanidiyuru et al. 2014),
and sliding-window streams where a subset is selected from
the most recent data only (Epasto et al. 2017).

We notice that these two existing streaming settings, i.e.,
insertion-only stream and sliding-window stream, actually
represent two extremes. In insertion-only streams, a subset
is selected from all historical data elements which are treated
as of equal importance, regardless of how outdated they are.
This is often undesirable because the stale historical data is
usually less important than fresh and recent data. While in
sliding-window streams, a subset is selected from the most
recent data only and historical data outside of the window
is completely discarded. This is also sometimes undesirable
because one may not wish to completely lose the entire his-
tory of past data and some historical data may be still impor-
tant. As a result, SSO over insertion-only streams may find
solutions that are not fresh; while SSO over sliding-window
streams may find solutions that exclude historical important

5861

data or include many recent but valueless data. Can we de-
sign SSO techniques with a better streaming setting?

We observe that both insertion-only stream and sliding-
window stream actually can be unified by introducing the
concept of data lifespan, which is the amount of time an ele-
ment participating in subset selection. As time advances, an
element’s remaining lifespan decreases. When an element’s
lifespan becomes zero, it is discarded and no longer par-
ticipates in subset selection. Specifically, in insertion-only
streams, each element has an infinite lifespan and will al-
ways participate in subset selection after arrival. While in
sliding-window streams, each element has a same initial
lifespan (i.e., the window size), and hence participates in
subset selection for a same amount of time (see Fig. 1).

We observe that in some real-world scenarios, it may be
inappropriate to assume that each element in a data stream
has a same lifespan. Let us consider the following scenario.

Motivating Example. Consider a news aggregation website
such as Hacker News (Y Combinator 2018) where news sub-
mitted by users form a news stream. Interesting news may
attract users to keep clicking and commenting and thus sur-
vive for a long time; while boring news may only survive
for one or two days (Leskovec, Backstrom, and Kleinberg
2009). In news recommendation tasks, we should select a
subset of news from current alive news rather than the most
recent news.

Therefore, besides timestamp of each data element, lifes-
pan of each data element should also be considered in subset
selection. Other similar scenarios include hot video selection
from YouTube (where each video may have its own lifes-
pan), and trending hashtag selection from Twitter (where
each hashtag may have a different lifespan).

Overview of Our Approach. We propose to extend the
two extreme streaming settings to a more general stream-
ing setting where each element is allowed to have an ar-
bitrary initial lifespan and thus each element can partic-
ipate in subset selection for an arbitrary amount of time
(see Fig. 1). We refer to this more general decaying mech-
anism as inhomogeneous decay, in contrast to the homoge-
neous decay adopted in sliding-window streams. This work
presents three algorithms to address SSO over streams with
inhomogeneous decays (SSO-ID). We first present a sim-
ple streaming algorithm, i.e., BASICSTREAMING. Then, we
present HISTAPPROX to improve the efficiency significantly.
Finally, we design a streaming version of HISTAPPROX,
i.e., HISTSTREAMING. We theoretically show that our al-
gorithms have constant approximation factors.

Our main contributions include:
• We propose a general inhomogeneous-decaying stream-

ing model that allows each element to participate in subset
selection for an arbitrary amount of time.

• We design three algorithms to address the SSO-ID prob-
lem with constant approximation factors.

• We conduct experiments on real data, and the results
demonstrate that our method finds high quality solutions
and is up to two orders of magnitude faster than GREEDY.

Problem Statement
Data Stream. A data stream comprises an unbounded se-
quence of elements arriving in chronological order, denoted
by {v1, v2, . . .}. Each element is from set V , called the
ground set, and each element v has a discrete timestamp
tv ∈ N. It is possible that multiple data elements arriving
at the same time. In addition, there may be other attributes
associated with each element.
Inhomogeneous Decay. We propose an inhomogeneous-
decaying data stream (IDS) model to enable inhomogeneous
decays. For an element v arrived at time tv , it is assigned an
initial lifespan l(v, tv) ∈ N representing the maximum time
span that the element will remain active. As time advances
to t ≥ tv , the element’s remaining lifespan decreases to
l(v, t), l(v, tv)−(t−tv). If l(v, t′) = 0 at some time t′, v is
discarded. We will assume l(v, tv) is given as an input to our
algorithm. At any time t, active elements in the stream form
a set, denoted by St,{v : v ∈ V ∧ tv ≤ t ∧ l(v, t) > 0}.

IDS model is general. If l(v, tv) = ∞,∀v, an IDS be-
comes an insertion-only stream. If l(v, tv) =W, ∀v, an IDS
becomes a sliding-window stream. If l(v, tv) follows a ge-
ometric distribution parameterized by p, i.e., P (l(v, tv) =
l) = (1 − p)l−1p, it is equivalent of saying that an active
element is discarded with probability p at each time step.

