
Federated Contextual Cascading Bandits with Asynchronous Communication and
Heterogeneous Users

Hantao Yang1, Xutong Liu2*, Zhiyong Wang2, Hong Xie1, John C. S. Lui2, Defu Lian1, Enhong
Chen1

1University of Science and Technology of China
2The Chinese University of Hong Kong

yanghantao@mail.ustc.edu.cn, liuxt@cse.cuhk.edu.hk, zywang21@cse.cuhk.edu.hk, xiehong2018@foxmail.com,
cslui@cse.cuhk.edu.hk, liandefu@ustc.edu.cn, cheneh@ustc.edu.cn

Abstract
We study the problem of federated contextual combinatorial
cascading bandits, where |U| agents collaborate under the co-
ordination of a central server to provide tailored recommen-
dations to the |U| corresponding users. Existing works con-
sider either a synchronous framework, necessitating full agent
participation and global synchronization, or assume user ho-
mogeneity with identical behaviors. We overcome these lim-
itations by considering (1) federated agents operating in an
asynchronous communication paradigm, where no manda-
tory synchronization is required and all agents communi-
cate independently with the server, (2) heterogeneous user
behaviors, where users can be stratified into J ≤ |U| la-
tent user clusters, each exhibiting distinct preferences. For
this setting, we propose a UCB-type algorithm with delicate
communication protocols. Through theoretical analysis, we
give sub-linear regret bounds on par with those achieved in
the synchronous framework, while incurring only logarithmic
communication costs. Empirical evaluation on synthetic and
real-world datasets validates our algorithm’s superior perfor-
mance in terms of regrets and communication costs.

Introduction
Contemporary recommendation systems commonly employ
ordered lists to present recommended items, which cover
applications in diverse domains like news, restaurants, and
movies recommendations, as well as search engines (Lian
et al. 2023; Wu et al. 2023). Recent attention has been di-
rected towards the analysis of user interaction patterns and
feedback in such ordered lists, leading to the development
of a cascade model by Craswell et al. (2008). In this model,
users engage with a list of items sequentially, clicking on the
first satisfactory item encountered. Following a click, users
cease further examination of the list. Learning agent receives
feedback which indicates that the items before the clicked
one were examined and deemed unsatisfactory, while the
user’s preference of items after the clicked entry remains
unknown. Despite its apparent simplicity, cascade model has
demonstrated efficacy in capturing user behaviors, as high-
lighted by Chuklin, Markov, and Rijke (2015).

Our study focuses on an online learning variant of the
cascade model, referred to as cascading bandits (CB) (Kve-

*Corresponding Author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ton et al. 2015a,b). In the CB framework, the learning agent
employs exploration-exploitation techniques to comprehend
user preferences over items through interactions. Specifi-
cally, in each round, the agent recommends an item list, ob-
serves click feedback, and receives a reward of 1 if the user
clicks on any item (otherwise, a reward of 0 is received).
The agent’s goal is to maximize cumulative rewards over T
rounds (or equivalently minimize the T -round regret).

Motivated by large-scale applications with a huge num-
ber of items, previous studies (Li et al. 2016; Zong et al.
2016) have proposed the contextual combinatorial cascad-
ing bandits (C3B) to integrate contextual information. This
integration is achieved by adding a linear structure assump-
tion, enhancing the scalability of CB. Later on, Li and Zhang
(2018) extends C3B to accommodate the heterogeneity of
users’ preferences for items. By assuming that users can be
partitioned into J unknown user groups (i.e., clusters), they
introduce the CLUB-cascade algorithm, where agents adap-
tively cluster users into groups, and harness the collaborative
influence of these user groups to enhance the performance.

While the successes of C3B in handling contextual in-
formation and user heterogeneity are noteworthy, prior in-
vestigations have primarily focused on either the single-
agent paradigm (Li et al. 2016; Zong et al. 2016) or the
synchronous setting which requires simultaneous data syn-
chronization among agents (Li and Zhang 2018). In real-
world scenarios, however, there could be a large num-
ber of participating agents, ranging from powerful servers
to resource-constrained mobile devices. Furthermore, users
can be highly heterogeneous in terms of preferences and
arrival times. In this case, the feasibility of managing syn-
chronous communication from all agents becomes question-
able. This motivates us to study C3B within an asynchronous
communication framework, which can accommodate a large
number of agents without requiring them to communicate at
the same time, and allow agents to serve users with varying
time of arrival and heterogenous preferences.

Our work introduces the first federated contextual com-
binatorial bandits (FedC3B), a framework wherein a finite
set of users U are served by |U| learning agents. Each
agent is responsible for offering personalized recommen-
dations to a specific user, and collaboration is facilitated
through a central server. Due to the stochastic nature of
user arrivals, communication between agents occurs asyn-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20596

Algorithm Agent User Arm
OFUL (2011) Single Hom Single

C3-UCB (2016) Single Hom Cascade
DisLinUCB (2019) Syn Hom Single

CLUB-cascade (2018) Syn Heter Cascade
Async-LinUCB (2021) Par-Asy Hom Single

Async-LinUCB-AM (2021) Par-Asy Heter Single
Phase-based FCLUB (2022a) Par-Asy Heter Single

FedLinUCB (2022) Asy Hom Single
FedC3UCB-H (Ours) Asy Heter Cascade

Table 1: Compared with existing works regarding agent
communication (‘Syn’ is synchronous, ‘Asy’ is asyn-
chronous and ‘Par’ is partially), user model (‘Hom’ is homo-
geneous and ‘Heter’ is heterogeneous), and arm selection.

chronously, eliminating the need for costly synchronizations
and allowing independent communication with the central
server. To account for user heterogeneity, we assume users
can be categorized into J ≤ |U| unknown clusters, each
representing a group of users with similar user behaviors.
The key challenge, therefore, is to accurately and swiftly
determine these user clusters to facilitate effective cooper-
ation among agents with similar users, while minimizing
cross-contamination of information arising from users with
different behaviors. To make the problem even more chal-
lenging, asynchronous communication introduces the addi-
tional complexity of potential delays and data inconsisten-
cies, which shall be carefully handled to give meaningful
regret/communication guarantees.

