
Effect of Repair Policies on Software Reliability

Swa,pna S. Gokhalel; Peter N. Marinos': Michael R. Lyu2,Kishor S. Trivedil!

Center for Advanced Computing & Communication
Dept. of Electrical and Computer Engg.

Duke University, Durham, NC 27708-0291
E-mail: {ssg,pnm,kst}@ee.duke.edu

Room No. 2A-413, Lucent Technologies, Bell Laboratories
600, Mountain Avenue, Murray Hill, N J 07974

E-mail: lyu@research. bell-labs. com

Abst rac t
Software reliability is an important met-

ric that quantifies the quality of the software
product and is inversely related to the number
of unrepaired faults in the system. Fault re-
moval is a critical process in achieving desired
level of quality before software deployment in
the f i e l d . Conventional software reliability
models assume that the time to remove a fault
is negligible and that the repair process is per-
f e c t . In this paper we examine various kinds
of repair scenarios, and analyze the effect of
these fault removal policies on the residual
number of faults at the end of the testing

*Supported in part by Bellcore as a core
project in the Center for Advanced Computing and
Communication

tSupported in part by Bellcore as a core
project in the Center for Advanced Computing and
Communication

lSupported by a contract from Charles Stark
Draper Laboratory, in part by Bellcore as a core
project in the Center for Advanced Computing and
Communication, and in part by National Science
Foundation under grant number EEC-9418765.

process, using a non-homogeneous continuous
time Markov chain. The fault removal rate
is initially assumed to be constant, and it is
subsequently extended to cover time and state
dependencies. These fault removal scenar-
ios can be easily incorporated using the state
space view of the non-homogeneous Poisson
process.

1 In t roduct ion

The increase in the production and main-
tenance costs of software relative to those
of hardware in computer systems have
prompted considerable attention to the life-
cycle management of software systems. Soft-
ware is an integral part of many critical and
non-critical applications, and virtually any
industry- automotive, avionics, oil, telecom-
munications, banking, semiconductors etc., is
dependent on computers for their basic func-
tioning. As computer software permeates our
modern society, and will continue to do so
at an increasing pace in the future, software

0-7803-3979-7/97/$10.00 01997 IEEE 105

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

mailto:ssg,pnm,kst}@ee.duke.edu

quality assurance becomes an issue of critical
concern.

Software reliability is accepted as a key
factor in software quality since it quantifies
software failures - which can make a power-
ful system inoperative[Lyu96]. It is defined as
the probability of failure-free software opera-
tion for a specified period of time in a speci-
fied environment[MI087] and is inversely re-
lated to the number of unrepaired faults in
the system. Large software systems contain
millions of lines of code and the sheer size
of the product poses considerable problems
in terms of the ability of software design-
CI'S to rapidly achieve product quality. Most
software errors are latent, i.e., they exist in
the software system for a long time before
they are detected, and they may remain un-
repaired for a long time even after they are
detected, which amplifies their impact.

Conventional software reliability models
assume that the time to repair a fault is neg-
ligible and that the process of repairing a
fault is perfect. This assumption is clearly
imprxtical a.nd needs to be amended in or-
der to present inore realistic software testing
scenarios. The time of removal of the fault,
in general, does not coincide with the time
of the original failure. This time lag is not
explicitly accounted for in the software relia-
bility models because it significantly compli-
cates the failure process, making it impos-
sible to obtain closed form expressions for
various metrics of interest. The number of
faults detected and removed by a particular
time will depend on the actual time taken
to i'emove the defect, and this number will
be less than the instanta.neous removal case.
'l'he residual nuniber of faults in the software
before it is deployed in the field are the soul
cause of software unreliability, and hence is
an extremely important measure for the soft-
ware developer. This is specially true for the
developer of a commercial off-the-shelf soft-

ware package that will run on thousands of
individual systems. The reliability of a com-
mercial software is important to its users,
however, they never report their reliability
experience. They report the occurrence of
a specific failure to the software development
organization, with the presumption of getting
the underlying fault fixed, so that the failure
does not recur. Thus commercial software or-
ganizations focus on the residual number of
faults, rather than reliability as a measure of
software quality[Ken93]. Fault removal pro-
cesses affect the residual number of faults in
the software, and thus have a direct impact
on the quality of a software product.