To simplify notations, if time t is clear from context, we
will use lv to represent l(v, t), i.e., the remaining lifespan (or
just say “the lifespan”) of element v at time t.
Monotone Submodular Function (Nemhauser, Wolsey,
and Fisher 1978). A set function f : 2V 7→ R≥0 is submod-
ular if f(S ∪ {s}) − f(S) ≥ f(T ∪ {s}) − f(T), for all
S ⊆ T ⊆ V and s ∈ V \T . f is monotone (non-decreasing)
if f(S) ≤ f(T) for all S ⊆ T ⊆ V . Without loss of gener-
ality, we assume f is normalized, i.e., f(∅) = 0.

Let δ(s|S) , f(S∪{s})−f(S) denote the marginal gain
of adding element s to S. Then monotonicity is equivalent
of saying that the marginal gain of every element is always
non-negative, and submodularity is equivalent of saying that
marginal gain δ(s|S) of element s never increases as set S
grows bigger, aka the diminishing returns property.
Streaming Submodular Optimization with Inhomoge-
neous Decays (SSO-ID). Equipped with the above no-
tations, we formulate the cardinality constrained SSO-ID
problem as follows:

OPTt , max
S

f(S), s.t. S ⊆ St ∧ |S| ≤ k,

where k is a given budget.
Remark. The SSO-ID problem is NP-hard, and active data
St is continuously evolving with outdated data being dis-
carded and new data being added in at every time t, which
further complicates the algorithm design. A naive algorithm
to solve the SSO-ID problem is that, when St is updated, we
re-run GREEDY on St from scratch, and this approach out-
puts a solution that is (1 − 1/e)-approximate. However, it
needsO(k|St|) utility function evaluations at each time step,
which is unaffordable for large St. Our goal is to find faster
algorithms with comparable approximation guarantees.

5862

Algorithms
This section presents three algorithms to address the SSO-ID
problem. Due to space limitation, the proofs of all theorems
are included in the extended version of this paper.

Warm-up: The BASICSTREAMING Algorithm
In the literature, SIEVESTREAMING (Badanidiyuru et al.
2014) is designed to address SSO over insertion-only
streams. We leverage SIEVESTREAMING as a basic build-
ing block to design a BASICSTREAMING algorithm. BA-
SICSTREAMING is simple per se and may be inefficient, but
offers opportunities for further improvement. This section
assumes lifespan is upper bounded by L, i.e., lv ≤ L,∀v.
We later remove this assumption in the following sections.
SIEVESTREAMING (Badanidiyuru et al. 2014) is a thresh-
old based streaming algorithm for solving cardinality con-
strained SSO over insertion-only streams. The high level
idea is that, for each coming element, it is selected only if
its gain w.r.t. a set is no less than a threshold. In its im-
plementation, SIEVESTREAMING lazily maintains a set of
log1+ε 2k = O(ε−1 log k) thresholds and each is associated
with a candidate set initialized empty. For each coming ele-
ment, its marginal gain w.r.t. each candidate set is computed;
if the gain is no less than the corresponding threshold and the
candidate set is not full, the element is added in the candi-
date set. At any time, a candidate set having the maximum
utility is the current solution. SIEVESTREAMING achieves
an (1/2− ε) approximation guarantee.
Algorithm Description. We show how SIEVESTREAMING
can be used to design a BASICSTREAMING algorithm to
solve the SSO-ID problem. Let Vt denote a set of elements
arrived at time t. We partition Vt into (at most) L non-
overlapping subsets, i.e., Vt = ∪Ll=1V

(t)
l where V (t)

l is the
subset of elements with lifespan l at time t. BASICSTREAM-
ING maintains L SIEVESTREAMING instances, denoted by
{A(t)

l }Ll=1, and alternates a data update step and a time up-
date step to process the arriving elements Vt.
•Data Update. This step processes arriving data Vt. Let in-
stance A(t)

l only process elements with lifespan no less than
l. In other words, elements in ∪i≥lV (t)

i are fed toA(t)
l . After

processing Vt, A(t)
1 outputs the current solution.

•Time Update. This step prepares for processing the up-
coming data in the next time step. We reset instance A(t)

1 ,
i.e., empty its threshold set and each candidate set. Then we
conduct a circular shift operation: A(t+1)

1 ←A(t)
2 ,A(t+1)

2 ←
A(t)

3 , . . . ,A(t+1)
L ←A(t)

1 .
BASICSTREAMING alternates the two steps and continu-

ously processes data at each time step. We illustrate BASIC-
STREAMING in Fig. 2, with pseudo-code given in Alg. 1.
Analysis. BASICSTREAMING exhibits a feature that an in-
stance gradually expires (and is reset) as data processed
in it expires. Such a feature ensures that, at any time t,
A(t)

1 always processed all the data in St. Because A(t)
1 is a

SIEVESTREAMING instance, we immediately have the fol-
lowing conclusions.

A(t)
1 A(t)

2 A(t)
3

· · · A(t)
L

St

V
(t)
1 V

(t)
2 V

(t)
3 V

(t)
L· · ·

resetA(t)
1 and t← t+ 1

Figure 2: BASICSTREAMING. Solid lines denote data up-
date, and dashed lines denote time update.