Our Contributions
To address the aforementioned challenges, this paper makes
three key contributions as follows.
Algorithmic Framework. We propose the Federated
Contextual Combinatorial Cascading Upper Confidence
Bound Algorithm for Heterogeneous Users (FedC3UCB-H).
FedC3UCB-H contains three components: agent-side action
selection based on the information received asynchronously,
server-side graph-based heterogeneity testing for precise
user clustering, and agent-server asynchronous communi-
cation strategies to manage potential data inconsistencies.
The key challenge of the algorithm design is to manage the
data inconsistency during user clustering. Existing matrix
determinant-based protocols (Li and Wang 2021; Liu et al.
2022a; He et al. 2022) fail to achieve this goal due to insuffi-
cient communication, so we propose a novel communication
protocol that employs a pt-auxiliary protocol in conjunction
with the matrix determinant-based protocol. This new proto-
col effectively controls data inconsistency, ensuring the cor-
rect operation of heterogeneity testing and action selection.
Theoretical Analysis. We prove that FedC3UCB-H
achieves a O(d

√
JKT log T) regret bound with a commu-

nication cost of O(d|U| log T+log2 T) communication cost,
showing that we use only logarithmic communication cost to
achieve regret results on par with the synchronous paradigm
that incurs O(T) communication cost (Li and Zhang 2018).
Moreover, our result generalizes the federated linear con-

Regret Communication
O(d

√
T log T) N/A

O(d
√
KT log T) N/A

O(d
√
T log2 T) O(d|U|1.5)

O(d
√
JKT log T) O(T)

O(d
√
T log T) O(d|U|2 log T)

O(d
√

|U|T log T) O(d|U|2 log T)
O(d|U|

√
JT log1.5 T) O(d|U|J log T)

O(d
√
T log T) O(d|U|2 log T)

O(d
√
JKT log T) O(d|U|2 log T + log2 T)

Table 2: Each row of Table 2 is related to that of Table 1. Our
framework generalizes existing works and achieves near-
optimal regret with low communication cost.

textual bandits (He et al. 2022) with homogeneous users
by allowing J > 1, while matching their regret and com-
munication cost when J = 1. Our analysis tackles several
technical challenges, such as showing that within a short
time span and at a low cost of asynchronous communication,
each agent will collaborate with the correct counterparts, and
managing information gaps for asynchronous collaboration
involving multiple arms (cascading arms). We believe our
proof techniques are novel and may be of independent in-
terest for analyzing related works that involve asynchronous
communication, heterogeneous users, and cascading arms.
Empirical Evaluation. Finally, we conduct experiments on
both synthetic and real data and show the effectiveness of
the user clustering procedure and the pt-auxiliary commu-
nication, where our FedC3UCB-H achieves superior perfor-
mance regarding regrets and communication cost.

Related Work
We review and compare with existing algorithms in the area
of contextual linear bandits. We consider three primary di-
mensions (1) cascading bandit frameworks, (2) user hetero-
geneity considerations, and (3) distributed/federated agents.
Detailed comparisons are summarized in Tables 1 and 2.
Cascading Bandit. Cascading bandits (CB) and their vari-
ants belong to the field of online learning to rank, which
has a vast literature and covers a wide range of applications
(Chuklin, Markov, and Rijke 2015; Kveton et al. 2015a,b; Li
et al. 2016; Lian, Liu, and Chen 2020; Vial et al. 2022; Liu
et al. 2022b, 2023a,b; Choi, Udwani, and Oh 2023). CB is
first proposed by Kveton et al. (2015a) and then generalized
by Kveton et al. (2015b) to accommodate combinatorial ac-
tion spaces. To handle large-scale applications, Zong et al.
(2016) integrates the contextual information and introduces
the contextual cascading bandits. Based on the seminal work
of linear bandits (Abbasi-Yadkori, Pál, and Szepesvári 2011)
(row 1 in Table 1), which leverages the optimism in the face
of uncertainty principle (OFUL), CascadeLinUCB is intro-
duced, yielding a regret bound of O(d

√
T). Their results are

generalized by Li et al. (2016) to accommodate combinato-
rial actions, yielding a regret bound of O(d

√
KT) (row 2 in

Table 2), and is improved to O(d
√
T) quite recently by (Liu

et al. 2023a) and (Choi, Udwani, and Oh 2023). All these

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20597

works deal with single-agent scenarios (where no commu-
nication is needed) and assume homogeneous users, leading
to techniques that are different and simpler than ours.
Online Clustering of Bandits. Online clustering of bandits
(CLUB) have emerged as a prominent line of works to ad-
dress user heterogeneity in contextual bandits. The first work
is proposed by Gentile, Li, and Zappella (2014), followed
by an extension by Li and Zhang (2018), wherein users pull
cascading arms (row 4 in Table 1). Both works, including
ours, adopt the key idea of maintaining a user heterogeneity
graph to adaptively refine user clusters, resulting in regret
bounds that depend on total user groups J instead of indi-
vidual users |U|. However, the above two works consider
either single-agent setting, or synchronous setting that re-
quires O(T) commmunication to obtain up-to-date user in-
formation for decision-making. Our work, our work deviates
by focusing on asynchronous multi-agent settings, where
managing potential information delays and data inconsisten-
cies are pivotal considerations.
Federated/Distributed Contextual Linear Bandits. There
has been growing interest in bandit learning with multiple
agents. Our work belongs to the field of cooperative dis-
tributed/federated bandits, in which multiple agents collabo-
rate to solve a linear contextual bandit problem over certain
communication networks, e.g., peer-to-peer networks (Ko-
rda, Szorenyi, and Li 2016; Zhu et al. 2021; Xu and Klabjan
2023) or star-shaped networks (Dubey and Pentland 2020;
Li and Wang 2021). Our work aligns with the latter category,
where a central server engages with multiple agents. For this
setting, Wang et al. (2019) proposes DisLinUCB algorithm
and achieves near-optimal O(d

