
Domain Testing Based on Character String Predicate

Ruilian Zhao

Computer Science Dept.

Beijing University of

 Chemical Technology

Michael R. Lyu

Computer Science Dept.

Chinese University of

Hong Kong

Yinghua Min

Institute of Computing Tech.

Chinese Academy of Sciences

in Beijing

Abstract
Domain testing is a well-known software testing

technique. Although research tasks have been initiated in

domain testing, automatic test data generation based on

character string predicates has not yet been reported. This
paper presents a novel approach to automatically generate

ON-OFF test points for character string predicate borders

associated with program paths, and describes a

corresponding test data generator. Slices with respect to

predicates on paths are constructed to calculate the

current values of variables in the predicates via program
slicing techniques. Each character element of variables in

a character string predicate is dynamically determined in

turn by function minimization so that the ON-OFF test

points for the predicate border can be automatically

generated. The preliminary experimental results show that

this approach is promising and effective.

1. Introduction

Software testing is an important stage to guarantee

software quality and reliability [1]. At present, a large

number of software testing approaches have been

developed to detect either data flow or control flow errors

[2]. Domain testing is a well-known control flow based

testing technique, which attempts to reveal errors in the

predicates that affect the flow of control through a

program by selecting test points on and near the boundary

of a path domain. Although several research activities

have been initiated in domain testing [3, 4, 5, 6], automatic

test data generation based on character string predicate has

never been reported. All recent domain testing strategies

are limited to programs in which each predicate can

contain Boolean variables, relational expressions or

Boolean operators, but character string variables are not

allowed. This severely restricts domain testing strategies

for application in practice since character string predicates

are widely used in modern programming techniques.

In this paper, we present a novel approach to

automatically generate ON-OFF test points for character

string predicate borders associated with program paths,

and develop a corresponding test data generator. Instead

of using symbolic execution or program instrumentation,

we construct a slice with respect to a predicate on a path

via program slicing techniques. The current values of

variables in the predicate are calculated by executing the

slice, thus avoiding the problems found in symbolic

execution and the costly and time-consuming jobs for

designing proper instrumentation statements. Each

element of variables in a character string predicate is

determined in turn by performing function minimization so

that the ON-OFF test points for the corresponding

predicate border are automatically generated. Our

preliminary experimental results show that this approach is

effective and promising.

The remainder of this paper is organized as follows.

Section 2 introduces domain testing strategies. Section 3

reviews briefly dynamic test data generation. Section 4

describes main principle of automatic ON-OFF test point

generation for character string predicate borders, and

provides a corresponding test generator. Section 5 reports

an example study to indicate that the test generator is

practical. Finally, conclusion is presented in Section 6.

2. Domain testing strategies

Program errors can be classified into two categories:

computation errors and domain errors [7]. A program is

said to cause a computation error if a specific input

follows a correct path, but the output is incorrect due to

faults in some computations along the path. A domain

error, which can be manifested by a shift in some segment

(border) of the path domain boundary, occurs when a

specific input traverses a wrong path because of faults in

the control flows of the program.

To detect domain errors or provide confidence in the

correctness of path domain, White and Cohen proposed a

domain testing strategy [3]. For a linear predicate with a

total of n distinct arithmetic variable, the strategy requests

to design n ON test points and one OFF test points. These

ON test points lie on the border to be tested, while the

OFF test point is placed slightly off the border on the

outside, and is close to these ON test points. Zeil et al

extended domain testing to detect linear errors in a

nonlinear predicate [4]. Afterwards, Jeng and Weyuker [5]

presented a simplified domain testing strategy, which

requests to generate one ON and one OFF test points in

any dimension for an inequality border that the

corresponding predicate contains operator ≥<≤ ,, or >.

For an equality or non-equality border associated with

Proceedings of the 12th Asian Test Symposium (ATS’03)

1081-7735/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore. Restrictions apply.

operator = or ≠ , one ON test point and two OFF test

points are required. The only prescription is that ON test

point should lie on the border whereas OFF test point

should be placed outside the border, and the ON-OFF

point pair has to be as close to each other as possible.