Algorithm 1: BASICSTREAMING

Input: An IDS of data elements arriving over time
Output: A subset St at any time t

1 Initialize L SIEVESTREAMING instances {A(1)
l }

L
l=1;

2 for t = 1, 2, . . . do
3 for l = 1, . . . , L do Feed A(t)

l with data ∪i≥lV
(t)
i ;

4 St ← output of A(t)
1 ;

5 for l = 2, . . . , L do A(t+1)
l−1 ← A(t)

l ;
6 Reset A(t)

1 and A(t+1)
L ← A(t)

1 ;

Theorem 1. BASICSTREAMING achieves an (1/2− ε) ap-
proximation guarantee.

Theorem 2. BASICSTREAMING uses O(Lε−1 log k) time
to process each element, and O(Lkε−1 log k) memory to
store intermediate results (i.e., candidate sets).

Remark. As illustrated in Fig. 2, data with lifespan l will be
fed to {A(t)

i }i≤l. Hence, elements with large lifespans will
fan out to a large fraction of SIEVESTREAMING instances,
and incur high CPU and memory usage, especially when L
is large. This is the main bottleneck of BASICSTREAMING.
On the other hand, elements with small lifespans only need
to be fed to a few instances. Therefore, if data lifespans are
mainly distributed over small values, e.g., power-law dis-
tributed, then BASICSTREAMING is still efficient.

HISTAPPROX: Improving Efficiency
To address the bottleneck of BASICSTREAMING when pro-
cessing data with a large lifespan, we design HISTAPPROX
in this section. HISTAPPROX can significantly improve the
efficiency of BASICSTREAMING but requires active data St
to be stored in RAM1. Strictly speaking, HISTAPPROX is
not a streaming algorithm. We later remove the assumption
of storing St in RAM in the next section.
Basic Idea. If at any time, only a few instances are main-
tained and running in BASICSTREAMING, then both CPU
time and memory usage will decrease. Our idea is hence
to selectively maintain a subset of SIEVESTREAMING in-
stances that can approximate the rest. Roughly speaking, this

1For example, if lifespan follows a geometric distribution, i.e.,
P (lv = l) = (1 − p)pl−1, l = 1, 2, . . ., and at most M elements
arrive at a time, then |St| ≤

∑t−1
a=0Mpa ≤ M

1−p
. Hence, if RAM is

larger than M
1−p

, St actually can be stored in RAM even as t→∞.

5863

idea can be thought of as using a histogram to approximate
a curve. Specifically, let gt(l) denote the value of output of
A(t)
l at time t. For very large L, we can think of {gt(l)}l≥1

as a “curve” (e.g., the dashed curve in Fig. 3). Our idea is
to pick a few instances as active instances and construct a
histogram to approximate this curve, as illustrated in Fig. 3.

x1 x2 x3 x4 x51

Case 1

Case 2
Case 3

{gt(l)}l≥1 {gt(l)}l∈xt

Figure 3: Approximate {gt(l)}l≥1 by {gt(l)}l∈xt
.

The challenge is that, as new data keeps arriving, the curve
is changing; hence, we need to update the histogram accord-
ingly to make sure that the histogram always well approx-
imates the curve. Let xt , {x(t)1 , x

(t)
2 , . . .} index a set of

active instances at time t, where each index x(t)i ≥ 1.2 In the
follows, we describe the xt updating method, i.e., HISTAP-
PROX, and the method guarantees that the maintained his-
togram satisfies our requirement.
Algorithm Description. HISTAPPROX consists of two
steps: (1) updating indices; (2) removing redundant indices.
•Updating Indices. The algorithm starts with an empty in-
dex set, i.e., x1 = ∅. At time t, consider a set of newly
arrived elements V (t)

l with lifespan l. These elements will
increase the curve before l (because data V (t)

l will be fed to
{A(t)

i }i≤l, see Fig. 2). There are three cases based on the
position of l, as illustrated in Fig. 3.

Case 1. If l ∈ xt, we simply feed V (t)
l to {A(t)

i }i∈xt∧i≤l.
Case 2. If l /∈ xt and l has no successor in xt, we create a

new instance A(t)
l and feed V (t)

l to {A(t)
i }i∈xt∧i≤l.

Case 3. If l /∈ xt and l has a successor l2 ∈ xt. LetA(t)
l be

a copy of A(t)
l2

, then we feed V (t)
l to {A(t)

i }i∈xt∧i≤l. Note

that A(t)
l needs to process all data with lifespan ≥ l at time

t. BecauseA(t)
l2

has processed all data with lifespan≥ l2, we

still need to feed A(t)
l with historical data s.t. their lifespan

∈ [l, l2). That is the reason we need St to be stored in RAM.
Above scheme guarantees that each A(t)

l , l ∈ xt pro-
cessed all the data with lifespan ≥ l at time t. The detailed
pseudo-code is given in procedure Process of Alg. 2.
•Removing Redundant Indices. Intuitively, if the outputs
of two instances are close to each other, it is not necessary
to keep both of them. We need the following definition to
quantify redundancy.
Definition 1 (ε-redundancy). At time t, consider two in-
stancesA(t)

i andA(t)
l with i < l. We sayA(t)

l is ε-redundant
if their exists j > l such that gt(j) ≥ (1− ε)gt(i).