√
T) in the synchronous set-

ting, where users/agents are homogeneous and mandatory
synchronization is required (row 2 in Tables 1 and 2). Li
and Wang (2021) explores the partially asynchronous set-
ting, where no synchronization is mandated, but agents still
do not communicate with the server independently and one
agent’s upload will trigger other agents’ download (row 5 in
Table 1). Notably, their work also considers heterogeneous
users but treats them as totally different entities, and thus
achieves sub-optimal regret that has a

√
|U| factor (row 6 in

Table 2). Ours improves this to
√
J regret factor. Later on,

Liu et al. (2022a) considers the similarity between users by
considering user groups, similar to our approach, yet their
communication model remains partially asynchronous, and
the regret bound has a |U| factor (row 7 in Table 2). The
recent FedLinUCB algorithm by He et al. (2022) for homo-
geneous users in a fully asynchronous setting (row 8 in Ta-
ble 1) provides inspiration for our work. We generalize their
approach to encompass heterogeneous users and cascading
arms, yielding matching results when J = 1 and K = 1.

Problem Setup
Notations. Let n ∈ N+ be a positive integer. [n] denotes
the set {1, ..., n}. For any set S , |S| denotes the number of
elements in S . For any event E , we use I{E} to denote the
indicator function, where I{E} = 1 if E holds and I{E} = 0
otherwise. We use boldface lowercase letters and boldface
capitalized letters to represent column vectors and matrices,

respectively. For vector norms, ∥x∥p denotes the ℓp norm
of vector x. For any symmetric positive semi-definite (PSD)
matrix M (i.e., x⊤Mx ≥ 0, ∀x), ∥x∥M =

√
x⊤Mx de-

notes the matrix norm of x regarding matrix M .
Federated Contextual Cascading Bandits. In this section,
we formulate the setting of “Federated Contextual Combina-
torial Cascading Bandits” (FedC3B). We consider a finite set
I ≜ {1, ..., I} of ground items to be selected with I ∈ N+,
referred to as base arms. Let Π(I) = {(a1, ..., ak) : k ≥
1, a1, ..., ak ∈ I, ai ̸= aj for any i ̸= j} be the set of all
possible tuples of distinct items selected from I, where we
refer each of such tuples as an action. For any action a ∈ A,
it involves at most K items, i.e., len(a) ≤ K, where K ≤ I .

In FedC3B, there is a finite set U of users, to be served by
|U| (local) learning agents individually. Each learning agent
serves one user u in order to provide personalized service to
that user.1 Each user u ∈ U is associated with an unknown
preference vector θu ∈ Rd, with ∥θu∥2 ≤ 1, where d ∈ N+.
To characterize the heterogeneity inherent in the user popu-
lation, we assume users are partitioned into disjoint clusters,
and two users share the same preference vector, if and only
if they belong to the same cluster. Specifically, let V1, . . .VJ
denote the partitioned clusters, where J ∈ N+, J ≤ |U|,
∪j∈[J]Vj = U and Vj ∩ Vj′ = ∅, for j ̸= j′. Moreover,
θu = θu′ if and only if there exists j ∈ [J] such that
{u, u′} ⊆ Vj . For the ease of presentation, let θj denote
the shared preference vector for cluster Vj . These clusters,
termed ground-truth clusters, remain unknown to the agent.
Importantly, in the scenario where J = 1, it is implied that
U constitutes homogeneous users.

We consider a total number of T ∈ N+ learning rounds.
In each round t ∈ [T], a single user identified as ut arrives
to receive service. The user ut is presented with a finite set
of items It ⊆ I and feasible action set At ⊆ Π(It). Let
xt,i ∈ Rd denote the feature vector of item i ∈ It, where
∥xt,i∥2 ≤ 1, which are revealed to the agent ut responsi-
ble for user ut. The agent serving ut takes a feasible action
at = (a1,t, ..., alen(at),t) ∈ At, i.e., recommends a list of
items at to the user.2 The user ut checks these items at in
sequence, beginning with the first, clicking on the first at-
tractive item, and stopping checking items after the clicked
item. We use the Bernoulli random variable wt(i) ∈ {0, 1}
to indicate whether item i ∈ It would be clicked or not once
checked. The learning agent observes the index of the first
clicked item or +∞ (if no item is clicked), defined as

Ot = min{1 ≤ k ≤ len(at) : wt(ak,t) = 1} (1)

Here Ot fully determines wt(ak,t) = 1−I{k < Ot} for k =
1, ...,min{Ot,len(at)}. Accordingly, we say that item i is
observed in round t, if Ot <∞ and at,Ot

= i. Since the user
clicks are shaped by their personal inclinations, the random
vector (wt(i))i∈It

is presumed to be independent of users
other than ut. We assume wt(i)’s across different items are
conditionally independent with expectation

w̄t(i) ≜ E[wt(i) | H(ut)
t] = ⟨θut

,xt,i⟩. (2)

1We also use u to identify the agent who serves user u.
2We omit superscript ut for a(ut)

t , etc., when contexts are clear.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20598

where H(ut)
t is the history associated with user ut: H(ut)

t ≜
{xt,i}i∈It

∪{{xs,i}i∈It
,as, Os, ws(ak,s)}k≤Os,s<t,us=ut

.
We make the following assumptions.
Assumption 1 (Minimum heterogeneity gap). The gap be-
tween any two preference vectors for different ground-truth
clusters is at least γ, ∥θj − θj′∥2 ≥ γ, ∀j, j′ ∈ [J] , j ̸= j′ ,
where γ > 0 is an unknown positive constant.
Assumption 2 (Random arrival of users). At each round t, a
user ut comes uniformly at random from U with probability
1/|U|, independent of the past rounds.
Assumption 3 (Item regularity). At each time step t, the
feature vector xt,a of each arm a ∈ E is drawn indepen-
dently from a fixed but unknown distribution ρ over {x ∈
Rd : ∥x∥2 ≤ 1}, where Ex∼ρ[xx

