Copyright © IFAC SAFECOMP ‘86
Sarlat, France, 1986

MULTI-VERSION SOFTWARE DEVELOPMENT

J. P. J. Kelly, A. Avizienis, B. T. Ulery, B. J. Swain, R.-T. Lyu,
A, Tai and K.-S. Tso

UCILA Computer Science Department, University of California, Los Angeles,
CA 90024, USA

Abstract. Multi-version software systems achieve fault tolerance through software redun-
dancy. Diverse software versions are executed concurrently by a supervisory system that
reports consensus results, allowing the results from erroneous versions to b¢ masked by the
majority. The Second Generation Experiment is a lurge scule empirical study of multi-version
software systems engaging researchers at six sites. This paper presents UCLA’s perspective of
this experiment, its role in the preliminary analysis, and related research at the Dependable

Computing and Fault Tolerant Systems Laborutory.

Keywords. Multi-version software, fuult tolerance, N-version programming, reliability,
dependability, software development, design diversity.

INTRODUCTION

Multi-version software (MVS) systems are gaining acceptunce
in the aerospace industry [Hills, 1985; Martin, 1982], nuclear
power industry [Bishop, 1985; Ramamoorthy, 1981; Voges,
1985], and ground transportation industry [Taylor, 1981].
The multi-version approach to fault tolerant software systems
involves the development of functionally redundant, yet
independently developed software components. These com-
ponents are executed concurrently under a supervisory system
that uses a decision algorithm based on consensus to deter-
mine final output values [AviZienis, 1985].

The NASA Langley Research Center is sponsoring the Second
Generation Experiment in fault tolerant softwiare which has
been underway at several universities since 1984. During the
summer of 1985, the Second Generation Experiment
employed 40 graduate students to design, code and document
20 redundant software versions. The analysis of this softwure
and its role in fault tolerant systems currently engages
researchers at six sites.

The experiment was partitioned into several phases including
the choice of a suitable application, specification of the prob-
lem, definition of the experimental protocol, selection and
training of participants, generation of redundant sofiwure ver-
sions (detailed design, coding, unit testing), preliminary test-
ing and analysis of the versions and prototype multi-version
configurations, validation of the specifications, verification of
the versions, formal certification of the versions, final analysis
of the versions and the experiment, and documentation of the
experiment, The experiment is now approaching the
certification phase.

This preliminary report presents the Second Generation
Experiment from UCLA’s perspective. The experiment’s pro-
gress and related research in fault tolerant software are also
summarized. Empirical results from this experiment wiil be

43

published jointly by NASA and all participating institutions
after the final phases have been completed.

PREVIOUS EXPERIMENTS

Research on multi-version software was initiated at UCLA in
1975 [Avizienis, 1975]. From its beginning, the fundamental
conjecture of the multi-version software system approach at
UCLA has been that errors due to residual software fuults will
be masked by the correct results produced by the other ver-
sions in the system. This conjecture does not assume
independence of errors, but rather a low probability of their
concurrence. For instance, a multi-version system comprised
of three versions is likely to tolerate a given fuult if the proba-
bility of that fault occurring is sufficiently low -- not because
the errors occur independently (they do not), but because they
are unlikely to influence the majority decision of the systen.
It might also be noticed that these errors can even be tolerated
if they occur frequently (on many input cases), provided sim-
ply that the other versions do not concur.

The decision algorithm may need to determine the decision
result from a set of similar, but not necessurily identical,
results. Similar results are defined to be two or more results
(good or erroneous) that are within the range of variation that
is allowed by the application. When two or more similar
results are erroneous, they are called similar errors
[AviZienis, 1984]. Analytic models using queuing and Mar-
kov modeling techniques have been developed for the predic-
tion of the potential MVS reliability improvement, allowing
for the existence of similar errors in MVS [Grnarov, 1980].

MVS systems achieve reliability improvements through the
use of redundancy and diversity. A "dimension of diversity"
is one of the independent variables in the development process
of an MVS systen,, Diversity may be achieved along various
dimensions, e.g., specification languages, specification writ-

44 J. P. J. Kelly et al,

ers, programming languages, programmers, algorithms, data
structures, development environments, and testing methods.