Furthermore, Hajnal and Forgacs [6] introduced an

algorithm to generate ON-OFF test points by the

simplified domain testing strategy with some manual

assistance. All these domain testing strategies, however,

suffer from a common weakness: character string

predicates are not taken into account.

3. Dynamic test data generation

Dynamic test data generation is the most often used

approach for developing test data. In this paper, we

employ dynamic test data generation to derive ON-OFF

test points for character string predicate borders associated

with a path.

As discussed in [8], each predicate can be transformed

to an equivalent form:
0relℜ

where ℜ is a real-value function and rel is one of

{ =<≤ ,, }, referred as a branch function, which satisfies

1). positive (or zero if rel is <) when the predicate is

false,

2). negative (or zero if rel is = or ≤) when the

predicate is true.

For example, suppose that a program contains the

following condition statement
)120(≤yif

and the TRUE branch of the predicate should be taken.

Thus, we must find an input that can make the variable y to

hold a value smaller than or equal to constant 120 when

the condition statement is reached. Let)(xycondition

represent the current value of variable y on input x when

the program is executed up to the condition statement.

Then the branch function ℜ can be expressed as follows:

120)()(−=ℜ xyx condition

The function is minimal when the TRUE branch is taken on

the condition statement. So, the problem of dynamic test

data generation can be formulated to a function

minimization problem [9]. That is, we need to find an

input x that can minimize the branch function)(xℜ .

Gradient descent is considered as a standard function

minimization technique, which performs function

minimization by only evaluating the branch function

values [6, 10]. In general, gradient descent is faster than

global optimization algorithms such as genetic search [9],

and is often used in dynamic test data generation, e.g.,

ADTEST system [10]. We also employ gradient descent to

perform function minimization during our ON-OFF test

point generation for character string predicate border. A

shortcoming of using gradient descent technique is that

gradient descent algorithms are likely to fail when they

meet a local minimum [6, 9]. That is, branch function

appears to reach the minimum but it does not. However,

our gradient descent algorithm is not subject to this

problem (see Section 4.2)

4. Domain testing based on character string

predicate

Domain testing has been thought of as a path-oriented

testing method. This technique first requests to determine

a path that is to be followed. There are a number of path

selection strategies reported in the literature [4,11]. Here

we focus on how to automatically generate ON-OFF test

points for character string predicate borders associated

with a path, leaving out the account for the test paths

selection.

4.1 Character string predicate and predicate slice

A character string predicate in programs is of the

following form

0),(21 opstrstrstrcmp

where str1 and str2 are character strings or character string

variables, and }.,,{ >=<∈op Each character string

predicate determines a border.

As described above, dynamic test data generation can

be reduced to the problem of function minimization. As a

result, we need to construct a branch function with respect

to a predicate on a path, and then evaluate the branch

function value. Thus, the values of variables in the

predicate must be calculated for program inputs. The

current values of variables in a predicate can be calculated

or collected by using symbolic execution or program

instrumentation technique [10]. Unfortunately, symbolic

execution encounters some problems in practice [9, 10],

and it is impossible to obtain its predicate interpretation for

a character string predicate. Program instrumentation

technique requires selectively inserting additional codes

into the program with appropriate positions so that they

can be executed immediately before the predicate is

evaluated. That is to say, in the case of an if statement, the

instrumentation code is injected directly before the

statement, but in a loop control structure, two

instrumentation statements need to be inserted: one

immediately before the loop structure and one after the

body of statements contained within the control structure.

It is costly and time-consuming to design proper

instrumentation codes according to various conditions in a

program, especially when manual insertion is unavoidable.

In the research reported in this paper, we construct a

slice with respect to a predicate to calculate the current

values of the variables in the predicate. Suppose that

program P is executed along a chosen path xπ on input x.

