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Abstract
Domain testing is a well-known software testing 

technique. Although research tasks have been initiated in 

domain testing, automatic test data generation based on 

character string predicates has not yet been reported.  This 
paper presents a novel approach to automatically generate 

ON-OFF test points for character string predicate borders 

associated with program paths, and describes a 

corresponding test data generator.  Slices with respect to 

predicates on paths are constructed to calculate the 

current values of variables in the predicates via program 
slicing techniques.  Each character element of variables in 

a character string predicate is dynamically determined in 

turn by function minimization so that the ON-OFF test 

points for the predicate border can be automatically 

generated.  The preliminary experimental results show that 

this approach is promising and effective. 

1. Introduction 

Software testing is an important stage to guarantee 

software quality and reliability [1].  At present, a large 

number of software testing approaches have been 

developed to detect either data flow or control flow errors 

[2].  Domain testing is a well-known control flow based 

testing technique, which attempts to reveal errors in the 

predicates that affect the flow of control through a 

program by selecting test points on and near the boundary 

of a path domain.  Although several research activities 

have been initiated in domain testing [3, 4, 5, 6], automatic 

test data generation based on character string predicate has 

never been reported.  All recent domain testing strategies 

are limited to programs in which each predicate can 

contain Boolean variables, relational expressions or 

Boolean operators, but character string variables are not 

allowed.  This severely restricts domain testing strategies 

for application in practice since character string predicates 

are widely used in modern programming techniques. 

In this paper, we present a novel approach to 

automatically generate ON-OFF test points for character 

string predicate borders associated with program paths, 

and develop a corresponding test data generator.  Instead 

of using symbolic execution or program instrumentation, 

we construct a slice with respect to a predicate on a path 

via program slicing techniques.  The current values of 

variables in the predicate are calculated by executing the 

slice, thus avoiding the problems found in symbolic 

execution and the costly and time-consuming jobs for 

designing proper instrumentation statements.  Each 

element of variables in a character string predicate is 

determined in turn by performing function minimization so 

that the ON-OFF test points for the corresponding 

predicate border are automatically generated.  Our 

preliminary experimental results show that this approach is 

effective and promising.  

The remainder of this paper is organized as follows.  

Section 2 introduces domain testing strategies.  Section 3 

reviews briefly dynamic test data generation.  Section 4 

describes main principle of automatic ON-OFF test point 

generation for character string predicate borders, and 

provides a corresponding test generator.  Section 5 reports 

an example study to indicate that the test generator is 

practical.  Finally, conclusion is presented in Section 6. 

2. Domain testing strategies 

Program errors can be classified into two categories: 

computation errors and domain errors [7].  A program is 

said to cause a computation error if a specific input 

follows a correct path, but the output is incorrect due to 

faults in some computations along the path.  A domain 

error, which can be manifested by a shift in some segment 

(border) of the path domain boundary, occurs when a 

specific input traverses a wrong path because of faults in 

the control flows of the program.   

To detect domain errors or provide confidence in the 

correctness of path domain, White and Cohen proposed a 

domain testing strategy [3].  For a linear predicate with a 

total of n distinct arithmetic variable, the strategy requests 

to design n ON test points and one OFF test points.  These 

ON test points lie on the border to be tested, while the 

OFF test point is placed slightly off the border on the 

outside, and is close to these ON test points.  Zeil et al 

extended domain testing to detect linear errors in a 

nonlinear predicate [4].  Afterwards, Jeng and Weyuker [5] 

presented a simplified domain testing strategy, which 

requests to generate one ON and one OFF test points in 

any dimension for an inequality border that the 

corresponding predicate contains operator ≥<≤ ,,  or >.  

For an equality or non-equality border associated with 
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operator = or ≠ , one ON test point and two OFF test 

points are required.  The only prescription is that ON test 

point should lie on the border whereas OFF test point 

should be placed outside the border, and the ON-OFF

point pair has to be as close to each other as possible.  

Furthermore, Hajnal and Forgacs [6] introduced an 

algorithm to generate ON-OFF test points by the 

simplified domain testing strategy with some manual 

assistance.  All these domain testing strategies, however, 

suffer from a common weakness: character string 

predicates are not taken into account.   

