
An Empirical Study of Common Challenges in

Developing Deep Learning Applications

Tianyi Zhang†∗ Cuiyun Gao§∗ Lei Ma‡ Michael R. Lyu§ Miryung Kim†

†University of California, Los Angeles §The Chinese University of Hong Kong ‡Kyushu University

{tianyi.zhang, miryung}@cs.ucla.edu {cygao, lyu}@cse.cuhk.edu.hk malei@ait.kyushu-u.ac.jp

Abstract—Recent advances in deep learning promote the in-

novation of many intelligent systems and applications such as

autonomous driving and image recognition. Despite enormous

efforts and investments in this field, a fundamental question

remains under-investigated—what challenges do developers com-
monly face when building deep learning applications? To seek an

answer, this paper presents a large-scale empirical study of deep

learning questions in a popular Q&A website, Stack Overflow.

We manually inspect a sample of 715 questions and identify

seven kinds of frequently asked questions. We further build a

classification model to quantify the distribution of different kinds

of deep learning questions in the entire set of 39,628 deep learning

questions. We find that program crashes, model migration, and

implementation questions are the top three most frequently asked

questions. After carefully examining accepted answers of these

questions, we summarize five main root causes that may deserve

attention from the research community, including API misuse,

incorrect hyperparameter selection, GPU computation, static

graph computation, and limited debugging and profiling support.

Our results highlight the need for new techniques such as cross-

framework differential testing to improve software development

productivity and software reliability in deep learning.

Index Terms—deep learning, Stack Overflow, programming

issues, software reliability

I. INTRODUCTION

Deep learning has been successfully applied to many do-

mains and has gained a lot of attention from both industry

and academia. In the software engineering community, there

is an increasing interest in applying deep learning to important

software engineering problems, e.g., code completion [1], [2],

code search [3], clone detection [4], [5], type inference [6], and

bug prediction [7], [8]. Despite recent advances in testing deep

learning applications [9]–[14], it is still unclear what kinds of

programming obstacles and challenges developers face when

building deep learning applications. It is also unclear how

software engineering researchers should provide better tool

support to address those programming pain points and im-

prove the productivity of data scientists and machine learning

engineers who build and integrate deep learning models.

Deep learning engineering significantly differs from tra-

ditional software engineering in terms of its programming

paradigm and practice. Deep learning applications are data-

driven, where developers define a desired neural network

and let it automatically learn model parameters from a huge

amount of training data. However, traditional software systems

are logic-driven, where developers directly specify program

∗ The first two authors contributed equally.

logic in source code. Since model training requires heavy

computation, deep learning developers often exploit data paral-

lelism and accelerate model training using GPUs. As a result,

software correctness and robustness in deep learning are more

subject to training data quality, network architectures, hyper-

parameter selections, and configurations of computation units.

Shifting from traditional software development to deep

learning engineering poses unique challenges [15]. Nowadays,

developers often resort to online Q&A forums such as Stack

Overflow to find solutions to programming issues they have

encountered during software development. As of July 2018,

Stack Overflow has accumulated 16 million programming

questions and 26 million answers. Prior work has leveraged

Stack Overflow to study trending topics in mobile app de-

velopment [16], web development [17], and security [18]. In

this paper, we analyze and mine deep learning questions asked

in Stack Overflow to discover and understand common chal-

lenges in developing deep learning applications. We focus on

three popular deep learning frameworks, TensorFlow, PyTorch,

and Deeplearning4j, and extract 39,628 relevant deep learning

questions in Stack Overflow.

Due to the large number of deep learning questions in Stack

Overflow, it is challenging to manually analyze all of them.

Therefore, we first manually inspect a sample of 715 deep

learning questions and classify them based on Q&A contents

and underlying programming issues. We identify seven kinds

of programming questions—program crash, model migration

and deployment, implementation, training anomaly, compre-

hension, installation, and performance. Then we build a

keyword-based classification model to quantify the distribution

of different kinds of deep learning questions in Stack Overflow.

Among all types, program crash and model migration are

the top two most frequently asked questions. In addition,

performance questions are the most difficult to answer—only

25% performance questions have accepted answers compared

with 34% in all other categories. Performance questions also

take a longer time (4.3 hrs vs. 2.5 hrs in other categories) to

receive a correct answer. We further examine the accepted or

endorsed answer posts under each question to understand the

root cause of underlying programming issues. We highlight

five root causes that may deserve attention from the research

community—API misuse, incorrect hyperparameter selection,

GPU computation, static graph computation, and limited de-

bugging and profiling support.

This study shows several development pain points in the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

construction, training, migration, and deployment of deep

neural networks. Our findings motivate further investigation

on debugging and profiling machine learning based systems

as well as extending and inventing new differential testing

for cross-framework model migration. The heavy utilization

of GPUs also calls for new techniques that expose implicit

programming constraints enforced by GPU computation.

The rest of the paper is organized as follows. Section II

describes the data collection, the manual inspection proce-

dure, and the automated classification technique. Section III

describes our major findings. Section IV offers a discussion

about the opportunities and challenges of extending software

engineering techniques for deep learning. Section V discusses

threats to validity and Section VI discusses related work.

Section VII concludes this work and discusses future work.

II. STUDY METHODOLOGY

This section presents research questions of this study, fol-

lowed by a description of data collection and analysis methods.

A. Research Questions

This study investigates the following research questions.

• RQ1: What kinds of questions are frequently asked in

deep learning? This question aims to discover common

programming issues and obstacles in the development of

deep learning applications.

• RQ2: Which kinds of deep learning questions are hard

to resolve? This question aims to examine the difficulty

of resolving different kinds of programming issues by

measuring the number of correct answers and the time it

takes to receive those answers.

• RQ3: What are the main root causes? This question aims

to understand the reasons for those programming issues,

in order to inform software engineering researchers to de-

sign better approaches and tool support for deep learning

engineering.