The above definition simply states that, since A(t)
i and

A(t)
j are already close with each other, then instances be-

2Superscript t will be omitted if time t is clear from context.

Algorithm 2: HISTAPPROX

Input: An IDS of data elements arriving over time
Output: A subset St at any time t

1 x1 ← ∅;
2 for t = 1, 2, . . . do // Vt = ∪lV

(t)
l

3 foreach V (t)
l 6= ∅ do Process(V (t)

l); // data update
4 St ← output of A(t)

x1 ;
5 if x1=1 then Kill A(t)

1 , xt←xt\{1}; // time update
6 for i = 1, . . . , |xt| do
7 A(t+1)

xi−1 ← A
(t)
xi , x(t+1)

i ← x
(t)
i − 1;

8 Procedure Process(V (t)
l)

9 if l /∈ xt then
10 if l has no successor in xt then // Case 2 in Fig. 3
11 A(t)

l ← new instance;
12 else // let l2 denote the successor of l
13 A(t)

l ← a copy of A(t)
l2

; // Case 3 in Fig. 3

14 Feed A(t)
l with historical data elements s.t. their

lifespans ∈ [l, l2);
15 xt ← xt ∪ {l};
16 foreach i ∈ xt and i ≤ l do Feed A(t)

i with V (t)
l ;

17 ReduceRedundancy();
18 Procedure ReduceRedundancy()
19 foreach i ∈ xt do
20 Find the largest j>i in xt s.t. gt(j)≥(1−ε)gt(i);
21 Delete each index l∈xt s.t. i<l<j and kill A(t)

l ;

tween them are redundant. In HISTAPPROX, we regularly
check the output of each instance and terminate those redun-
dant ones, as described in ReduceRedundancy of Alg. 2.
Analysis. Notice that indices x ∈ xt and x + 1 ∈ xt−1
are actually the same index (if they both exist) but appear at
different time. In general, we say x′ ∈ xt′ is an ancestor of
x ∈ xt if t′ ≤ t and x′ = x + t − t′. In the follows, let x′
denote x’s ancestor at time t′. First, HISTAPPROX maintains
a histogram satisfying the following property.

Lemma 1. For two consecutive indices xi, xi+1 ∈ xt at any
time t, one of the following two cases holds:

C1 St contains no data with lifespan ∈ (xi, xi+1).
C2 gt′(x

′
i+1) ≥ (1−ε)gt′(x′i) at some time t′ ≤ t, and from

time t′ to t, there is no data with lifespan between the two
indices arrived (exclusive).

Histogram with property C2 is known as a smooth his-
togram (Braverman and Ostrovsky 2007). Smooth his-
togram together with the submodularity of f are sufficient to
ensure a constant factor approximation guarantee of gt(x1).

Theorem 3. HISTAPPROX is (1/3−ε)-approximate, i.e., at
any time t, gt(x1) ≥ (1/3− ε)OPTt.

Theorem 4. HISTAPPROX uses O(ε−2 log2 k) time to pro-
cess each coming element and O(kε−2 log2 k) memory to
store intermediate results and |St| memory to store St.

Remark. Because we use a histogram to approximate a
curve, HISTAPPROX has a weaker approximation guarantee
than BASICSTREAMING. In experiments, we observe that

5864

HISTAPPROX finds solutions with quality very close to BA-
SICSTREAMING and is much faster. The main drawback of
HISTAPPROX is that active data St needs to be stored in
RAM to ensure eachA(t)

l ’s output is accurate. If St is larger
than RAM capacity, then HISTAPPROX is inapplicable. We
address this limitation in the following section.

HISTSTREAMING: A Heuristic Streaming
Algorithm
Based on HISTAPPROX, this section presents a streaming al-
gorithm HISTSTREAMING, which uses heuristics to further
improve the efficiency of HISTAPPROX. HISTSTREAMING
no longer requires storing active data St in memory.
Basic Idea. If we do not need to process the historical data
in HISTAPPROX (Line 14), then there is no need to store
St. What if A(t)

l does not process historical data? Because
A(t)
l does not process all the data with lifespan ≥ l in St,

there will be a bias between its actual output ĝt(l) and ex-
pected output gt(l). We only need to worry about the case
ĝt(l) < gt(l), as the other case ĝt(l) ≥ gt(l) means that
without processing historical data,A(t)

l finds even better so-
lutions (which may rarely happen in practice but indeed pos-
sible). In the follows, we apply two useful heuristics to de-
sign HISTSTREAMING, and show that historical data can be
ignored due to its insignificance and submodularity of ob-
jective function.
Effects of historical data. Intuitively, if historical data is in-
significant, then a SIEVESTREAMING instance may not need
to process it at all, and can still output quality guaranteed
solutions. We notice that, in HISTAPPROX, a newly created
instance A(t)

l essentially needs to process three substreams:
(1) elements arrived before t with lifespan ≤ l2 (Line 13)3;
(2) unprocessed historical elements with lifespan ∈ [l, l2)
(Line 14); (3) newly arrived elements Vl (Line 16). Denote
these three substreams by S1, S2 and S3, respectively. We
state a useful lemma below.