3. Dynamic test data generation 

Dynamic test data generation is the most often used 

approach for developing test data.  In this paper, we 

employ dynamic test data generation to derive ON-OFF

test points for character string predicate borders associated 

with a path.   

As discussed in [8], each predicate can be transformed 

to an equivalent form: 
0relℜ

where ℜ  is a real-value function and rel  is one of 

{ =<≤ ,, }, referred as a branch function, which satisfies  

1). positive (or zero if rel  is <) when the predicate is 

false,  

2). negative (or zero if rel  is = or ≤ ) when the 

predicate is true.   

For example, suppose that a program contains the 

following condition statement 
)120( ≤yif

and the TRUE branch of the predicate should be taken.  

Thus, we must find an input that can make the variable y to 

hold a value smaller than or equal to constant 120 when 

the condition statement is reached.  Let )(xycondition

represent the current value of variable y on input x when 

the program is executed up to the condition statement.  

Then the branch function ℜ  can be expressed as follows: 

120)()( −=ℜ xyx condition

The function is minimal when the TRUE branch is taken on 

the condition statement.  So, the problem of dynamic test 

data generation can be formulated to a function 

minimization problem [9].  That is, we need to find an 

input x that can minimize the branch function )(xℜ .   

Gradient descent is considered as a standard function 

minimization technique, which performs function 

minimization by only evaluating the branch function 

values [6, 10].  In general, gradient descent is faster than 

global optimization algorithms such as genetic search [9], 

and is often used in dynamic test data generation, e.g., 

ADTEST system [10].  We also employ gradient descent to 

perform function minimization during our ON-OFF test 

point generation for character string predicate border.  A 

shortcoming of using gradient descent technique is that 

gradient descent algorithms are likely to fail when they 

meet a local minimum [6, 9].  That is, branch function 

appears to reach the minimum but it does not.  However, 

our gradient descent algorithm is not subject to this 

problem (see Section 4.2) 

4. Domain testing based on character string 

predicate 

Domain testing has been thought of as a path-oriented 

testing method.  This technique first requests to determine 

a path that is to be followed.  There are a number of path 

selection strategies reported in the literature [4,11].  Here 

we focus on how to automatically generate ON-OFF test 

points for character string predicate borders associated 

with a path, leaving out the account for the test paths 

selection.  

4.1 Character string predicate and predicate slice 

A character string predicate in programs is of the 

following form 

0),( 21 opstrstrstrcmp

where str1 and str2 are character strings or character string 

variables, and }.,,{ >=<∈op  Each character string 

predicate determines a border. 

As described above, dynamic test data generation can 

be reduced to the problem of function minimization.  As a 

result, we need to construct a branch function with respect 

to a predicate on a path, and then evaluate the branch 

function value.  Thus, the values of variables in the 

predicate must be calculated for program inputs.  The 

current values of variables in a predicate can be calculated 

or collected by using symbolic execution or program 

instrumentation technique [10]. Unfortunately, symbolic 

execution encounters some problems in practice [9, 10], 

and it is impossible to obtain its predicate interpretation for 

a character string predicate.  Program instrumentation 

technique requires selectively inserting additional codes 

into the program with appropriate positions so that they 

can be executed immediately before the predicate is 

evaluated.  That is to say, in the case of an if statement, the 

instrumentation code is injected directly before the 

statement, but in a loop control structure, two 

instrumentation statements need to be inserted: one 

immediately before the loop structure and one after the 

body of statements contained within the control structure.  

It is costly and time-consuming to design proper 

instrumentation codes according to various conditions in a 

program, especially when manual insertion is unavoidable. 

In the research reported in this paper, we construct a 

slice with respect to a predicate to calculate the current 

values of the variables in the predicate.  Suppose that 

program P is executed along a chosen path xπ on input x.

Let pr denote a predicate on path xπ , q denote the node 
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associated with the predicate pr, and y be a variable in pr.

Then, a slice is defined by a slicing criterion ),( qyxC = ,

where 
qy represents a variable at position q [12,13].   

