64 Chapter 2 Instructions: Language of the Computer

MIPS operands

$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform arithmetic,
32registers | $a0-%$a3, $v0-$v1, $gp, $fp, |register$zero always equals O, and register$at is reserved by the assembler to
$sp, $ra, $at handle large constants.
230 memory | Memory[0], Memory[4], ..., Accessed only by data transfer instructions. MIPS uses byte addresses, so
words Memory[4294967292] sequential word addresses differ by 4. Memory holds data structures, arrays, and

spilled registers.

MIPS assembly language

I T T S

add $s1,$s52,$s3 |$sl =$s2+ $s3 Three register operands
Arithmetic | subtract sub $s1,$s52,$s3 [$sl=$s2-$s3 Three register operands
add immediate addi $s1,%$s2,20 $s1=9$s2+20 Used to add constants
load word Tw $s51,20($s2) $s1 =Memory[$s2 + 20] Word from memory to register
store word sw o $s1,20(8$s2) Memory[$s2 + 20] = $s1 Word from register to memory
load half Th $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register
load half unsigned | Thu $s1,20($s2) | $s1 = Memory[$s2 + 20] Halfword memory to register
store half sh $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory
gztwasfer load byte b $s1,20(%$s2) $s1 = Memory[$s2 + 20] Byte from memory to register
load byte unsigned | 1bu $s1,20($s2) | $s1 =Memory[$s2 + 20] Byte from memory to register
store byte sb $s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory
load linked word 11 $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap
store condition. word | sc $s1,20($s2) Memory[$s2+20]=$s1;$s1=0 or 1 | Store word as 2nd half of atomic swap
load upper immed. | Tui $s1,20 $s1 =20 * 26 Loads constant in upper 16 bits
and and $s1,$s2,$s3|$s1=9$s2 & $s3 Three reg. operands; bit-by-bit AND
or or $51,852,$53 | $s1 =852 9$s3 Three reg. operands; bit-by-bit OR
nor nor $s1,$s2,$s3|$sl =~ ($s2|$s3) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,$s2,20 |$s1=9$s2&20 Bit-by-bit AND reg with constant
or immediate ori $s1,$s2,20 |$sl=%$s2]20 Bit-by-bit OR reg with constant
shift left logical sT1 $s1,$s2,10 |$sl=$s2<<10 Shift left by constant
shift right logical srl $s1,$s2,10 |$sl=%$s2>>10 Shift right by constant
branch on equal beq $s1,$s52,25 |if($sl==9$s2)goto Equal test; PC-relative branch
PC + 4 + 100
branch on not equal | bne $s1,$s2,25 |if($sll= $s2)goto Not equal test; PC-relative
PC + 4 + 100
set on less than sTt $s1,$s2,$s3 |if($s2 < $s3) $s1=1 Compare less than; for beq, bne
Conditional else $s1=0
branch set on less than sTtu $s1,$s2,$s3 |if ($52 < $s3) $s1l=1 Compare less than unsigned
unsigned else $s1 =0
set less than slti $s1,$s2,20 |if($s2<20)$sl=1 Compare less than constant
immediate else $s1 =0
set less than sltiu $s1,%$s2,20 |if($s2<20)$sl=1 Compare less than constant
immediate unsigned else $s1=0 unsigned
» jump Jj 2500 go to 10000 Jump to target address
Pncondltlonal jump register jr $ra goto$ra For switch, procedure return
Jump jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call
FIGURE 2.1 MIPS assembly language revealed in this chapter. This information is also found in Column 1 of the MIPS Reference

Data Card at the front of this book.