⊤] is full rank with mini-
mal eigenvalue λx > 0. Additionally, at any time t, for any
fixed unit vector θ ∈ Rd, (θ⊤x)2 has sub-Gaussian tail with
variance upper bounded by σ2.
Remark. All these assumptions align with previous works
on CB (Gentile, Li, and Zappella 2014; Li and Zhang 2018;
Liu et al. 2022a; Wang et al. 2023). Notably, Assumption
3 stands as a more practical and less restrictive alternative
compared to previous CB works that impose restrictions on
the variance upper bound σ2. Assumption 2, our results can
easily generalize to arbitrary distributions with minimum ar-
rival probability greater than pmin > 0.
Learning Objective. At round t, the reward of each action
a ∈ At with random vector wt ≜ (wt(i))i∈It

is defined as:

f(a,wt) ≜ 1−
∏len(a)

k=1 (1− wt(ak)). (3)

LetHt =
⋃

u∈U Hu
t be the total historical information up to

time t, then by independence assumption, it is easy to ver-
ify that the expected reward is E[f(a,wt)|Ht] = f(a, w̄t).
Let a∗

t = argmaxa∈At
f(a, w̄t) be the optimal action at

t. Given the complexity of computing the optimal action a∗
t

for a general feasible action setAt, even when θut
is known,

we introduce an offline α-approximation oracle. This oracle,
provided to the agent, generates an action ã for any weight
vector w ∈ RIt such that f(ã,w) ≥ αmaxa∈At

f(a,w).
The goal of the agents is to collaboratively minimize the cu-
mulative α-approximate regret defined as

Reg(T) = E
[∑T

t=1 (αf(a
∗
t ,wt)− f(at,wt))

]
, (4)

where the expectation is taken over the user arrival, the con-
texts, the weights, and the algorithm itself.
Communication model. We adopt the server-client com-
munication protocol with |U| local agents and one cen-
tral server, where each agent can communicate with the
server by uploading and downloading data. Unlike peer-
to-peer communication (Korda, Szorenyi, and Li 2016;
Zhu et al. 2021), local agents do not communicate
with each other directly. Moreover, we adopt the asyn-
chronous communication paradigm: (1) there is no manda-
tory synchronization, (2) the communication between an
agent and the server operates independently of other
agents, without triggering additional communication. Fi-
nally, we define the communication cost as Com(T) =

E[
∑T

t=1 I{agent ut communications with the server}].

Algorithm 1: FedC3UCB-H
1: Input: Communication and deletion thresholds

αc, αd > 0, probability pt = 3 log t/t, regularizer λ
2: Initialize server: complete graph G0 = (U , E0) over

agents. T ser
u,0 = 0, bseru,0 = bcluu,0 = 0d×1, θ̂ser

u,0 = θ̂clu
u,0 =

0d×1, Σser
u,0 = Σclu

u,0 = 0d×d

3: Initialize agents: T loc
u,0 = 0, bu,0 = blocu,0 = 0d×1,

θ̂u,0 = 0d×1, Σu,0 = Σloc
u,0 = 0d×d

4: for round t = 1, ..., T do
5: User ut arrives to be served
6: ComInd←LocalAgent(t, ut, pt, αc)
7: if ComInd==1 then
8: Agent ut sends Σloc

ut,t, T
loc
ut,t and blocut,t to server

9: Run Server(t, ut, αd)
10: Server sends Σclu

ut,t+1 and θ̂clu
ut,t+1 back to agent ut

11: Agent ut update: Σloc
ut,t+1 = 0d×d, blocut,t+1 =

0d×1, T loc
ut,t = 0, Σut,t+1 = Σclu

ut,t+1, θ̂ut,t+1 =

θ̂clu
ut,t+1

12: end if
13: end for

The Proposed Algorithm
This section presents our algorithm, named “Federated
Contextual Combinatorial Cascading Upper Confidence
Bound Algorithm for Heterogeneous Users” (FedC3UCB-
H), which is outlined in Algorithm 1. High levelly, the main
task of FedC3UCB-H is to identify which agents can col-
laborate based on user heterogeneity. Agents who can col-
laborate aggregate their data asynchronously to address the
agent-side cascading bandit problems. FedC3UCB-H con-
sists of three main components as follows. For simplicity,
we summarize the related notations in Table 3.

Notation Meaning
θ̂u,t,Σu,t Data for agent u’s decision

Σloc
u,t, b

loc
u,t, T

loc
u,t Local data of agent u

Σser
u,t , b

ser
u,t , T

ser
u,t Data stored at the server for agent u

θ̂clu
u,t ,Σ

clu
u,t , b

clu
u,t Data of the cluster that contains u

Table 3: Notations used in Algorithm 1, 2 and 3.