Lemma 2. Let S1‖S2‖S3 denote the concatenation of three
substreams S1, S2, S3. Let A(S) denote the output value of
applying SIEVESTREAMING algorithm A on stream S. If
A(S1) ≥ αA(S1‖S2) for 0 < α < 1, then A(S1‖S3) ≥
(1/4 − ε)αOPT where OPT is the value of an optimal so-
lution in stream S1‖S2‖S3.

Lemma 2 states that, if historical data S2 is insignificant,
i.e., A(S1) ≥ αA(S1‖S2) for 0 < α < 1 (the closer α
is to 1, the less significant S2 is), then an instance does not
need to process S2 and still finds quality guaranteed solu-
tions. This will further ensure that HISTAPPROX finds qual-
ity guaranteed solutions (more explanation on this point can
be found in the extended version of this paper). Although
it is intractable to theoretically show that historical data S2

is indeed insignificant, intuitively, as unprocessed histori-
cal data S2 is caused by the deletion of redundant instances
(consider the example given in Fig. 4). These instances are

3This substream is actually processed byA(t)
l ’s successorA(t)

l2
,

and note that A(t)
l is copied from A(t)

l2
.

redundant because A(S1||S2) does not increase much upon
A(S1). Hence, it makes sense to assume that historical data
S2 is insignificant, and by Lemma 2, S2 can be ignored.

l′1 l′0 l′2 l1 l l2l0

t′ t

Figure 4: At time t′, data with lifespan l′0 arrives and forms
a redundant instance, which is removed. At time t > t′,
data with lifespan l arrives and A(t)

l is created. Data at l0
becomes the unprocessed historical data. We thus say that
unprocessed historical data is caused by the deletion of re-
dundant instance at previous time.

Protecting non-redundant instances. To further ensure the
solution quality of HISTSTREAMING, we introduce another
heuristic to protect non-redundant instances.

Because gt(l) is unknown, to avoid removing instances
that are actually not redundant, we give each instance A(t)

l
an amount of value, denoted by δl, as compensation for
not processing historical data, i.e., gt(l) may be as large as
ĝt(l) + δl. This allows us to represent gt(l) by an interval
[g
t
(l), gt(l)] where g

t
(l) , ĝt(l) and gt(l) , ĝt(l) + δl.

As g
t
(j) ≥ (1 − ε)gt(i) implies gt(j) ≥ (1 − ε)gt(i),

the condition in Line 20 of HISTAPPROX is replaced by
g
t
(j) ≥ (1− ε)gt(i).
We want δl to be related to the amount of historical data

thatA(t)
l does not process. Recall the example in Fig. 4. Un-

processed historical data is always fed to l’s predecessor in-
stance whenever redundant instances are removed in the in-
terval l belonging to. Also notice that gt′(l′2) ≥ (1−ε)gt′(l′1)
holds after the removal of redundant instances. Hence, the
contribution of unprocessed historical data can be estimated
to be at most εgt′(l′1). In general, if some redundant indices
are removed in interval (i, j) at time t, we set δl = εgt(i)
for index l that is later created in the interval (i, j).
Algorithm Description. We only need to slightly modify
Process and ReduceRedundancy (see Alg. 3).
Remark. HISTSTREAMING uses heuristics to further im-
prove the efficiency of HISTAPPROX, and no longer needs to
store St in memory. In experiments, we observe that HIST-
STREAMING can find high quality solutions.

Experiments
In this section, we construct several maximum coverage
problems to evaluate the performance of our methods. We
use real world and public available datasets. Note that the
optimization problems defined on these datasets may seem
to be simplistic, as our main purpose is to validate the perfor-
mance of proposed algorithms, and hence we want to keep
the problem settings as simple and clear as possible.

