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Introduction to deep learning (morning)

Deep learning for object recognition
(morning)

Deep learning for object segmentation
(afternoon)

Deep learning for object detection (afternoon)
Deep learning for object tracking (afternoon)
Open questions and future works (afternoon)
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e Historical review of deep learning
e Introduction to classical deep models
e Why does deep learning work?
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> {dog, cat, horse, flower, ...}
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Neural network
Back propagation

ilNature , '

1986

 Solve general learning problems
 Tied with biological system
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Neural network
Back propagation

i’ Nature

1986

 Solve general learning problems
 Tied with biological system

But it is given up...

e Hard to train
e Insufficient computational resources

e Small training sets
e Does not work well



Neural network
Back propagation

i’ Nature

2006

1986

SVM
Boosting

Decision tree
KNN

Flat structures

Loose tie with biological systems
Specific methods for specific tasks

— Hand crafted features (GMM-HMM, SIFT, LBP, HOG)

Deep Hierarchy

Flat Processing Scheme

Task A1

Task A2
Task A3
Task An
Task B1

Task B2
Task B3

Task Bn

Level 5A

Level 5B

Level 4

Level 3

Level 2

Level 1

Task 1

Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Task 8

Task n

Some kind of Features

Kruger et al. TPAMI’13



Neural network
Back propagation
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1986

Deep belief net
Science

|

 Unsupervised & Layer-wised pre-training

e Better designs for modeling and training
(normalization, nonlinearity, dropout)

New development of computer architectures
— GPU
— Multi-core computer systems

e Large scale databases

Big Data!
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Machine learning with small data: overfitting, reducing model complexity

(capacity), adding regularization
Machine learning with big data: underfitting, increasing model complexity,

optimization, computation resource

Prediction accuracy

A
Deep learning

Other machine learningtools

Size of training data



Curse of dimensionality

Y

Blessing of dimensionality

b

Learning hierarchical feature transforms
(Learning features with deep structures)

D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: Highdimensional feature and its efficient
compression for face verification. In Proc. IEEE Int’| Conf. Computer Vision and Pattern Recognition, 2013.
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1986 2006 2011

deep learning results

task hours of DNN-HMM | GMM-HMM
training data with same data

Switchboard (test set 1) 309 18.5 274

Switchboard (test set 2) 309 16.1 23.6

English Broadcast News | 50 17.5 18.8

Bing Voice Search 24 30.4 36.2

(Sentence error rates)

Google Voice Input 5,870 12.3

Youtube 1,400 47.6 523

A
Deep Networks Advance State of Art in Speech /4
Deep Learning leads to breakthrough in speech recognition at MSR. M’CMSOft@



Neural network Deep belief net
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1986 2006 2011 2012

Description
1 U. Toronto 0.15315 Deep learning
2 U. Tokyo 0.26172 Hand-crafted
3 U. Oxford 0.26979 features and
4 Xerox/INRIA  0.27058 'c2rning models.

Bottleneck.

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.



Examples from ImageNet
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1000 ObjECt classes that we recagnlze
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poster created by Fengjun Lv using VIPBase
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images courtesy of ImageNet (http://www.image-net.org/challenges/LSVRC/2010/index)
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 ImageNet 2013 — image classification chaIIenge

T S 7

0.11197 Deep learning
2 NUS 0.12535 Deep learning
3 Oxford 0.13555 Deep learning

MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC, Toronto .... Top 20
groups all used deep learning

e |ImageNet 2013 — object detection challenge

UvA-Euvision 0.22581 Hand-crafted features
2 NEC-MU 0.20895 Hand-crafted features
3 NYU 0.19400 Deep learning



Neural network Deep belief net
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 ImageNet 2014 — Image classification chaIIenge

T S 7

Google 0.06656 Deep learning
2 Oxford 0.07325 Deep learning
3 MSRA 0.08062 Deep learning

e ImageNet 2014 — object detection challenge

Rank | Name ____| Mean Average Precision

1 Google 0.43933 Deep learning
2 CUHK 0.40656 Deep learning
3 Deeplnsight 0.40452 Deep learning
4 UvA-Euvision 0.35421 Deep learning
5 Berkley Vision  0.34521 Deep learning
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e ImageNet 2014 — object detection challenge

RCNN Berkley UvA- Deepinsight GoolLeNet DeeplD-Net
(Berkley) vision Euvision (Google) (CUHK)
Model average n/a n/a n/a 40.5 43.9 50.3
Single model 31.4 34.5 354 40.2 38.0 47.9

Wanli Ouyang

W. Ouyang and X. Wang et al. “DeeplID-Net: deformable deep convolutional neural
networks for object detection”, CVPR, 2015
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 Google and Baidu announced their deep
learning based visual search engines (2013)

— Google

e “on our test set we saw double the average precision when
compared to other approaches we had tried. We acquired
the rights to the technology and went full speed ahead
adapting it to run at large scale on Google’s computers. We
took cutting edge research straight out of an academic
research lab and launched it, in just a little over six months.”

— Baidu
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 Deep learning achieves 99.47% face verification
accuracy on Labeled Faces in the Wild (LFW),
higher than human performance

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
|dentification-Verification. NIPS, 2014.

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are
sparse, selective, and robust. CVPR, 2015.



Best results




Unrestricted, Labeled Outside Data Results

attribute classifiersil 0.8525 £ 0.0060

Simile classifiersil 0.2414 + 0.0041

attribute and Simile classifierstl 0.8554 £ 0.0035

Multiple LE + compl® 0.8445 + 0.0046
szsociate-Predictld 0.,9057 £ 0,0056
Tom-ws-Peted? 0.92310 + 0.0135

Tom-vs-Pete + Attribute<? 0.9330 £ 0.0128

combined Joint Bayesian?® 0.9242 £ 0.0108

high-dirm LBPZ7 0,9517 + 0.0113

DFDE3 0.8402 + 0.0044

TL Joint Bayesian 0.9633 £ 0.0108

face,com re011bi? 0.9130 £ 0.0030

— Facet+40 0,9727 £ 0,0065
‘ DeepFace-ensemble?! 0.9735 + 0.0025
- Conuket-REMYE 0.9252 + 0.0038
POOF-gradhist® 0.9313 £ 0.0040

POOF-HOGH 0,9280 + 0.0047

‘ FR+FCNT® 0.9645 + 0.0025
- DeeplDdt 0.9745 + 0.0026
GaussianFace®? 0.9852 £ 0.0066

- DeeplDz+d 0.9915 + 0.0013

Tahle 6: Mean classification accuracy 0 and standard error of the mean Sg.
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DeepLlearning

With massive
amounts of
CDI‘I‘IE!J[EJ.UDI‘IBJ power,
machines can now
rECQ%]nize objects and
translate speech in
real time. Artificial
intelligence is finally
getting smart.

Temporary Social
Media

Messages that quickly

self-destruct could
enhance the privacy
of online
communications and
make people freer to
be spontaneous.

Memory lmplants

A maverick
neuroscientist
believes he has
deciphered the code
by which the brain
forms long-term
memaories. Next:
testing a prosthetic
implant for people

suffering from long-
term memnory lnes

Smart Watches

The designers of the
Pebble watch realized
that a mobile phone is
more useful if you
don't have to take it

ruit o wenir pne kst

Intreduction [he 10 Technologies Pasl Year:
Prenatal DNA Additive Baxter: The Blue-
Sequencing Manufacturing Collar Robot
Reading the DNA of

fetuses will be the
next frontier of the

nomic revolution.

ut do you really want

to know about the
genetic problems or
musical aptitude of
your unborn child?

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make

Rodney Brooks's
newest creation is
easy to interact with,
but the complex
innovations behind the
robot show just how
hard it is to get along

Ultra-Efficient Solar
Power

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
MNanotechnology just

might make it
mnesible

jet parts. with people. 5
BigData from Cheap Supergrids
Phones

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave -
and even help us

understand the
enrpar nf disssasa

A new high-power
circuit breaker could
finally make highly
efficient DC power

riricle nractical



Design Cycle

Domain knowledge

start

=

Preprocessing and feature

Choose and
design model

(e

design may lose useful
information and not be
optimized, since they are not
parts of an end-to-end
learning system

Preprocessing could be the
result of another pattern
recognition system

end

=

Interest of people working
on computer vision, speech
recognition, medical image
processing,...

Interest of people working
on machine learning

Interest of people working
on machine learning and
computer vision, speech
recognition, medical image
processing,...




Person re-identification pipeline

(b)
destr q Photometric
Pe estr.lan I?ose. N Body part.s & geometric Featur.e Classification
detection estimation segmentation transform extraction

Face recognition pipeline

Face
alignment

Geometric
rectification

Photometric
rectification

Feature
extraction

N Classification




Design Cycle
with Deep Learning

Learning plays a bigger role in the
design circle

Feature learning becomes part of the
end-to-end learning system

Preprocessing becomes optional
means that several pattern
recognition steps can be merged into
one end-to-end learning system

Feature learning makes the key
difference

We underestimated the importance
of data collection and evaluation

start

end




What makes deep learning successful
in computer vision?

Li Fei-Fei Geoffrey Hinton

One million images Predict 1,000 image CNN is not new
with labels categories .
Design network structure

New training strategies

Feature learned from ImageNet can be well generalized to other tasks and datasets!



Learning features and classifiers separately

 Not all the datasets and prediction tasks are suitable
for learning features with deep models

Training Training
stage A ‘ Dataset A ‘ Dataset B ‘ stage B
Deep
learning
Classifier 1 Classifier 2 ‘
‘ Classifier B ‘
! | !
Prediction Prediction Prediction on task B
on task 1 on task 2 (Our target task)




Deep learning can be treated as a language to
described the world with great flexibility

‘ Collect data ‘ ‘ Collect data ‘

v

‘ Preprocessing 1 ‘

X

Preprocessing 2 ‘ Connection

R ey

‘ Feature design ‘

v

‘ Classifier ‘

!

‘ Evaluation ‘ Evaluation
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* Introduction to classical deep models
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e Convolutional Neural Networks (CNN)

— Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Applied to
Document Recognition,” Proceedings of the IEEE, Vol. 86, pp. 2278-2324, 1998.

 Deep Belief Net (DBN)

— G. E. Hinton, S. Osindero, and Y. Teh, “A Fast Learning Algorithm for Deep Belief Nets,”
Neural Computation, Vol. 18, pp. 1527-1544, 2006.

e Auto-encoder

— G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural
Networks,” Science, Vol. 313, pp. 504-507, July 2006.
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e Convolutional Neural Networks (CNN)
— First proposed by Fukushima in 1980

— Improved by LeCun, Bottou, Bengio and Haffner in 1998

T A T 5 S
_ _ HENENEEZEEE earned
Convolution Pooling HENESREEER filters
) 2 A e




D~
Dd

CKpropagat
W W —-nvy J(W)

W is the parameter of the network; J is the objective function

0 Target values I
t ¥
Output layer I
Feedforward T ‘1, Back error
operation propagation
Hidden layers I
T I
Input layer I v

D. E. Rumelhart, G. E. Hinton, R. J. Williams, “Learning Representations by Back-propagation Errors,” Nature, Vol. 323,
pp. 533-536, 1986.



Wiring togetne erfi |5 ogethe

* CNN is a sparsified network

e Correlated neurons are connected

— CNN assumes neurons in neighborhood are
correlated

— Other prior on correlation?
— Can CNN be further sparsified?

* Neurons in brain are also sparsely connected,
and the number of connection gets reduced
when people grow



Linear transform: choose the
direction to reduce space volume

Nonlinearity: control how much
volume to be reduced in the
selected direction and achieve
Invariance

f(x) = tanh(x) f(x) = max(0, x)

+2.0 +2.0

+1.0 +1.0

.0 -1.0 +1.0 +3 .0 -1.0 +1.0 +3.

-1.0 =1.0

-2.0 =2.0
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* Deep belief net pre.training:

— Hinton’06

e Good initialization point

 Make use of unlabeled data

P(xlhlth) = p(xlhl) p(hlth)

( h) e—E(X,hl)
P(X, 1) =
ZE_E(X’hl)
X,y

E(x,h;)=b' x+c' h;+h,' Wx

h

RBM

ep Moadaels
A
Initial point
=
y
hz
RBM
h;
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e Auto-encoder
— Hinton and Salakhutdinov 2006

Encoding: h, = o(W x+b,)
h, = o(W,h,+b,)

Decoding: hy = 6(W’,h,+b,)
X = o(W’;h,+b,)

C)_
M

n
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e Why does deep learning work?



