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Abstract

In this paper, we describe the construction of a CASE
tool for a systematic and automatic application of
software reliability modeling for real-world projects.
Instead of proposing more new models, we focus on the
practical project applications of existing software relia-
bility models for better software reliability estimations.
We build this CASE tool on top of a number of existing
software reliability models, called component models, as
the baseline for software reliability measurement. The
main advancement of this tool over other similar tools is
highlighted by its capability in constructing various reli-
ability estimations under a new paradigm to linearly
combine the component models. Moreover, this tool
features its enhanced graphical user-interface which
greatly facilitates the potentially tedious application
procedure for software reliability estimation.

1: Introduction

Software reliability is defined as the probability of suc-
cessful software operation without encountering failures
during a period of time under a specified operational
environment. This basic definition applies to all
software systems, subsystems, and individual units.
Since the complexity and size of software systems are
growing dramatically, the capability to estimate
software reliability becomes one of the major challenges
for software engineers. Such an estimation presents
important indicators for the quality of software products,
and provides insight into the software design process so
that areas for improvement could be identified for
software reliability engineering.

The capability to measure software reliability has been
the prerequisite for software reliability engineering.
Consequently, software reliability modeling and estima-
tion have drawn researchers’ and practitioners’ atten-
tions over the past twenty years. Traditionally, software
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reliability modeling is a set of techniques that apply pro-
bability theory and statistical analysis to assess the
achieved reliability of work products, both quantitatively
and objectively. A software reliability model specifies
the general form of the dependence of the failure pro-
cess on the principal factors that affect it: fault introduc-
tion, fault manifestation, failure detection and recovery,
fault removal, and operational environment[1].

Originally, people focused on the definition and descrip-
tion of new software reliability models, hoping that a
unified model could emerge to serve as the best estima-
tor for software reliability. A major difficulty in
software reliability engineering practice is to analyze the
particular context in which reliability measurement is to
take place so as to decide a priori which model is likely
to be trustworthy. Due to the intricacy of human activi-
ties involved in software development and operation
process, as well as the uncertain nature of software
failure patterns, such a priori has never been conclusive.
It has been shown that there is no best software reliabil-
ity model for every case under all circumstances [2], [3].
As a result, practitioners are left in a dilemma as to
which software reliability models to choose, which pro-
cedures to apply, and which prediction results to trust,
while contending with varying software development
and operation practices.

Since the selection and application of the software relia-
bility models as well as the search for the best estimates
may involve tedious computation-intensive tasks, a
computer-aided approach is inevitable. For this purpose,
This paper presents a CASE tool, called Computer-
Aided Software Reliability Estimation (CASRE) system,
for an automatic and systematic approach in estimating
and engineering software reliability. In the remainder of
the paper, Section 2 describes the overall architecture of
CASRE. Section 3 introduces the new software reliabil-
ity approach by linear combination models featured in
CASRE. Some CASRE project applications are
presented in Section 4. Finally, Section 5 addresses con-
clusions and future work.
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2: The CASRE tool — high-level structure
and functionality

Currently available software reliability tools allow the
user to apply any one of the more well-known software
reliability models to a development effort. In addition
to allowing the user to make reliability estimates, some
of these tools also allow the practitioner to determine the
applicability of a particular model to a set of failure
data. However, there is additional functionality that
would be useful if implemented. Namely, results from
different models may be combined in various ways to
yield reliability estimates whose predictive quality is
better than the individual models themselves(4].

Secondly, the graphics capabilities of most currently-
available tools are rather limited in that the variety of
graphs produced by the tool is small. For instance,
several tools [5] produce plots of actual and estimated
failure frequencies or interfailure times, but do not allow
the user to produce plots of actual and estimated cumu-
lative number of failures directly. Others produce u-
plots and y-plots[6] which help the user in determining
the applicability of a particular model to a specific set
of failure data, but do not produce plots that would be of
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use to a software manager in determining the status of a
development effort (actual and estimated failure rates,
cumulative failures, reliability growth, etc.).