A predicate slice of program P based on slicing 

criterion C is a syntactically correct and executable 

program that is obtained from P by deleting zero or more 

statements and adding the statements that return the values 

of the variables in pr.  The predicate slice produces an 

execution trace '
xπ  on input x for which there exists a 

corresponding execution position 'q  such that the value of 

variable y at q on xπ  is equal to that of y at 'q  on '
xπ .  In 

other words, the slice preserves the values of the variables 

in pr on program inputs.   

If the position 
'q  could not be reached on input 1x , the 

slice returns F, indicating constraint violation occurrence; 

otherwise, the value of variable y and T are returned.  For 

instance, the program P shown in Fig.1, which is a 

variation of the program taken from [14], will be traversed 

along the path }19,17,16,15,14,13,10,7,6,5,4,3,2,1{=xπ  on 

input x�argc=4 and argv[1]=“-ceiling”, argv[2]=“193”, 

argv[3]=“A2”.  The predicate slice with respect to the 

predicate p6 (statement 16) on path xπ , denoted by

predicate_slice_p6, is presented in Fig.2.  In this way, the 

current values of character string variable result and 

ceiling in the predicate p6 can be obtained by executing 

the predicate_slice_p6.  More complete discussions about 

the predicate slice generation with detailed descriptions 

can be found in [15].  In this paper, we mainly describe 

how to generate ON-OFF test points in character string 

domain. 

4.2 ON-OFF test point generation in character 

string domain 

Now, we describe how to generate ON-OFF test point 

for character string predicate borders by Jeng’s simplified 

domain testing strategy.  The problem can be stated as 

follows: 

“Given a character string predicate border associated 

with a chosen path, the goal is to find a program input pair 

so that one lies on the given border whereas the other is 

placed outside this border, and the pair has to be as close 

as possible.” 

For this purpose, a problem that we must solve first is 

how to compare two character strings as well as how to 

evaluate a branch function ℜ  with respect to a character 

string predicate.  Moreover, the simplified domain testing 

strategy requests that ON and OFF test points are placed as 

closely as possible; namely the distance of the two points 

is the shortest.  Accordingly, we define a function ϕ ,

which maps a character string to a nonnegative integer, 

satisfying the formula: 

]1[][)( 1
1

0

−−
−

=

×= iL
L

i

wistrstrϕ

where str is a character string, L is its length, 1−−iLw is a 

positive weighting factor representing a weighted value 

imposed upon each character element of the string, and w

is equal to 128. 

It is easy to see that a character string can be 

transformed into a unique nonnegative integer by using 

Eq.1.  Thus, the distance between two strings is defined as 

below:

Definition: Let L1 and L2 denote the length of strings 

str1 and str2, respectively.  Suppose L is the maximum of 

int  max(int argc, char ** argv) 

1 {  argc--; 

2    argv++; 

3    if ((argc>0)&&('-'==**argv)) 

4    {    if (!strcmp(argv[0],"-ceiling")) 

5         {     strncpy(ceiling,argv[1],BUFSIZE); 

6                argv++;  argv++;      

7                argc--;    argc--;     } 

            else 

8          {     fprintf("Illegal option %s.\n",argv[0]); 

9                 return(0);  }; } 

10  if(argc==0) 

11  {     fprintf("At least requires one arguments.\n"); 

12        return(0);  } 

13  for(;argc>0;argc--,argv++) 

14  {    if(strcmp(argv[0],result)>0); 

15        strncpy(result,argv[0],BUFSIZE);  } 

16   if (strcmp(result, ceiling)>0)  

17         printf("\n max:%s", result); 

18   else   printf("\n max:%s", ceiling); 

19   return(1); }                   
               

                    Fig.1   Program P

int predicate_slice_p6(int argc, char ** argv, char * 

restr1, char * restr2) 

1 {  argc--; 

2    argv++; 

3    if ((argc>0)&&('-'==**argv)) 

4    {    if (!strcmp(argv[0],"-ceiling")) 

5         {     strncpy(ceiling,argv[1],BUFSIZE); 

6                argv++;  argv++;      

7                argc--;    argc--;     } 

           else 

8       {    return(0);  }; } 

10  if(argc==0) 

11  {     return(0);  } 

13  for(;argc>0;argc--,argv++) 

14  {    if(strcmp(argv[0],result)>0); 

15 strncpy(result,argv[0],BUFSIZE);  } 

16 strcpy(restr1,result); 

17 strcpy(restr2,ceiling); 

18 return(1);} 

Fig.2  Predicate_slice_p6 

Proceedings of the 12th Asian Test Symposium (ATS’03) 

1081-7735/03 $17.00 © 2003 IEEE 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore.  Restrictions apply. 