Feature Learning vs Feature Engineering
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The performance of a pattern recognition system heavily
depends on feature representations

Manually designed features dominate the applications of
image and video understanding in the past

Reply on human domain knowledge much more than data

If handcrafted features have multiple parameters, it is hard to
manually tune them

Feature design is separate from training the classifier
Developing effective features for new applications is slow



Handcrafted Features for Face Recognition

2 parameters 3 parameters

?:}5;2 0?/:*1\; 1
benzafiusc=o

] 5 0
Geometric features Pixel vector Gabor filters Local binary patterns

| | | |

—

1980s 1992 1997 2006
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e Learning transformations of the data that make it easier to
extract useful information when building classifiers or
predictors

Learn the values of a huge number of parameters in feature
representations

Make better use of big data
Jointly learning feature transformations and classifiers makes their
integration optimal

Faster to get feature representations for new applications
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e Deep learning is about learning hierarchical feature

representations
y=F(WF.- F(WL F( F(WY - x))
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e Good feature representations should be able to disentangle
multiple factors coupled in the data

@ E r-" |dentity: face recognition Pixel n ﬂj—)view
o

eeee ||ovee ) ) . o
Pose: pose estimation Pixel 2 Ideal
—>| Feature p—> ﬂ
l Expression: expression recognition Transform PS

EXIIIIIIIITN |
I . .
Age: timat i i
( ) @ ge: age estimation Pixel 1 expression




Deep Learning Means Feature Learning

 How to effectively learn features with deep models

— With challenging tasks
— Predict high-dimensional vectors

Feature
Pre-train on Fine-tune on |:> representation
classifying 1,000 ':> classifying 201 @
categories categories
SVM binary
Detect 200 object classes on ImageNet classifier for each
category

W. Ouyang and X. Wang et al. “DeeplID-Net: deformable deep convolutional neural
networks for object detection”, CVPR, 2015



Training stage A

Dataset A ‘

|

Training stage B

Dataset B

Training stage C

Classifier A ‘

Y

Distinguish 1000
categories

Classifier B ‘

Dataset C

!

feature
transform

Y

Distinguish 201
categories

|

o]

l

Distinguish one
object class from
all the negatives

Fixed



Example 1: deep learning generic image features

e Hinton group’s groundbreaking work on ImageNet

— They did not have much experience on general image classification on
ImageNet

— It took one week to train the network with 60 Million parameters

— The learned feature representations are effective on other datasets

(e.g. Pascal VOC) and other tasks (object detection, segmentation,
tracking, and image retrieval)

\ -
N

.\ i
I~ 5 . S . | — _
11 \\ . e 3 + == : — N > >
—| = - 57 - 13 N - 13 N - % (13 dense dense
224 5 = N T 3\ -~
55 384 384 256 100¢
Max
256 _ L |
Max Max pooling 4096 4006
Stride\\| o | P°°liNg pooling
224

of 4
:






gl - 5

mite  container shi motor scooter

mite container ship motor scooter leapard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

¢

mushroom cherry adagascar cat

convertible agaric dalmatian squirrel monkey

grille mushroom grape spider monkey

:—I pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri

fire engine | dead-man's-fingers currant howler monkey




Top hidden layer can be used as feature for retrieval




Example 2: deep learning face identity features
by recovering canonical-view face images

d’j bo} L
BELRE
’5]‘!].
gl > .uﬂi b

Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013.



e Deep model can disentangle hidden factors through feature

extraction over mulhnln |::\n:\rc
/ALl UG LIWVI | \J VL] rl y\-ld

* No 3D model; no prior information on pose and lighting condition
e Model multiple complex transforms

e Reconstructing the whole face is a much strong supervision than
predicting 0/1 class label and helps to avoid overfitting

Feature Extraction Layers Reconstruction Layer
=48 X 48 X 32

FIP
n,=24X24X32 n;=24X24X32

n,=96 X 96 n,=96 X 96

4
W
5X5 Locally | 5X5 Locally 5X5 Locally M Fully
Connected and | Connected and Connected g Connected Y

Pooling Pooling

Arbitrary view Canonical view



+30 +15° -15° -30 -45°

+45°

-45°

+30 +15° -15° -30°

+45°




Comparlson on Muiti-PIE

LGBP [26] 37.7 62.5 59.2 36.1 593 V
VAAM [17] 74.1 91 95.7 95.7 895 748 869 V
FA-EGFCI[3] 84.7 95 99.3 99 929 85.2 92.7

SA-EGFCJ[3] 93 98.7 99.7 99.7 983 936 972 V¥

LE[4] + LDA 869 955 999 99.7 955 818 93.2 X
CRBM[9] + LDA 80.3 90.5 949 964 883 898 876 «x

Ours 95.6 98.5 100.0 99.3 985 978 983 «x
[3] A. Asthana, T. K. Marks, M. J. Jones, K. H. Tieu, and M. Rohith. Fully [17] S.Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement
automatic pose-invariant face recognition via 3d pose normalization. In ICCV, field based image Tawhlﬂg for face recognition across pose. In ECCV, pages
pages 937-944,2011. 1,5,6 102-115.2012. 1,2,5,6

[4] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based [26] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang. Local gabor binary

descriptor. In CVPR, pages 2707-2714, 2010. 2, 3,6 pattern histogram sequence (lgbphs): A novel non-statistical model for face
’ ’ T representation and recognition. In ICCV, volume 1, pages 786791, 2005. 5, 6

[9] G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical represen-
tations for face verification with convolutional deep belief networks. In CVPR,
pages 2518-2525,2012. 3,6



Deep learning 3D model from 2D images,
mimicking human brain activities

- [ el gl o D
~ b5 el bl o i
~ -3 el bl b i

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View
Perception,” NIPS 2014.
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Deep
learning

Training stage A

Face images in
arbitrary views

Training stage B

Two face images
in arbitrary views

!

feature
transform

Regressor 1

!

Regressor 2

Linear Discriminant
analysis

\ 4 \ 4
Reconstruct Reconstruct
view 1 view 2

L

Face reconstruction

The two images
belonging to the
same person or not

Face verification

Fixed



Example 3: deep learning face identity features
from predicting 10,000 classes

e At training stage, each input image is classified into 10,000
identities with 160 hidden identity features in the top layer

 The hidden identity features can be well generalized to other
tasks (e.g. verification) and identities outside the training set

e As adding the number of classes to be predicted, the
generalization power of the learned features also improves

Convolutional

Convolutional

layer 2

-_-_.'-.'r s
R N i e 5 5
£ e

0
1 20 Max-pooling
Input layer layer 1

3

40

40 Max- pooling

layer 2

layer 3

40

dhem {[;—
b13b

60

layer

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-

Verification. NIPS, 2014.

3

Convolutional Convolutional — -|g
|E‘5.I'E‘I‘d- 169’ ‘
.22 .

e o i S [
G 2T
- -

/-
60 Max- poollng

Dee h|dﬂen-
J‘é

Bl |

Soft-max
layer
3

ntity ° :
features n
(DeeplD)



Training stage A

‘ Dataset A

|

Classifier A

Y

Distinguish
10,000 people

Face identification

Training stage B

‘ Dataset B ‘

!

feature
transform

|

‘ Linear classifier B ‘

|

The two images
belonging to the
same person or not

Face verification

Fixed



Deep Structures vs Shallow Structures
(Why deep?)
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* Athree-layer neural network (with one hidden layer) can
approximate any classification function

e Most machine learning tools (such as SVM, boosting, and
KNN) can be approximated as neural networks with one or
two hidden layers

e Shallow models divide the feature space into regions and

match templates in local regions. O(N) parameters are needed
to represent N regions

sVM  9(z) =b+ > a;K(z, ;)




Deep Machines are More Efficient for
Representing Certain Classes of Functions

 Theoretical results show that an architecture with insufficient
depth can require many more computational elements,
potentially exponentially more (with respect to input size),
than architectures whose depth is matched to the task
(Hastad 1986, Hastad and Goldmann 1991)

* |t also means many more parameters to learn



e Take the d-bit parity function as an example

. d .
X ... X d 1, if 37, Xiseven
X X € 10,1} H{ —1, otherwise

e d-bit logical parity circuits of depth 2 have exponential
size (Andrew Yao, 1985)

@ ®

no@ ® X
Reusepartial ® @© © “— O(d)
computation & & & I
@ R8 B
= N “&, %
M= ] = @ RO B
A x X2 REER S X3 X, X X5 X Y % % %
Shallow structure Deep structure

 There are functions computable with a polynomial-size logic
gates circuits of depth k that require exponential size when
restricted to depth k -1 (Hastad, 1986)



e Architectures with multiple levels naturally provide sharing
and re-use of components
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Honglak Lee, NIPS’'10



Humans Understand the World through
Multiple Levels of Abstractions

e We do not interpret a scene image with pixels

— Objects (sky, cars, roads, buildings, pedestrians) -> parts (wheels,
doors, heads) -> texture -> edges -> pixels

— Attributes: blue sky, red car

e Itis natural for humans to decompose a complex problem into
sub-problems through multiple levels of representations

buliding




Humans Understand the World through
Multiple Levels of Abstractions

e Humans learn abstract concepts on top of less abstract ones

e Humans can imagine new pictures by re-configuring these
abstractions at multiple levels. Thus our brain has good
generalization can recognize things never seen before.

— Our brain can estimate shape, lighting and pose from a face image and
generate new images under various lightings and poses. That’s why we

have good face recognition capability.
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 The way these regions carve the input space still
depends on few parameters: this huge number of
regions are not placed independently of each other

 We can thus represent a function that looks
complicated but actually has (global) structures




Human Brains Process Visual Signals
through Multiple Layers

e Avisual cortical area consists of six layers (Kruger et al. 2013)

Hyppocampus Prefrontal cortex

Memory (non motor) FEF, SC, Occulomotor F5 (Hand control)
Premotor

FEF, 5C
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Joint Learning vs Separate Learning

Training or Training or Manual
manual design manual design design
Data Preprocessin Preprocessin Feature e
\ —> P 8 P 8 ] Classification
collection step 1 step 2 extraction
?@ s 2L
Data Feature Feature Feature cee L
. Classification
collection transform transform transform

End-to-end learning

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and
increasing the capacity of the learner




* Domain knowledge could be helpful for designing new
deep models and training strategies

* How to formulate a vision problem with deep learning?
— Make use of experience and insights obtained in CV research
— Sequential design/learning vs joint learning
— Effectively train a deep model (layerwise pre-training + fine tuning)

N Spatial pyramid F . .
Feature 5| Quantization e o eature &S filt
3 . ) 5 _ iltering
extraction (visual words) (hlstograms n Classification extraction
local regions)
Conventional object recognition scheme Quantization <> filtering

Spatial oy multi-level
pyramid pooling

224

s 96 Filtering & max Filtering & Filtering & Krizhevsky
pooling max pooling  max pooling NIPS’ 12




What if we treat an existing deep model as
a black box in pedestrian detection?

convolutions subsampling convolutions full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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Feature Part deformation Occlusion
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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e Design the filters in the second
convolutional layer with variable sizes

—
1O

SFEATNAE
ndLCANE
nhi1CAF

Part models

Level 2

Level 1

ec

+ A vre
LUl D

Part models learned
from HOG

Head-shoulder
at level 2

Head-torso
at level 3

Legs
at level 2

Torso
at level 2

Head-shoulder
at level 3

Full-body
at level 3

Learned filtered at the second
convolutional layer



Summed map

Part score

Low High
value value

M, D,

Part detection

map Deformation maps




Visibility Reasoning with Deep Belief Net

;LH_I _ O_(BZT w + Cl—|—1 4 gl—l—l l—l—l)

J

Correlates with part detection score
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e Caltech — Test dataset (largest, most widely used)
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Rapid object detection using a boosted cascade of simple features
P Viola, M Jones - ... Vision and Pattern Recognition, 2001. CVPR .., 2001 - ieeexplore.ieee.org.org

Abstract This paper describes a machine learning approach for visual object detection which |
Is capable of processing images extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first is the introduction of a new ...