B. Data Collection

To identify common programming issues in deep learning,

we collect Stack Overflow (SO) questions related to three

representative and popular deep learning frameworks, Ten-

sorFlow [19], PyTorch [20], and Deeplearning4j [21]. These

frameworks are widely adopted in practice but differ in their

computation paradigm and architecture design. TensorFlow

and Deeplearning4j adopt static computation graphs, where

a neural network must be defined first before training (i.e.,

define-and-run). However, PyTorch adopts dynamic compu-

tation graphs and defines a neural network on-the-fly (i.e.,

define-by-run). Both TensorFlow and PyTorch provide Python

APIs, while Deeplearning4j provides Java and Scala APIs.

Compared with TensorFlow and PyTorch, Deeplearning4j is

tightly integrated with distributed computing platforms such

as Apache Spark and therefore supports distributed training by

nature. From the SO data dump taken in December 2018 [22],

we extract 39,628 questions that are tagged with tensorflow,

pytorch, or deeplearning4j. Table I shows the number of

questions related to each framework and their view counts.

TABLE I: The number of SO questions and their view count

Framework #Questions
#View Count

Max 3rd Quartile Median

TensorFlow 37,565 205,910 5,725 158

PyTorch 1,828 22,264 385 139

Deeplearning4j 235 5,685 362 131

C. Manual Inspection

We follow an open coding method [23] to inspect and clas-

sify deep learning questions collected from Stack Overflow.

The first two authors first jointly inspect 50 deep learning

questions from each framework and distill an initial set of

categories based on underlying programming issues and symp-

toms. A question is assigned to all related categories if it

is related to multiple programming issues. The two authors

then independently classify more questions based on the initial

categories. If one author finds a question that does not belong

to an existing category, the author discusses with the other

author and adds a new category as needed. It requires to

sample 380 posts to achieve 95% confidence level and 5%

confidence interval in the population of 39,628 SO posts

related to deep learning. Yet we continue to inspect more

posts till we do not find new frequent categories. This is a

standard procedure in qualitative analysis to stop collecting

new data when insights are converged. Finally, the authors

compare their labeling results, discuss any disagreement, and

refine the categories. At the end, the two authors inspect

715 SO questions and identify seven categories (discussed in

Section III-A).

To understand the root cause of a deep learning question,

we carefully examine the accepted answer (if any) under the

question post and summarize its explanation and solution as

the root cause. Though not suggested by Stack Overflow, some

SO users may also endorse a correct answer by commenting

under a post and expressing gratitude. Therefore, if there is no

explicitly accepted answer, we go through the comments under

an answer post to identify such endorsed answers. The entire

manual inspection and root cause analysis process takes about

400 man-hours for the sample of 715 deep learning questions.

D. Automated Classification

To quantify the entire set of deep learning questions, we

build a classification model that automatically classifies a deep

learning question to one of the seven categories identified

in the previous manual inspection step. This model uses a

combination of word frequency and a set of manually selected

keywords in each category for classification. The first two au-

thors manually inspected top 200 frequent words appeared in

each category and selected representative keywords together,

following the same method as in prior work [24], [25]. To

measure the contribution of a word to each category, we assign

each word wc
i a weight θci and θci = tf(wc

i)/
∑N

j=1
tf(wc

j),
where tf(w) means the term frequency of the term w in the

posts. For manually selected keywords, we assign extra weight

α (α ∈ [0, 1]) to emphasize their contribution to a category.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

1 ...

2 def conv2d(x, W):

3 return
�������������

tf.nn.conv2d(x,
��

W,
����������

strides=[1,
���

1,
��

1,
����

1],

�������������

padding=’SAME’)

4

5 def max_pool_2x2(x):

6 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides =

[1, 2, 2, 1], padding=’SAME’)

7

8 mnist=input_data.read_data_sets(’MNIST_data’,one_hot=

True)

9 x=tf.placeholder("float",shape=[None,784])

10 y=tf.placeholder("float",shape=[None,10])

11 x_image=tf.reshape(x,[-1,28,28,1])

12

13 #Layer 1: convolutional + max pooling

14 W_conv2=weight_variable([5,5,1,64])

15 b_conv2=bias_variable([64])

16 h_conv2=tf.nn.relu(conv2d(x_image,W_conv2)+b_conv2)

17 h_pool2=max_pool_2x2(h_conv2)

18

19 #Layer 2: ReLU+Dropout

20 W_fc1=weight_variable([7*7*64,1024])

21 b_fc1=bias_variable([1024])

22 h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])

23 h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

24 ...

Fig. 2: A code example with shape inconsistency between the

convolutional layer and the ReLU layer (Post 35138131)

architecture and a distributed environment, it is challenging to

figure out how to partition data and operations across multiple

devices to achieve optimal and reliable training performance.

Program Crash. Questions in this program crash category

concern about runtime exceptions that crash a program. We

mainly discuss three types of crash errors—shape inconsis-

tency, numerical error, CPU/GPU incompatibility, which are

frequently asked in deep learning applications but not so often

in traditional software systems.

Shape Inconsistency. Shape inconsistency refers to runtime

errors caused by unmatched multi-dimensional arrays between

operations and layers. Figure 2 shows an example of shape

inconsistency in a convolutional neural network. Given an

input tensor in the shape of [?,28,28,1], the first convo-

lutional layer (lines 13-17) produces a tensor in the shape of

[?,14,14,64] after striding and max pooling. However, the

second ReLu layer expects an input tensor in the shape of

[?,7,7,64], leading to the shape inconsistency. To reduce

the output tensor to the right shape, the stride of the first

convolutional layer (line 3) should be set to [1,2,2,1]

instead of [1,1,1,1]. When shape inconsistency occurs,

developers often express the desire to view the input and

output tensor shapes among network layers (Post 51460835).