L1 and L2.  Without loss of generality, let 2LL = , and 

)1(,'0'\][1 −<= Lkkstr .  By the distance between strings 

str1 and str2, represented by ),( 21 strstrdis , we mean 

]2[][][),(

1

0

1
1

0

2
1

121

1 2−

=

−−
−

=

−− ×−×=
L

i

iL
L

i

iL wistrwistrstrstrdis

By the distance between the 
thi characters of string str1

and str2, denoted by ),( 21 strstrdi , we imply 

]3[)10(][][),( 2121 −≤≤−= Liistristrstrstrdi

The distance ),( 21 strstrdis  uniquely determines a 

nonnegative integer. 

Consequently, we can construct a branch function ℜ
with respect to a character string predicate, e.g., 

0),( 21 >strstrstrcmp , so that its value is positive for an 

initial input x0.  Namely, let )( 21 strstrdis −=ℜ .  Since 

every character element of a string is expressed by its 

ASCII code (an integer), a practical way is to construct the 

branch functions for every character.  That is to say, we 

construct iℜ corresponding to the 
thi character, i.e., let 

][][ 21 istristri −=ℜ  so that 0>ℜi ,

)1,,2,1,0( −= Li .  Then, search an adjustment direction 

for the 
thi character so that iℜ can be improved.  Each iℜ

can reach its minimum by using gradient descent to 

perform function minimization.  As a result, we obtain two 

distinct characters that one satisfies 0≤ℜi  whereas the 

other meets 0>ℜi .  The two characters are refined 

gradually until the distance between them, i.e., 

),( 21 strstrdi , becomes the shortest.  As each character is 

determined in turn, the branch function ℜ  with respect to 

the predicate can become negative (or zero).  Thus, we 

obtain two points that one satisfies 0≤ℜ  while the other 

meets 0>ℜ .  They can be selected as ON, OFF test 

points, respectively, depending on the operator op, and the 

distance between them is the shortest.
In what follows we will explain in detail how to 

automatically generate ON-OFF test points for a character 

string predicate border by using gradient descent to 

perform function minimization.  The current values of the 

variables in the predicate are calculated by executing the 

corresponding predicate slice.  Let π  be a path in the 

program under test, adjustr represent an adjusted input 

variable, and pr denote a character string predicate on π .

Suppose that x0 is an initial input (selected randomly or by 

hand) on which the program can be executed to the 

predicate pr along path π .   

If string str1 is equal to str2 on input x0, the test 

generation algorithm does not need to be invoked.  We 

select x0 and the corresponding input that the variable 

adjustr is added or subtracted by 1 on the last character 

and the remaining input variables are held constant as ON,

OFF test points, respectively, depending on the operator 
op.  Otherwise, the corresponding characters of strings str1

and str2 are compared from position 0 to L-1.  That is, a 

branch function iℜ  is constructed so that 

0][][ 21 >−=ℜ istristri  for the 
thi  unequal character.  

Then, an adjustment direction is searched by modifying 

the
thi  character of the variable adjustr, denoted by ic ,

i.e., let 1' += icc
i

or 1' −= icc
i

.  If 
'
ic results in a better 

iℜ  value than ic , '
ic  replaces ic , and a proper direction 

is found; otherwise, if there is another input variable, it is 

selected as adjusted variable, or else the ON-OFF test 

point generation fails for the predicate border.  For 

instance, suppose that only input variable instr is 
connected with the predicate pr, and the predicate slice 

associated with pr implements the function: str1

="abc"+instr, str2 =" 2334".  In this case, no matter how to 

adjust the input variable instr, str1 is always greater than 

str2.  Hence, there is not an OFF test point for the border.   