Agent-side combinatorial action selection. This compo-
nent aims to select combinatorial action based on data re-
ceived from the server. In each round t ∈ [T], a random
user ut arrives, and the corresponding agent ut will interact
with this user (line 5 in Algorithm 1). The agent ut then
calls the subroutine Algorithm 2 (line 6 in Algorithm 1).
During this process, ut receives the feature vector xt,i for
each item i ∈ It (line 1 in Algorithm 2). Utilizing the es-
timated preference vector θ̂ut,t and the gram matrix Σut,t,
the agent calculates an optimistic UCB value U

(ut)
t (i) for

the true weight w̄t(i) of each item i (line 2 in Algorithm 2).
This UCB value balances exploration and exploitation, with
β ∥xt,i∥Σ−1

ut,t
accounting for the uncertainty of the estimated

weight ⟨θ̂ut,t,xt,i⟩ and encouraging more exploration when

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20599

Algorithm 2: LocalAgent(t, ut, pt, αc)

1: Receives context xt,i, ∀i ∈ It
2: Ut(i)← min

{
θ̂T
ut,txt,i + β ∥xt,i∥Σ−1

ut,t
, 1
}
, ∀i ∈ It

3: at ← oracle((Ut(i))i∈It)
4: Play at and observe Ot, wt(ak,t) for k ≤ Ot, and re-

ceive reward f(at,wt)
5: T loc

ut,t = T loc
ut,t−1 +Ot

6: Σloc
ut,t = Σloc

ut,t−1 +
∑Ot

k=1 xt,ak,t
x⊤
t,ak,t

, blocut,t =

blocut,t−1 +
∑Ot

k=1 wt(ak,t)xt,ak,t

7: for u ̸= ut do
8: T loc

u,t = T loc
u,t−1

9: Σloc
u,t = Σloc

u,t−1, blocu,t = blocu,t−1

10: Σu,t+1 = Σu,t, bu,t+1 = bu,t, θ̂u,t+1 = θ̂u,t
11: end for
12: Generate a uniform random number p ∈ [0, 1]
13: if det(Σut,t + Σloc

ut,t) > (1 + αc)det(Σut,t) or p < pt
then

14: Return: 1
15: else
16: Σut,t+1 = Σut,t, but,t+1 = but,t, θ̂ut,t+1 = θ̂ut,t

17: Gt+1 = Gt

18: Return: 0
19: end if

it is large. It is crucial to note that θ̂ut,t and Σut,t not only
consist of data from user ut but also from users within the
same estimated cluster V that includes ut, which is identi-
fied by the heterogeneity testing at the server to be intro-
duced later. Due to the data inconsistency caused by the
asynchronous communication, the choice of β is carefully
designed and theoretically supported by Lemma 1.

After computing UCB values for each arm, the agent
employs the computation oracle to generate a ranked list
at ∈ At (line 3 in Algorithm 2). The user then scans through
this list at, receives the reward f(at,wt) (Eq. (3)) according
to the random weight wt, and observes the partial feedback
Ot as defined in Eq. (1). After receiving the feedback, agent
ut updates its local data and stores them in the local buffer
(lines 5-6 in Algorithm 2). Finally, based on certain condi-
tions, ut evaluates whether it should communicate with the
server (line 13 in Algorithm 2), which will be covered later
in our asynchronous communication protocol.
Server-side user heterogeneity testing. Different from
Wang et al. (2019); He et al. (2022) where users are as-
sumed to be homogeneous, the server in our setting must
address the user heterogeneity. Specifically, the server’s task
is to partition users into distinct clusters. Users from dif-
ferent clusters are viewed as heterogeneous and should not
collaborate with each other. To address this task, the server
maintains an undirected graph Gt = (U , Et) over agents.
This graph connects agents via edges if they are estimated
to belong to the same cluster. Initially, G0 is initialized as
a complete graph, and it will be updated adaptively based
on the uploaded information after each communication. At
round t, if the communication condition in line 13 of Algo-
rithm 2 is satisfied with communication indicator ComInd
= 1, ut uploads its local data (line 8 in Algorithm 1). The

Algorithm 3: Server(t, ut, αd)

1: From graph Gt = (U , Et), server identifies the con-
nected component Vt that user ut belongs to

2: Σclu
ut,t+1 = λI +

∑
u∈Vt

Σser
u,t , bcluut,t+1 =

∑
u∈Vt

bseru,t ,
θ̂clu
ut,t+1 = (Σclu

ut,t+1)
−1bcluut,t+1

3: T ser
ut,t = T ser

ut,t−1 + T loc
ut,t

4: Σser
ut,t = Σser

ut,t−1 + Σloc
ut,t, b

ser
ut,t = bserut,t−1 + blocut,t,

θ̂ser
ut,t = (λI +Σser

ut,t)
−1bserut,t

5: Reset deletion set Ẽ = ∅
6: for u ̸= ut and (u, ut) ∈ Et do
7: T ser

u,t = T ser
u,t−1

8: Σser
u,t = Σser

u,t−1, bseru,t = bseru,t−1, θ̂ser
u,t = (λI +

Σser
u,t)

−1bseru,t

9: if
∥∥∥θ̂ser

ut,t − θ̂ser
u,t

∥∥∥ > αd(

√
1+ln(1+T ser

ut,t
)

1+T ser
ut,t

+√
1+ln(1+T ser

u,t)

1+T ser
u,t

) then

10: Server puts edge (ut, u) into deletion set Ẽ
11: end if
12: end for
13: Update Et+1 = Et\Ẽ and obtain new graph Gt+1 =

(U , Et+1)

server then updates the agent ut’s information (lines 2-4 in
Algorithm 3). Next, the server verifies the estimated hetero-
geneity between user ut and other users based on the up-
dated estimation. In particular, for each user u connected to
ut via edge (ut, u) ∈ Et−1, if the gap between her estimated
preference vectors θ̂ser

u,t and θ̂ser
ut,t exceeds a certain thresh-

old (line 9 in Algorithm 3), the server removes edge (ut, u)
to separate them (line 10 in Algorithm 3). This threshold
is carefully set to ensure that, with high probability, edges
between heterogeneous users (those not in the same ground-
truth clusters) are deleted after a short span of time steps.
Conversely, edges connecting users within the same ground-
truth clusters are retained. After user clusters are correctly
identified, our algorithm will leverage collaborative infor-
mation between homogeneous users while avoiding misuse
of information from heterogeneous users to reduce the over-
all uncertainty. In line 13 of Algorithm 3, the server uses
graph Gt to identify the connected component Vt in which
ut resides, and sends back to ut the updated collaborative
information of Vt for future decisions.
Asynchronous communication protocol. This protocol ad-
dresses the key question of when ut should communicate
with the server to share her information and to keep her up-
dated with the newest information. Striking the right balance
is the main challenge because excessive communication in-
curs high communication costs, while insufficient commu-
nication results in inaccurate estimation for the local agents
and prevents the server from updating graph Gt effectively.