Cited by 7647 Related articles All 201 versions Importinto BibTeX More«
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e Caltech — Test dataset (largest, most widely used)
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Histograms of oriented gradients for human detection

N Dalal, B Triggs - ... and Pattern Recognition, 2005. CVPR 2005 ..., 2005 - ieeexplore.ieee.org
.. We study the issue of feature sets for human detection, showing that lo- cally normalized
Histogram of Oriented Gradient (HOG) de- scriptors provide excellent performance relative

to other ex- isting feature sets including wavelets [17,22]. ...

Cited by 5438 Related articles All 106 versions Import into BibTeX More~
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e Caltech — Test dataset (largest, most widely used)
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Object detection with discriminatively trained part-based models

PF Felzenszwalb, RB Girshick... - Pattern Analysis and ..., 2010 - ieeexplore.ieee.org
Abstract We describe an object detection system based on mixtures of multiscale
deformable part models. Our system is able to represent highly variable object classes and
achieves state-of-the-art results in the PASCAL object detection challenges. While ...

Cited by 964 Related articles All 43 versions Import into BibTeX More~
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W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling,” CVPR 2012.

W. Ouyang, X. Zeng and X. Wang, "Modeling Mutual Visibility Relationship in Pedestrian Detection ", CVPR 2013.

W. Ouyang, Xiaogang Wang, "S

ingle-Pedestrian Detection aided by Multi-pedestrian Detection ", CVPR 2013.

X. Zeng, W. Ouyang and X. Wang, ” A Cascaded Deep Learning Architecture for Pedestrian Detection,” ICCV 2013.
W. Ouyang and Xiaogang Wang, “Joint Deep Learning for Pedestrian Detection,” IEEE ICCV 2013.
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Deformation layer for general object detection

mput

e I
Convolution

result M /_b_’

Deformation
penalty

S, = max bgr’y)
(z,y)
Global
max O
Output b



Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns




Deformation layer for repeated patterns

Pedestrian detection General object detection

Assume no repeated pattern Repeated patterns

Only consider one object class  Patterns shared across different object classes




Deformation constrained pooling layer

Can capture multiple patterns simultaneously

i,je{_R’... ,R}

A Y I".
input Convolution Hi
result M ~ _|_‘\

Deformation
penalty

N

{m(km-x—l-z,kyyﬂ) B Z Cnd;ﬂ

n=1
< | |
filter +
put ('uﬁ;nlmim:'-_
result M If_T_'\._ Global
N ma:
a
Output b
Max . M
pooling
» Deformation
penall
Output B
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Existing deep model (clarifai-fast)
convs fc6  fc7
— >
ﬁe’gi‘;;;lc:onv6| def6; conv7/, 00
\ \
\ _
Layers with "":j;-‘_‘ 128 128~
def-pooling
layers convé;  defé 7
4 T e SR Patterns shared across
E—»ﬂ{ . different classes
128 128
Cls+Det
Net structure AlexNet Clarifai Clarifai+Def layer

Mean AP on val2 0.299 0.360 0.385



Large learning capacity makes high dimensional
data transforms possible, and makes better use
of contextual information



 How to make use of the large learning capacity of
deep models?

— High dimensional data transform
— Hierarchical nonlinear representations

,. SVM + feature @ E ES_‘;“‘
/I ’ smoothness, shape prior... ' =

Output | eeee || eeee || ®eee

High-dimensional |
data transform 00000000000

I i
Input a
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 P. Luo, X. Wang and X. Tang, “Hierarchical Face
Parsing via Deep Learning,” CVPR 2012




Motivations

Recast face segmentation as a cross-modality data
transformation problem

Cross modality autoencoder

Data of two different modalities share the same
representations in the deep model

Deep models can be used to learn shape priors for
segmentation



Training Segmentators
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Big data

Chalienging supervision task
with rich predictions

Rich information

How to make use of it?

Hierarchical
feature learning

Capture
contextual information

capacity

Joint
optimization

Go wider

Domain

Go deeper knowledge

Make learning more efficient



Deep learning =?

Machine learning with big data

Feature learning

Joint learning

Contextual learning
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Automatically learns hierarchical feature representations from
data and disentangles hidden factors of input data through
multi-level nonlinear mappings

For some tasks, the expressive power of deep models
increases exponentially as their architectures go deep

Jointly optimize all the components in a vision and crate
synergy through close interactions among them

Benefitting the large learning capacity of deep models, we
also recast some classical computer vision challenges as high-
dimensional data transform problems and solve them from
new perspectives

It is more effective to train deep models with challenging
tasks and rich predictions
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 Deep learning for object recognition
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 Deep learning for object recognition on
ImageNet

e Caption generation from images and videos

 Deep learning for face recognition

— Learn identity features from joint verification-
identification signals

— Learn 3D face models from 2D images



CNN for Object Recognition on ImageNet

Krizhevsky, Sutskever, and Hinton, NIPS 2012

Trained on one million images of 1000 categories
collected from the web with two GPUs; 2GB RAM on

each GPU; 5GB of system memory

Training lasts for one week

Rank _|Name _____|Errorrate | _ Description

1
2
3
4

U. Toronto
U. Tokyo

U. Oxford
Xerox/INRIA

0.15315
0.26172
0.26979
0.27058

Deep learning

Hand-crafted
features and
learning models.
Bottleneck.
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Max-pooling layers follow 1%, 2"9, and 5" convolutional layers

The number of neurons in each layer is given by 253440,
186624, 64896, 43264, 4096, 4096, 1000

650000 neurons, 60 million parameters, 630 million
connections
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 Normalize the input by subtracting the mean image on the
training set

Input image (256 x 256) Mean image

Krizhevsky 2012
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e Rectified linear unit leads to sparse responses of neurons,
such that weights can be effectively updated with BP

f(x) = tanh(x) f(x) = max(0, x)

Sigmoid (slow to train) Rectified linear unit (quick to train) \/

Krizhevsky 2012
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e The neural net has 60M parameters and it overfits

* Image regions are randomly cropped with shift; their
horizontal reflections are also included

Krizhevsky 2012
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Randomly set some input features and the outputs of hidden
units as zero during the training process

Feature co-adaptation: a feature is only helpful when other
specific features are present

— Because of the existence of noise and data corruption, some features
or the responses of hidden nodes can be misdetected

Dropout prevents feature co-adaptation and can significantly
improve the generalization of the trained network

Can be considered as another approach to regularization
It can be viewed as averaging over many neural networks

Slower convergence
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Krizhevsky 2012



balance beam
cinema
marimba
parallel bars

computer keyboard

bottlecap

arter snake

bottlecap

diamondback

magnetic compass || thresher || | leatherback turtle Walker hound
puck plow sandbar English foxhound

stopwatch tractor echidna muzzle

disk brake || tow truck armadillo Italian greyhound

Krizhevsky 2012
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Directly use the feature representations learned from ImageNet and
replace handcrafted features with them in image classification, scene
recognition, fine grained object recognition, attribute recognition, image
retrieval (Razavian et al. 2014, Gong et al. 2014)

Use ImageNet to pre-train the model (good initialization), and use target
dataset to fine-tune it (Girshick et al. CVPR 2014)
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Fix the bottom layers and only fine tune the top layers
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e More than 20 layers

e Add supervision at multiple layers
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e The error rate is reduced from 15.3% to F‘H‘
6.6%



s computer vision
a classification problem?

An image from ImageNet contains multiple objects
and class label is not unique

ImageNet is [abeled by human from crowd sourcing

Recent deep learning result surpassed human
performance on the ImageNet image classification
tasks

How to further improve feature learning?

Human naturally uses sentences instead of class
labels to describe images and videos



Computer vision

O\
? Deep learning

N

Natural language processing
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A more natural way to formulate vision problems is
to use sentences to describe images and videos
instead of class labels

e Model sequential data

Vision Lngage | |A group of people

Deep CNN  Generating shopping at an
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o ',"' g .

fruit stand.




Andrej Karpathy and Li Fei-Fei, “Deep Visual-Semantic Alignments for Generating
Image Descriptions” CVPR 2015

@ S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, K. Saenko,
“Translating Videos to Natural Language Using Deep Recurrent Neural
Networks,” arXiv: 1412.4729, 2014.

@ J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K.
Saenko, and T. Darrell, “Long-term Recurrent Convolutional Networks for Visual
Recognition and Description,” arXiv:1411.4389, 2014.

@ O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image
Caption Generator,” arXiv: 1411.4555, 2014.
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* Model a dynamic system driven by an external signal x,

h: = Fo(h;_1, X¢)

* h, contains information about the whole past sequence.
The equation above implicitly defines a function which
maps the whole past sequence (x,,...,x,) to the current
sate h, = G,(x,,...,X;)
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e The summary is lossy, since it maps an arbitrary
length sequence (x,,...,X,) to a fixed length vector h, .
Depending on the training criterion, h, keeps some
important aspects of the past sequence

e Sharing parameters: the same weights are used for
different instances of the artificial neurons at
different time steps

ht—l




DAaciivrrant nativral matwar~
NTCLUIIIIL 1ITUIdI 1ITLVWU

/‘\
4_
e’

e Share a similar idea with CNN: replacing a fully
connected network with local connections with
parameter sharing

e It allows to apply the network to input sequences of
different lengths and predict sequences of different
lengths




niveanrnt nAarirrAal A
I1CIIL 1ICUldI

Atrvar
ICL

'ATAS)

/‘\
4_
e’

Df\f\ (o

nNel d

e Sharing parameters for any sequence length allows
more better generalization properties.

* If we have to define a different function G, for each
possible sequence length, each with its own
parameters, we would not get any generalization to
sequences of a size not seen in the training set. One
would need to see a lot more training examples,
because a separate model would have to be trained
for each sequence length.



Predict a single output at the end of
the sequence

e Such a network can be used to summarize a
sequence and produce a fixed-size representation
used as input for further processing. There might be
a target right at the end




Generative RNN modeling

* P(xy,...,X{). It can generate sequences from this distribution

* Atthe training stage, each x, of the observed sequence serves
both as input (for the current time step) and as target (for the
previous time step)



Vani h Ng 4 |d X d d

c-'l-
n

xploding gra

e RNN can be treated as a deep net when modeling
long term dependency

e After BP through many layers, the gradients become
either very small or very large
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* The new value of the state h,,, is a combination of linear and
non-linear parts of h,

e The errors are easier to be back propagated through the paths
of red lines, which are linear

1 1
hy 1 =(1 - ;)ht + —tanh(Wysx; + Wpph: + bp)
1

Tj

Ziyq

Xisq
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e T controls the rate of forgetting old states. It can be
viewed as a smooth variant of the idea of the
previous model

e By associating different time scales t with different
units, one obtains different paths corresponding to
different forgetting rates )

h,

h,, 117 ‘ :

Ziq




ong Short-Term Memory (LSTM) ne

4

L

* |n the leaky units with self-connections, the forgetting
rate is constant during the whole sequence

 The role of leaky units is to accumulate information
over a long duration. However, once that information
gets used, it might be useful for the neural network to
forget the old state

— For example, if a video sequence is composed as
subsequences corresponding to different actions, we want a
leaky unit to accumulate evidence inside each subsequnece,
and we need a mechanism to forget the old state by setting
it to zero and starting to count from fresh when starting to
process the next subsequence
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 The forgetting rates are expected to be different at
different time steps, depending on their previous
hidden sates and current input (conditioning the
forgetting on the context)

 Parameters controlling the forgetting rates are
learned from train data



fi = o(WyrXt +Wpehi_1 +by), it = o(WyX; + Whihe_1 + bj),
ot = o(WxoXt + Whoht_1 + bo)

gt = tanh(WxeXx; + Wpchi_1 +be), ¢t =t © ¢4 + 1t © 9¢
h; = oy ® tanh(c;), z; = softmax(Wy,h; + b;)

Modulation
Gate

LSTM Unit Forget
Gate
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* The core of LSTM is a memory cell ¢, which encodes,
at every time step, the knowledge of the inputs that
have been observed up to that step

* ¢, has alinear self-connection similar to the leaky
units, but the self-connection weight is controlled by
a forget gate unit f,, that sets this weight to a value
between 0 and 1 via a sigmoid unit

ft = o (WXt + Wprhi—1 + by)