In this paper, we examine the various
kinds of fault removal scenarios and ana-
lyze the effect of these various types of fault
removal policies on the residual number of
faults at the end of the testing process, using
a non-homogeneous continuous time Markov
chain. The fault removal rate is initially
hypothesized to be constant, and is subse-
quently extended to cover cases covering time
and state dependencies. These fault removal
scenarios can be easily incorporated using
the state space view of the non-homogeneous
Poisson process.

The sequel of the paper is organized as
follows. Section 2 presents an overview of fi-
nite failure non-homogeneous Poisson process
(NHPP) models; Section 3 presents the state-
space view of the non-homogeneous Poisson
process software reliability models; Section 4
incorporates finite repair time into the model
and presents various fault removal policies,
Section 5 presents some numerical results,
and Section 6 presents conclusions and future
work.

2 Finite Failure NHPP Models
This section provides an overview of the

finite failure non-homogeneous Poisson pro-

106

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

cess software reliability models. This class of
models is concerned with the number of faults
detected in a given time and hence are also
referred to as “fault count models” [G079].

Software failures are assumed to display
the behavior of a non-homogeneous Pois-
son process (NHPP), in which the param-
eter of the stochastic process, X (t) is time-
dependent. The function X (t) denotes the in-
stantaneous failure intensity.

Given X(t) , the mean value function
m(t) = E [N (t)] , where m(t) denotes the ex-
pected number of faults detected by time t ,
satisfies the relation,

r t

and,

m(t) = J, X(s)ds

N (t) as defined above follows a Poisson
distribution with parameter m(t), that is, the
probability that N (t) is a given non-negative
integer n is determined by,

n = O , l , . ..,CO

The time domain models which assume the
failure process to be an NHPP differ in the
approach they use for determining X (t) or
m(t). The NHPP models can be further clas-
sified into finite failures and infinite failures
models.

2.1 Goel-Okumoto Model
The Goel-Okumoto model is one of the

most influential NHPP-based software reli-
ability models. Its mean value function,
m(t) , and the failure intensity, A(t), are given
by[G079]

and
X (t) = age-g‘ (5)

where g is the failure occurrence rate per
fault.

2.2 Generalized Goel-Okumoto Model
The GO model assumes that the failure

intensity of the software system decreases
as testing progresses. However, initially the
testing team is not familiar with the software,
hence the fault removal is slow, but after a
certain time the team gains sufficient expe-
rience and knowledge about the behavior of
a product under test which leads to higher
rates of fault removal until a time is reached
when a large number of faults have been de-
tected and removed, thus becoming increas-
ingly more difficult to detect and remove new
ones. Therefore, the failure rate increases ini-
tially and then decreases. A variation of the
GO model, known as the Generalized GO
model[Goe85] was proposed to capture this
increasing/decreasing failure rate. The mean
value function, m(t), and the failure inten-
sity, A (t > , of the software are given by

and
Finite failures NHPP models assume that ~ (t) = ag7e-gt’t7-l (7)

\ I

the expected number of failures observed dur-
ing an infinite amount of testing time, or where g and 7 reflect the quality of testing.

v

unlimited resources will be a finite number
a[Far96]. Some of the popular finite failure 2.3 Delayed S-Shaped
NHPP models are discussed in the subse-
quent sections.

The delayed S-shaped software reliability
growth model was proposed to model the
software fault removal phenomenon in which

107

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

the chain can be truncated to 0 states, where
0 is given by

e = r.1

Figure 1. Non-homogeneous Markov
chain for NHPP models

there is a time delay between the actual de-
tection of the fault and its reporting. The
test process in this case can be seen as con-
sisting of two phases: fault detection and
fault isolation. The mean value function,
m(t), and the failure intensity, A(t), in this
case are given by[Y0083]

where g is the fault removal (failure detection
and fault isolation) parameter.