The communication protocol involves a two-step verifi-
cation process to decide whether the agent needs to acti-
vate a communication. Inspired by He et al. (2022), the first
step is to verify a matrix determinant-based condition (line

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20600

13 in Algorithm 2). This condition gauges the gap between
information accumulated locally and collaborative informa-
tion shared during the previous communication. If satisfied,
it signifies that enough local data have been collected to sig-
nificantly reduce global model uncertainty. Thus, agent ut

triggers a communication with the server, leading to global
model updates (line 2 in Algorithm 3). Subsequently, the
server provides the latest collaborative information to agent
ut (line 10 in Algorithm 1). Notably, this communication in-
directly aids the update of graph Gt (line 13 in Algorithm 3).

Our communication protocol involves a two-step verifi-
cation process to decide whether a communication needs to
be activated. Inspired by He et al. (2022), the first step is
to verify a matrix determinant-based condition (line 13 in
Algorithm 2). This condition measures the gap between the
information accumulated locally and the collaborative infor-
mation shared during the previous communication. If satis-
fied, it means that enough local data have been collected to
significantly reduce global model uncertainty. Thus, agent
ut will trigger a communication with the server, leading to
the update of the global model at the server (line 2 in Al-
gorithm 3). Subsequently, the server returns the lastest col-
laborative information to agent ut (line 10 in Algorithm 1).
Note that as a by-product, this communication will also help
to update the graph Gt (line 13 in Algorithm 3). However,
this by-product communication isn’t enough to ensure that
the server’s heterogeneity testing of all agents is completed
in sublinear time, which motivates our second condition to
increase the number of communications. Specifically, we in-
troduce a certain probability pt that user ut activates an aux-
iliary communication at round t, as a complement to the ma-
trix determinant-based condition. We refer to this protocol as
pt-auxiliary communication protocol. The key challenge is
to determine suitable pt, and through careful analysis, we
set pt = 3 log t/t. A deterministic version of this proto-
col, the force-communication protocol, is also offered for
uncertainty-averse applications. Note that we also provide
a deterministic version of the ϵ-auxiliary condition, i.e., the
force-communication protocol, for uncertainty-averse appli-
cations. However, our theory and experiments show that the
force-communication may yield worse performance both in
regret and communication, whose details and analysis are
postponed to the Appendix. In cases where neither the ma-
trix determinant-based condition nor the pt-auxiliary condi-
tion is met, communication between the agent and the server
is not activated, and local data remain local. For inactive
agents, their data also remains unchanged.

Theoretical Analysis
Theorem 1. Under Assumptions 1-3 stated in the section of
Problem Setup, if we set β as in Lemma 1 and λ̃x ≜

∫ λx

0
(1−

e−(λx−x)2/2σ2

)Idx, then the expected cumulative regret of
Algorithm 1 is upper bounded by

Reg(T) ≤ O
(
d
√
(J + |U|αc)(1 + |U|2αc)KT log T

+ |U|(dγ−2λ̃−1
x + λ̃−2

x) log T
)
. (5)

The communication cost is bounded by Com(T) ≤
O
(
d(|U|+ 1/αc) log T + log2 T

)

Discussion and Comparison. Looking at the above theo-
rem, by setting αc = 1/ |U|2, we can bound the regret by
Õ(d
√
JKT), while maintaining a near-constant Õ(d|U|2)

communication cost, which is exactly the result presented in
row 8 of Table 2. Compared with the state-of-the-art CLUB-
cascade algorithm (Li and Zhang 2018) which incurs a O(T)
communication cost (row 4 of Table 2), our algorithm signif-
icantly reduces the communication cost to logarithmic terms
regarding T , while obtaining the same regret bounds. In the
scenario where users are homogeneous (J = 1) and only a
single arm is selected per round (K = 1), our regret matches
He et al. (2022), incurring only an additional O(log2 T)
communication cost due to the pt-auxiliary communication.
As for the lower bound, Liu et al. (2022a) establishes a lower
bound of Ω(

√
dJT) with unlimited communication, where

our result is near-optimal and matches this lower bound up
to a factor O(

√
dK). For the communication cost, He et al.

(2022) shows Ω(|U|) communication is needed to achieve
near-optimal regret, and removing the O(d|U|) communica-
tion gap is still a challenging open problem.

Proof for Theorem 1. Due to space limit, we give a sketched
proof here. Our regret analysis mainly contains two parts.
The first part upper bounds the number of exploration
rounds required to achieve accurate user partitioning at the
server. In particular, leveraging assumptions of item reg-
ularity and user arrivals, we prove that the user groups
would be correctly partitioned if all user data are synchro-
nized and uploaded to the server exactly at (or after) T0 =
O(|U|(dγ−2λ̃−1

x + λ̃−2
x) log T) timesteps. However, since

γ and λ̃x are unknown (which makes T0 unknown) to the
agents or the server, we devise a pt-auxiliary communica-
tion that is agnostic to T0 and ensures that after at most
T1 = O(|U| log T +

√
T) extra rounds, the server obtains

the correct user partition. For the second part of our analysis
after T0+T1, agents sharing the same θ begin to collaborate
with each other under server coordination and we prove the
following concentration bound:

Lemma 1. Let β =
√
λ + (

√
1 + |U|αc +

|U|
√
2αc)

√
d log(1 + KT

αcλd
) + 2 log(1/δ) + 4 log(T |U|),

for t > T0 + T1 and every u ∈ U in true user clus-
ter j(u), it holds with probability at least 1 − δ that∥∥∥θ̂u,t − θj(u)

∥∥∥
Σu,t

≤ β.