DEDIX, the DEsign DIversity eXperimental supervisory sys-
tem, is a powerful tool for the concurrent execution and
analysis of MVS, that was developed at UCLA. With the aid
of DEDIX and the collection of 20 redundant software ver-
sions, the relative significance of several of these dimensions
of diversity is being investigated.

Zero Generation Experiment

UCLA has been actively engaged in the research of fault
tolerant software since 1975. Since that time three generi-
tions of experiments have been conducted. The first investiga-
tion into the role of design diversity in multi-version softwaure
systems, the "Zero Generation" Experiment, was conducted
by Chen and Avizienis [AviZienis and Chen, 1977; Chen and
AviZienis, 1978]. This experiment was designed to study the
effects of multiple algorithms on diversity. A small prototype
application was implemented using three different algorithms
specified in English. The primitive control mechuanisms (deci-
sion points) were formulated to allow synchronization and
decision making among the versions. It was also discovered
that in order to prevent a faulty version from failing the entire
MVS system, it is necessary to isolate the version. The Zero
Generation Experiment demonstrated the feusibility of the
MVS approach.

First Generation Experiment

The First Generation Experiment investigated the effects of
specification languages on diversity [Kelly, 1982]. Eighteen
programs were written with an average length of about 500
lines of PL/1 code. Seven programmers were supplied formal
specifications written in OBJ, five were supplied non-formal
PDL specifications. The remaining six programmers served
as a control, working from a specification written in English.

Each program version handled exceptions internally to protect
the system from failures that were encountered in the previous
experiment. Exception handling allows the decision algorithm
to base its decisions on more reliable values, i.e. those values
flagged as bad are jgnored.

The First Generation Experiment concluded that the multi-
version software approach is a viable supplement to fault
avoidance and removal. It was also found that specification
errors are the most serious because they can lead to similar
errors in the final versions. However, comparative testing of
multiple versions has proven to be an excellent means of
uncovering specification faults.

SECOND GENERATION EXPERIMENT

Encouraged by the results from the previous experiments in
fault tolerant software, the NASA Langley Research Center
began funding the Second Generation Experiment in 1984.
This experiment was designed to evaluate the contribution of
diverse program versions to fault tolerant software systems in
a realistic aerospace application and to continue developing a
multi-version programming methodology.

The Second Generation Experiment involves four universities,
University of California at Los Angeles, the University of Illi-

nois at Urbana-Champaign, North Carolina State University,
and the University of Virginia, as well as the Research Trian-
gle Institute (RTI), and Charles River Analytics (CRA). The
specifications were written by RTI and CRA. Tools, accep-
tance tests and experimental coordination was provided by
RTI. CRA has now assumed the role of customer and
specification arbiter, and is providing flight simulation test
data. Each university employed ten programmers to generate
five program versions and is now contributing to the analysis
phase of the experiment.

The Protocol

Work on the specification was begun in late 1984 after the
application was chosen. The principal investigators held
several meetings at which draft specifications were presented
and subsequently corrected in an attempt to create a
specification that was both typical of industrial practice and
appropriately sized for the experiment.

Five independent programming teams at euch of the four
universities generated software from a common specificution.
A controlled software development process, uniform ucross all
four universities, was designed to reflect standard industry
practice. Additionally, programmers were not permitted to
discuss any aspect of their work with members of other teams.
Work-related communications between programmers and a
central project coordinator (specification expert) were con-
ducted via Unix™ mail. Copies of each question and answer
pair were locally rebroadcast to all programming teams.

The experiment included ten weeks for software generation.
These were organized into five phases:

1. Training phase: The programmers attended a brief
training meeting. An introductory presentation was
made summarizing the experiment’s goals, require-
ments and the multiple version software techniques.
At this meeting, the progranmuners were given written
specifications and documentation on system Lools.

2 Design phase: At the end of this four-week phase, each
team delivered a design document following guidelines
provided at the training meeting. Each team delivered
a design walkthrough report after conducting a walk-
through which was attended by silent observers includ-
ing the site’s principal investigator.

3 Coding phase: By the end of this phase, programmers
had finished coding, conducted a code walkthrough
and delivered a code walkthrough report.

4. Testing phase: Each team was provided four sample
test data sets. No two teams received the saume test
cases. Two weeks were allotted to this phase.

