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How to process big data

The volume of data is quite large
Model is big enough like huge kernel or big latent matrix
How to achieve fast response?
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Current solution
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How to handle the bottleneck of network

Wait for communication
MapReduce
Bulk Synchronous Parallel
GraphLab

Trade-off between communication and performance
Petuum
Many global approximation methods from local sub-solution

Local computation -> reduce to global result
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Information constrains in learning

Memory constrain
kernel methods

Sequential access constrain
Online learning

Communication Constrain
Distributed machine learning

Partial access to the underlying data
Matrix completion
Multi-armed bandit problem
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Communication constrain vs Partial access
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Motivation

How the learning algorithms interact with the training data
How these constrains impact the performance

Yuxin Su (CSE@CUHK) Communication Limits January 28, 2015 11 / 19



Information-constrained protocols

(b,n,m) protocol

Given access to a sequence of m×n i.i.d instance in Rd , an algorithm is a
(b,n,m) protocol if it has the following form:

For t = 1, . . . ,m

Let X t be a batch of n i.i.d instances
Compute message W t = ft(X

t ,W 1, . . . ,W t−1)

Return W = f (W 1, . . . ,Wm)

W t are constrained to be only b bits.

In distributed setting
There are m machines, each machine will received a set of messages in
serial order.
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Hide-and-seek Problem

It is similar to “exploration and exploitation” strategy in multi-armed bandit
problem.

Definition

Consider the set of product distributions {Prj(·)}dj=1 over {−1,1}d defined
via Ex∼Prj (·)[xi ] = 2ρ1i=j for all coordinates i = 1, . . . ,d . Given an i.i.d
sample of m×n instances generated from Prj(·), where j is unknown,
detect j .
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Theorem: without information constrain

Theorem

Consider the hide-and-seek problem. Given m×n samples, if J̃ is the
coordinate with the highest empirical average, then:

Prj(J̃ = j)≥ 1−2d exp(−1
2
mnρ

2)
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Theorem: (b,1,m) protocol

Theorem
Consider the hide-and-seek problem on d > 1 coordinates, with some bias
ρ ≤ 1/4 and sample size m. The for any estimate J̃ of the biased
coordinate returned by an (b,1,m) protocol, there exists some coordinate j
such that:

Prj(J̃ = j)≤ 3
d

+21

√
m

ρ2b

d

Implication
For any algorithm based on (b,1,m) protocol, it requires sample size m to
reliably detect some j .

m ≥ Ω(
d

bρ2 )
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Theorem: (b,n,m) protocol

Theorem
Consider the hide-and-seek problem on d > 1 coordinates, with some bias
ρ ≤ 1/4n and sample size m×n. Then for any estimate J̃ of the biased
coordinate returned by any (b,n,m) protocol, there exists some coordinate
j such that:

Prj(J̃ = j)≤ 3
d

+5

√
mnmin

{
10ρb

d
,ρ2
}

Implication
For any algorithm based on (b,n,m) protocol, it requires sample size at
least Ω(max

{
(d/b)

ρ
, 1

ρ2

}
) to reliably detect some j .
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Lower bound

Generic regret lower bound for partial access

Ω(
√

(d/b)T )

d is the dimension of loss or reward vector.
b is the dimension of extracted vector from received message.
T is the number of round.

Trade-off between communication and sample complexity
For serial protocol on i.i.d data, the lower bound of communication is
Ω̃(d2) per machine.

d is the dimension of problem.
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Open Question

Whether the results for distributed algorithms can be extended to more
interactive protocols, where the different machines can communicate over
several rounds.
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