Finally, many of the currently-available tools were
implemented at a time when high-resolution displays
and windowing systems such as X-Windows were not as
widely available as they are today. This affects the
quality of the graphics displayed (two of the better-
known tools display character-based graphics) and may
have influenced the tools’ ease-of-use. For example, the
menu-driven interface for one widely-used public
domain tool [5] is implemented such that a user may
have to "back out" of several layers of submenus to
access another top-level menu. Current technology
makes it a fairly routine matter to implement a menu-
driven application in which the user can directly select a
top-level menu item without having to back out of the
current sub-menu.

Figure 1 shows the proposed high-level architecture for
CASRE, whose major functional areas are: (1) Data
Modification, (2) Failure Data Analysis, (3) Modeling
and Measurement, and (4) Modeling/Measurement
Results Display.
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Figure 1: High-level architecture for CASRE
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2.1: Data modification

CASRE allows users to create new failure data files,
modify existing files, and perform global operations on
files.

o Editing

CASRE allows users to create or alter failure history
data files. A simplified spreadsheet-like user interface
allows users to enter time between failures or test inter-
val lengths and failure counts from the keyboard. Users

are also allowed to invoke a preferred editor (e.g. emacs
or Vi).

e Smoothing

Since input data to the models is often fairly noisy, the
following smoothing techniques are proposed:

— Sliding rectangular window
— Hann window
— Polynomial fit

— Specific cubic-polynomial fits (e.g. B-Spline, Bez-
ier Curve)

Users select smoothing techniques appropriate to the
failure data being analyzed. The smoothed input data
can be plotted, used as input to a reliability model, or
written out to a new file for later use. Summary statis-
tics for the smoothed data can also be displayed (see
"Failure Data Analysis" below).

o Data Transformation

In some situations, logarithmic, exponential, or linecar
transformations of the failure data produce better or
more understandable results. The following operations,
currently available in some tools, allow users to
transform an entire set of failure data in this manner.

— log(a * x(i)) + b); x(i) represents a failure data
item, and a and b are user-selectable scale factors
exp(a * x(i) + b)

x(i) ** a

x(i)+a

- x(i)*a

user-specified transformation

As with smoothing, users select a specific transforma-
tion. Users are able to manipulate transformed data as
they would smoothed data.
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2.2: Failure data analysis

The "Summary Statistics" block in Figure 1 allows users
to display the failure data’s summary statistics, includ-
ing the mean and median of the failure data, 25% and
75% hinge points, skewness, and kurtosis.

2.3: Modeling and measurement

Figure 1 shows two modeling functions. The "Models”
block executes single software reliability models on a
set of failure data. The "Model Combination” block
allows users to execute several models on the failure
data and combine the results of those models. We
include this capability because our experience in com-
bining the results of more than one model indicates that
such "combination models" may provide more accurate
reliability predictions than single models[4]. The block
labeled "Model Evaluation” allows users to determine
the applicability of a model to a set of failure data.

o Single Model Execution

Based on our experience in applying software reliability
models, we include the following models in CASRE:

(1) Bayesian Jelinski-Moranda Model (BIM)[7], 8],
[9], [10]

(2) Brooks and Motley Model (BM)[11]

(3) Duane Model (DU) [12], [13]

(4) Geometric Model (GM) [11]

(5) Goel-Okumoto (GO) [14]

(6) Jelinski-Moranda (JM) [15], [16]

(7) Keiller-Littlewood Model (KL)[171, [18]
(8) Littlewood Model (LM) [19]

(9) Litlewood non-homogeneous Poisson Process
Model (LNHPP) [2]

(10)Littlewood-Verrall (LV) [20]
(11)Musa-Okumoto (MO) [21]

(12)Generalized Poisson Model (PM)[11]
(13)Schneidewind Model (SM){22]
(14)Yamada Delayed S-Shape Model (YM) [23]

The models should be implemented to allow input to be
in the form of interfailure times or failure frequencies.