However, deciding tensor shapes is not straightforward, since

the high-level network construction APIs in modern DL

frameworks hide everything behind the scene. Furthermore,

since tensors can have dynamic shapes, shape inconsistency

cannot be simply detected via static type checking. Instead,

it requires customized dataflow analysis accounting for both

layer connectivity and operations that transform tensor shapes.

Numerical Errors. Since deep neural networks extensively

use floating point computation [26], they can be highly vul-

1 ys_reshape = tf.reshape(ys,[-1,1])

2 prediction = tf.reshape(relu4,[-1,1])

3 -
�����������

cross_entropy
�

=

��

tf.reduce_mean(-(ys_reshape*tf.log(prediction)))

4 + cross_entropy = tf.reduce_mean(-(ys_reshape*tf.log(

prediction+1e-5)))

5 train_step = tf.train.AdamOptimizer(0.01).minimize(

cross_entropy)

Fig. 3: An NaN error occurs at line 4 when computing cross

entropy with logits (Post 40192728).

nerable to numerical errors in both training and evaluation.

Numerical errors are notoriously hard to debug, partly be-

cause they may only be triggered by a small set of rarely

encountered inputs. One typical numerical error is not-a-

number (NaN) values. For example, in Figure 3, the ex-

pression ys_reshape*tf.log(prediction) (line 3) may

yield 0 ∗ log(0) and further produces NaN values, since

the previous ReLU layer can output zero. Adding a small

positive value (line 4) can prevent this error. In Tensor-

Flow, it is generally recommended to use another function,

tf.nn.softmax_cross_entropy_with_logits, to com-

pute cross entropy, since this function properly handles corner

cases that may cause NaN errors.

CPU/GPU Incompatibility. GPU/CPU incompatibility often

occurs when switching model training from CPU to GPU. As a

common practice, developers often run and test their deep neu-

ral networks on CPU first and then port them to GPU to speed

up training. Compared with CPU, GPU supports different data

types and operations that are customized and optimized for

parallel computation across GPU kernels. To perform training

on GPU, developers must make sure all data and operations in

their neural networks are compatible with GPU. Modern DL

frameworks often hide such implicit design decisions nicely

and expose global flags and APIs to automatically transfer

data between CPU and GPU. Therefore, developers only need

to make small changes to their existing code to port it to

GPU. However, making such subtle changes is error-prone. In

Figure 4, even though the programmer converts the input data

to its GPU-compatible version by calling cuda() at line 3, the

code snippet will throw TypeError at line 12 when running

on GPU, since the programmer forgets to convert other data

(e.g., decoder_hidden, decoder_context) to GPU. Such

mistakes can be hard to catch in a large and complex neural

network, leading to a program crash.

Training Anomaly. This category is related to unreliable

training behaviors. Neural network training is essentially a

process of continuously adjusting model parameters based on

previous predication errors measured by a loss function. To

achieve high prediction accuracy, the training process often

involves a huge amount of training data and a collection of

optimization tricks such as mini-batching and feature scaling.

Any training data errors or mis-conducted optimization tricks

could cause training anomalies. Various training anomalies are

reported on Stack Overflow, including extremely low or high

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

1 encoder_hidden = encoder_test.init_hidden()

2 if USE_CUDA:

3 word_inputs = Variable(torch.LongTensor([1, 2, 3]).

cuda())

4 else:

5 word_inputs = Variable(torch.LongTensor([1, 2, 3]))

6

7 encoder_outputs, encoder_hidden = encoder_test(

word_inputs, encoder_hidden)

8 decoder_attns = torch.zeros(1, 3, 3)

9
������������

decoder_hidden
�

=
�������������

encoder_hidden

10
�������������

decoder_context
�

=
��������������������

Variable(torch.zeros(1,

����������������������

decoder_test.hidden_size))

11

12 decoder_output, decoder_context, decoder_hidden,

decoder_attn = decoder_test(word_inputs[0],

decoder_context, decoder_hidden, encoder_outputs)

Fig. 4: TypeError occurs at line 12 when running the

PyTorch model on GPU due to incompatible float tensor types

between CPU and GPU (Post 46704352)

accuracy, loss values never dropping, overfitting, discontinuous

accuracy values between iterations, unstable loss values, etc.

Here, we discuss one representative example that is frequently

asked in Stack Overflow. In Post 34743847, the training loss

was initially low but quickly increased to a large value and

kept bouncing back and forth without converging. The reason

is that the learning rate is 0.1, which is too high for this

specific task. A high learning rate can cause drastic updates

on network parameters, leading to a vicious cycle of ever-

increasing gradient values (i.e., gradient exploding). Besides,

exploding gradients can also be caused by improper weight

initialization. For instance, in Post 36565430, for a deep neural

network with more than 10 layers, the extra layers could make

the gradients too unstable, making the loss function quickly

devolve to NaN. The best way to fix this is to use Xavier

initialization [27]. Otherwise, the variance of initial values

tends to be too high, causing instability.

Since training anomalies do not crash a program, there

are no error messages or stack traces that a developer can

start investigation from. To debug such anomalous behavior,

experienced developers may print parameters and gradients to

console and observe how their values change over training

epochs. Then they may decide which hyperparameter to tune

based on their own heuristics. However, such trail-and-error

method is tedious and cumbersome when debugging a large

neural network with thousands of neurons and millions of pa-

rameters. Existing visualization tools such as TensorBoard [28]

and Visdom [29] can provide a bird’s-eye view of the entire

training process. However, these tools only plot high-level

quantitative metrics over training epochs but lack the traceabil-

ity to pinpoint which statement, operation, or hyperparameter

could cause such an anomaly.