 The input gate unit it is computed similarly to the
forget gate, but with its own parameters



mney ClhAA -|- TAavrima NAarman~
|5 SITUILTICIIIT IVICIIHIV

v\ 7
|

e The output ht of the LSTM cell can also be shut off,

via the output gate o: (hy = o ® tanh(¢))
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e Model P(yi.....y7/|Xq,...,X7) . The input and output
sequences have different lengths, are not aligned, and
even do not have monotonic relationship

* Use one LSTM to read the input sequence (x,,...,X,),
one timestep at a time, to obtain a large fixed-
dimensional vector representation v, which is given by
the last hidden sate of the LSTM

|. Sutskever, O. Vinyals, and Q. Le, “Sequence to Sequence Learning with Neural
Networks,” NIPS 2014.
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 Then conditioned on v, a second LSTM generates the
output sequence (y,,..., Y ) and computes its
probability

T’
P(Y1.....yrIv) =] [ p(yelv.y1. ... ¥i—1)

=1
w
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O | was given a card by her in the garden
OMary admires John i0F O In the garden , she gave me a card
O She gave me a card in the garden
OMary is in love with John
5 -
OMary respects John or
| OJohn admires Mary
-5 C She was given a card by me in the garden
yJohn is in love with Mary .
O In the garden , | gave her a card
_-H] -
-1 5 = -~
OJohn respects Mary O I gave her a card in the garden
‘I-‘ 1 1 1 1 1 : 1 1 _2D 1 1 L 1 1 1 ]
-6 -4 -2 0 2 4 6 8 10 -15 -10 -5 0 5 10 15 20

The figure shows a 2-dimensional PCA projection of the LSTM hidden states that
are obtained after processing the phrases in the figures. The phrases are
clustered by meaning, which in these examples is primarily a function of word
order, which would be difficult to capture with a bag-of-words model. The figure
clearly shows that the representations are sensitive to the order of words, while
being fairly insensitive to the replacement of an active voice with a passive voice.
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e Use a CNN as an image encoder and transform it to a

fixed-length vector

e |tis used as the initial hidden state of a “decoder”

captio

RNN that generates the target sequence

Vision Language
Deep CNN  Generating
RNN

=23{ G

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.

O. Vinyals, A. Toshey, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image

Caption Generator,” arXiv: 1411.4555, 2014.
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e Previous works simplified the problem by detecting a fixed set
of semantic roles, such as subject, verb, and object, as an
intermediate representation and adopted oversimplified rigid
sentence templates

Input video:

Machine output: A cat is playing with toy.
Humans: A Ferret and cat fighting with each other. / A cat and a ferret are playing. / A
Kitten and a ferret are playfully wresting.

S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, K. Saenko, “Translating Videos
to Natural Language Using Deep Recurrent Neural Networks,” arXiv: 1412.4729, 2014.



Input Video Convolutional Net Recurrent Net Output
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 Deep learning for face recognition

— Learn identity features from joint verification-
identification signals

)



Deep Learning Re sults on LFW

mm
Huang et al. CVPR’12 87% Unsupervised

Sun et al. ICCV’13 92.52% 5 87,628

Facebook (CVPR’14) 97.35% 6+ 67 7,000,000

DeeplD (CVPR’14) 97.45% 5 202,599

DeeplD2 (NIPS’14) 99.15% 18 202,599

DeepID2+ (CVPR’15) 99.47% 18 450,000

Google (CVPR’15) 99.63% 200,000,000

The first deep learning work on face recognition was done by Huang et al. in 2012. With
unsupervised learning, the accuracy was 87%

Our work at ICCV’13 achieved result (92.52%) comparable with state-of-the-art
Our work at CVPR’14 reached 97.45% close to “human cropped” performance (97.53%)

DeepFace developed by Facebook also at CVPR’14 used 73-point 3D face alignment and 7
million training data (35 times larger than us)

Our most recent work reached 99.15% close to “human funneled” performance (99.20%)



Closed- and open-set face
identification on LFW

Rank-1 (%) DIR @ 1% FAR (%)
COST-S1 [1] 56.7 25
COST-S1+s2 [1] 66.5 35
DeepFace [2] 64.9 44.5
DeepFace+ [3] 82.5 61.9
DeeplD2 91.1 61.6
DeeplD2+ 95.0 80.7

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition:
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level
performance in face verifica- tion. In Proc. CVPR, 2014.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification.
Technical report, arXiv:1406.5266, 2014.



Intra-personal variation

Inter-personal variation

How to separate the two types of variations?
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Nicole Kidman
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e QOut of 6000 image pairs on the LFW test set, 51 pairs
are misclassified with the deep model

 We randomly mixed them and presented them to 10
Chinese subjects for evaluation. Their averaged
verification accuracy is 56%, close to random guess
(50%)
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LDA seeks for linear feature mapping which maximizes the distance
between class centers under the constraint what the intrapersonal
variation is constant

¥, = fix;l = Wiy,
f7 = argmax Z |Fi%ed = fiRgd)?
.*
Y

5.8, Z | fix;) — f':xj :]|2 =1

(et
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e Extract identity preserving features through
hierarchical nonlinear mappings

e Model complex intra- and inter-personal
variations with large learning capacity



Learn Identity Features from Different
Supervisory Tasks

e Face identification: classify an image into one
of N identity classes

— multi-class classification problem

* Face verification: verify whether a pair of
images belong to the same identity or not

— binary classification problem



Minimize the intra-personal variation under the constraint
that the distance between classes is constant (i.e. contracting
the volume of the image space without reducing the distance

between classes) N

y = f(x); g = softmax()

f* —algmm Z £ (i) — £

(i.j)efY;

<.t |g(f(x ))_gkf(x.f )| =1, label(x;) # label(xj)



Learn ldentity Features with
Verification Signal

e Extract relational features with learned filter pairs
y = f (6 + kY s at + k%« 2?)
 These relational features are further processed through
multiple layers to extract global features

e The fully connected layer can be used as features to combine
with multiple ConvNets

Convolutional _ Fully-
Convolutional connected

layer 2 Convolutional layer
1 layer 3 Convolutional, Soft-max
layer 4 layer

o 1ﬁ::;;‘ At 2L — | e
a0 80
- 70 prac20 60 Max-g%oling 80
3 20 Max-pooling alg-pec;ozmg layer 3
Input layer layer 1 Y

Y. Sun, X. Wang, and X. Tang, “Hybrid Deep Learning for Computing Face Similarities,” Proc. ICCV, 2013.
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e Unrestricted protocol without outside training data

Method Accuracy (%)
ConvINet-RBM previous [43] 91.75 4+ 0.48
VMRS [3] 92.05 £ 0.45
CMD+SLBP [23] 92.58 4+ 1.36
VisionLabs ver. 1.0 [1] 92.90 4 0.31
Fisher vector faces [41] 03.03 4+ 1.05
High-dim LBP [13] 03.18 &+ 1.07
Aurora [19] 03.24 +0.44

ConvNet-REM

93.83 + 0.52

true positive rate

0.7 }i

------- ConvNet-RBM previous (unrestrict) [43]

CMD+SLBP [23]

VisionLabs ver. 1.0 [1]

Fisher vector faces [41]
— High-dim LBP (unrestrict) [13]
Aurora [19]

ConvNet- RBM (unrestnct)

063

0. 2 0. 3
false positive rate

0.4
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e Unrestricted protocol using outside training data

Method Accuracy (%)
Joint Bayesian [12] 092.42 + 1.08
ConvNet-RBM previous [43] 92.52 + 0.38
Tom-vs-Pete (with attributes) [4] 093.30 £ 1.28

High-dim LBP [13]

95.17 £ 1.13

TL Joint Bayesian [10]

96.33 = 1.08

ConvNet-RBM

97.08 + 0.28

true positive rate

0.7

0.6

Joint Bayesian (WDRef) [12]
— ConvNet-RBM previous (CelebFaces) [43]

Tom-vs-Pete (with attributes) [4]
— High-dim LBP (WDRef) [13]

TL Joint Bayesian [10]
ConvNet-RBM (CelebFaces)
0.1 0.2 0.3

0.4



DeeplD: Learn Identity Features with
ldentification Signal

Soft-max
layer 1 Convolutional layer
layer 2 Convolutional Convolutional :
1 layer 3 layer 4 1.‘;;[; i
ot 2 5;: - . | A 2
VR T A sl |
50 a0 40 i 60 Max-pooling R N
1 Max-pooling al;;-pec;cazmg layer 3 TR
Input layer layer 1 ¥ DEFEJD hidden
identity @
features n
(DeeplD)

Y. Sun, X. Wang, and X. Tang, “Deep Learning Face Representation from Predicting 10,000 classes,” Proc. CVPR, 2014.



During training, each image is classified into 10,000
identities with 160 identity features in the top layer

These features keep rich inter-personal variations

Features from the last two convolutional layers are

effective

The hidden identity features can be well generalized
to other tasks (e.g. verification) and identities

outside the training set

Convolutional Sl:}lgt—n':_ax

layer 1 Convolutional ye
layer 2 Convolutional Convolutional [

1 layer 3 layer 4 1@9 !

B 4: e ﬁ:: -k T2 m:i"‘::‘:f-u_ 2 - .-;1'.
e MR |4 zﬁ[ b |48 N s

40 B0 . e 9
20 80 a0 ) 60 Max-pooling .
1 20 Max-pooling alzvpeﬁﬂz'”g layer 3

Input layer layer 1 Deaﬂa h|d7den-
entity - :
features n

(DeeplD)



 High-dimensional prediction is more challenging, but
also adds stronger supervision to the network

* As adding the number of classes to be predicted, the
generalization power of the learned features also

iImproves

Convolutional Sl:}lft—n':_ax
layer 1 Convolutional aye
layer 2 Convolutional Convolutional [
/ 1 layer 3 layer 4 16‘9 r‘
s YRR A A )R
4{] ED 60 --_-"'u,_h-‘-"n_\_ --h: 'III‘-._‘ )
350 a0 40 Max-pooling .- |1 ©
1 Max-pooling Malz- pe':;'j;!mg layer 3 '
Input layer layer 1 Y DEEJJ h|dder1
entity - :
features n

(DeeplD)



Extract Features from Multiple ConvNets

Multiple ConvNets

n~10000 n =~ 10000
OO -+ OO Identityclasses QO -« -+ OO
Deep hidden % ‘l‘ _______ .
identity features | O . O 160 oo |O. .. O] 160
(DeeplD)  S—oge===rggr-—------=----=mm=mmm-mm--—----SegemT ‘
Feature extractin
0@ -0 e Q- - O]F

Feat tracti
24{]‘0 . O ea url'g?ee:r; 5;3(: Ing lo . e O|3E'U

1440 OO OO| Featurgveeﬁtgactmaoo OO] 1920
=

1§

Q

feature extract II"I
3920 @0 - e — @0)5040

i

' O
Face patches E .




Learn ldentity Features with
ldentification Signal

e After combining hidden identity features from
multiple CovNets and further reducing
dimensionality with PCA, each face image has 150-
dimenional features as signature

e These features can be further processed by other
classifiers in face verification. Interestingly, we find
Joint Bayesian is more effective than cascading
another neural network to classify these features



DeeplD2: Joint Identification-
Verification Signals

e Every two feature vectors extracted from the same
identity should are close to each other

S1IF = £l ify; = 1
Verif(fiff'ayi':eve) — 2 e T2 9 tJ
T smax (0,m — || fi — fjll,)" ifyy =—1

f;and f; are feature vectors extracted from two face images in comparison

y; = 1 means they are from the same identity; y; = -1means different identities

m is a margin to be learned

Y. Sun, X. Wang, and X. Tang. Deep Learning Face Representation by Joint Identification-Verification.
NIPS, 2014.



Balancing Identification and
Verification Signhals with Parameter A

100 "'"':"""'"":""""'"i'""'""'i"'""'"'-""'"""-"""'""i
i i i L2 Norm

----Joint Bayesian
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A = 0: only identification signal
A = +oo: only verification signal



Rich Identity Information Improves

Feature Learning

e Face verification accuracies with the number of
training identities

L2 Norm i

S N ey Joint Bayesian |
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e 25 face regions at different scales and locations
around landmarks are selected to build 25 neural
networks

e Allthe 160 X 25 hidden identity features are further
compressed into a 180-dimensional feature vector
with PCA as a signature for each image

 With a single Titan GPU, the feature extraction
process takes 35ms per image



e Larger net work
structures

e Larger training data

e Adding supervisory
signals at every layer

NA
LC

AnlN)
eplD2+
I.lj Ve Id
00000 ¢t (00000
Conv-4 A L3 Conv-4
e0000 " Y Y YY)
00000 c: (00000 &
Conv-3 T\ L3 Conv-3
(00000 ve 'ﬂoooool
00000 > (00000 |
Conv-2 A LS Conv-2
(@0000)" Y Y Y )
TT[ooooohmlloooooJ
Conv-1 A Conv-1
(00000 (00000

Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust.