Datasets
DBLP. We construct a representative author selection prob-
lem on the DBLP dataset (DBLP 2018), which records the

5865

Algorithm 3: HISTSTREAMING

1 Procedure Process(V (t)
l)

2 if l /∈ xt then
3 δl ← 0;
4 · · ·

// If l has a successor l2
5 A(t)

l ← a copy of A(t)
l2

;
6 Find i, j ∈ xt s.t. l ∈ (i, j) and δij is recorded, then

let δl ← δij ;
7 · · ·
8 Procedure ReduceRedundancy()
9 foreach i ∈ xt do

10 Find the largest j>i in xt s.t. g
t
(j)≥(1−ε)gt(i);

11 Delete each index l∈xt s.t. i<l<j and kill A(t)
l ;

// Record the amount of unprocessed data in (i, j)
12 δij ← εgt(i);

meta information of about 3 million papers, including 1.8
million authors and 5, 079 conferences from 1936 to 2018.
We say that an author represents a conference if the author
published papers in the conference. Our goal is to maintain
a small set of k authors that jointly represent the maximum
number of distinct conferences at any time. We filter out au-
thors that published less than 10 papers and sort the remain-
ing 188, 383 authors by their first publication date to form
an author stream. On this dataset, an author’s lifespan could
be defined as the time period between its first and last publi-
cation dates.
StackExchange. We construct a hot question selection
problem on the math.stackexchange.com website (Stack
Exchange 2018). The dataset records about 1.3 million
questions with 152 thousand commenters from 7/2010 to
6/2018. We say a question is hot if it attracts many com-
menters to comment. Our goal is select a small set of k
questions that jointly attract the maximum number of dis-
tinct commenters at any time. The questions are ordered by
the post date, and the lifespan of a question can be defined as
the time interval length between its post time and last com-
ment time.

Settings

Benchmarks. We consider the following two methods as
benchmarks.

• GREEDY. We re-run GREEDY on the active data St at
each time t, and apply the lazy evaluation trick (Mi-
noux 1978) to further improve its efficiency. GREEDY will
serve as an upper bound.

• RANDOM. We randomly pick k elements from active data
St at each time t. RANDOM will serve as a lower bound.

Efficiency Measure. When evaluating algorithm efficiency,
we follow the previous work (Badanidiyuru et al. 2014) and
record the number of utility function evaluations, i.e., the
number of oracle calls. The advantage of this measure is that
it is independent of the concrete algorithm implementation
and platform.

Lifespan Generating. In order to test the algorithm perfor-
mance under different lifespan distributions, we also con-
sider generating data lifespans by sampling from a geomet-
ric distribution, i.e., P (le = l) = (1 − p)l−1p, l = 1, 2,
Here 0 < p < 1 controls the skewness of geometric distribu-
tion, i.e., larger p implies that a data element is more likely
to have a small lifespan.

Results
Analyzing BASICSTREAMING. Before comparing the per-
formance of our algorithms with benchmarks, let us first
study the properties of BASICSTREAMING, as it is the ba-
sis of HISTAPPROX and HISTSTREAMING. We mainly an-
alyze how lifespan distribution affects the performance of
BASICSTREAMING. To this end, we generate lifespans from
Geo(p) with varying p, and truncate the lifespan at L =
1, 000. We run the three proposed algorithms for 100 time
steps and maintain a set with cardinality k = 10 at every
time step. We set ε = 0.1. The solution value and number of
oracle calls (at time t = 100) are depicted in Figs. 5 and 6,
respectively.

 100

 200

 300

 400

 500

 600

 0.002 0.004 0.006 0.008 0.01

va
lu

e

p

BasicStreaming
HistApprox

HistStreaming

(a) DBLP

 50
 60
 70
 80
 90

 100
 110
 120
 130

 0.002 0.004 0.006 0.008 0.01

va
lu

e

p

BasicStreaming
HistApprox

HistStreaming

(b) StackExchange

Figure 5: Solution value comparison (higher is better)

103

104

105

106

107

 0.002 0.004 0.006 0.008 0.01

or
ac

le
 c

al
ls

p

BasicStreaming
HistApprox

HistStreaming

(a) DBLP

103

104

105

106

107

 0.002 0.004 0.006 0.008 0.01

or
ac

le
 c

al
ls

p

BasicStreaming
HistApprox

HistStreaming

(b) StackExchange

Figure 6: Oracle calls comparison (lower is better)

Figure 5 states that the outputs of the three methods are
always close with each other under different lifespan dis-
tributions, i.e., they always output similar quality solutions.
Fig. 6 states that BASICSTREAMING requires much more
oracle calls than the other two methods, indicating that BA-
SICSTREAMING is less efficient than the other two meth-
ods. We also observe that, as p increases (hence more data
elements tend to have small lifespans), the number of ora-
cle calls of BASICSTREAMING decreases. This confirms our
previous analysis that BASICSTREAMING is efficient when

5866

most data elements have small lifespans. We also observe
that HISTAPPROX and HISTSTREAMING are not quite sen-
sitive to lifetime distribution, and they are much more effi-
cient than BASICSTREAMING. In addition, we observe that
HISTSTREAMING is slightly faster than HISTAPPROX even
though HISTSTREAMING uses smaller RAM.

This experiment demonstrates that BASICSTREAMING,
HISTAPPROX, and HISTSTREAMING find solutions with
similar quality, but HISTAPPROX and HISTSTREAMING are
much more efficient than BASICSTREAMING.
Performance Over Time. In the next experiment, we fo-
cus on analyzing the performance of HISTSTREAMING. We
fix the lifespan distribution to be Geo(0.001) with L =
10, 000, and run each method for 5, 000 time steps to main-
tain a set with cardinality k = 10. Figs. 7 and 8 depict
the solution value and ratio of the number of oracle calls
(w.r.t. GREEDY), respectively.