Model Migration and Deployment. Questions in this cate-

gory concern about porting model implementations between

different frameworks or deploying saved models across dif-

ferent frameworks or platforms. In such a migration or de-

ployment process, behavior inconsistency often occurs due to

variations or incompatibilities between different frameworks,

platforms, or library versions. For instance, in Post 49447270,

the developer wanted to import the weights of a Theano-based

CNN model into a predictor written in PyTorch. As Theano

and PyTorch adopt different matrix formats in a convolutional

layer by default, the predictor could not behave properly with-

out matrix format conversion. As another example, a developer

found that the output quality was much lower when restoring

a saved model that was trained on a server in a mobile device

(Post 49454430). It is critical to ensure behavior consistency of

the same model in different settings for deployment. However,

such behavior inconsistency is often hard to diagnose due to a

lack of tool support for systematically testing and comparing

model behavior between different platforms or frameworks.

To deploy a neural model on mobile devices or embedded

systems, quantization techniques are commonly used to reduce

model size [30]. However, quantization can cause various

errors such as program crashes and performance issues. For

instance, after reducing floating point precision to 8 bit, a

developer found that the quantized model was about 20X

slower than the original one (Post 39469708). With an increas-

ing demand of migrating a deep learning model from cloud

servers to mobile devices and IoT devices, a differential testing

framework that systematically detects behavior consistency of

the same model in different settings is necessary for improving

the robustness of a model.

Performance. Questions in this performance category concern

about training time and memory usage of deep learning mod-

els. Training neural networks is computationally demanding.

Therefore, developers often concern about training perfor-

mance in terms of execution time and memory usage. Many

performance questions in Stack Overflow ask for advice on

how to optimize model implementation and how to fix perfor-

mance bugs such as memory leaks. Developers also ask about

the performance difference between different platforms, frame-

works, and GPUs. For instance, a developer implemented an

image recognition model for ImageNet using both MXNet and

TensorFlow but found that, when training using four GPUs,

TensorFlow was much slower than MXNet (Post 36047937).

There are similar questions about TensorFlow vs. Caffe

(Post 37255626), PyTorch vs. TensorFlow (Post 50784130), etc.

When such divergent behavior occurs in different settings or

frameworks, developers often wonder whether it is caused by

framework differences or implementation bugs in their own

code. This indicates a need for diagnosing and empirically

benchmarking performance differences among different plat-

forms and frameworks.

In addition to training time, GPU utilization ratio is an-

other important metric that developers often use to diagnose

performance bugs in deep learning. GPU usage depends on

many factors including the size of a neural network, batch

size, and data pre-processing. For instance, using GPUs can

actually slow down the overall training process for small

neural networks with light computation, since the overhead

of memory allocation and data transferring can overwhelm

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●
●●
●
●

●

●
●●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●●
●●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

0

5

10

15

20

Compre. Impl. Install Migrate Perform. Crash Training
Category

T
im

e
to

 R
ec

ei
ve

 C
or

re
ct

 A
ns

w
er

 (
h)

Category
●

●

●

●

●

●

●

Comprehension

Implementation

Installation

Model_Migration

Performance

Program_Crash

Training_Anomaly

Fig. 7: Distribution of the time length to receive a correct

answer for different kinds of deep learning questions

of comprehension questions have accepted answers, which is

the highest rate among all categories. Based on the manual

inspection, many comprehension questions are asked because

developers are not familiar with machine learning concepts

or because the documentation is unclear. Such comprehension

questions are relatively easy to answer compared with other

kinds of questions. By contrast, only 25 % of performance

questions have accepted answers, which is the lowest. Fur-

thermore, among all categories, performance questions also

take the longest time to receive a correct answer. As shown

in Figure 7, performance questions take 4.3 hours on average

to receive a correct answer, while program crash questions

take only 1.7 hours. Compared with other issues such as

program crashes, performance issues do not have error mes-

sages that trace back to specific lines of code. Developers

have to use profiling tools to first diagnose which operation

is the bottleneck in order to further investigate the root cause.

However, profiling support from deep learning frameworks is

still primitive. For instance, since PyTorch does not provide

any profiler, PyTorch developers have to manually instrument

a neural network to gather performance metrics using Python

modules such as time (Post 49989414). In addition, perfor-

mance bugs often occur in the training stage and many of

them require specific GPUs or a distributed environment to

reproduce (e.g., Post 49235599, Post 37255626). On the other

hand, many program crashes such as type errors and shape

inconsistencies often occur in the graph construction stage,

which only requires CPU and is therefore relatively easy to

be reproduced by other developers.

C. RQ3: What are the main root causes?

Certainly, some SO questions are simply because developers

do not have enough machine learning background or do

not read documentations carefully. However, a large portion

of questions are caused by common mistakes that different

developers repetitively make. In addition, the lack of tool

support also makes it hard to diagnose certain types of errors

in deep learning and thus developers have no choice but turn

to online Q&A forums, which may deserve attention from

framework developers and software engineering researchers.

We identify five main root causes of the common programming

issues during the manual inspection.

API misuse. API usage violations are the root cause of various

runtime errors and training anomalies. For instance, developers

must call zero_() after loss.backward() to zero out gradi-

ents to avoid exceptions in PyTorch (Post 46513276). Some API

usage violations are implicit and hard to spot. For instance,

TensorFlow requires to initialize all tf.Variable objects

by calling initialize_all_variables, which is easy to

follow for user-defined variables. However, certain functions

such adam and momentum optimizers define variables inter-

nally and thus developers still need to explicitly initialize

variables before training (Posts 33788989, 36007883). In such

cases, it is critical to provide more information transparency

about critical internals of APIs and functions.

GPU computation. Utilizing GPUs raises a spectrum of

programming challenges when building deep learning applica-

tions. GPUs impose critical programming constraints that must

be followed to avoid runtime errors, training anomalies, and

performance bugs. For example, developers cannot directly

convert a PyTorch tensor x to an equivalent NumPy array

by calling x.data.numpy() in GPU. Instead, developers

have to move a tensor to CPU first and then convert it to

NumPy by calling x.data.cpu().numpy() (Post 44351506).