Bl Preliminary acceptance test: Programmers formally
submitted their programs. Each program was run in a
test harness. When a program failed a test it was
returned to the programmers with the input case on
which it failed, for debugging and resubmission. By
the end of this two week phase, all twenty programs
had passed this preliminary acceptance test.

Multi-version Software Development 45

Failed sensors

(boolean vector)

. . \ Fault Acceleration

Inflight rcadl_ngs_; Scale > CAllgnmeqt Detection > Estimate, >
ApeEnsston And Isolation Vehicle Status

Temperature i T

Scalars I

Sensor misalignments
P, : Readings normal to face ; L 5
Calibration readings . Previous Display

Noise tolerances Calibrate Failures Driver :

Failed sensors
(boolean vector)

Fig. 1. System data flow diagram

The original specification is a 60 page document (including
tables and figures) written in English [CRA, 1985]. The addi-
tional question and answer pairs that were broadcust among
the programmers tripled the bulk of the specification. These
specifications resulted in twenty Pascal programs which aver-
aged over 2500 lines of code ranging from 1600 1o 4800 lines.

A long and careful validation phase including extensive prel-
iminary testing of the versions followed the 10-week software
generation phase. During validation, many errors and ambi-
guities in the specification (including the electronic communi-
cations) were revealed. The specification has now been
restored to a single document, a document that hus benefited
from the scrutiny of more than 50 motivated programmers and
researchers. Additionally, many software tools und detailed
testing procedures have been developed for the verification,
certification and analyses of the 20 versions.

It is interesting to note how a small number of errors in the
original specification led to numerous ambiguous and contrad-
ictory addenda in the form of question and answer pairs. The
cause for this confusion appears to be attributable 1o the
requirement that the central coordinator answer every question
personally, which put a great deal of pressure on the central
coordinator to answer quickly rather than well. The number
of questions (over 250) posed by the 40 programmers was
overwhelming. Although most questions derived from only a
handful of errors and ambiguities in the original
specifications, each was phrased differently so that simple
affirmative or negative responses were interpreted 10 have
extrancous and contradictory ramifications. In un attempt to
give definitive explanations that would curb the need for
further questions, a series of ten "announcements” was issued.
However, even some of these announcements were revoked.
In the end, the specifications had grown unwieldy und impre-
cise, rather than clear and precise.

The Application

A Redundant Strapped Down Inertial Measurement Unit
(RSDIMU) is part of an integrated avionics system. This unit
contains eight linear accelerometers mounted on the four tri-
angular faces of a semioctahedron. Each accelerometer meas-
ures the component of acceleration along its axis. This fault
tolerant configuration requires a special component to manage
sensor redundancy and to reconfigure the system in the event
of sensor failures. Each application program serves this
management function, computes acceleration estimates, and
drives a display panel that provides the non-interactive user
interface to the system.

A significant amount of linear algebra, particularly matrix
transformations, is involved. The original specification was
simplified to fit the schedule of the experiment. There are
eleven reference frames of interest (coordinate systems
corresponding to the earth, vehicle, sensors, etc.), four of
which are non-orthogonal. The programs are provided raw
data measurements from the eight linear accelerometers. They
are required first to identify faulty sensors and then to com-
pute a statistical estimate of vehicle acceleration based on the
redundant set of operational sensors. Final system status and
acceleration estimates are reported by a digital display panel
as specified by an input parameter. A block diagram of the
system is shown in Fig. 1.

Goals

The list of objectives for the Second Generation Experiment is
extensive. Experimentation concerns have been focused on
the development of multi-version systems, primarily design
and testing issues, and the modeling and analysis of these sys-
tems. The following lists some of our primary research con-
cerns.

46 J. P.]. Kelly et al.

Reliability improvement of multiple versions over single ver-
sions. For ultra-high reliability applications, the multiple
version approach to software engineering is being employed
as a substitute for the conventional single version approach
[Bishop, 1985;Hills, 1985;Martin, 1982; Taylor, 1981].
Empirical measurements of reliability and failure rates for
both single and multiple version systems are being gathered
and analyzed.