When a good direction is found, the adjustment amount 

is increased (doubled) until either (1) 0≤ℜi , or (2) iℜ  is 

not improved, or (3) constraint violation occurs, or (4) 
'
ic

is outside of 32 and 127.  In the last three cases, we reduce 

the adjustment amount and the corresponding input is tried 

again.  In the first case of 0≤ℜi , we obtain two distinct 

characters onC and offC such that onC meets 0≤ℜi  and

offC satisfies 0>ℜi .  The two characters are refined 

gradually with the help of another character itC  whose 

initial value is offC .  Subsequently, itC  is modified by 

reducing (halving) the adjustment amount.  The 

corresponding input is executed and iℜ  is evaluated. If 

iℜ  corresponding to itC  is negative, then onC  takes itC

value; otherwise offC takes itC  value.  The process is 

repeated until the distance between onC and offC , namely 

),( 21 strstrdi , becomes the shortest.  If ),( 21 strstrdi  is 

adjusted to 0, the thi  character of the adjusted variable 

adjustr is determined, and the next character, i.e., thi £©£¨ 1+
character, is considered.  Otherwise, the thi character of 

the variable adjustr takes onC , offC values, respectively, 

and the corresponding inputs are selected as ON, OFF test 

whereas the algorithm terminates.  If the variable adjustr

ends before 1−< Li , a space character (ASCII 32) is 

added before its terminating position.  The comparison 

continues until 1−= Li .  If 1−ℜL  is adjusted to 0, then 

0=ℜ .  The current input can be taken as ON (or OFF)

test point, and the corresponding input where the variable 
adjustr plus or minus 1 on the last character (while other 

variables keep constant) is selected as OFF (or ON) test 
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point, depending on the operator op.  It is obvious that the 
distance of the two test points generated in this way is the 

shortest. 

A shortcoming of using gradient descent to perform 

function minimization is that gradient descent algorithms 

can fail if a local minimum is encountered.  Fortunately, 

our gradient descent algorithm would not encounter the 

problem.  We note that minimizing a branch function is 

very difficult if str1 and str2 are all involved in an adjusted 

input variable.  In most cases, one of them is not related to 

the adjusted variable.  We assume that str2 has nothing to 

do with the adjusted input variable, and ic  represents the 

thi  character of the adjusted variable.  Then, at position i,

we have ][][ 21 istristri −=ℜ .  In fact, ][1 istr  is a 

function of ic , denoted as )( icϑ , and ][2 istr  is not 

connected with ic , which can be thought of as a constant, 

represented by M.  Accordingly, the branch function iℜ
can be expressed as Mcii −=ℜ )(ϑ  or )( ii cM ϑ−=ℜ .

It is easy to see that iℜ is a monotonically increasing 

or decreasing function, i.e., the adjustment for each 

character is not restricted to a localized region of iℜ . iℜ
can reach its minimum so that each character of the 
adjusted variable is determined in turn.  As a result, the 

function minimization of ℜ  does not suffer from the local 

minimum problem.  

4.3 Automatic ON-OFF test point generator 

Here, we present our automatic ON-OFF test point 

generator for programs written in C programming 

language, which is developed on the basis of the idea 
described above. 

As shown in Fig.3, the program under test is first 

processed by a pre-processor, which completes the 

construction of predicate slices with respect to every 

predicate on paths.  The resulting predicate slices are 

complied, and the executable code is gained.  Then, the 
generation algorithm is employed to generate ON-OFF test 

points for a character string predicate border associated 
with a program path. 

5. A case study 

We use an example to illustrate ON-OFF test point 

generation for a character string predicate border 

associated with a program path.  

Suppose program P in Fig.1 is traversed along path 

}19,17,16,15,14,13,10,7,6,5,4,3,2,1{=xπ  on input x �

argc=4, argv[1]=“-ceiling”, argv[2]=“193” and
argv[3]=“A2”. The predicate P6: strcmp(result, 

ceiling)>0) (statement 16) refers to a given character string 

predicate, and argv[3] is an adjusted input variable. The 

predicate slice with respect to x and xπ ,

predicate_slice_p6, is produced by the pro-processor. By 

executing the predicate slice, we obtain the current value 

of variables result and ceiling in the predicate p6 on input 

x, that is, result = "A2", ceiling = "193".
According to the test generation algorithm, the ON-

OFF test points for the predicate border are 

ON test point � argc=4, argv[1]=“-ceiling”, 
argv[2]=“193”, argv[3]=“192”.