When porting a deep learning model from CPU to GPU,

such unsupported function calls must be rewritten first before

training. Though GPUs play such an important role in deep

learning, many GPU interfaces and usage scenarios are not

well documented. For example, Post 38580201 illustrates how

to use a function list_local_devices to list available

GPUs in TensorFlow, which receives 128 upvotes. However,

this function is not documented at all.

Incorrect hyperparameter selection. Modeling mistakes

such as improper hyperparameters are often the root cause

of unexpected model behavior such as low accuracy and

overfitting. For example, in Post 37914647, the developer built

a simple neural network to learn arithmetic addition but

found that the training accuracy was always 100 %, even with

garbage data. The reason was that the developer intended to

learn a linear regression model to approximate addition, but

mistakenly used the cross-entropy loss function, which was

designed for classification problems. The developer should use

the mean square error (MSE) loss function instead. Another

developer sets the embedding dimension too high for a small

vocabulary, which causes overfitting (Post 48541336). Thus, it

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

1 # define a neural network

2 def train_op():

3 images, true_labels = inputs()

4 predictions = NET(images)

5 true_labels = tf.cast(true_labels, tf.float32)

6 loss = tf.nn.softmax_cross_entropy_with_logits(

predictions, true_labels)

7 return OPTIMIZER.minimize(loss)

8

9 # train the network

10 def train():

11 ...

12 while not coord.should_stop():

13 # i-th training epoch

14
������

training
��

=
���������

train_op()

15 sess.run(training)

16 ...

Fig. 8: A TensorFlow code snippet that defines a neural

network within the training process and thus hangs forever

during training, simplified from Post 35274405.

can be beneficial to mine common combinations and values

of hyperparameters and show how others set hyperparameters.

Static graph computation. Unlike PyTorch, TensorFlow

adopts static computation graphs, where a neural network

must be defined before training. Though such define-and-

run paradigm can improve training performance via mini-

batching, it is not straightforward to program with, leading

to many programming mistakes. A common mistake is to

define a neural network within the training process, as shown

in Figure 8. The function call, train_op at line 14 keeps

adding new operations to the neural network in each training

iteration, making the network grow bigger and bigger and thus

quickly draining out the computation power.

Static graph computation also causes difficulty in debugging

training behavior, accounting for many debugging questions

in Stack Overflow. General-purpose debuggers such as pdb
2

cannot be used to inspect runtime values when training the

computational graph in TensorFlow. Instead, TensorFlow uses

the tf.Session interface to communicate between a static

graph and the training process. Developers have to evaluate a

tensor using tf.Session functions first and print its values to

the console for further analysis, which is not straightforward.

In Stack Overflow, many developers feel confused about how

to inspect runtime values in TensorFlow (e.g., Post 47710467,

Post 33679382, Post 33633370). This is very different from

traditional software debugging, where developers can simply

inject a breakpoint and step through the execution. Though

TensorFlow now provides a debugger called tfdbg
3 for Ten-

sorFlow models, where you can step through the execution

and check values, it is cumbersome to set up as complained

by many developers in Stack Overflow (e.g., Post 44211871,

Post 46025966, Post 46104266).

Limited debugging and profiling support. Debugging a deep

learning model is fundamentally different from debugging a

regular program. Because the decision logic of deep learning

2https://docs.python.org/3/library/pdb.html
3https://www.tensorflow.org/guide/debugger

models is not directly specified by developers, but learned

from training data. The backbone of a deep learning model is a

data-flow graph. Though a stack trace may point to a specific

line of code, the real fault can reside in the training data,

hyperparameter selection, hardware, and versioning. Different

training data and hyperparameters can lead to unexpected be-

havioral divergence, which is hard to debug by just comparing

high-level metrics such as training loss over time. Setting

random seeds, data dropout, and some GPU operations can

cause non-determinism in model training, making it harder

to debug (Post 39938307). When an error occurs in GPU or

in a distributed setting, developers cannot easily track which

operation at which step raises the error (Post 50661415). There

is also limited tool support for runtime monitoring or profiling

in GPU and in a distributed environment (Post 34775522).

Developers cannot do much except for waiting the training

process to finish, staring at log files, and tuning the model via

trial and error.

When performance issues occur, developers find it hard to

identify which line of code or which operation introduces the

bottleneck. The profiling support in PyTorch and Deeplearn-

ing4j is still primitive. In PyTorch, developers have to man-

ually instrument a neural network using the built-in Python

modules such as time4 and gc
5 to collect the execution time

and memory fingerprint. Similarly, developers also have to use

a general-purpose JVM profiler to profile a Deeplearning4j

model. TensorFlow provides its own profiling feature, runtime

statistics feature6, which is tightly integrated with its visualiza-

tion tool, TensorBoard. However, TensorBoard is cumbersome

to use, since developers have to write extra boilerplate code

to set up TensorBoard and collect performance metrics. In

Stack Overflow, we observe a variety of errors such as web

browser compatibility errors (Post 33680397) and display errors

(Post 34416702), when setting up and using TensorBoard.

Existing visualization tools such as TensorBoard [28] and

Visdom [29] provide a good summary of high-level metrics

such as training accuracy over iterations. However, these tools

are not suitable for low-level debugging activities such as

inspecting runtime values and setting a watchpoint for NaN

values. A common practice is still to print runtime values

to a console or log files and manually scan for potential

errors such as exploding gradients. Due to the ever-increasing

model complexity and data volume, now it is common to

train deep neural networks with multiple GPUs or a cluster

of workers. Such distributed training brings more challenges

in debugging deep learning models, since runtime errors

and training anomalies are compounded with communication

bandwidth and latency as well as neural network partitioning

and placement in a distributed setting.