3 State-space view of NHPP
The NHPP models described in the previ-

ous section provide a closed-form analytical
expression for the expected number of faults
or mean value function] m(t). However, the
non-homogeneous Poisson process can also be
represented by a non-homogeneous continu-
ous time Markov chain as shown in Figure
1 [TriS2] I

The expected number of faults can also
be computed numerically by solving the
Markov chain shown in Figure 1 using
SHARPE[ST87]. SHARPE (Symbolic Hier-
archical Automated Reliability and Perfor-
mance Evaluator) is a software tool that an-
alyzes stochastic models. For more informa-
tion about the tool, the reader is referred to
[STP95]. The chain in Figure 1 has infinite
number of states, but for practical reasons

where a is the expected number of failures
that would be observed given infinite testing
time or unlimited resources, as in case of the
finite failure NHPP models.

The maximum likelihood estimate of a is
obtained from the observed software failure
data using CASRE[LN92]. SHARPE is de-
signed to solve homogeneous CTMCs, but
we get around this problem by dividing the
time axis uniformly into small time intervals,
where within each time interval] the failure
intensity, A (t) , can be assumed to be con-
stant. Thus, within each time interval, the
non-homogeneous continuous time Markov
chain reduces to a homogeneous continuous
time Markov chain which can then be solved
using SHARPE. This value of A (t) is used
to obtain the state probability vector of the
Markov chain at the end of that time interval.
These state probabilities then form the initial
probability vector for the next time interval.
Let p i (t) denote the probability of being in
state i at time t . The mean value function]
m(t), can then be computed as

8

m(t) = i * &(t) (11)
i = O

The NTDS data[G07Q1 JM72] from the
U.S. Navy Fleet Computer Programming
Center consisting of errors in the develop-
ment of software for a real-time] multicom-
puter complex which forms the core of the
Naval Tactical Data System (NTDS) is used
in this study. The NTDS software consisted
of 38 different modules. Each module was
supposed to follow three stages: the pro-
duction (development) phase, the test phase,
and the user phase. The parameters of the
three NHPP models described above were es-
timated] and then the mean value function is

10s

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

Expected Number of Faults vs. Time (GO Model)
(Cwnparison d AnalyUcal and NHCTMC)

30.0 ,

Tlme

Figure 2. Analytical and numerical
mean value functions - GO model

computed for each of these models by solving
the Markov chain in Figure 1. Figures 2, 3,
and 4 show the analytical mean value func-
tion and the one obtained using a numerical
solution of the non-homogeneous continuous
time Markov chain (NHCTMC) for GO, S-
shaped and the Generalized GO Models re-
spectively.

As observed from Figures 2 - 4, the nu-
merical solution of the mean value function
obtained using the state-space view of the
non-homogeneous Poisson process gives us a
very good approximation to the analytical so-
lution. This view enables us to incorporate
more realistic features into the NHPP based
software reliability models, which were ini-
tially based on oversimplifying assumptions
in order to ensure mathematical tractability,
as discussed in the subsequent sections.

4 Fault Removal Process
The NHPP model presented as a non-

homogeneous continuous time Markov chain
(NHCTMC) is extended in this section to

Expected Number of Faults vs. Time (S-shaped Model)

3o.C

~1 20.0

3
j
id
w 10.0

0.0

(Compa~Ison of Analytical and NHCTMC)

Time

Figure 3. Analytical and numerical
mean value functions - S-shaped
model

Expected Number of Faults vs. Time (Generalized GO Model)

30.0

4 20.0
9 I

10.0

0.0

(Compafison of Anaiylical and NHCTMC)

100.0 200.0
Tim

Figure 4. Analytical and numerical
mean value functions - Generalized
GO model

109

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

incorporate explicit fault removal process.
Without loss of generality, we use the failure
rate of the GO model. We assume that test-
ing continues even during the repair process,
and none of the faults are so severe that test-
ing is rendered impossible. Thus, the faults
are queued until they are repaired. The faults
are repaired one at a time, and thus the de-
tected faults form a queue up to a maximum
of 8 - I , where 1 is the number of faults re-
moved and 8 is as given in Equation (10).
The state space for the Markov chain in this
case is a tuple (i , j) , where i is the number of
faults removed and j is the number of faults
detected, pending to be removed.