Modeling reliability with similar errors. Statistical data on
similar errors is being gathered to validate a model of reliabil-
ity that incorporates the effects of similar errors [Dorato,
1986; Eckhardt, 1985]. MVS systems are predicated on the
assumption that when errors occur, their effects will generally
be masked by correct results produced by the other versions in
the system. Any system whose components exhibit indepen-
dent failures is easily modeled statistically, and the reliability
improvement of the system over an individual component is
dramatic. A primary concern of this experiment is to quantify
the effects of similar errors in independently developed,
redundant software versions.

Qualitative investigations into the causes of errors. Similar
errors are of particular interest to the study of MVS systems.
If, for some subset of the input domain, a majority of the ver-
sions produce a similar error, rather than the correct response,
then the benefits of the MVS system are negated and our
confidence in an erroneous response amplified. It is therefore
critical to understand the causes of similar errors in order to
facilitate their avoidance or removal. The causes of software
errors are of general interest in software engineering, and the
existence of multiple software versions makes it euasier 1o
detect, locate and categorize sources of errors.

The role of recovery. Recovery is a way to prevent errors that
occur early in the computation from propagating [Tso, 1986].
Decision points (cross-check points) are the interfuces
between program versions and the supervisory system
[Avizienis, 1985]. They are used to communicate intermedi-
ate and final values to the decision algorithm and may be used
to return values for recovery. Recovery involves the injection
of "consensus" data values into a faulty version, where the
consensus values are determined by the decision algorithm of
the MVS system. These values are then used in subsequent
computations. In this way versions are recovered us they fuil.
Otherwise, failed versions must be excluded, causing the sys-
tem to degrade. The alternative involves a passive super-
visory system that compares values and generates a con-
sensus, but does not return these values to disagreeing ver-
s1ons.

Granularity of comparisons. In order to establish the con-
sensus opinion among several versions, the decision algorithm
must compare and classify computed values. The simplest
scheme involves bit-wise comparisons of results. This
approach is too unforgiving under most circumstances, requir-
ing, e.g., exact equality of computed real-valued outputs. At
the other extreme, if all output variables are lumped together
for a single decision, then the number of faults tolerated by
the system will decrease drastically. In this experiment, the
level of resolution used by the decision algorithm is deter-
mined from the semantics of the outputs.

Testing. Multi-version software development offers interest-
ing new approaches to testing. Particularly, automated testing

procedures may be developed which simply look for
discrepant responses from the versions. This approach does
not involve the expense of predicting correct output values,
and therefore allows much more extensive testing. This
approach is particularly appealing for rapid software develop-
ment.

CURRENT RESEARCH ISSUES

All of the aforementioned topics are currently receiving atten-
tion at the UCLA Dependable Computing and Fault-Tolerant
Systems Laboratory. Attempts at developing metrics for the
various dimensions of diversity have yet to produce results.
However, considerable insight into the relative impact of these
dimensions has been gained. Most notable is the role of
specifications. The need for complete and unambiguous
specifications is even more acute for multi-version systems
than for single version systems. In general, this project has
fostered an increased awareness of the critical role of software
engineering methods in the development of highly reliable
software systems.

At this point, preliminary analyses of the experiment and the
twenty program versions is complete. Our primary research
concerns have been twofold: identifying and defining the key
factors in developing highly reliable software systems, and
analyzing the twenty redundant versions developed in the
Second Generation Experiment. Complete and unambiguous
specifications, and a thorough acceptance test have been
identified as two particularly critical factors in the develop-
ment of highly reliable software systems.

Testing

Random and "hand" testing have been used extensively at
UCLA to evaluate the versions’ performance both redundantly
(in various combinations) and individually. In our effort to
automate the error detection process, we have found
definitions of correctness elusive. The mujor obstuacles to
defining correctness are the classification of responses into
consensus groups, and the resolution of multiple correct out-
put values.

In order to measure reliability, one must first define the correct
behavior of a program. Clearly a program behaves incorrectly
if it fails to deliver the desired service. But consider a pro-
gram with an identifiable and inadvertent fault, that is some
deviation from the prescribed algorithm. Now consider thut
the numerical significance upon the output is insignificant, i.e.,
the program behaves adequately when run ulone. Subtle
numerical errors present a special challenge to automatic error
identification and classification.