IV. RESEARCH OPPORTUNITIES

Certain categories such as installation and comprehension

are general issues in software engineering rather than specific

4https://docs.python.org/3/library/time.html
5https://docs.python.org/2/library/gc.html
6https://www.tensorflow.org/guide/graph viz#runtime statistics

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

to deep learning applications. However, in deep learning appli-

cations, many issues such as program crashes and unexpected

behavioral inconsistencies after model deployment are due to

the incompatibility between installed libraries and hardware

or a lack of understanding of library functions. Therefore, in

order to build reliable deep learning systems, it is important

to understand commonly asked questions related to those

aspects and think about solutions for better library dependency

management and documentation, especially given the rapid

revolution of deep learning libraries and the heavy utilization

of hardware units compared with traditional software systems.

We briefly discuss three major implications of our findings on

future research below.

Implication 1: Mining implicit API usage protocols and

hyperparameter combinations is needed. There are many

implicit but critical API usage protocols enforced by deep

learning frameworks and GPU computation. Failing to follow

these constraints will lead to program crashes, training anoma-

lies, and performance bugs. Deep learning frameworks often

lack documentations of these API usage protocols. Therefore,

it is beneficial to automatically mine such API usage protocols

from neural network implementations available on GitHub.

In addition, since hyperparameters are often specified as

function parameters, mining common combinations of hyper-

parameters and showing how other developers set them can

provide guidance for model design and tuning.

Implication 2: Facilitating debugging and profiling is

needed. Runtime monitoring and profiling support needs to be

improved, especially when training with multiple GPUs and

machines. Testing and runtime verification techniques could

be useful to detect training anomalies. For instance, an en-

visioned technique should enable data scientists and machine

learning engineers to expressively specify desired high-level

properties as test oracles or assertations that can be propagated

across training iterations. Then, an abnormal training execution

state that violates those properties (e.g., numerical errors,

concurrency issues, incorrect parameter configuration) could

be captured at runtime for further analysis.

Implication 3: Cross-framework and cross-platform differ-

ential testing is needed. Behavior inconsistency often occurs

when migrating a model between different frameworks or

deploying a model to a different platform (e.g., Android, IOS,

web browsers). However, it is hard to uncover and diagnose

such behavioral inconsistency due to a lack of tool support.

Existing testing techniques mainly focus on identifying test

inputs that improve a given test coverage metric for test gener-

ation [9]–[12], [33]. Therefore, a differential testing framework

that systematically tests and uncovers behavior inconsistency

of the same model in different settings is needed, especially

with an increasing demand for migrating and deploying a deep

learning model from cloud servers to mobile devices and other

edge computing devices.

As future work, we plan to send surveys and conduct

semi-structured interviews with professional machine learning

engineers and data scientists to understand common practices

and principles to address these challenges in industry and

solicit feedback about desired tool support.

V. THREATS TO VALIDITY

Internal Validity. The combination of manual analysis and

automated classification raises several threats to internal va-

lidity. First, the manual analysis of deep learning questions in

Stack Overflow is subjective. To reduce the bias, two authors

independently inspected a total of 715 deep learning questions

and discussed classification disagreements. The taxonomy was

finalized based on the consensus of two authors after resolving

all disagreements.

Since it is challenging to manually inspect all 39,628 deep

learning questions, we develop an automated technique to

classify them to seven categories identified in the manual

analysis. Both the precision and recall of our classification

technique are about 80%, which is commonly acceptable

for automatic natural language analysis in software engineer-

ing [34]–[37]. Nevertheless, questions can still be inevitably

misclassified. The automated classification is based on the

manually identified categories that may not fully cover all

categories in the entire set of 39,628 questions. To mitigate

this issue, the authors followed an open-coding method [23]

to iteratively develop and refine the categories of frequently

asked questions and continued to inspect more SO posts, until

no new programming issue categories were found.

In RQ2, we consider the accepted answer of a SO question

as the correct answer. Yet, some SO users may endorse

correct answers by commenting below answer posts, rather

than explicitly accepting them as correct answers. Therefore,

we may miss correct answers that are not accepted by question

asksers. As a result, the percentage of real correct answers in

each category could be slightly higher in Figure 6.

External Validity. The external validity concerns about the

generalizability of our results. In order to mitigate this issue,

we analyze programming questions related to three popular

and representative deep learning frameworks with different

computation paradigms and infrastructures. But still, we may

miss unique programming issues in other deep learning frame-

works that are not included in our study scope, such as

MXNet [38] and Caffe [39]. Since we only analyze deep

learning questions asked in Stack Overflow, we may overlook

valuable insights from other sources. In future work, we

plan to conduct in-depth interviews with professional deep

learning engineers and solicit their feedback to mitigate this

issue. Furthermore, given the rapid evolution of deep learning

frameworks, it is unclear how long our findings may stay

valid and what new challenges may emerge in the future.

Any breakthrough in industry and academia may significantly

change the way developers write deep learning programs. For

example, Microsoft and Facebook released the first version

of Open Neural Network Exchange (ONNX), a new neural

network exchange format and ecosystem for interchangeable

machine learning models in 2017 [40]. Later, IBM, Huawei,

Intel, AMD, ARM and Qualcomm announced support for the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

initiative. Increasing adoption and support for ONNX may

shift the themes of questions related to model migration.

VI. RELATED WORK

The most related work is a recent study on 175 software

bugs in deep learning applications built by TensorFlow [41].

Our work extends this study by identifying seven categories

of frequently asked questions about deep learning. We analyze

715 Stack Overflow questions not just related to TensorFlow,

but also two other popular deep learning frameworks with

different computation paradigm and architecture design. In

addition to software defects, we also identify other develop-

ment issues such as training anomaly and model migration.

We also find that, in addition to enhance fault localization and

repair techniques as suggested in [41], it is also important to

expose implicit API usage constraints, provide more interac-

tive debugging and profiling support, and enable differential

testing for migrating and deploying models across different

frameworks and platforms.

Both Thung et al. [42] and Sun et al. [43] study categories of

software bugs in machine learning libraries and frameworks.