The fault removal rate is assumed to be of
the following types:

0 Constant: This perhaps is the simplest
possible situation where the fault re-
moval rate is a constant denoted by
p , and the mean fault removal time is
given by l/p. Figure 5 shows the non-
homogeneous continuous time Markov
chain (NHCTMC) with constant fault
removal rate. A few attempts[Kre83,
Lev901 made to incorporate explicit
fault removal into the software reliability
models have been restricted to this type.

0 Fault dependent: The fault removal rate
could depend on the number of faults
pending for removal, since the more the
number of faults pending, the quicker
they are removed. Figure 6 shows the
model where the fault removal rate de-
pends on the number of faults pending
for removal. If j is the number of faults
pending for removal, the removal rate p
is given by

p = j * k (12)

0 Time-dependent: The fault removal rate
could also depend on time since latent
faults are harder to remove. The intu-
ition behind this is that the fault re-

d'
Figure 5. NHCTMC - Constant Fault
Removal Rate

10) \ l I

"i
Figure 6. NHCTMC - Fault Dependent
Removal Rate

110

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

Fault Removal Rate vs. Time

0.20

0.15

t

a“

- B 0.10

1

0.05

I
I

I
I

I
I
I

I
arpb = 0.19, beta - 0.001

I , @ha I 0 19. beta = 0.005
I aiphhe=0.19.beta=0.01
I

100.0 200.0
0.00

0.0
Time

Figure 7. Time-dependent fault re-
moval rate

moval rate is lower at the beginning of
the testing and increases as testing pro-
gresses or as the deadline for the delivery
of the software approaches, and reaches
a constant value beyond which it cannot
increase. The time-dependent fault re-
moval rate is hypothesized to be of the
form

p(t) = a(1 - e-Pt) (13)

Figure 7 shows the p(t) for various val-
ues of Q and p. In this case, the
NHCTMC shown in Figure 5 is solved by
approximating the time-dependent fault
removal rate p (t) at every time step in
a manner similar to that of X(t), so that
every time step we essentially solve a ho-
mogeneous Markov chain.

The expected number of faults removed,
m ~ (t) and the expected number of faults de-
tected, m ~ (t) , by time t in case of Figure 5
and 6 is given by Equation (14), and (15) re-
spectively.

a a--i

i = O j = O

a /I-i

The process of fault removal can also be
delayed in case of some software development
projects. Delayed fault removal can be of two
types:

0 Fault removal can be deferred till a cer-
tain number Cp of faults are detected
and are pending to be removed. The
NHCTMC in this case is as shown in Fig-
ure 8. The expected number of faults re-
moved and detected are given by Equa-
tions (14) and (15) respectively.

0 The fault removal process can be de-
layed and this delay can be incorporated
into the NHCTMC using a phase type
distribution[Tri82] as shown in Figure 9.
l / p ~ denotes the mean time in phase 1
and l/p2 denotes the mean time in phase
2. The mean repair time l /p is given by

In Figure 9, state (i, j , d) implies that
i faults have been removed, j faults
have been detected and are queued for
removal, and “d” implies intermediate
phase of repair. The expected number
of faults removed, m ~ (t) and the ex-
pected number of faults detected, mr,(t)
is given by Equation (17) and (18) re-
spectively.

B 8 - ;

111

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

~

. ..

lo

-0

Figure 8. NHCTMC
Dependent Delay)
Rate

4' Figure 9. NHCTMC - (Time - Delayed)
w Fault Removal Rate

...

6 6 - i

i = O j = O

5 Numerical Results
d'

- Delayed (Fault The non-homogeneous continuous time
Fault Removal Markov chain (NHCTMC) with constant

fault removal rate is solved for different val-
ues of p , using SHARPE. Figure 10 shows
the mean value function obtained by solving
the NHCTMC in Figure 5 for various values
of p.