The key challenge of proving Lemma 1 is to handle the
gap between the delayed Σu,t and up-to-date information
had agents been synchronized. We address the challenge by
bounding this gap by a factor of O(J + |U|αc) thanks to
the matrix determinant condition in line 13 of Algorithm 2.
Based on this concentration bound, we conduct a contex-
tual combinatorial cascading bandit regret analysis to bound
the final regret. For the communication cost, the matrix-
determinant condition and the pt-auxiliary communication
contribute O(d(|U| + 1/αc) log T) and O(log2 T), respec-
tively. For detailed proofs, please refer to our Appendix.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20601

(a) Synthetic, J = 5 (b) Synthetic, J = 10

(c) Synthetic, J = 10 (d) Yelp, J = 10

Figure 1: Cumulative regret and error rates of user clustering

Empirical Evaluation
In this section, we compare FedC3UCB-H against four
baseline algorithms: (1) FedLinUCB (He et al. (2022)),
adapted to accommodate cascading arms while maintain-
ing a single estimated vector for all agents, (2) FedInd,
where agents operate independent cascading bandit algo-
rithms locally without any communication, (3) NoAuxiliary,
a variant of FedC3UCB-H that omits the pt-auxiliary com-
munication condition, and (4) ForceComm, which replaces
the pt-auxiliary communication with a deterministic force-
communication protocol. In the ForceComm protocol, each
agent communicates with the server upon its arrival at time
steps {1, 2, 4, ..., 2n}. The baselines (1) and (2) aim to eval-
uate the significance of user cluster identification, while the
baselines (3) and (4) show the importance of our pt-auxiliary
communication. We report the averaged regret, communi-
cation cost, and error rates of user clustering (the number
of incorrect users divided by |U|; users in a correctly parti-
tioned cluster are considered correct, while others are incor-
rect) over three independent runs with standard deviations.
Synthetic Experiments. We conduct experiments in a syn-
thetic environment with |U| = 40 users, J = 5 or J = 10
clusters with orthogonal θ, and T = 1000, 000 rounds. The
preference and feature vectors are of dimension d = 20,
with each entry drawn from a standard Gaussian distribu-
tion, and are normalized to vectors with ∥.∥2 = 1 (Li et al.
2019). At round t, a user ut randomly chosen from U and
and It = 200 items are generated, where each item is as-
sociated with a random xt,i ∈ Rd generated as above. The
agent needs to recommend K = 4 items as cascading arms
at to the user, leading to a random reward f(at,wt) as de-
fined in Eq. (3). The agents then observed feedback accord-
ing to Eq. (1). Results for the J = 5 scenario are shown
in Fig. 1a, while Fig. 1b depicts the results for J = 10.
In both cases, FedC3UCB-H outperformes the baseline al-
gorithms. For the J = 10 setting, FedC3UCB-H achieves

Synthetic Yelp
J = 5 J = 10 J = 10

FedC3UCB-H 818.3 1070.7 951.3
ForceComm 909.3 1125.3 1034.0
NoAuxiliary 666.7 899.3 789.3
FedLinUCB 479.7 482.3 486.0

Table 4: Communication cost for different datasets.

an 82% reduction in regret compared to FedLinUCB and a
64% reduction compared to FedInd. This shows the effec-
tiveness of our user clustering procedure. Compared with
NoAuxiliary, FedC3UCB-H achieves an 10% reduction in
regret, indicating the importance of our pt-auxiliary com-
munication. This is confirmed by Fig. 1c, where NoAuxil-
iary exhibited slower convergence in correctly identifying
user clusters. When compared to ForceComm, FedC3UCB-
H achieved 12% less regret and 5% less communication.
Although ForceComm initially identifies user clusters more
rapidly (Fig. 1c), it incurs unnecessary communication after
users are correctly partitioned, causing it to perform worse
over time. FedC3UCB-H, instead, strikes a better balance.
The J = 10 scenario produces consistent results, reaffirm-
ing the observations in the J = 5 scenario.
Experiments on Real Dataset. We conduct experiments
on the Yelp dataset, which contains 4.7 million ratings of
1.57× 105 restaurants from 1.18 million users.3 Since Yelp
dataset is very sparse, we extract 1000 items with the most
ratings and 1000 users who rate most. This subset forms a
new rating matrix M1000×1000. We use matrix M to gen-
erate feature vectors and preference vectors of d = 20 di-
mension for all items and users by singular-value decompo-
sition (SVD) (Li and Zhang 2018; Li et al. 2019; Liu et al.
2022a), respectively. Then we randomly sample |U| = 40
users and use k-means clustering (Ahmed, Seraj, and Islam
2020) to generate J = 10 user clusters. Each cluster’s center
vector represents the true preference vector for users within
that cluster. The experiment’s remaining parameters match
those of the synthetic experiments. Fig. 1d shows the re-
gret comparison and Table 4 shows the communication cost.
The results are consistent with the synthetic experiments.
FedC3UCB-H achievs a 67% reduction in regret compared
to FedLinUCB, 43% compared to FedInd, 5% compared to
NoAuxiliary, and 6% compared to ForceComm. As for the
communication cost, FedC3UCB-H has higher communica-
tion costs than NoAuxiliary and FedLinUCB due to auxil-
iary communication, but manages to reduce communication
by 8% compared to ForceComm.

Future Directions

It would be interesting to eliminate the O(
√
dK) gap in the

regret and the O(d|U|) gap in the communication. It would
also be valuable to generalize the linear structure by consid-
ering non-linear structures or model mis-specifications.

3http://www.yelp.com/dataset challenge

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20602

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. The work of John C.S. Lui was supported in part by
the RGC GRF 14202923.