Let pr denote a predicate on path xπ , q denote the node

Proceedings of the 12th Asian Test Symposium (ATS’03)

1081-7735/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore. Restrictions apply.

associated with the predicate pr, and y be a variable in pr.

Then, a slice is defined by a slicing criterion),(qyxC = ,

where
qy represents a variable at position q [12,13].

A predicate slice of program P based on slicing

criterion C is a syntactically correct and executable

program that is obtained from P by deleting zero or more

statements and adding the statements that return the values

of the variables in pr. The predicate slice produces an

execution trace '
xπ on input x for which there exists a

corresponding execution position 'q such that the value of

variable y at q on xπ is equal to that of y at 'q on '
xπ . In

other words, the slice preserves the values of the variables

in pr on program inputs.

If the position
'q could not be reached on input 1x , the

slice returns F, indicating constraint violation occurrence;

otherwise, the value of variable y and T are returned. For

instance, the program P shown in Fig.1, which is a

variation of the program taken from [14], will be traversed

along the path }19,17,16,15,14,13,10,7,6,5,4,3,2,1{=xπ on

input x�argc=4 and argv[1]=“-ceiling”, argv[2]=“193”,

argv[3]=“A2”. The predicate slice with respect to the

predicate p6 (statement 16) on path xπ , denoted by

predicate_slice_p6, is presented in Fig.2. In this way, the

current values of character string variable result and

ceiling in the predicate p6 can be obtained by executing

the predicate_slice_p6. More complete discussions about

the predicate slice generation with detailed descriptions

can be found in [15]. In this paper, we mainly describe

how to generate ON-OFF test points in character string

domain.

4.2 ON-OFF test point generation in character

string domain

Now, we describe how to generate ON-OFF test point

for character string predicate borders by Jeng’s simplified

domain testing strategy. The problem can be stated as

follows:

“Given a character string predicate border associated

with a chosen path, the goal is to find a program input pair

so that one lies on the given border whereas the other is

placed outside this border, and the pair has to be as close

as possible.”

For this purpose, a problem that we must solve first is

how to compare two character strings as well as how to

evaluate a branch function ℜ with respect to a character

string predicate. Moreover, the simplified domain testing

strategy requests that ON and OFF test points are placed as

closely as possible; namely the distance of the two points

is the shortest. Accordingly, we define a function ϕ ,

which maps a character string to a nonnegative integer,

satisfying the formula:

]1[][)(1
1

0

−−
−

=

×= iL
L

i

wistrstrϕ

where str is a character string, L is its length, 1−−iLw is a

positive weighting factor representing a weighted value

imposed upon each character element of the string, and w

is equal to 128.

It is easy to see that a character string can be

transformed into a unique nonnegative integer by using

Eq.1. Thus, the distance between two strings is defined as

below:

Definition: Let L1 and L2 denote the length of strings

str1 and str2, respectively. Suppose L is the maximum of

int max(int argc, char ** argv)

1 { argc--;

2 argv++;

3 if ((argc>0)&&('-'==**argv))

4 { if (!strcmp(argv[0],"-ceiling"))

5 { strncpy(ceiling,argv[1],BUFSIZE);

6 argv++; argv++;

7 argc--; argc--; }

 else

8 { fprintf("Illegal option %s.\n",argv[0]);

9 return(0); }; }

10 if(argc==0)

11 { fprintf("At least requires one arguments.\n");

12 return(0); }

13 for(;argc>0;argc--,argv++)

14 { if(strcmp(argv[0],result)>0);

15 strncpy(result,argv[0],BUFSIZE); }

16 if (strcmp(result, ceiling)>0)

17 printf("\n max:%s", result);

18 else printf("\n max:%s", ceiling);

19 return(1); }

 Fig.1 Program P

int predicate_slice_p6(int argc, char ** argv, char *

restr1, char * restr2)

1 { argc--;

2 argv++;

3 if ((argc>0)&&('-'==**argv))

4 { if (!strcmp(argv[0],"-ceiling"))

5 { strncpy(ceiling,argv[1],BUFSIZE);

6 argv++; argv++;

7 argc--; argc--; }

 else

8 { return(0); }; }

10 if(argc==0)

11 { return(0); }

13 for(;argc>0;argc--,argv++)

14 { if(strcmp(argv[0],result)>0);

15 strncpy(result,argv[0],BUFSIZE); }

16 strcpy(restr1,result);

17 strcpy(restr2,ceiling);

18 return(1);}

Fig.2 Predicate_slice_p6

Proceedings of the 12th Asian Test Symposium (ATS’03)

1081-7735/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore. Restrictions apply.