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000

va
lu

e

time

Greedy
HistStreaming (ε=0.1)
HistStreaming (ε=0.2)
Random

(a) DBLP

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000

va
lu

e

time

Greedy
HistStreaming (ε=0.1)
HistStreaming (ε=0.2)
Random

(b) StackExchange

Figure 7: Solution value over time (higher is better)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

or
ac

le
 c

al
ls

 ra
tio

time

HistStreaming (ε=0.1)
HistStreaming (ε=0.2)

(a) DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

or
ac

le
 c

al
ls

 ra
tio

time

HistStreaming (ε=0.1)
HistStreaming (ε=0.2)

(b) StackExchange

Figure 8: Oracle calls ratio over time (lower is better)

Figure 7 shows that GREEDY and RANDOM always find
the best and worst solutions, respectively, which is expected.
HISTSTREAMING finds solutions that are close to GREEDY.
Small ε can further improve the solution quality. In Fig. 8,
we show the ratio of cumulative number of oracle calls be-
tween HISTSTREAMING and GREEDY. It is clear to see that
HISTSTREAMING uses quite a small number of oracle calls
comparing with GREEDY. Larger ε further improves effi-
ciency, and for ε = 0.2 the speedup of HISTSTREAMING
could be up to two orders of magnitude faster than GREEDY.

This experiment demonstrates that HISTSTREAMING
finds solutions with quality close to GREEDY and is much
more efficient than GREEDY. ε can trade off between solu-
tion quality and computational efficiency.

Performance under Different Budget k. Finally, we
conduct experiments to study the performance of HIST-
STREAMING under different budget k. Here, we choose the
lifespan distribution as the same as the previous experiment,
and set ε = 0.2. We run HISTSTREAMING and GREEDY
for 1000 time steps and compute the ratios of solution value
and number of oracle calls between HISTSTREAMING and
GREEDY. The results are depicted in Fig. 9.

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

ra
tio

k

value
oracle calls

(a) DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

ra
tio

k

value
oracle calls

(b) StackExchange

Figure 9: Ratios under different budget k

In general, using different budgets, HISTSTREAMING al-
ways finds solutions that are close to GREEDY, i.e., larger
than 80%; but uses very few oracle calls, i.e., less than 10%.
Hence, we conclude that HISTSTREAMING finds solutions
with similar quality to GREEDY, but is much efficient than
GREEDY, under different budgets.

Related Work
Cardinality Constrained Submodular Function Maxi-
mization. Submodular optimization lies at the core of many
data mining and machine learning applications. Because
the objectives in many optimization problems have a di-
minishing returns property, which can be captured by sub-
modularity. In the past few years, submodular optimization
has been applied to a wide variety of scenarios, including
sensor placement (Krause, Singh, and Guestrin 2008), out-
break detection (Leskovec et al. 2007), search result diver-
sification (Agrawal et al. 2009), feature selection (Brown et
al. 2012), data summarization (Mirzasoleiman et al. 2015;
Mitrovic et al. 2018), influence maximization (Kempe,
Kleinberg, and Tardos 2003), just name a few. The GREEDY
algorithm (Nemhauser, Wolsey, and Fisher 1978) plays as
a silver bullet in solving the cardinality constrained sub-
modular maximization problem. Improving the efficiency
of GREEDY algorithm has also gained a lot of interests,
such as lazy evaluation (Minoux 1978), disk-based opti-
mization (Cormode, Karloff, and Wirth 2010), distributed
computation (Epasto, Mirrokni, and Zadimoghaddam 2017;
Kumar et al. 2013), sampling (Mirzasoleiman et al. 2015),
etc.
Streaming Submodular Optimization (SSO). SSO is an-
other way to improve the efficiency of solving submodular
optimization problems, and are gaining interests in recent
years due to the rise of big data and high-speed streams
that an algorithm can only access a small fraction of the
data at a time point. Kumar et al. (2013) design stream-
ing algorithms that need to traverse the streaming data for a

5867

few rounds which is suitable for the MapReduce framework.
Badanidiyuru et al. (2014) then design the SIEVESTREAM-
ING algorithm which is the first one round streaming al-
gorithm for insertion-only streams. SIEVESTREAMING is
adopted as the basic building block in our algorithms. SSO
over sliding-window streams has recently been studied by
Chen et al. (2016) and Epasto et al. (2017) respectively, that
both leverage smooth histograms (Braverman and Ostrovsky
2007). Our algorithms actually can be viewed as a general-
ization of these existing methods, and our SSO techniques
apply for streams with inhomogeneous decays.
Streaming Models. The sliding-window streaming model
is proposed by Datar et al. (2002). Cohen et al. (2006) later
extend the sliding-window model to general time-decaying
model for the purpose of approximating summation aggre-
gates in data streams (e.g., count the number of 1’s in a 01
stream). Cormode et al. (2009) consider the similar estima-
tion problem by designing time-decaying sketches. These
studies have inspired us to propose the IDS model.