Thung et al. [42] manually inspected a sample of 500 bugs

in Apache Mahout, Lucene, and OpenNLP, and grouped them

based on bug categories proposed by Seaman et al. [44]. They

further analyzed the bug severity, as well as the average time

and effort needed to fix a bug in each category. Sun et al. [43]

manually inspected 328 closed bugs in three machine learning

systems, Scikit-learn, Paddle, and Caffe. They proposed seven

new bug categories and also identified twelve fix patterns

that are commonly used to fix these bugs. Our work differs

by focusing on software development issues and challenges

when using deep learning frameworks, rather than building

and maintaining these frameworks.

Recently, the software engineering community made many

advances in testing deep learning applications [9]–[14], [45]–

[49]. DeepXplore [9] proposes a test effectiveness metric

called neuron coverage and develops a neuron-coverage-

guided differential testing technique that uncovers behav-

ioral inconsistencies between different deep learning models.

DeepTest [10] is a test generation framework that adapts

labeled driving scenes with a set of pre-defined image

transformations in order to increase the neuron coverage of

autonomous driving systems. DeepRoad [13] improves on

DeepTest by leveraging the generative adversarial network

(GAN) to automatically transform images to different driving

scenes, e.g, snowy or rainy conditions. DeepConcolic [12]

is a concolic testing approach that incrementally generates

test inputs for deep neural networks by alternating between

concrete execution and symbolic analysis. DeepGauge [11]

and DeepCT [50] extend the neuron coverage metric by

proposing a set of neuron value-based testing criteria and

neural interaction-based criteria, and demonstrated that the

new criteria were more effective in capturing software defects

caused by adversarial examples. Kim et al. [14] propose a

new test criterion called surprise adequacy that measures how

much input data follows the statistical distribution of training

data in terms of neuron activation status. Note that most of

these techniques focus on improving the robustness of deep

learning models by generating test inputs. In this study, we find

that developers are also likely to make implementation bugs

or choose sub-optimal hyperparameters, leading to various

program crashes and training anomalies that are rarely seen

in traditional software systems. Our findings indicate the need

of testing and fault localization support that allows developers

to systematically check desired behaviors and properties of

deep learning applications, e.g., a gradient should not be

NaN, similar to how developers write unit test cases to check

conventional software systems.

Ma et al. [33] present a debugging technique called MODE

for deep neural networks. MODE performs state analysis of

neural network to identify neurons that are responsible for

incorrectly predicted test data, and selects new input samples

to retrain the faulty neurons. MODE is designed to address

overfitting and underfitting problems caused by inadequate

training data. Our study finds other kinds of bugs such as

numerical errors and performance issues, which requires more

interactive debugging and profiling techniques.

VII. CONCLUSION

This paper presents a large-scale study about programming

issues and mistakes in deep learning. We manually inspect

a sample of 715 deep learning questions in Stack Overflow

and identify seven types of frequently asked questions. We

find that the new data-driven programming paradigm in deep

learning has introduced new software development issues such

as training anomalies and model migration, which has not been

observed in traditional software systems. Based on the insights

from manual inspection, we build an automated classification

technique that quantifies different kinds of deep learning

questions in Stack Overflow. Among all categories, program

crashes and model migration are the top two most frequently

asked topics. We also find that performance questions are

the most difficult deep learning questions to answer in terms

of receiving correct answers and the wait time for correct

answers.

Despite the successful adoption of deep learning to many

domains, our study reveals that the development tool chain

support is still at an early stage. Our study motivates the need

of debugging and profiling machine learning and AI based

systems as well as extending and inventing new differential

testing for cross-framework model migration, which is a timely

topic and urgent issue to be addressed to impact real-world

systems of today and future.

ACKNOWLEDGMENT

Thanks to anonymous reviewers for their valuable feedback.

This work is supported by NSF grants CCF-1764077, CCF-

1527923, CCF-1460325, CCF-1723773, ONR grant N00014-

18-1-2037, Intel CAPA grant, Hong Kong RGC GRF grant

CUHK-14210717, JSPS KAKENHI Grant-19H04086, and

Qdai-Jump Research Program NO.01277.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Acm Sigplan Notices, vol. 49, no. 6. ACM, 2014,
pp. 419–428.

[2] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep api learning,” in
Proceedings of 24th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering. ACM, 2016, pp. 631–642.
[3] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of

the 40th International Conference on Software Engineering. ACM,
2018, pp. 933–944.

[4] L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A deep
learning-based clone detection approach,” in 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME), Sep.
2017, pp. 249–260.

[5] G. Zhao and J. Huang, “Deepsim: Deep learning code functional
similarity,” in Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ser. ESEC/FSE 2018. New
York, NY, USA: ACM, 2018, pp. 141–151. [Online]. Available:
http://doi.acm.org/10.1145/3236024.3236068

[6] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 11th Joint Meeting on Foundations

of Software Engineering. ACM, 2018.
[7] M. Pradel and K. Sen, “Deepbugs: A learning approach to

name-based bug detection,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 147:1–147:25, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3276517

[8] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
2018.

[9] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in Proceedings of the 26th Symposium

on Operating Systems Principles. ACM, 2017, pp. 1–18.
[10] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing

of deep-neural-network-driven autonomous cars,” in Proceedings of the

40th International Conference on Software Engineering. ACM, 2018,
pp. 303–314.

[11] L. Ma, F. Juefei-Xu, and J. S. et al., “DeepGauge: Multi-Granularity
Testing Criteria for Deep Learning Systems,” in The 33rd IEEE/ACM

International Conference on Automated Software Engineering, 2018.
[12] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D. Kroening,

“Concolic testing for deep neural networks,” in Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineer-

ing, ser. ASE 2018, 2018, pp. 109–119.
[13] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:

Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, ser. ASE
2018, pp. 132–142.