L1 and L2. Without loss of generality, let 2LL = , and

)1(,'0'\][1 −<= Lkkstr . By the distance between strings

str1 and str2, represented by),(21 strstrdis , we mean

]2[][][),(

1

0

1
1

0

2
1

121

1 2−

=

−−
−

=

−− ×−×=
L

i

iL
L

i

iL wistrwistrstrstrdis

By the distance between the
thi characters of string str1

and str2, denoted by),(21 strstrdi , we imply

]3[)10(][][),(2121 −≤≤−= Liistristrstrstrdi

The distance),(21 strstrdis uniquely determines a

nonnegative integer.

Consequently, we can construct a branch function ℜ
with respect to a character string predicate, e.g.,

0),(21 >strstrstrcmp , so that its value is positive for an

initial input x0. Namely, let)(21 strstrdis −=ℜ . Since

every character element of a string is expressed by its

ASCII code (an integer), a practical way is to construct the

branch functions for every character. That is to say, we

construct iℜ corresponding to the
thi character, i.e., let

][][21 istristri −=ℜ so that 0>ℜi ,

)1,,2,1,0(−= Li . Then, search an adjustment direction

for the
thi character so that iℜ can be improved. Each iℜ

can reach its minimum by using gradient descent to

perform function minimization. As a result, we obtain two

distinct characters that one satisfies 0≤ℜi whereas the

other meets 0>ℜi . The two characters are refined

gradually until the distance between them, i.e.,

),(21 strstrdi , becomes the shortest. As each character is

determined in turn, the branch function ℜ with respect to

the predicate can become negative (or zero). Thus, we

obtain two points that one satisfies 0≤ℜ while the other

meets 0>ℜ . They can be selected as ON, OFF test

points, respectively, depending on the operator op, and the

distance between them is the shortest.
In what follows we will explain in detail how to

automatically generate ON-OFF test points for a character

string predicate border by using gradient descent to

perform function minimization. The current values of the

variables in the predicate are calculated by executing the

corresponding predicate slice. Let π be a path in the

program under test, adjustr represent an adjusted input

variable, and pr denote a character string predicate on π .

Suppose that x0 is an initial input (selected randomly or by

hand) on which the program can be executed to the

predicate pr along path π .

If string str1 is equal to str2 on input x0, the test

generation algorithm does not need to be invoked. We

select x0 and the corresponding input that the variable

adjustr is added or subtracted by 1 on the last character

and the remaining input variables are held constant as ON,

OFF test points, respectively, depending on the operator
op. Otherwise, the corresponding characters of strings str1

and str2 are compared from position 0 to L-1. That is, a

branch function iℜ is constructed so that

0][][21 >−=ℜ istristri for the
thi unequal character.

Then, an adjustment direction is searched by modifying

the
thi character of the variable adjustr, denoted by ic ,

i.e., let 1' += icc
i

or 1' −= icc
i

. If
'
ic results in a better

iℜ value than ic , '
ic replaces ic , and a proper direction

is found; otherwise, if there is another input variable, it is

selected as adjusted variable, or else the ON-OFF test

point generation fails for the predicate border. For

instance, suppose that only input variable instr is
connected with the predicate pr, and the predicate slice

associated with pr implements the function: str1

="abc"+instr, str2 =" 2334". In this case, no matter how to

adjust the input variable instr, str1 is always greater than

str2. Hence, there is not an OFF test point for the border.