CVPR, 2015.



Compare DeeplD2 and DeeplD2+ on LFW

|
[LTTEL T | e—
|
‘ BDeeplD2+
|
|
|

5 10 15 20 25
net ID

Comparison of face verification accuracies on LFW with ConvNets trained on 25 face
regions given in DeeplD2

Best single model is improved from 96.72% to 98.70%



Cirnal Daciil+H Anrn | C\A/
I 1lidl NCTOUIL Ull LT VV
High-dim | TL Joint DeepFace | DeeplD | DeepiD2 DeepID2+
LBP [1] Bayesian [2] | [3] [4] [5]
Accuracy (%) 95.17 96.33 97.35 97.45 99.15 99.47

[1] Chen, Cao, Wen, and Sun. Blessing of dimensionality: High-dimensional feature and
its efficient compression for face verification. CVPR, 2013.

[2] Cao, Wipf, Wen, Duan, and Sun. A practical transfer learning algorithm for face
verification. ICCV, 2013.

[3] Taigman, Yang, Ranzato, and Wolf. DeepFace: Closing the gap to human-level
performance in face verification. CVPR, 2014.

[4] Sun, Wang, and Tang. Deep learning face representation from predicting 10,000
classes. CVPR, 2014.

[5] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep Learning Face Representation by Joint
|dentification-Verification. NIPS, 2014.

[6] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse,
selective, and robust. CVPR, 2015.



Closed- and open-set face
identification on LFW

Rank-1 (%) DIR @ 1% FAR (%)
COST-S1 [1] 56.7 25
COST-S1+s2 [1] 66.5 35
DeepFace [2] 64.9 44.5
DeepFace+ [3] 82.5 61.9
DeeplD2 91.1 61.6
DeeplD2+ 95.0 80.7

[1] L. Best-Rowden, H. Han, C. Otto, B. Klare, and A. K. Jain. Unconstrained face recognition:
Identifying a person of interest from a media collection. TR MSU-CSE-14-1, 2014.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level
performance in face verifica- tion. In Proc. CVPR, 2014.

[3] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Web- scale training for face identification.
Technical report, arXiv:1406.5266, 2014.



Car~rn \/nrifiratinn Ann VAariTiithha CAarAac
dlLT VCIlIliLadlliull Ull TUUTUMDC ' dULCO
Wethods | Accuracy 06
LM3L [1] 81.3+1.2
DDML (LBP) [2] 81.3+1.6
DDML (combined) [2] 82.3 +1.5
EigenPEP [3] 84.8 £+1.4
DeepFace [4] 914 +1.1
DeeplD2+ 93.2 £0.2

[1]J. Huy, J. Lu, J. Yuan, and Y. P. Tan, “Large margin multi-metric learning for face and
kinship verification in the wild,” ACCV 2014

[2] ). Hy, J. Lu, and Y. P. Tan, “Discriminative deep metric learning for face verification in
the wild,” CVPR 2014

[3] H. Li, G. Hua, X. Shen, Z. Lin, and J. Brandt, “Eigen-pep for video face recognition,”
ACCV 2014

[4] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the gap to human-
level performance in face verification,” CVPR 2014.



GoogleNet

Sigmoid Rectified linear unit

f(x) = tanh(x) f(x) = max(0, x)

e Linear transform

* Pooling

* Nonlinear mapping



Unified subspace analysis

* Identification signal isin S;
verification signal isin S,

e Maximize distance between
classes under constraint
that intrapersonal variation
Is constant

e Linear feature mapping

Joint deep learning

Learn features by joint
identification-verification

Minimize intra-personal
variation under constraint
that the distance between
classes is constant

Hierarchical nonlinear
feature extraction
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with more training identities



What has been learned by DeeplD2+?

Properties owned by neurons?

Moderate sparse

Selective to identities and attributes

Robust to data corruption

These properties are naturally owned by DeeplD2+ through large-scale training,
without explicitly adding regularization terms to the model
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e Monkey has a face-processing network that is made of six
interconnected face-selective regions

 Neurons in some of these regions were view-specific, while
some others were tuned to identity across views

 View could be generalized to other factors, e.g. expressions?

Winrich A. Freiwald and Doris Y. Tsao, “Functional compartmentalization and viewpoint generalization
within the macaque face-processing system,” Science, 330(6005):845—-851, 2010.



Deeply learned features are moderately space

 For aninput image, about half of the neurons are activated

 An neuron has response on about half of the images
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Deeply learned features are moderately space

The binary codes on activation patterns of neurons are very
effective on face recognition

Activation patterns are more important than activation
magnitudes in face recognition

_ Joint Bayesian (%) | Hamming distance (%)

Single model 98.70 n/a
(real values)

Single model 97.67 96.46
(binary code)

Combined model 99.47 n/a
(real values)

Combined model 99.12 97.47
(binary code)



Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute
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Deeply learned features are selective to
identities and attributes

e With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

1
%) >,
© Q
3 0.8
S0.8 g
g IDgepIII_)2+ @ EDeeplD2+
S gHigh-dim 5086 gHigh-dim
So6 L5P S LBP
2 0.4
© ©
Q [&]
0.4 0.2 : | :
GB CP TB DR GS Male White Black Asian Indian
Identity classification accuracy on LFW with Attribute classification accuracy on LFW with

one single DeeplD2+ or LBP feature. GB, CP, one single DeeplD2+ or LBP feature.
TB, DR, and GS are five celebrities with the
most images in LFW.



Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons
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Deeply learned features are selective to
identities and attributes

e Excitatory and inhibitory neurons
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Deeply learned features are selective to
identities and attributes

* Visualize the semantic meaning of each neuron

High Resp. <@==fp Low Resp. HighResp. <= TLow Resp.

Gender Hair Color

Face Shape Eye Shape




Deeply learned features are selective to
identities and attributes

e Visualize the semantic meaning of each neuron

Test Image Activations Neurons

Neurons are ranked by their responses in descending order with respect to test images



DeeplD2 features for attribute recognition

e Features at top layers are more effective on recognizing
identity related attributes

e Features at lowers layers are more effective on identity-non-
related attributes

Top hidden layer Lower convolution layers

/ / /

M ANet (FC) M ANet(C4) M ANet (C3)

- Identity-related Attributes Identity-non-related Attributes
100% 90%
> 95% 85%
m
5 90% 80%
S
R Ii I | II
80% 70% —
Male White Black Asian Smiling Wearing Rosy 3SoClock

Hat Cheeks Shadow

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face Attributes in the Wild,” ICCV 2015



DeeplD2 features for attribute recognition

DeeplD2 features can be directly used for attribute recognition

Use DeelD2 features as initialization (pre-trained result), and
then fine tune on attribute recognition

Average accuracy on 40 attributes on CelebA and LFWA datasets

FaceTracer [1] (HOG+SVM) 81 74
PANDA-W [2] 79 71
(Parts are automatically detected)

PANDA-L [2] 85 81
(Parts are given by ground truth)

Training CNN from scratch with 83 79
attributes

Directly use DeeplD2 features 84 82

DeeplID2 + fine-tune 87 84



verification accuracy

Deeply learned features are robust to occlusions

Global features are more robust to occlusions
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 Deep learning for face recognition

— Learn 3D face models from 2D images



Deep Learning Multi-view
Representation from 2D Images

e Inspired by brain behaviors [Winrich et al. Science 2010]
e |dentity and view represented by different sets of neurons

e Given an image under arbitrary view, its viewpoint can be
estimated and its full spectrum of views can be reconstructed

3 fkﬂm"f—'ﬂ g i
I £
0 A e e e i i

Z.Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View Perception,”
NIPS 2014.



Deep Learning Multi-view
Representation from 2D Images

x and y are input and ouput images of
the same identity but in different views;

v is the view label of the output image;

h'd are neurons encoding identity
features

h'are neurons encoding view features

h"are neurons encoding features to
X reconstruct the output images



Ave. | 0°  —15° +15° —30° +30° —45° +45° —60° +60°
Raw Pixels+LDA 367 | 813 592 583 355 373 210 197 128 7.63
LBP [1]+LDA 502 | 89.1 774 791 568 559 352 297 162 146
Landmark LBP [6]+LDA | 632 | 949 839 89 714 682 528 483 355 32.1
CNN+LDA 58.1 | 646 662 628 607 63.6 564 579 464 442
FIP [28]+LDA 729 | 943 914 900 789 825 66.1 620 493 425
RL [28]+LDA 708 | 943 905 898 775 80.0 636 59.5 446 389
MTL+RL+LDA 748 | 938 917 89.6 80.1 833 704 638 515 502
MVP,_, 4+LDA 615 | 925 854 849 643 670 51.6 454 351 283
1
MVP,_,4+LDA 793 | 957 933 922 834 839 752 706 602 60.0
2
MVPy+LDA 726 | 91.0 867 841 746 742 685 638 557  56.0
MVPy, - +LDA 623 | 834 773 731 620 639 573 532 444 469

Face recognition accuracies across views and illuminations on the Multi-PIE
dataset. The first and the second best performances are in bold.

[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns: Application to face

recognition. TPAMI, 28:2037-2041, 2006.

[6] Dong Chen, Xudong Cao, Fang Wen, and Jian Sun. Blessing of dimensionality: High-dimensional feature

and its efficient compression for face verification. In CVPR, 2013.

[28] Z.Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity preserving face space. In ICCV, 2013.




Deep Learning Multi-view
Representation from 2D Images

e Interpolate and predict images under viewpoints unobserved
in the training set

Tl v v e ey vl - o
v 7% Cn &g vy ey o x| Crlely e g
T 5 o s AR Ty e

(b)
The training set onIy has viewpoints of 0°, 30°, and 60°. (a): the reconstructed
images under 15° and 45° when the input is taken under 0°. (b) The input images
are under 15° and 45°.
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 Deep learning for object segmentation



Whole-image classification vs
pixelwise classification

Whole-image classification: predict a single label for
the whole image

Pixelwise classification: predict a label at every pixel
— Segmentation, detection, and tracking

CNN, forward and backward propagation were
originally proposed for whole-image classification

Such difference was ignored when CNN was applied
to pixelwise classification problems, therefore it
encountered efficiency problems
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* Image patches centered at each pixel are used as the
input of a CNN, and the CNN predicts a class label for
each pixel

e A lot of redundant computation because of overlap

between patches Image patches around

each pixel location

Trained CNN

Class label for each pixel

Farabet et al. TPAMI 2013 Pinheiro and Collobert ICML 2014



Claccifv/ CAamarmranntatinm DramnAacal
CidasSity segirneritation rroposdi
 Determines which segmentation proposal can best

represent objects on interest

=Segmentatio
Proposals

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation” CVPR 2014
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P. Luo, X. Wang, and X. Tang, “Pedestrian Parsing via Deep Decompositional Network,” ICCV 2013.
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e Classifier is location sensitive has no
translation invariance

— Prediction not only depends on the neighborhood
of the pixel, but also its location

* Only suitable for images with regular
structures, such as faces and humans



Efficient Forward-Propagation of Convolutional
Neural Networks

e Generate the same result as patch-by-patch scanning, with 1500
times speedup for both forward and backward propagation

CNN Predictions Labels L0Tget Label Map
-
ow| e[| & &
Layer Layer

Forward Backward Selecting Errors on
} Propagation i Propagation -‘ Pixels via Error Mask
(b) Our approach

H. Li, R. Zhao, and X. Wang, “Highly Efficient Forward and Backward Propagation of Convolutional
Neural Networks for Pixelwise Classification,” arXiv:1412.4526, 2014



Speedup = O(Szm2 /(s + m)z) s2 is image size and m2 is patch size

Bwd. Prop.