The expected number of faults removed
decreases as the fault removal rate p de-
creases which is quite expected. The cu-
mulative defect removal curve is similar t o
the cumulative defect detection curve, and
as the defect removal rate increases, the de-
fect removal almost follows the defect detec-

112

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

Expected Number of Faults vs. Time
(Detected and Removed)

Utilization vs. Time
(Constant Remlr Rate)

Faults Removed (mu = 0.05)
Faults Removed (mu = 0.1)

gi 2 0 0 -
a

00 100 0 2w 0
lime

Figure 10. Mean Value Function
Constant Fault Removal Rate

tion curve, and we move closer and closer to
the original assumption of instantaneous re-
pair. However, as the fault removal rate is
made higher and higher, there are increased
chances that the fault removal mechanism re-
mains idle during the testing process due to
the lack of pending faults. The extent to
which the fault removal mechanism is busy
is reported by computing the utilization as
shown in Figure 11.

The utilization could be used to estab-
lish bounds on the fault removal rates, since
in the case of most software development
projects, the debuggers are the same as soft-
ware developers, and for cost-effective testing
we would like to minimize the idle time as
much as possible, at the mine time achieve a
desired level of softwa.re quality, by removing
a maximum number of faults at the end of
testing.

Figure 12 shows the expected number of
faults removed as a function of time, for var-

100.0 2GQ.O
0.0 '

0.0
T im

Figure 11. Utilization for Constant
Fault Removal Rate

ious values of k in Equation (12). The fault
removal rate in this case depends on the num-
ber of pending faults, and the expected num-
ber of faults removed is directly related to the
proportionality constant k i.e., the expected
number of faults removed increases as k in-
creases.

The expected fault removal rate in this
case does not have a closed form expression
and can be computed as a function of time,
while solving the NHCTMC, and is shown in
Figure 13.

The expected number of faults as a func-
tion of time for delayed fault removal where
fault removal starts only after a certain num-
ber 4 of faults is accumulated, is shown in
Figure 14 for various values of 4. The cu-
mulative defect removal curve is similar to
the cumulative defect detection curve, except
that it is skewed in time due to the defect re-
pair delay. The actual delay depends upon
the value of 4.

113

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

Expected Number of Faults vs. Time
(Detected and Removed)

Expected Number of Faults vs. Time 30.0

Faults Detecled

/ '

Thne

Figure 14. Mean value function - De-
Time

Figure 12. Mean Value Function -
Fault Dependent Removal Rate

laied (Fault Dependent) Removal

Fault Removal Rate vs. Time
(Fault Dependenel Removal Rate)

0.10

0.08

2 0.06 -
2
j
r 1 0.M

0.02

100.0 200.0
0.w

0.0
Time

The expected number of faults as a func-
tion of time for a two phase-delayed repair,
for different values of p 1 , holding p2 constant
at 0.2 is as shown in the Figure 15. The cu-
mulative fault removal curve in this case is
linear with respect to time, and the expected
number of faults removed decreases as p1 de-
creases.

The expected number of faults in case
of time-dependent fault removal rate is as
shown in Figure 16. The cumulative defect
removal curve in this case also is similar to
the defect detection curve, except that it is
delayed in time, and this delay depends on
the value of p, since Q is held constant, where
(Y and p are as per Equation (13).

Figure 13. Fault Dependent Removal 6 Conclusions and Future Work
In this paper, we have incorporated ex- Rate

plicit fault removal into the finite failure
NHPP models, which assume instantaneous
repair to ensure mathematical tractability.

114

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

Expected Number of Faults vs. Time
(Detected and Removed)

Faults Removed (mu1 = 0.1)
Faults Removed ("11 = 0.05)

30.0

/ ,,>''' 1

Tim

Figure 15. Mean Value Function - De-
layed (Time) Removal

Expected Number of Faults vs. Time
(Detected and Removed)

-." I I

i *O'O -

i
i
w 10.0 -

Faults Detected
FaultsRemoved(alpha-0.19. bata=0.001)

Tim

Figure 16. Mean Value Function -
Time Dependent Fault Removal

Using the state-space view of the non-
homogeneous Poisson process, the unrealis-
tic assumption of immediate repair can be re-
laxed, however, we have to rely on the numer-
ical solution of the Markov chain, rather than
obtaining a closed-form expression for the
mean value function. Various types of fault
removal policies have been studied, viz., con-
stant fault removal rate, time dependent fault
removal rate, and delayed repair. In general,
finite fault removal time, reduces the number
of faults removed at the end of testing time,
or increases the residual number of faults in
the software at the end of testing, and thus
the estimate of the quality of the software
product obtained using the NHCTMC model
with explicit fault removal will be more re-
alistic than that obtained from models using
instantaneous repair.