OFF test point � argc=4, argv[1]=“-ceiling”, 

argv[2]=“193”, argv[3]=“193”.
It is clear that the distance between ON and OFF test 

point is shortest, only equaling to 1.  The details are 

described as below:  

At position 0, argv[3][0]= ‘A’.  Here, result[0]= ‘A’,
ASCII is 65, and ceiling[0]= ‘1’, ASCII is 49.  So, 

16]0[]0[0 =−=ℜ ceilingresult , and ‘ - ’ is taken as 

adjustment direction.  The determination of the 0th distinct 
character is demonstrated in table 1. 

When 00 <ℜ  we get two distinct characters whose 

ASCII are 50 and 34, respectively.  The two distinct 

characters are refined gradually until 00 =ℜ .  Here, 

Program P

Pro-processor

( create predicate_slice)

complier

Program P

and predicate_slices
ON-OFF test points

Fig.3  The architecture of automatic test generator

Test generation

SETP 0C '
0C 0ℜ Ceiling[0] dir 

1 65 64 15 

2 64 62 13 

4 62 58 9 

8 58 50 1 

16 50 34 <0 

49 -

Table1(a) Search distinct characters at position 0

SETP Coff  Con Cit 0ℜ

16 50 34 50-8=42 <0 

8  42 50-4=46 <0 

4  46 50-2=48 <0 

2  48 50-1=49 =0 

Table1(b) Refine distinct characters at position 0
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itC =49.  Let argv[3][0]= 49, then the 0th character of input 

variable argv[3] is determined.   Now argv[3] ="11".
Then, we compare the 1th character of variable result 

and ceiling.  At position 1, argv[3][1]= ‘2’.  Here, 

result[1]=‘2’, ASCII is 50, and ceiling[1]=‘9’, ASCII is 57.  

So 7]1[]1[1 =−=ℜ resultceiling , and ‘ + ’ is regarded as 

adjustment direction. The determination of the 1th distinct 

character is shown in table 2. 

When '
1C =57, we derive 01 =ℜ .  Thus, it is of no use 

for the process of refining distinct character. Let
argv[3][1]=57, then the 1th character of input variable 

argv[3] is determined.  Here argv[3]="19".  Continue to 

compare the next character.   

At position 2, argv[3][2]= ‘\0’, but ceiling[2]=‘3’.  Let 

argv[3][2]=‘ ’, argv[3][3]=‘\0’. So, result[2]= ‘ ’, and ‘+’ 

is treated as adjustment direction.  The process of 
determining the 2th character of input variable argv[3] is 

similar to that of the 0th character. 

When Cit=51, 02 =ℜ . Let argv[3][2]=51, then 

argv[3]="193". The algorithm terminates since 

ceiling[3]=‘\0’.  According to the operator of the predicate 
p6, the current input is selected as OFF test point; namely, 

OFF test point is argc=4, argv[1]=“-ceiling”, 
argv[2]=“193”, argv[3]=“193”.  The corresponding 

input that the adjusted variable argv[3] minus 1 on the last 

character, i.e., argv[3][2]=argv[3][2]-1, while other input 

variables keep constant, is taken as ON test point.  So, ON 
test point is argc=4, argv[1]=“-ceiling”, argv[2]=“193”,

and argv[3]=“192”.  It can be seen that the distance of 

ON-OFF test points obtained in this way is the shortest. 

6. Conclusion 

The objective of domain testing is to detect domain 

errors in programs.  Nevertheless, all recent domain testing 
strategies have been limited to programs in which 

character string predicates are not taken into consideration.  

The same weakness is found in many currently available 

test data generation system.  In this paper, we present a 

novel approach to automatically generate ON-OFF test 

points for character string predicate borders associated 
with program paths, and develop a corresponding test data 

generator by Jeng’s simplified domain testing strategy. 

Symbolic execution or program instrumentation is not 

involved in the system.  Instead, a predicate slice is 

constructed to calculate the current values of variables in 

the predicate, avoiding the problems found in symbolic 

execution and the cost of designing proper instrumentation 

codes. 
To our knowledge, this is the first approach to 

automatic test data generation based on character string 

predicates.  The preliminary experimental results show that 

the methodology is promising and effective. 
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