Defining equivalence. When two or more versions simul-
taneously generate equivalent values for a given output vari-
able, then these values are deemed similar [AviZienis and
Kelly, 1984]. In order for the decision algorithm to determine
a consensus, it must decide which results are similar. Boolean
and integer results are typically required to be identicul. Char-
acter strings may be allowed cosmetic variations such as spac-
ing and capitalization.

Real numbers have proven more difficult to classify. For the
purposes of this experiment, it is necessary to define

Multi-version Software Development 47

equivalence classes among 20 output results. The versions
produce outputs that cluster, but that are not randomly distri-
buted. In fact, the use of different algorithms by the versions
leads to subclustering. Statistical literature does not appear to
address the determination of a "center" value from a sample
distribution of this sort. One obvious solution is to use the
median value. Unfortunately, there are special cases when
this is clearly not the best solution, such as when the dominant
cluster lies completely to one side of the median. If there is a
largest cluster, we take the median of that cluster as the con-
sensus. Every value within a fixed (application dependent)
interval about that median is considered equivalent.

Complex data types also require special attention. An exam-
ple of a complex data type is the set of bit patterns used to
drive 7-segment digital read-outs. Making a decision on each
bit individually might generate a nonsensicul display; treating
all seven bits as a single entity excludes the contribution of a
version that intends the correct display pattern, but has made
an error in the details of its representation.

The general problem may be viewed as one of granulurity or
semantics. Consensus may be determined at the bit level, at
the basic type level, or at the level of the complex types. A
purely semantic approach might suggest determining con-
sensus at the highest level, although a computational perspec-
tive might suggest a finer resolution. One extreme approach is
to view all final output variables as a single result that is either
correct or incorrect [Knight and Leveson, 1985]. Under this
interpretation, a triple modular redundancy system reaches no
consensus if two versions fail on different variubles, despite
the fact that there is a consensus on each variable. For exam-
ple, suppose that the system is supposed to produce the two
results, (A,B), and that the versions actually produce (A,B),
(A,X), and (Y,B). By tweating the output as a single result,
this system has no consensus despite the fuct that there is a
consensus on each of the output values. At the other extreme,
bit-wise comparisons do not tolerate insignificant differences
in real numbers or cosmetic differences in text [Kelly, 1982].
We are currently using a decision algorithm that determines
consensus at a semantic level, comparing most values at the
granularity of the basic types.

Resolving Multiple Correct Results. Multiple correct output
values have been a significant obstacle to automating our test-
ing process. In this application, one way to identify a faulty
sensor is to observe that its readings are noisy, i.e., that the
standard deviation over a set of values exceeds some
prescribed threshold. Should the noise level be precisely at
this threshold, two algorithms could conceivubly produce dif-
ferent results, one indicating that the sensor is noisy, the other
indicating that it is operational. The effect of slight numerical
differences is seen by the supervisory system as totully con-
tradictory responses.

This problem may be solved by introducing un additional
decision point that uniformly returns 1o the versions a value of
the standard deviation. The versions may then compare this
value to the threshold. Note that this approuch assumes that
the supervisory system performs recovery, i.e., it does not
passively observe the versions’ outputs. The generality of this
approach has not yet been determined. There is u significant
cost associated with the decision-making process when it
involves interprocess communications, There is also some

concern that decision points limit design diversity. Thus the
number of decision points is kept to a minimum.

Recovery.

Five decision points were specified for the RSDIMU applica-
tion. To avoid restricting design diversity, programmers were
not told where to place decision points in their programs. The
sequence in which the decision points occurred was specified,
and it was required that the variables of each decision point be
computed but not yet used when the decision point is reached.
The programmers were also required to use the (possibly
modified) values returned by the decision algorithm in subse-
quent computations.

The preliminary acceptance test of the twenty versions did not
test recovery, It ensured that the decision points were placed
in the right sequence, but output values were checked at the
end of the execution of each version. The validation phase
revealed that the versions do not handle recovery properly.

The faults can be classified into two categories: incorrectly
located decision points, and unused returned values. Some
teams inserted decision points at the point where a value was
first calculated. Under some circumstances, such as the detec-
tion of a sensor failure, values would be later revised to reflect
the failure. The corresponding decision points were located
too early in the procedure. Some versions were found to use
computed values before passing them to the decision ulge-
rithm, These decision points occur too late. Finally, some
versions ignore the returned values. They maintain redundant
variables whose values are not updated to reflect the values
returned by the decision algorithm.