[14] J. Kim, R. Feldt, and S. Yoo, “Guiding Deep Learning System Test-
ing using Surprise Adequacy,” in 2019 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), 2019.
[15] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-

gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in Proceedings of the 41th International

Conference on Software Engineering, ICSE 2019, Montral, Canada, May

25 - May 31, 2019, 2019.
[16] C. Rosen and E. Shihab, “What are mobile developers asking about? a

large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, 2016.

[17] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked
by web developers,” in Proceedings of the 11th Working Conference on

Mining Software Repositories. ACM, 2014, pp. 112–121.
[18] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, “Se-

cure coding practices in java: Challenges and vulnerabilities,” in 2018

IEEE/ACM 40th International Conference on Software Engineering

(ICSE). IEEE, 2018, pp. 372–383.
[19] “Tensorflow,” accessed: 2019-01-21.
[20] “Pytorch,” https://pytorch.org/, accessed: 2019-01-21.
[21] “Deeplearning4j,” https://deeplearning4j.org/, accessed: 2019-01-21.
[22] Stack Overflow data dump, 2018, https://archive.org/details/

stackexchange, accessed on Aug 15, 2018.

[23] B. L. Berg, H. Lune, and H. Lune, Qualitative Research Methods for

the Social Sciences. Pearson Boston, MA, 2004, vol. 5.
[24] B. Ray, D. Posnett, V. Filkov, and P. T. Devanbu, “A large scale study

of programming languages and code quality in github,” in Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations

of Software Engineering, (FSE-22), Hong Kong, China, November 16 -

22, 2014, 2014, pp. 155–165.
[25] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple

programming languages and code quality,” in IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering, SANER

2016, Suita, Osaka, Japan, March 14-18, 2016 - Volume 1, 2016, pp.
563–573.

[26] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys (CSUR), vol. 23,
no. 1, pp. 5–48, 1991.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth

international conference on artificial intelligence and statistics, 2010,
pp. 249–256.

[28] “Tensorboard: Visualizing learning,” https://www.tensorflow.org/guide/
summaries and tensorboard, accessed: 2019-01-21.

[29] “Visdom: A flexible tool for creating, organizing, and sharing visual-
izations of live, rich data.” https://github.com/facebookresearch/visdom,
accessed: 2019-01-21.

[30] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning devel-
opment and deployment across different frameworks and platforms,”
in Proceedings of the 34rd ACM/IEEE International Conference on

Automated Software Engineering, ser. ASE 2019.
[31] “Build and install error messages,” https://www.tensorflow.org/install/

errors, accessed: 2019-01-21.
[32] “Mila and the future of theano,” https://groups.google.com/forum/#!

topic/theano-users/7Poq8BZutbY, accessed: 2019-01-21.
[33] S. Ma, Y. Liu, W.-C. Lee, X. Zhang, and A. Grama, “Mode: Automated

neural network model debugging via state differential analysis and
input selection,” in Proceedings of the 2018 26th ACM Joint Meeting

on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. ACM, 2018, pp. 175–186.
[34] B. Lin, F. Zampetti, G. Bavota, M. D. Penta, M. Lanza, and R. Oliveto,

“Sentiment analysis for software engineering: how far can we go?” in
Proceedings of the 40th International Conference on Software Engineer-

ing, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018,
pp. 94–104.

[35] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?” Information & Software Technology, vol. 76, pp.
135–146, 2016.

[36] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. B. Bener,
“Defect prediction from static code features: current results, limitations,
new approaches,” Autom. Softw. Eng., vol. 17, no. 4, pp. 375–407, 2010.

[37] T. B. Le, L. Bao, and D. Lo, “DSM: a specification mining tool
using recurrent neural network based language model,” in Proceedings

of the 2018 ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,

ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-

09, 2018, 2018, pp. 896–899.
[38] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint

arXiv:1512.01274, 2015.
[39] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international

conference on Multimedia. ACM, 2014, pp. 675–678.
[40] “Facebook and microsoft introduce new open ecosystem for

interchangeable ai frameworks,” https://research.fb.com/blog/2017/
09/facebook-and-microsoft-introduce-new-open-ecosystem-for-
interchangeable-ai-frameworks/, accessed: 2019-01-21.

[41] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empirical
study on tensorflow program bugs,” in Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2018, 2018, pp. 129–140.

[42] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in
machine learning systems,” in 2012 IEEE 23rd International Symposium

on Software Reliability Engineering, 2012, pp. 271–280.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

[43] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in 2017 24th Asia-Pacific

Software Engineering Conference (APSEC), 2017, pp. 348–357.
[44] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo,

and S. Godfrey, “Defect categorization: making use of a decade of
widely varying historical data,” in Proceedings of the Second ACM-

IEEE international symposium on Empirical software engineering and

measurement. ACM, 2008, pp. 149–157.
[45] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning Testing:

Survey, Landscapes and Horizons,” arXiv e-prints, Jun 2019.
[46] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie,

L. Li, Y. Liu, J. Zhao et al., “Deepmutation: Mutation testing of deep
learning systems,” The 29th IEEE International Symposium on Software

Reliability Engineering (ISSRE), 2018.
[47] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,

B. Li, J. Yin, and S. See, “Deephunter: A coverage-guided fuzz testing

framework for deep neural networks,” in Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2019, 2019, pp. 146–157.

[48] X. Du, X. Xie, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Deepstellar:
Model-based quantitative analysis of stateful deep learning systems,” in
Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering, ser. ESEC/FSE 2019, 2019, pp. 477–487.
[49] X. Xie, L. Ma, H. Wang, Y. Li, Y. Liu, and X. Li, “Diffchaser: Detecting

disagreements for deep neural networks,” in Proceedings of the 28th

International Joint Conference on Artificial Intelligence, 2019.
[50] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:

Tomographic combinatorial testing for deep learning systems,” in 2019

IEEE 26th International Conference on Software Analysis, Evolution

and Reengineering (SANER), Feb 2019, pp. 614–618.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 08:23:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