When a good direction is found, the adjustment amount

is increased (doubled) until either (1) 0≤ℜi , or (2) iℜ is

not improved, or (3) constraint violation occurs, or (4)
'
ic

is outside of 32 and 127. In the last three cases, we reduce

the adjustment amount and the corresponding input is tried

again. In the first case of 0≤ℜi , we obtain two distinct

characters onC and offC such that onC meets 0≤ℜi and

offC satisfies 0>ℜi . The two characters are refined

gradually with the help of another character itC whose

initial value is offC . Subsequently, itC is modified by

reducing (halving) the adjustment amount. The

corresponding input is executed and iℜ is evaluated. If

iℜ corresponding to itC is negative, then onC takes itC

value; otherwise offC takes itC value. The process is

repeated until the distance between onC and offC , namely

),(21 strstrdi , becomes the shortest. If),(21 strstrdi is

adjusted to 0, the thi character of the adjusted variable

adjustr is determined, and the next character, i.e., thi £©£¨ 1+
character, is considered. Otherwise, the thi character of

the variable adjustr takes onC , offC values, respectively,

and the corresponding inputs are selected as ON, OFF test

whereas the algorithm terminates. If the variable adjustr

ends before 1−< Li , a space character (ASCII 32) is

added before its terminating position. The comparison

continues until 1−= Li . If 1−ℜL is adjusted to 0, then

0=ℜ . The current input can be taken as ON (or OFF)

test point, and the corresponding input where the variable
adjustr plus or minus 1 on the last character (while other

variables keep constant) is selected as OFF (or ON) test

Proceedings of the 12th Asian Test Symposium (ATS’03)

1081-7735/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore. Restrictions apply.

point, depending on the operator op. It is obvious that the
distance of the two test points generated in this way is the

shortest.

A shortcoming of using gradient descent to perform

function minimization is that gradient descent algorithms

can fail if a local minimum is encountered. Fortunately,

our gradient descent algorithm would not encounter the

problem. We note that minimizing a branch function is

very difficult if str1 and str2 are all involved in an adjusted

input variable. In most cases, one of them is not related to

the adjusted variable. We assume that str2 has nothing to

do with the adjusted input variable, and ic represents the

thi character of the adjusted variable. Then, at position i,

we have][][21 istristri −=ℜ . In fact,][1 istr is a

function of ic , denoted as)(icϑ , and][2 istr is not

connected with ic , which can be thought of as a constant,

represented by M. Accordingly, the branch function iℜ
can be expressed as Mcii −=ℜ)(ϑ or)(ii cM ϑ−=ℜ .

It is easy to see that iℜ is a monotonically increasing

or decreasing function, i.e., the adjustment for each

character is not restricted to a localized region of iℜ . iℜ
can reach its minimum so that each character of the
adjusted variable is determined in turn. As a result, the

function minimization of ℜ does not suffer from the local

minimum problem.

4.3 Automatic ON-OFF test point generator

Here, we present our automatic ON-OFF test point

generator for programs written in C programming

language, which is developed on the basis of the idea
described above.

As shown in Fig.3, the program under test is first

processed by a pre-processor, which completes the

construction of predicate slices with respect to every

predicate on paths. The resulting predicate slices are

complied, and the executable code is gained. Then, the
generation algorithm is employed to generate ON-OFF test

points for a character string predicate border associated
with a program path.

5. A case study

We use an example to illustrate ON-OFF test point

generation for a character string predicate border

associated with a program path.

Suppose program P in Fig.1 is traversed along path

}19,17,16,15,14,13,10,7,6,5,4,3,2,1{=xπ on input x �

argc=4, argv[1]=“-ceiling”, argv[2]=“193” and
argv[3]=“A2”. The predicate P6: strcmp(result,

ceiling)>0) (statement 16) refers to a given character string

predicate, and argv[3] is an adjusted input variable. The

predicate slice with respect to x and xπ ,

predicate_slice_p6, is produced by the pro-processor. By

executing the predicate slice, we obtain the current value

of variables result and ceiling in the predicate p6 on input

x, that is, result = "A2", ceiling = "193".
According to the test generation algorithm, the ON-

OFF test points for the predicate border are

ON test point � argc=4, argv[1]=“-ceiling”,
argv[2]=“193”, argv[3]=“192”.