The NHCTMC can be extended to incor-
porate fault reintroduction during removal
process, along with the various repair poli-
cies. Predictions in the operational phase can
be made using the NHCTMC, and stopping
rules can be developed for optimum software
release times.

The NHCTMC model should be validated
using data from real software development ef-
forts. Simulation techniques can be explored
for a more complicated fault removal process.

7 Acknowledgments
The authors wish to acknowledge Dr. J.

Robert Horgan of Bell Communications Re-
search and Dr. Amrit Goel of Syracuse Uni-
versity for their valued input.

References
[Far961 W. Farr. Handbook of Software Re-

liability Engineering, M. R. Lyu,
Editor, chapter Software Reliabil-
ity Modeling Survey, pages 71-

115

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

[GO791

[Goe85]

[JM72]

[Ken931

[Kre83]

[Lev901

[LN92]

[LYU961

117. McGraw-Hill, New York, NY,
1996.

A. L. Goel and K. Okumoto.
“Time-Dependent Error-Detection
Rate Models for Software Reliabil-
ity and Other Performance mea-
sures”. IEEE Trans. on Reliability,
R-28(3):206-211, August 1979.

A. L. Goel. “Software Reliability
Models: Assumptions, Limitations
and Applicability”. IEEE Trans.
on Software
Engzneerzng, SE11(12):1411-1423,
December 1985.

Z. Jelinski and P. B. Moranda.
Statistical Computer Performance
Evaluation, ed. W. Freiberger,
chapter Software Reliability Re-
search, pages 465-484. Academic
Press, New York, 1972.

G. Q. Kenney. “Estimating De-
fects in Commercial Software Dur-
ing Operational Use”. IEEE Trans.
on Relzabzlzty, 42(1) : 107-1 15, Jan-
uary 1993.

W. Kremer. “Birth and Death Bug
Counting”. IEEE Trans. on Reli-
aability, R-32(1):37-47, April 1983.

Y. Levendel. “Reliability Analysis
of Large Software Systems: Defect
Data Modeling”. IEEE Trans. on
Soft w are Engin eerzng, 1G(2) : 14 1-
152, February 1990.

M. R. Lyu and A. P. Nikora.
“CASREA Computer-Aided Soft-
ware Reliability Estimation Tool”.
In CASE ’92 Proceedings, pages
264-275, Montreal, Canada, July
1992.

M. R. Lyu. Handbook of Soft-
ware Reliabzlzty Engineering, M.

116

[MI0871

[ST871

[STP95]

[Tri82]

[YO0831

R. Lyu, Editor, chapter Introduc-
tion, pages 3-25. McGraw-Hill,
New York, NY, 1996.

J . D. Musa, A. Iannino, and
K. Okumoto. Software Reliability
- Measurement, Prediction, Appli-
cation. McGraw Hill, New York,
1987.

R. A. Sah-
ner and K. S. Trivedi. “Reliability
Modeling Using SHARPE” . IEEE
Trans. on Reliability, R-36(2):186-
192, June 1987.

R. A. Sahner, K. S. Trivedi, and
A. Puliafito. Performance and
Reliability Analysis of Computer
Systems: A n Example-Based Ap-
proach Using the SHARPE Soft-
ware Package. Kluwer Academic
Publishers, Boston, 1995.

K. S. Trivedi. ((Probability and
Statistics with Reliability, Queu-
zng and Computer Science Appli-
cations”. Prentice-Hall, Englewood
Cliffs, Mew Jersey, 1982.

S. Yamada, M. Ohba, and S . Os-
aki. “S-Shaped Reliability Growth
Modeling for Software Error Detec-
tion”. IEEE Trans. on Reliability,
R-32(5) :475-485, December 1983.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 11,2021 at 05:05:00 UTC from IEEE Xplore. Restrictions apply.