These faults can be detected easily by special tests. In the
verification phase of the experiment, the output values are
checked at the decision points. This testing detects the
incorrect placement of decision points. Also specific tests are
included that deliberately return new values to the decision
points. The results of the next decision point are then checked
to verify that the returned values were actually used.

Specifications

Another continuing area of research in the fault tolerant
software group at UCLA is formal specifications. MVS sys-
tems require complete and unambiguous specifications. No
details concemning program functionality may be left
unspecified. For example, it is not sufficient to state that
whenever a particular exception occurs, an "appropriate” error
message should be printed. Decision algorithms are not (yet)
sophisticated enough to generally recognize semantically
equivalent statements, The use of formal, high-level
specification languages is a promising approach to the produc-
tion of high quality initial specifications.,

UCLA has been rewriting the existing English specification in
the formal specification language Larch [Guutag, 1985]. We
have received considerable assistance from the language
developers, J. V. Guttag of MIT and J. J. Horning of the DEC
Systems Research Center. The simple and elegant syntax of
Larch is able to capture most of the functional requirements of
this application without introducing excessive implementation
bias which might limit diversity. The experience of rewriting
the specification in Larch has clearly shown that when one is

48 J- P.]. Kelly et al.

forced to express the requirements formally, ambiguities and
inconsistencies become more apparent [Tai, 1986]. The for-
mal language prevents the expression of ambiguous state-
ments, but there is still a dearth of software tools needed for
consistency checking, We are now considering how to
integrate tables and figures with formal Larch specifications
for increased readability.

CONCLUSIONS

The benefits of a redundant development process clearly
extend beyond those anticipated for the finul MVS system
alone. While MVS systems tolerate dissimilar errors, the
multi-version approach to software engineering facilitates the
avoidance and removal of faults. The validation and
verification phases of this experiment benefited significantly
from the redundant programming efforts: errors in the
specifications were more likely to be detected; a single version
that correctly computed a particular output was sufficient to
cause an investigation into the discrepancy between that ver-
sion and the other versions which contained a fault(s) on that
output. The investigation uncovered faults among the other
versions and the testing tools.

Preliminary analyses of the twenty versions have provided
some insight into the causes of similar errors. The most pre-
valent cause has proven to be the specifications. Boundary
conditions, exceptions, and other such design and coding
errors appear to be both less frequent and less correlated. This
observation strongly supports multi-version software as a
means of diminishing the number of faults introduced during
the design and coding phases of development.

Although similar errors are potentially a significant obstacle to
MVS systems, and specifications prove to be their primary
source, it is reassuring to note that the redundant development
process was to credit for the discovery of a large number of
specification errors that would otherwise have passed unno-
ticed until much later, at which time their correction would
have been much more costly.

In the process of testing the 20 versions, we have been fuced
with many interesting challenges that are of direct relevance to
the design of decision algorithms. Many of our solutions have
been designed specifically for this application. However,
development of a theory of decision algorithms is underway,
which will lead to the design of application independent deci-
sion algorithms.

Empirical results from this experiment will be published by
the cooperating institutions after the verification, certification,
and final analysis phases are complete. These will include
measures of reliability improvements, statistics on software
errors, and more detailed discussions of the causes of errors.

Acknowledgements.

The work reported here is part of a large joint effort involving
the collaboration of many individuals. It is with pleasure that
we acknowledge the efforts of the following people that have
contributed to this research: D. Eckhardt and L. Lee of the
NASA Langley Research Center, R. Campbell of the Univer-
sity of Illinois, J. Knight of the University of Virginia, D.
McAllister of North Carolina State University, A. Caglayan of

Charles River Analytics, J. McHugh and L. Lauterbach of the
Research Triangle Institute, and the 40 programmers who pro-
duced the program versions. This research has been sup-
ported by NASA grant NAG1-512.

REFERENCES

AviZienis, A., "Fault-Tolerance and Fault-Intolerance:
Complementary Approaches to Reliable Computing,"
pp- 450-464 in Proceedings 1975 International
Conference on Reliable Software, Los Angeles,
California (April 21-23, 1975).