OFF test point � argc=4, argv[1]=“-ceiling”,

argv[2]=“193”, argv[3]=“193”.
It is clear that the distance between ON and OFF test

point is shortest, only equaling to 1. The details are

described as below:

At position 0, argv[3][0]= ‘A’. Here, result[0]= ‘A’,
ASCII is 65, and ceiling[0]= ‘1’, ASCII is 49. So,

16]0[]0[0 =−=ℜ ceilingresult , and ‘ - ’ is taken as

adjustment direction. The determination of the 0th distinct
character is demonstrated in table 1.

When 00 <ℜ we get two distinct characters whose

ASCII are 50 and 34, respectively. The two distinct

characters are refined gradually until 00 =ℜ . Here,

Program P

Pro-processor

(create predicate_slice)

complier

Program P

and predicate_slices
ON-OFF test points

Fig.3 The architecture of automatic test generator

Test generation

SETP 0C '
0C 0ℜ Ceiling[0] dir

1 65 64 15

2 64 62 13

4 62 58 9

8 58 50 1

16 50 34 <0

49 -

Table1(a) Search distinct characters at position 0

SETP Coff Con Cit 0ℜ

16 50 34 50-8=42 <0

8 42 50-4=46 <0

4 46 50-2=48 <0

2 48 50-1=49 =0

Table1(b) Refine distinct characters at position 0

Proceedings of the 12th Asian Test Symposium (ATS’03)

1081-7735/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore. Restrictions apply.

itC =49. Let argv[3][0]= 49, then the 0th character of input

variable argv[3] is determined. Now argv[3] ="11".
Then, we compare the 1th character of variable result

and ceiling. At position 1, argv[3][1]= ‘2’. Here,

result[1]=‘2’, ASCII is 50, and ceiling[1]=‘9’, ASCII is 57.

So 7]1[]1[1 =−=ℜ resultceiling , and ‘ + ’ is regarded as

adjustment direction. The determination of the 1th distinct

character is shown in table 2.

When '
1C =57, we derive 01 =ℜ . Thus, it is of no use

for the process of refining distinct character. Let
argv[3][1]=57, then the 1th character of input variable

argv[3] is determined. Here argv[3]="19". Continue to

compare the next character.

At position 2, argv[3][2]= ‘\0’, but ceiling[2]=‘3’. Let

argv[3][2]=‘ ’, argv[3][3]=‘\0’. So, result[2]= ‘ ’, and ‘+’

is treated as adjustment direction. The process of
determining the 2th character of input variable argv[3] is

similar to that of the 0th character.

When Cit=51, 02 =ℜ . Let argv[3][2]=51, then

argv[3]="193". The algorithm terminates since

ceiling[3]=‘\0’. According to the operator of the predicate
p6, the current input is selected as OFF test point; namely,

OFF test point is argc=4, argv[1]=“-ceiling”,
argv[2]=“193”, argv[3]=“193”. The corresponding

input that the adjusted variable argv[3] minus 1 on the last

character, i.e., argv[3][2]=argv[3][2]-1, while other input

variables keep constant, is taken as ON test point. So, ON
test point is argc=4, argv[1]=“-ceiling”, argv[2]=“193”,

and argv[3]=“192”. It can be seen that the distance of

ON-OFF test points obtained in this way is the shortest.

6. Conclusion

The objective of domain testing is to detect domain

errors in programs. Nevertheless, all recent domain testing
strategies have been limited to programs in which

character string predicates are not taken into consideration.

The same weakness is found in many currently available

test data generation system. In this paper, we present a

novel approach to automatically generate ON-OFF test

points for character string predicate borders associated
with program paths, and develop a corresponding test data

generator by Jeng’s simplified domain testing strategy.