Conclusion
When a data stream consists of elements with different
lifespans, existing SSO techniques become inapplicable.
This work formulates the SSO-ID problem, and presents
three new SSO techniques to address the SSO-ID problem.
BASICSTREAMING is simple and achieves an (1/2 − ε)
approximation factor, but it may be inefficient. HISTAP-
PROX improves the efficiency of BASICSTREAMING sig-
nificantly and achieves an (1/3 − ε) approximation fac-
tor, but it requires additional memory to store active data.
HISTSTREAMING uses heuristics to further improve the ef-
ficiency of HISTAPPROX, and no longer requires storing ac-
tive data in memory. In practice, if memory is not a prob-
lem, we suggest using HISTAPPROX as it has a provable ap-
proximation guarantee; otherwise, HISTSTREAMING is also
a good choice.

Acknowledgment
We would like to thank the anonymous reviewers for their
valuable comments and suggestions to help us improve this
paper. This work is financially supported by the King Abdul-
lah University of Science and Technology (KAUST) Sensor
Initiative, Saudi Arabia. The work of John C.S. Lui was sup-
ported in part by the GRF Funding 14208816.

References
Agrawal, R.; Gollapudi, S.; Halverson, A.; and Ieong, S.
2009. Diversifying search results. In WSDM, WSDM.
Badanidiyuru, A.; Mirzasoleiman, B.; Karbasi, A.; and
Krause, A. 2014. Streaming submodular maximization:
Massive data summarization on the fly. In KDD.
Braverman, V., and Ostrovsky, R. 2007. Smooth histograms
for sliding windows. In FOCS.
Brown, G.; Pocock, A.; Zhao, M.-J.; and Luján, M. 2012.
Conditional likelihood maximisation: A unifying framework
for information theoretic feature selection. JMLR 13:27–66.

Chen, J.; Nguyen, H. L.; and Zhang, Q. 2016. Submodular
maximization over sliding windows. In arXiv:1611.00129.
Cohen, E., and Strauss, M. J. 2006. Maintaining time-
decaying stream aggregates. Journal of Algorithms 59:19–
36.
Cormode, G.; Karloff, H.; and Wirth, A. 2010. Set cover
algorithms for very large datasets. In CIKM.
Cormode, G.; Tirthapura, S.; and Xu, B. 2009. Time-
decaying sketches for robust aggregation of sensor data.
SIAM Journal on Computing 39(4):1309–1339.
Datar, M.; Gionis, A.; Indyk, P.; and Motwani, R. 2002.
Maintaining stream statistics over sliding windows. SIAM
Journal on Computing 31(6):1794–1813.
DBLP. 2018. Computer science bibliography. http://dblp.
dagstuhl.de/.
Epasto, A.; Lattanzi, S.; Vassilvitskii, S.; and Zadimoghad-
dam, M. 2017. Submodular optimization over sliding win-
dows. In WWW.
Epasto, A.; Mirrokni, V.; and Zadimoghaddam, M. 2017.
Bicriteria distributed submodular maximization in a few
rounds. In SPAA.
Internet Live Stats. 2018. Tweets per second. http://www.
internetlivestats.com/one-second.
Kempe, D.; Kleinberg, J.; and Tardos, E. 2003. Maximizing
the spread of influence through a social network. In KDD.
Krause, A., and Golovin, D. 2014. Submodular func-
tion maximization. In Tractability: Practical Approaches
to Hard Problems. Cambridge University Press.
Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-optimal
sensor placements in Gaussian processes: Theory, efficient
algorithms and empirical studies. JMLR 9:235–284.
Kumar, R.; Moseley, B.; Vassilvitskii, S.; and Vattani, A.
2013. Fast greedy algorithms in MapReduce and streaming.
In SPAA.
Leskovec, J.; Backstrom, L.; and Kleinberg, J. 2009. Meme-
tracking and the dynamics of the news cycle. In KDD.
Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
Briesen, J.; and Glance, N. 2007. Cost-effective outbreak
detection in networks. In KDD.
Minoux, M. 1978. Accelerated greedy algorithms for max-
imizing submodular set functions. Optimization Techniques
7:234–243.
Mirzasoleiman, B.; Badanidiyuru, A.; Karbasi, A.; Vondrak,
J.; and Krause, A. 2015. Lazier than lazy greedy. In AAAI.
Mitrovic, M.; Kazemi, E.; Zadimoghaddam, M.; and Kar-
basi, A. 2018. Data summarization at scale: A two-stage
submodular approach. In ICML.
Nemhauser, G.; Wolsey, L.; and Fisher, M. 1978. An analy-
sis of approximations for maximizing submodular set func-
tions - I. Mathematical Programming 14:265–294.
Stack Exchange. 2018. Stack Exchange data dump. https:
//archive.org/details/stackexchange.
Y Combintor. 2018. Hacker News. https://news.
ycombinator.com/newest.

5868