Layer Type convll pooll | tanh11 convl2 convl3 conv2| pool21 tanh21
Kernel Size / Stride 25 x 8 x 8/1 2% 2/2 - 50 x 8 x 8/1 32 % 1x 1/1 25 X 8 x 8/1 2% 2/2 -
Sliding Window 39485.6 1960.2 693.0 59017.2 6473.1 63548.4 3322 98.14
Fwd. Prop. (ms)
Our Method 4.308 0.854 0.337 24.42 2.466 28.90 0.70 0.227
Fwd. Prop. (ms)
Speedup by Ours 8078.1 22053 2056.4 2416.8 26313 2198.9 4746 426.7
Fwd. Prop.
Sliding Window 739615 10054.8 602.6 146019.3 25206.7 133706.2 1623.8 106.7
Bwd. Prop. (ms)
Our Method 3.193 1428 0.282 66.55 6.778 71.69 0.844 0.245
Bwd. Prop. (ms)
Speedup by Ours 9027.4 7041.2 2136.9 2194.1 3718.9 1865.1 1923.9 6627.8
Bwd. Prop.
Layer Type conv22 conv23 conv3l pool31 tanh31 conv32 conv33 L
E = Overall
Kernel Size 7 Stride 50 x 8 x 8/1 32 x 1x 1/1 25 x 8 x 8/1 2 x 2/2 - 50 x 8 x 8/1 32 x 1 x 1/1
Sliding Window 14765.3 24334 17059.8 32,15 13.81 170154 2069.7 2249974
Fwd. Prop. (ms)
Our Method 18.98 1.920 20.55 0.488 0.164 10.76 1.080 116.2
Fwd. Prop. (ms)
Speedup by Ours 777.9 1267.4 830.2 65.9 84.2 1581.4 1916.4 1935.6
Bwd. Prop.
Sliding Window 28744.1 85223 16727.5 128.358 15.91 8657.7 2793.6 456871.1
Bwd. Prop. (ms)
Our Method 52.35 5.368 50.89 0.630 0.180 29.47 3.117 208.0
Fwd. Prop. (ms)
Speedup by Ours 549.1 1587.6 3287 203.7 88.4 203.8 806.2 1533.

The layewise timing and speedup results of the forward and backward propagation
by our proposed algorithm on the RCNN model with 3X410X410 images as inputs.
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e Replace fully connected layers in CNN with 1 x 1
convolution kernel just like “network in network”
(Lin, Chen and Yan, arXiv 2013)

e Take the whole images as inputs and directly output
segmentation map

e Has translation invariance like patch-by-patch
scanning, but with much lower computational cost

 Once FCNN is learned, it can process input images of
any sizes without warping them to a standard size

K. Kang and X. Wang, “Fully Convolutional Neural Networks for Crowd Segmentation,” arXiv:1411.4464, 2014



L

(a) CNN Patch-scanning (b) CNN Regression (c) FCNN Segmentation

% =
% Convolution-pooling layers = %

“Fusion” convolutional layers
implemented by 1 x 1 kernel

Fully connected layers
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e Incorporate semantic information into
saliency detection

R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency Detection by Multi-Context Deep Learning,”
CVPR 2015
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e Global and local context
Local Context Global Context
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e Multi-context modeling

Global-context Modeling
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F-measure Score

Saliency detection

e Multi-context modeling

B Single-Context [l Mult-Context
1

0.92
0.84

0.76

0.68

ASD SED1 SED2 ECSSD PASCAL-S

Ground
truth

Single
context

context



Saliency detection

e Different network structures

F-measure Score

1

05

0.8

0.7

B Clarifai [ OverFeat [l GoogleNet

B AlexNet
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 F-measure scores of benchmarking approaches on
five public datasets

ASD SEDI SED2 ECSSD PASCAL-S

IS [20] 0.5943 0.5540 0.5682 0.4731 0.4901
GBVS[17] | 0.6499 0.7125 0.5862 0.5528 0.5929
SF [44] 0.8879 0.7533 0.7961  0.5448 0.5740
GC [1Z] 0.8811 0.8066 0.7728  0.5821 0.6184
CEOS [40] | 0.9020 0.7935 0.6198  0.6465 0.6557
PCAS [+1] | 0.8613 0.7586 0.7791  0.5800 0.6332
GBMR [57] | 0.9100 0.9062 0.7974  0.6570 0.7055
HS [56] 0.9307 0.8744 0.8150 0.6391 0.6819
DRFI[25] | 0.9448 09018 0.8725  0.6909 0.7447
Ours 0.9548 0.9295 0.8903 0.7322 0.7930
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Deep learning significantly outperforms conventional vision
systems on large scale image classification

Feature representation learned from ImageNet can be well
generalized to other tasks and datasets

In face recognition, identity preserving features can be
effectively learned by joint identification-verification signals

3D face models can be learned from 2D images; identity and
pose information is encoded by different sets of neurons

In segmentation, larger patches lead to better performance
because of the large learning capacity of deep models. It is
also possible to directly predict the segmentation map.

The efficiency of CNN based segmentation can be significantly
improved by considering the differences between whole-
image classification and pixelwise classification
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Part IV: Deep Learning for Object
Detection

* Pedestrian Detection
e Human part localization

e General object detection

Human pose estimation

Pedestrian detection
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Deep Learning for Obje
e Jointly optimize the detection pipeline
 Multi-stage deep learning (cascaded detectors)

e Mixture components

* Integrate segmentation and detection to
depress background clutters

 Contextual modeling
* Pre-training

e Model deformation of object parts, which are
shared across classes



Joint Deep Learning:

<> Jointly optimize the detection pipeline



What if we treat an existing deep model as
a black box in pedestrian detection?

convolutions subsampling convolutions full

l l connection

subsampling output

T

convolutions subsampling
nput 1st stage 2nd stage classifier

ConvNet-U-MS

— Sermnet, K. Kavukcuoglu, S. Chintala, and LeCun, “Pedestrian Detection with
Unsupervised Multi-Stage Feature Learning,” CVPR 2013.
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 N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

e W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.
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W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.
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Pedestrian Detection aided by Deep
Learning Semantic Tasks

<> Improve feature learning with extra semantic tasks

Y. Tian, P. Luo, X. Wang, and X. Tang, "Pedestrian Detection aided by Deep Learning Semantic Tasks," CVPR 2015



Pedestrian Detection aided by Deep
Learnin

I
Vehicle
Horizontal
Tree right
Vertical
Vehicle
Vertical

Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian Detection aided by Deep Learning
Semantic Tasks,” CVPR 2015
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Pedestrian Detection on Caltech
(average miss detection rates)

HPG+SVM
68% DPM

63%

Joint DL
39%
. DL aided by
semantic tasks
17%

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” ICCV 2013.

Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian Detection aided by Deep Learning
Semantic Tasks,” CVPR 2015.
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Multi-Stage Contextual Deep Learning:

< Train different detectors for different types of samples
<> Model contextual information

<> Stage-by-stage pretraining strategies

X.Zeng, W. Ouyang and X. Wang, "Multi-Stage Contextual Deep Learning for Pedestrian Detection," ICCV 2013



Motivated by Cascaded Classifiers and
Contextual Boost

* The classifier of each stage deals with a specific set

of samples

 The score map output by one classifier can serve as
contextual information for the next classifier

.
i. LeL@>
@F ILFILF_
alﬁ’m

Conventional cascaded classifiers for detection

m

+** Only pass one detection
score to the next stage

¢ Classifiers are trained
sequentially



e Simulate the cascaded classifiers by mining hard samples to train the network

e Cascaded classifiers are jointly optimized instead of being trained sequentially

* The deep model keeps the score map output by the current classifier and it
serves as contextual information to support the decision at the next stage

* To avoid overfitting, a stage-wise pre-training scheme is proposed to regularize
optimization

Pedestrian?

¥ (O

Wh :? \

Layer2:h, \ /

Hidden

Hidden
variables

i
OO

Feature



TwrA
11d

ng S

tegie

Unsupervised pre-train W, ;,, layer-by-layer, setting W, ,,, =0, F,, =0

Fine-tune all the W, ;,, with supervised BP
Train F;,; and W, ., with BP stage-by-stage

A correctly classified sample at the previous stage does not influence the

update of parameters

Stage-by-stage training can be considered as adding regularization
constraints to parameters, i.e. some parameters are constrained to be

zeros in the early training stages
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False positives of Net-NoneFilters
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False negatives of Net-NoneFilters
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Comparison of Different Training Strategies

80F
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Network-BP: use back propagation to update all the parameters without pre-training
PretrainTransferMatrix-BP: the transfer matrices are unsupervised pertrained, and then
all the parameters are fine-tuned

Multi-stage: our multi-stage training strategy



Switchable Deep Network

<> Use mixture components to model complex variations of
body parts

<> Use salience maps to depress background clutters

<> Help detection with segmentation information

P. Luo, Y. Tian, X. Wang, and X. Tang, "Switchable Deep Network for Pedestrian Detection", CVPR 2014



Switchable Deep Network for
Pedestrian Detection

Background clutter and large variations of pedestrian
appearance.

Proposed Solution. A Switchable Deep Network (SDN)
for learning the foreground map and removing the effect
background clutter.



Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

K

A
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Switchable Deep Network for
Pedestrian Detection

e Switchable Restricted Boltzmann Machine

Background Foreground



miss rate

2011k

Switchable Deep Network for
Pedestrian Detection

94.73% VJ
{ | ===717.20% ConvNet
|~~~ 68.46% HOG
1] ===63.26% LatSvm-V2
i 62.10% Pls
56.34% ChnFtrs
-53.88% CrossTalk
; 53.14% DBN-Isol
| =—51.36% ACF
i | ===48.45% MultiResC
{| —48.35% Roerei
-+~ ==45.53% MOCO
\| ~——'44.22% ACF-Caltech
i 40.54% MT-DPM
39 32%LIDN

10"

1

0° 10

false positives per image

(a) Performance on Caltech Test

miss rate

[ ——s9.89% vy

64.23% HOG

| —— 60.74% MultiFtr+CSS

57.47% ChnFtrs
55.18% HogLbp
54.86% Pls

| ——51.94% CrossTalk

51.17% ACF

|| ——50.89% LatSvm-V2
i| ===50.27% ConvNet

49.45% MLS

| —47.01% DBN-Isol

45.32% UDN

===43.49% Roerei

40.63% SDN

10”7 10°

10’

false positives per image

(b) Performance

on ETH




Human Part Localization

<> Contextual information is important to segmentation as
well as detection



Human part localization

e Facial Keypoint Detection
* Human pose estimation
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e Y.Sun, X. Wang and X. Tang, “Deep Convolutional Network
Cascade for Facial Point Detection,” CVPR 2013
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Comparison with Liang et al. [6], Valstar et al. [7], Luxand Face SDK [ 1] and Microsofi
Research Face SDK [2] on BiolD and LFPW.
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http://www.luxand.com/facesdk/

http://research.microsoft.com/en-us/projects/facesdk/.

0. Jesorsky, K. J. Kirchberg, and R. Frischholz. Robust face detection using the hausdorff distance. In Proc. AVBPA, 2001.

P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar. Localizing parts of faces using a consensus of exemplars. In Proc. CVPR, 2011.
X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by explicit shape regression. In Proc. CVPR, 2012.

L. Liang, R. Xiao, F. Wen, and J. Sun. Face alighment via component-based discriminative search. In Proc. ECCV, 2008.

M. Valstar, B. Martinez, X. Binefa, and M. Pantic. Facial point detection using boosted regression and graph models. In Proc. CVPR, 2010.
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e The first network that takes the whole face as input needs
deep structures to extract high-level features

e Take the full face as input to make full use of texture context
information over the entire face to locate each keypoint

e Since the networks are trained to predict all the keypoints
simultaneously, the geometric constraints among keypoints
are implicitly encoded
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 W. Ouyang, X. Chu and X. Wang, “Multi-source Deep
Learning for Human Pose Estimation” CVPR 2014.