Avizienis, A. and Chen, L., "On the Implementation of N-
Version Programming for Software Fault-Tolerance
during Program Execution,” pp. 149-155 in
Proceedings COMPSAC 77 (1977).

AviZienis, A. and Kelly, J.P.J., "Fault-Tolerance by Design
Diversity: Concepts and Experiments,” Computer Vol.
17(8), pp.67-80 (August 1984).

AviZienis, A., Gunningberg, P., Kelly, J.P.J.,, Lyu, R.T,
Strigini, L., Traverse, P.J., Tso, K.S., and Voges, U.,
"Software Fault-Tolerance by Design Diversity;
DEDIX: A Tool for Experiments,” pp. 173-178 in
Proceedings IFAC Workshop SAFECOMP’85, Como,
Italy (October 1985).

Bishop, P., Esp, D., Barnes, M., Humphreys, P., Dahll, G.,
Lahti, J., and Yoshimura, S., "Project on Diverse
Software - An Experiment in Software Reliability,"
Proceedings IFAC Workshop ~ SAFECOMP’85
{October 1985).

Charles River Analytics and Research Triangle Institute,
"Redundancy Management Software Requirements
Specification for a Redundant Strapped Down Inertia
Measurement Unit," Version 2.0, (May 30, 1985).

Chen, L. and AviZienis, A., "N-Version Programming: A
Fault-Tolerance Approach to Reliability of Software
Operation,” pp. 3-9 in Digest of 8th Annual
International ~ Symposium on Fault-Tolerant
Computing, Toulouse, France (June 1978).

Dorato, K., "Coincident Errors in N-Version Programming,"
Master Thesis, UCLA, Computer Science Department,
Los Angeles, California (June 1986).

Eckhardt, D.E. and Lee, L.D., "A Theoretical Basis for the
Analysis of Multiversion Software Subject to
Coincident Errors," [EEE Transaction on Software
Engineering Vol. SE-11 (12), pp.1511-1517
(December, 1985).

Grnarov, A., Arlat, J., and AviZienis, A., "On the Performance
of Software Fault-Tolerance Strategies," pp. 251-253
in Digest of 10th Annual International Symposium on
Fault-Tolerant Computing, Kyoto, Japan (1980).

Guttag, J.V., Horning, 1.J., and Wing, J.M., "Larch in Five
Easy Pieces,” Report No. 5, Digital Equipment
Corporation Systems Research Center, Palo Alto,
California (July 24, 1985).

Hills, A.D.,, "Digital Fly-By-Wire Experience," Proceedings
AGARD Lecture Series (143) (October 1985).

Multi-version Software Development

Kelly, 1.P.J., "Specification of Fault-Tolerant Multi-Version
Software: Experimental Studies of a Design Diversity
Approach," CSD-820927, UCLA, Computer Science
Department, Los Angeles, California (September
1982).

Knight, J.C. and Leveson, N.G., "Correlated Failures in
Multi-Version Software," Proceedings IFAC
SAFECOMP’ 85, pp.159-165 (October 1985).

Martin, D.J.,, "Dissimilar Software in High Integrity
Applications in Flight Controls,” pp. 36.1-36.13 in
Proceedings AGARD-CPP-330 (September 1982).

Ramamoorthy, C.V. et al., "Application of a Methodology for
the Development and Validation of Reliable Process
Control Software," IEEE Transactions on Software
Engineering Vol. SE-7(6), pp.537-555 (November
1981).

Tai, AT, "A Study of the Application of Formal
Specification for Fault-Tolerant Software,’ Master
Thesis, UCLA, Computer Science Department, Los
Angeles, California (June 1986).

Taylor, R., "Redundant Programming in Europe,” ACM
SIGSOFT Vol. 6(1) (January 1981).

Tso, K.S., AviZienis, A., and Kelly, J.P.J., "Error Recovery in
Multi-Version Software,” in Proceedings IFAC
Workshop SAFECOMP'86, Sarlat, France (October
1986).

Voges, U., "Application of a Fault-Tolerant Microprocessor-
Based Core-Surveillance System in a German Fast
Breeder Reactor,” EPRI-Conference (April 9-12
1985).

49