References
Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Im-
proved algorithms for linear stochastic bandits. Advances in
neural information processing systems, 24.
Ahmed, M.; Seraj, R.; and Islam, S. M. S. 2020. The k-
means algorithm: A comprehensive survey and performance
evaluation. Electronics, 9(8): 1295.
Choi, H.; Udwani, R.; and Oh, M.-h. 2023. Cascading Con-
textual Assortment Bandits. In Thirty-seventh Conference
on Neural Information Processing Systems.
Chuklin, A.; Markov, I.; and Rijke, M. d. 2015. Click models
for web search. Synthesis lectures on information concepts,
retrieval, and services, 7(3): 1–115.
Craswell, N.; Zoeter, O.; Taylor, M.; and Ramsey, B. 2008.
An experimental comparison of click position-bias models.
In Proceedings of the 2008 international conference on web
search and data mining, 87–94.
Dubey, A.; and Pentland, A. 2020. Differentially-private
federated linear bandits. Advances in Neural Information
Processing Systems, 33: 6003–6014.
Gentile, C.; Li, S.; and Zappella, G. 2014. Online clustering
of bandits. In International Conference on Machine Learn-
ing, 757–765. PMLR.
He, J.; Wang, T.; Min, Y.; and Gu, Q. 2022. A Simple and
Provably Efficient Algorithm for Asynchronous Federated
Contextual Linear Bandits. Advances in neural information
processing systems.
Korda, N.; Szorenyi, B.; and Li, S. 2016. Distributed clus-
tering of linear bandits in peer to peer networks. In Interna-
tional conference on machine learning, 1301–1309. PMLR.
Kveton, B.; Szepesvari, C.; Wen, Z.; and Ashkan, A. 2015a.
Cascading bandits: Learning to rank in the cascade model.
In International Conference on Machine Learning, 767–
776. PMLR.
Kveton, B.; Wen, Z.; Ashkan, A.; and Szepesvári, C. 2015b.
Combinatorial cascading bandits. In Proceedings of the 28th
International Conference on Neural Information Processing
Systems-Volume 1, 1450–1458.
Li, C.; and Wang, H. 2021. Asynchronous Upper Con-
fidence Bound Algorithms for Federated Linear Bandits.
arXiv preprint arXiv:2110.01463.
Li, S.; Chen, W.; Li, S.; and Leung, K.-S. 2019. Improved
Algorithm on Online Clustering of Bandits. In Proceed-
ings of the 28th International Joint Conference on Artifi-
cial Intelligence, IJCAI’19, 2923–2929. AAAI Press. ISBN
9780999241141.
Li, S.; Wang, B.; Zhang, S.; and Chen, W. 2016. Contextual
combinatorial cascading bandits. In International confer-
ence on machine learning, 1245–1253. PMLR.

Li, S.; and Zhang, S. 2018. Online clustering of contextual
cascading bandits. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.
Lian, D.; Gao, Z.; Song, X.; Li, Y.; Liu, Q.; and Chen, E.
2023. Training Recommenders Over Large Item Corpus
With Importance Sampling. IEEE Transactions on Knowl-
edge and Data Engineering.
Lian, D.; Liu, Q.; and Chen, E. 2020. Personalized Rank-
ing with Importance Sampling. In Proceedings of The Web
Conference 2020, 1093–1103.
Liu, X.; Zhao, H.; Yu, T.; Li, S.; and Lui, J. 2022a. Federated
Online Clustering of Bandits. In The 38th Conference on
Uncertainty in Artificial Intelligence.
Liu, X.; Zuo, J.; Wang, S.; Joe-Wong, C.; Lui, J.; and Chen,
W. 2022b. Batch-size independent regret bounds for com-
binatorial semi-bandits with probabilistically triggered arms
or independent arms. Advances in Neural Information Pro-
cessing Systems, 35: 14904–14916.
Liu, X.; Zuo, J.; Wang, S.; Lui, J. C.; Hajiesmaili, M.;
Wierman, A.; and Chen, W. 2023a. Contextual combina-
torial bandits with probabilistically triggered arms. In Inter-
national Conference on Machine Learning, 22559–22593.
PMLR.
Liu, X.; Zuo, J.; Xie, H.; Joe-Wong, C.; and Lui, J. C.
2023b. Variance-adaptive algorithm for probabilistic maxi-
mum coverage bandits with general feedback. In IEEE IN-
FOCOM 2023-IEEE Conference on Computer Communica-
tions, 1–10. IEEE.
Vial, D.; Sanghavi, S.; Shakkottai, S.; and Srikant, R. 2022.
Minimax Regret for Cascading Bandits. arXiv preprint
arXiv:2203.12577.
Wang, Y.; Hu, J.; Chen, X.; and Wang, L. 2019. Distributed
Bandit Learning: Near-Optimal Regret with Efficient Com-
munication. arXiv e-prints.
Wang, Z.; Xie, J.; Liu, X.; Li, S.; and Lui, J. 2023. Online
clustering of bandits with misspecified user models. arXiv
preprint arXiv:2310.02717.
Wu, C.; Lian, D.; Ge, Y.; Zhu, Z.; and Chen, E. 2023.
Influence-Driven Data Poisoning for Robust Recommender
Systems. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence.
Xu, M.; and Klabjan, D. 2023. Decentralized Randomly
Distributed Multi-agent Multi-armed Bandit with Heteroge-
neous Rewards. In Advances on Neural Information Pro-
cessing Systems.
Zhu, Z.; Zhu, J.; Liu, J.; and Liu, Y. 2021. Federated bandit:
A gossiping approach. In Abstract Proceedings of the 2021
ACM SIGMETRICS/International Conference on Measure-
ment and Modeling of Computer Systems, 3–4.
Zong, S.; Ni, H.; Sung, K.; Ke, N. R.; Wen, Z.; and Kveton,
B. 2016. Cascading bandits for large-scale recommendation
problems. arXiv preprint arXiv:1603.05359.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20603