Multiple information sources

* Appearance

Appearance |




Multiple information sources

* Appearance
 Appearance mixture type
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Multiple information sources

* Appearance
e Appearance mixture type
e Deformation
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Method | Torso | Uleg |Lleg Uarm |Larm | head | Total _

Yang&Ramanan CVPR'11 82.9 68.8 60.5 63.4 42.4 82.4 63.6
Multi-source deep learning 89,3 78.0 72.0 67.8 47.8 89.3 71.0

Method

Yang&Ramanan CVPR’11 81.8 65.0 55.1 46.8 37.7 79.8 57.0
Multi-source deep learning  89.1 72.9 62.4 56.3 47.6 89.1 65.6

Method
Yang&Ramanan CVPR’11 82.9 70.3 67.0 56.0 39.8 79.3 62.8
Multi-source deep learning  85.8 76.5 72.2 63.3 46.6 83.1 68.6

Up to 8.6 percent accuracy improvement with global geometric constraints



Left: mixtire-of-parts (Yang&Ramanan CVPR’11)
Right: Multi-source deep learning



General Object Detection

<> Pretraining

<> Model deformation of object parts, which are shared across

classes
<> Contextual modeling



ImageNet Object Detection Task
(2013)

e 200 object classes
* 40,000 test images

e {ifeal, e Ll
¥ .! 5

* bird

| PEr=an

nelmet

= power drill
motorcyc\e




» Intra-class variation

» Part existence
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Intra-class variation

* Part existence
* Color
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Intra-class variation
* Part existence

e Color

e Occlusion
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Intra-class variation

* Part existence

* Color
* Occlusion

* Deformation




Mean Aver dge Precision (ll P)

J
M

DeeplD-Net
GoogleNet 50.3%

43.9%

RCNN

UvA-Euvision  31.4%
22.581%

ILSVRC 2013 ILSVRC 2014

W. Ouyang and X. Wang, et al. “DeeplID-Net: Deformable Deep Convolutional Neural
Networks for Object Detection,” CVPR 2015 263



mAP (%)
o ()% w N
o o o o

o

L
O
0

SegDPM (2013) O O
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DPM++  MKL,  Search,
< Selective DPM++,

< DPM, Search MKL
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pPM HOG+BOW

Regionlets
(2013)
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APost-
competition
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competition
results (2007 -
2012)
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Object Detection on ImageNet

BT B s
| =~ Bounding boxp=s

regression

—) |

-
% B =
L —
]
Iy S
f l‘. =
[ RO 4l

Il 3 =1 I Lo il (A
Proposed Detection Refined
bounding boxes results bounding boxes

DeeplD-Net (mean average precision: 50.3%)

I DeeplID-Net

[

(=gl | Pretrain, def- N\
4/ ['ﬁ pooling layer, [ 4

A | ; ] ‘
! | RIS Xl

Image Proposed Remaining hinge-loss
bounding boxes bounding boxes

Model
averaging




Consideration for deep learning based
general object detection

* Time

— Test

— Training
* Accuracy

— Learning discriminative and invariant features

— Capture complex deformation and
parts ‘ .
o g . - =

— Rich contextual information




mAP 31 to 50.3

line

Our pipe

Selective

search
I

Bounding boxes Remaining
bounding boxes
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Object detection — old framework

e Sliding window
e Feature extraction
e (lassification

For each window size
For each window
1. Feature extraction
2. Classification
End;
End;

2015/9/14 270



Object detection — the framework

Sliding
|
window .“_ﬂ- :

al
Feature
exaction

e Sliding window
e Feature extraction

e C(Classification

For each window size
For each window
1. Feature extraction Feature vector:
2. Classification X=X X X3 Xg -]
End;
End;




Object detection — the framework

Sliding
|
window .‘_ﬂ :

al
Feature
exaction

e Classification

e |

For each window size
For each window
1. Feature extraction Feature vector: o«

2. Classification X =Xy Xp X3 Xy ... ]

End; CIassificationl
End;

Object or not?
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Single-scale detection: 10k to 100k windows per image
Multi-scale detection: 100k to 1m windows per image

Multiple aspect ratio:10m to 100m windows per image

Selective search: 2k windows per image of multiple scales and
aspect ratios

Selective : |

search
——>




Selective

search
)

Y o @
Image Bounding boxes

Initial segments from over-segmentation
[Felzenszwalb2004]
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Image Bounding boxes
* |nitial segments from over-segmentation

[Felzenszwalb2004]
 Based on hierarchical grouping
 Group adjacent regions on region-level similarity
e Consider all scales of the hierarchy

275
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e Speed-up the pipeline

e Effectively learn the deep model

e Make use of domain knowledge from
computer vision
— Deformation pooling
— Context modelling



mAP 31 to 50.57 on val2

DeeplD-Net

Box

Proposed Remaining
bounding boxes bounding boxes

W. Ouyang and X. Wang et al. “DeeplID-Net: deformable deep convolutional neural
networks for object gétection”, CVPR, 2015
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e Motivation

— Selective search: ~ 2400 bounding boxes per image
— Feature extraction using AlexNet

e |[LSVRC val: ~20,000 images, ~2.4 days

e |LSVRC test: ~40,000 images, ~4.7days

 Bounding box rejection by RCNN:

— For each box, RCNN has 200 scores S, ,,,for 200 classes
— If max(S; ,q0) < -1.1, reject. 6% remaining bounding boxes

Recall (val,) 92.2% 89.0% 84.4%
Feature extraction time (seconds per image) 10.24 2.88 1.18

278
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e Speed up the pipeline
— Save the feature extraction time by about 10 times.

 Improve mean AP by 1%

All 89.8
Testing SVM score |02
feature extraction (val2) 28.4
| m With bbox rejection
SVM learning 20 B Without bbox rejection
feature extraction (vall) 28.4
finetuning }8
0 20 40 60 80 100
hours
Recall (val,) 92.2% 89.0% 84.4%

Feature extraction time (seconds per image) 10.24 2.88 1.18 °



mAP 31 to 50.57

DeeplD-Net

Proposed Remaining
bounding boxes bounding boxes
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Image classification

Segmentation

Features learned on ImageNet



Learning features and classifiers separately

 How to effectively learn features?

— With challenging tasks

— Predict high-dimensional vectors

Training
stage A ‘

Dataset A ‘

Training
stage B

Dataset B ‘

Deep
learning
Classifier 1 ‘ Classifier 2 ‘
y 2
Prediction Prediction
on task 1 on task 2

‘ Classifier B ‘

l

Prediction on task B
(Our target task)




Directly training 200 binary classifiers with CNNs are not good

Pre-train on
classifying 1,000
categories

Fine-tune on

|:>' classifying 201
categories

Detect 200 object classes on ImageNet

Girshick, Ross, et al. CVPR, 2014

=

Feature
representation

s

SVM binary
classifier for each
category

283



Why need pre-training with many classes?

e Each sample carries much more information

 One big negative class with many types of
objects confuses CNN on feature learning

e Make the training task challenging, not easy to
overfit



CAaAati1r
LUl

I
1 Cad !

e iearnin g
* Pretrain for image-classification with 1000 classes
* Finetune for object-detection with 200+1 classes

— Transfer the representation learned from ILSVRC
Classification to PASCAL (or ImageNet) detection

e Use the fine-tuned features for learning SVM

Girshick, Ross, et al. CVPR, 2014



earning
Pretrain for image-classification with 1000 classes
Finetune for object-detection with 200+1 classes

Use the fine-tuned features for learning SVM

Existing approaches mainly investigate on network
structure

 Number of layers/channels, filter size, dropout

Girshick, Ross, et al. CVPR, 2014
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Max
pooling

Max
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100

4006

OCtput
Layer 1 \2 E] 4 / 5 i g 9
Stage conv +max | comv { max com conv | conv conv + max full full
# channels 96 256 512 512 1024 1024 4096 1000
Filter size Tx7 Tx7 3x3 3x3 3x3 3x3 - -
Cony. stnde 2wl 1x1 1x1 1x1 1x1 1x1
Pooling size 3x3 2x3 - - - 3x3
Pooling stride 3x3 Ix3 - - - 3x3
Zero-Padding size - Ixlxlxl Ixlxlxl Ixlxlx] Ixlxlxl
Spatal mnput size 21x221 36x36 15x15 15x15 15x15 15x15

MMM

Annotation level

Bbox rejection

mMAP (%)

Image

n
29.9

Image

Y
30.9

Image

y
31.8

Image

y
36.6
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Annotation level Image Image Image Image Image
Bbox rejection n y y Y Y
MAP (%) 29.9 30.9 31.8 36.6 37.8
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e Classification
— Pretrain for image-classification with 1000 classes
— Finetune for object detection with 200 classes
— Gap: classification vs. detection, 1000 vs. 200

Image classification Object detection
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e (Classification
— Pretrain for image-classification with 1000 classes
— Finetune for object detection with 200 classes

— Gap: classification vs. detection, 1000 vs. 200
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Image classification Object detection
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e Classification

Pretrained on object-level annoation Pretrained on image-level annotation
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e Classification (Cls)
— Pretrain for image-classification with 1000 classes
— Gap: classification vs. detection, 1000 vs. 200

e Detection (Loc)

— Pretrain for object-detection with 1000 classes

Net structure AlexNet Clarifai Clarifai

mAP (%) on val2 29.9 31.8 36.0
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e RCNN (Cls+Det),
* QOur investigation

e Better pretraining on 1000 classes
e Object-level annotation is more suitable for pretraining

m Image annotation Object annotation

200 classes (Det) 20.7 32
1000 classes (Cls-Loc) 31.8 36

295



mAP 31 to 50.57 on val2

DeeplD-Net

Proposed Remaining
bounding boxes bounding boxes
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e Existing approach
— Learn features using soft-max loss (Softmax-Net)
— Train SVM with the learned features

Estimated result

- "?__::____q_
Learning r:: =~ “}3—; L, [ _ Softmax

CNN Y < | o /4 loss

gnd

\‘ “a
Hinge o

loss

W

Learning
SVM
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e Existing approach
— Learn features using soft-max loss (Softmax-Net)
— Train SVM with the learned features

* Replace Soft-max loss by Hinge loss when fine-tuning (SVM-Net)
— Merge the two steps of RCNN into one
— Require no feature extraction from training data (~60 hours)

Estimated result

| - Y
s ~ B ;
N che| L LT e
\ L loss
. - | 201

gnd

Learning
CNN




MAP 3]I . to 50.3

Our pipeline

Proposed Remaining d&f-pooling
bounding boxes bounding boxes layer
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Deep model training — def-pooling layer

e RCNN (ImageNet Cls+Det)

— Pretrain on image-level annotation with 1000 classes
— Finetune on object-level annotation with 200 classes
— Gap: classification vs. detection, 1000 vs. 200

e DeeplD-Net (ImageNet Loc+Det)
— Pretrain on object-level annotation with 1000 classes

— Finetune on object-level annotation with 200 classes
with def-pooling layers

m Without Def Layer With Def layer

mAP (%) on val2 36.0 38.5
300
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— Learning deformation [a] is effective in computer vision society.
— Missing in deep model.

— We propose a new deformation constrained pooling layer.

trl':_fi' f

i

&
]
=
=
%
£
..-.I_'-

[a] P. Felzenszwalb, R. B. Grishick, D.McAllister, and D. Ramanan. Object detection with discriminatively trained part based models. IEEE Trans. PAMI,
32:1627-1645, 2010.

301



NMAAdA

~ N Y -|- NA+A~+
IVIOUC

ng Part Detecto

gl
!