Symbolic execution or program instrumentation is not

involved in the system. Instead, a predicate slice is

constructed to calculate the current values of variables in

the predicate, avoiding the problems found in symbolic

execution and the cost of designing proper instrumentation

codes.
To our knowledge, this is the first approach to

automatic test data generation based on character string

predicates. The preliminary experimental results show that

the methodology is promising and effective.

Acknowledgement

The work described in this paper was supported by the

Hong Kong Research Grants Council, under Project No.

CUHK4360/02E. and Young Science Foundation of
BUCT, China, under Project No. QN0312.

Reference

[1] M. R. Lyu, S. Rangarajan, and A.P.A. van Moorsel, "Optimal

Allocation of Test Resources for Software Reliability Growth

Modeling in Software Development," IEEE Transactions on

Reliability, Vol. 51, No. 2, June 2002, pp. 183-192.
[2] P. C. Jorgensen. “Software Testing: A Craftsman’s

Approach”. CRC Press LLC. 2002.

[3] L. J. White and E. I. Cohen, “A Domain Strategy for

Computer Program Testing,” IEEE Transactions on Software

Engineering, Vol. SE-6, No. 3, May 1980, pp. 247-257.
[4] S. J. Zeil and F. H. Afifi and L. J. White. “Detection of

Linear Errors via Domain Testing.” ACM Transactions on

Software Engineering and Methodology, Vol. 1, No. 4, October

1992, pp. 422-451.

[5] B. Jeng and E. J. Weyuker, "A Simplified Domain-Testing
Strategy." ACM Trans. Software Engineering and Methodology,

Vol.3, No.3, July 1994, pp. 254-270.

[6] A. Hajnal and I. F. orgacs. "An Applicable Test Data

Generation Algorithm for Domain Errors," ISSTA'98,

Proceedings of ACM SIGSOFT International symposium on

Software Testing and Analysis, Florida, USA, March 2-5, 1998,

pp. 63-72.

[7] W. E. Howden. “Reliability of the Path Analysis Testing

Strategy.” IEEE Transactions on Software Engineering, SE-2, 3,

1976, pp. 208-215.
[8] B. Korel. “Automated Software Test Data Generation”, IEEE

Transactions on Software Engineering, Vol.16, No.8,

Auguest.1990, pp. 870-879.

[9] C. C. Michael, G. McGraw, and M. A. Schatz. “Generating

Software Test Data by Evolution,” IEEE Transactions on
Software Engineering, Vol.27, No.12, Dec. 2001, pp. 1085-1110.

[10] M. J. Gallagher and V. L. Narasimhan. “Adtest: A Test Data

Generation Suite for Ada Software System.” IEEE Transactions

on Software Engineering, Vol. 23, No. 8, Aug. 1997, pp.473-484.

[11] L. S. Koh, M.T. Liu. “Test Path Selection Based on
Effective Domains,” Proceedings of International Conference on

Network Protocols, 1994, pp. 64 –71.

[12] A. Beszedes, T. Gergely, Z. M. Szabo, J. Csirik and T.

Gyimothy. “Dynamic Slicing Method for Maintenance of Large

C Program,” Fifth European Conference on Software

Maintenance and Reengineering, 2001, pp. 105-113.

[13] F. Tip. "A Survey of Program Slicing Techniques", Journal

of Programming Languages, Sept.1995, 3(3), pp. 121-189.

[14] B. Marick. “The Craft of Software Testing,” PTR Prentice

Hall, NJ, 1995.
[15] R. Zhao, “Research on Software Testing Methodologies”,

Ph.D. thesis, Chinese Academy of Science, 2001.

SETP 1C '
1C 1ℜ Ceiling[1] dir

1 50 51 6

2 51 53 4

4 53 57 0

57 +

Table2 Search distinct characters at position 1

Proceedings of the 12th Asian Test Symposium (ATS’03)

1081-7735/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 02:33:24 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