S

e Different parts have different sizes
e Design the filters with variable sizes

Head-torso

N
at level 3
Level 3 -

=0

Part models learned

from HOG
Head-shoulder Legs
at level 2 at level 2

. |
SR I ﬁ m Head-shoulder Full-body Torso
L ) at level 3 at level 3 at level 2

Part models Learned filtered at the second
convolutional layer 302



UJCIUI T Iallivll Ldytl |V]
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T,y
Bp — Mp + Cn pDn,p Sp = 1(13 }Sib
n=1 h
\
mput Conv olu‘no]f*
result I\I Global O
max
./ Output b
Deformation
penalty

[b] Wanli Ouyang, Xiaogang Wang, "Joint Deep Learning for Pedestrian Detection ", ICCV 2013. 303



Deformation layer for repeated

patterns

Assume no repeated pattern Repeated patterns

304



Deformation layer for repeated

patterns

Assume no repeated pattern Repeated patterns

Only consider one object class  Patterns shared across different object classes




nf\;h
IV

-5

[ a'a

~+1 mn ~r~Aancte»r l;
Iall I1 CUIIDUI 11

\l

.g ayer

@)

ﬁ e Y Y
dine puu

N

Can capture multiple patterns simultaneously
{m(km$+l,kyy+]) Z Cnd 7.7}

i,jG{—R,--- ,R}

n=1
] =
’ \
- filt —I_
; ; mput (':\il\'[\lmim:'-_
result M !fj"'_'\.__‘ Glob.ﬂl- )
ﬁh—e'- ,-'\":‘/ e Olll.put b
input C 011v01ut1m1 \ Max . g
result M /_I;\, pooling l -
» eformation
7 penalty
— Output B

Deformation
penalty 306




Our deep model with deformation

I AW aN's
Existing deep model (clarifai-fast)

convs fc6  fc7

R convé|  defé; conv7/| 00
\ Y
\ _
Layers with "":j;-‘_‘ 128 128~
def-pooling
layers convé; defé; conv7
4 g ’ ’ Patterns shared across
E—»ﬂ{ - different classes
128 [28
Cls+Det
Net structure AlexNet Clarifai Clarifai+Def layer

Mean AP on val2 0.299 0.360 0.385 307



mAP 31 to 50.57 on val2

DeeplD-Net

Proposed Remaining
bounding boxes bounding boxes

308



Existing deep model (clarifai-fast)

e Use the 1000 class
Image classification

convs fc6  fc7

200-
class
SCroes

SCore.

\ \\\
~ LT e
* 1 % m A P Candidate ' ¢ onvé, def6; conv/i|
. region o '
Improveme nt. Layers |
with \ |
def- :

pooling  convé; defé; conv7s!
layer \

_____ I_"!§_______I_;1_8_4 efined
_ 200-
class

scroes

1000-
class

Deep model (clarifai-fast) for 1000-class ' <"
|

Image

e e e = —— = —— e e = ——
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e Use the 1000-class Image classification score.
— ~1% mAP improvement.
— Volleyball: improve ap by 8.4% on val2.

| / Volleyball

| > Golf ball

B

| Bathing cap ey
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mAP 31 to 50.57 on val2

DeeplD-Net

Proposed Remaining
bounding boxes bounding boxes

Model
averaging

311
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e Models of different structures are
complementary on different classes.

P "
20 1

Annotation Image Object Object
level
Bbox n n n
rejection
mAP (%) 29.9 34.3 35.6 20

v

class
hamster
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mAP 31 to 50.57 on val2

DeeplD-Net

Selective Box DeeplD-Net
searchl
| S hinge-loss,
L. 3 K Pretrain,
Proposed Remaining def-pooling
bounding boxes bounding boxes layer

Model
averaging
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omparison with (E-0OT-tne-art
Detectlon
mAP on val2 (avg) n/a n/a n/a 44 5 50.7
mAP on val2 (sgl) n/a 31.0 33.4 n/a 40.1 38.8 48.2
mAP on test (avg) 22.6 n/a n/a n/a 40.5 43.9 50.3
mAP on test (sgl) n/a 31.4 34.5 35.4 40.2 38.0 47.9

Selective ‘

Box

reiectionl

: | Pretrain,
Proposed Remaining def-pooling
bounding boxes bounding boxes 1Y€

Bounding box

ranraccinn avvaraninn
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Detection Box +bbox |+Edge| +Def | Scale +bbox | Model
pocine | o lrecoion] | _Loreran| b e g s ree | o

mAPonval2 29.9 30.9 36.6 37.8 404 427 449 473 47.8 48.2 50.7

MAP on test 479 50.3

Model avg.
bbox regr.
Context
Scale jittering
Def layer
Edgebox
bbox pretrain
G-net
O-net
Box rejection
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e Jointly optimize vision components (joint deep
learning)

* Propose new layers based on domain knowledge (def-
pooling layer)

o Carefully design the strategies of learning feature
representations
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— Pre-training with chaIIengmg tasks and rich predictions

— The chosen training tasks help to achieved desired feature
invariance and discriminative power

— Adapted to specific tasks in test

— Eaatiira la
irCailuiC IC
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e Speed-up the pipeline:
— Bounding rejection. Save feature extraction by about
10 times, slightly improve mAP (~1%).
— Hinge loss. Save feature computation time (~60 h).
* Improve the accuracy

— Pre-training with object-level annotation, more
classes. 2.6% mAP

— Def-pooling layer. 2.5% mAP
— Context. 0.5-1% mAP

— Model averaging. Different model designs and training
schemes lead to high diversity
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Deep learning for object tracking

Open questions and future works
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 Explore the features pre-trained on massive data and
classification task on ImageNet

e A top convolution layer encodes more semantic
features and serves as a category detector

* A lower convolution layer carries more discriminative
information and can better separate the target from
distractors with similar appearance

* Both layers are jointly used with a switch mechanism
during tracking

e A tracking target, only a subset of neurons are
relevant

n

L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual Tracking with Fully Convolutional Networks,
ICCV 2015.



Observation 1: Different layers encode different types of features.
Higher layers capture semantic concepts on object categories,
whereas lower layers encode more discriminative features to
capture intra class variations

(a) (b) (c)

(a) Ground truth target heat map; (b) Predicted heat maps using feature maps of
top convolution layers of VGG; (c) Predicted heat maps using feature maps of lower
convolution layers of VGG



Observation 2: Although the receptive field of CNN feature maps is
large, activated feature maps are sparse and localized. Activated
regions are highly correlated to the regions of semantic objects
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Activation value histograms of feature maps in top (left) and lower (right) layers

(=)



Observation 3: Many CNN feature maps are noisy or unrelated for
the task of discriminating a particular target from its background

H
d_.A

(a) Ground truth foreground mask, average feature maps of convolution
layers; average selected feature maps of convolution layers
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e Select feature maps by reconstructing foreground masks and
their significance calculated with BP

The sparse coefficients are computed using the images in the first column and
directly applied to the other columns without change



Fully convolutional network based
tracker (FCN)

GNet: capture the category information of the target and is built on
the top layers of VGG

SNet: discriminative the target from background with similar
appearance and is built on the lower layers of VGG

[ SNet ]
Feature Map
Selection
I I »
VGG Net
(©)
Conv5-3

— W

Distracter
Detection

(b) Conv4-3

Feature Map
Selection

(b) VGG network; (c) SNet; (d) Gnet; (e) Tracking results



Both GNet and SNet are initialized in the first frame to perform
foreground heat map regression for the target: GNet is fixed and

SNet is updated every 200 frames

SNet is used is the background distractor is larger than a threshold;
otherwise GNet is used

For a new frame, a region of interest (ROI) centered at the last
target location containing both target and background context is
cropped and propagated through the fully convolutional network

SNet

Distracter
Detection .
GNet , B

Feature Map
Selection

VGG Net

(0)

E—

Conv5-3

(b) Conv4-3

-

Feature Map
Selection (d)

(b) VGG network; (c) SNet; (d) Gnet; (e) Tracking results




Precision

Precision plots and success plots of OPE for
the top 10 trackers

Precision plots of OPE Success plots of OPE
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e Open questions and future works



Concerns” on de p rMinNg

e C1: Weak on theoretical support (convergence,
bound, local minimum, why it works)
— It's true. That’s why deep learning papers were not

accepted by the computer vision/image processing
community for a long time. Any theoretical studies in the

future are important.



Most computer
vision/multimedia papers

Motivations

Deep learning papers for
computer vision/multimedia

!

Motivations

New objective function

|

!

New optimization algorithm

New network structure and
new objective function

!

|

Theoretical analysis

Back propagation (standard)

|

|

Experimental results

Super experimental results

That’s probably one of the reasons that computer vision and image
processing people think deep learning papers are lack of novelty and

theoretical contribution ®
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e C2:ltis hard for computer vision/image processing people to
have innovative contributions to deep learning. Our job
becomes preparing the data + using deep learning as a black
box. That’s the end of our research life.

— That’s not true. Computer vision and image processing researchers
have developed many systems with deep architectures. But we just
didn’t know how to jointly learn all the components. Our research

experience and insights can help to design new deep models and pre-
training strategies.

— Many machine learning models and algorithms were motivated by
computer vision and image processing applications. However,
computer vision and multimedia did not have close interaction with
neural networks in the past 15 years. We expect fast development of
deep learning driven by applications.
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1s” on deep learning
e (C3:Since the goal of neural networks is to solve the
general learning problem, why do we need domain

knowledge?

— The most successful deep model on image and video
related applications is convolutional neural network, which
has used domain knowledge (filtering, pooling)

— Domain knowledge is important especially when the
training data is not large enough
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e C4: Good results achieved by deep learning come

from manually tuning network structures and
learning rates, and trying different initializations

— That’s not true. One round evaluation may take several
weeks. There is no time to test all the settings.

— Designing and training deep models does require a lot of
empirical experience and insights. There are also a lot of
tricks and guidance provided by deep learning researchers.
Most of them make sense intuitively but without strict
proof.
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 C5: Deep learning is more suitable for industry rather
than research groups in universities
— Industry has big data and computation resources

— Research groups from universities can contribute on model
design, training algorithms and new applications
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e C6: Deep learning has different behaviors when the
scale of training data is different

— Pre-training is useful when the training data small, but
does not make big difference when the training data is
large enough

— So far, the performance of deep learning keep increasing
with the size of training data. We don’t see its limit yet.

— Shall we spend more effort on data annotation or model
design?
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e C7:Deep learning is neural network, which is old

— Studying the behaviors of neural network under large scale
training is new
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 Explore deep learning in new applications

— Worthy to try if the applications require features or
learning, and have enough training data

— We once had many doubts on deep. (Does it work for
vision? Does it work for segmentation? Does it work for
low-level vision?) But deep learning has given us a lot of
surprises.

— Applications will inspire many new deep models

e |ncorporate domain knowledge into deep learning

e |Integrate existing machine learning models with
deep learning
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Deep learning to extract dynamic features for video
analysis

Deep models for structured data

Theoretical studies on deep learning

Quantitative analysis on how to design network
structures and how to choose nonlinear operations of
different layers in order to achieve feature invariance

New optimization and training algorithms

Parallel computing systems and algorithm to train very
large and deep networks with larger training data



Home Join Us Projects

Multimedia Laboratory

/ Deep Learning

Introduction Publications Slides Dieep Learning Bibliographey Lseful Links

Description Download
E A demo code that allows you to input a pedestrian image and then compute the [abel map. Zip
} Reference:
: N 1. P. Luo, ¥.Wang, and X. Tang, "Pedestrian Parsing via Deep Decompositional Meural MNetwark," in Procesdings of [EEE International Conference on
H L/t AN Camputer Vision (1CCY) 2013 [FDF] [Project Page]
A demo code that shows you how the frontal-wiew face image of a query face image is reconstructed. Zip
Reference:

1. Z. Zhu, P. Luo, ¥, Wang, and . Tang, "Deep Learning ldentity Preserving Face Space," in Proceedings of [EEE [nfernational Conference on
Compufer Vision (1CCV) 2013 [POF] [Froject Page]

hatlab training and testing source code for pedestrian detection using the proposed approach. Models trained on INRIA and Caltech are provided. YWWebpage

Reference:
1. Wanli Cuyang, Xiaogang Wang, "Jaint Deep Learning for Pedestrian Detection”, in Proceedings of [EEE infernaiional Conference on Compalier vision
(ICCY) 2013 [PDF] [Froject Page]
2. wWanli Ouyang, Xigogang Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling", in Proceedings of IEEE Conference
on Compufer Wision and Paftern Recognition (VPR 2012 [FDF] [Froject Pade]

Executable files for the face detector and facial point detector. WWebpage

Reference:
1. %, 5un, ¥, Wang and X Tang, "Deep Convolutional Network Cascade for Facial Point Detection," in Proseedings of [EEE Conference on Cormpuier

Wigion and Paifern Recognition (CVPR), pp. 3476-3483, 2013 [FOF] [Project Page]

http://mmlab.ie.cuhk.edu.hk/project_deep_learning.html
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