CASRE allows users to choose the parameter estimation
method (maximum likelihood, least squares, or method
of moments). Model outputs include:
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— Current estimates of failure rate/interfailure time
— Current estimates of reliability

— Model parameter values, including high and low
parameter values for a user-selectable confidence
bound

— Current values of the pdf and cdf
— The probability integral transform u;[2]
— The normalized logarithmic transform of u;, y;{2]

Users can display these quantities on-screen or write
them to disk.

o Combination Models

CASRE allows users to combine the results of several
models according to various combination schemes dis-
cussed in Section 3. Users may also be allowed to define
their own combination schemes. The resulting combina-
tion models could be further used as the component
models to form another combination model.

o Model Evaluation

CASRE includes the following statistical methods to
help users determine the applicability of a model
(including "combination models") to a specific failure
data set:

— Computation of prequential likelihood (PL) func-
tion (the "Accuracy" criterion).

- Determination of the probability integral
transform u;, (plotted as the u-plot - the "Bias” cri-
terion).

— Computation of y; to produce the y-plot (the
"Trend" criterion).

— Noisiness of model predictions (the "Noise" cri-
terion).

The Akaike Information Criterion (AIC)[24], similar in
concept to prequential likelihood, could also be imple-
mented. This model evaluation function would also
compute goodness-of-fit measures (¢.g. Chi-Square test).
The PL and AIC outputs are used as input to "Model
Combination" to determine the relative contribution of
individual models if the user has specified a combination
model.

2.4: Display of results

CASRE graphically displays model results in the follow-
ing forms:
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— Interfailure times/failure frequencies, actual and
estimated

— Cumulative failures, actual and estimated
~ Reliability growth, actual and estimated

Actual and estimated quantities are available on the
same plot. Plots include user-specified confidence lim-
its. Users are able to control the range of data to be plot-
ted as well as the usual cosmetic aspects of the plot (e.g.
X and Y scaling, titles). In a windowing environment,
multiple plots could be simultaneously displayed.
CASRE allows users to save plots displayed on-screen
as a disk file or to print them. One public-domain tool,
SMERES (5] version 4, can write the data used to pro-
duce a plot to a file that can be imported by a
spreadsheet, a DBMS, or a statistics package for further
analysis. CASRE also includes this capability.

The plotting function also produces u-plots and y-plots
from Model Evaluation’s u; and y; outputs. These plots
indicate the degree and direction of model bias and the
way in which the bias changes over time.

2.5: On-screen appearances

Figures 2(a) — 2(f) show a series of screen dumps for
the described CASRE tool. It can been seen that the
application of models to failure data is a straightforward
process. The user is also given a considerable amount
of choice in the models to be applied. This combination
of simple operation and variety in the available models
makes it easy for the user to identify an appropriate
model for a particular development effort or investigate
a family of models.

o Screen 1 — initial failure data display

The screen is shown in Figure 2(a). After opening a
failure history file from the "File" menu, the contents of
the file are displayed in tabular and graphic forms. The
tabular representation resembles a spreadsheet, and the
user can perform similar types of operations (e.g. select-
ing a range of data, deleting one or more rows of data).
All of the fields can be changed by the user except for
the "Interval Number" field (or "Error Number" field if
the data is interfailure times). In this example, the
selected data set is in the form of test interval lengths
and number of failures per test interval. The user can
scroll up and down through this tabular representation
and resize it as per the MOTIF conventions.

The large graphics window displays the same data as the
worksheet. If the failure data set is interfailure times, the
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(d) Prioritization of Selection Criteria
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initial graphical display is interfailure times. If, as in
this example, the failure data set is test interval lengths
and failure counts, the initial graphical display is the
number of failures per test interval. The display type
can be changed by selecting one of the items from the
"Display Type" menu associated with the graphics win-
dow. The user can move forward and backward through
the data set by pressing the right arrow or left arrow but-
tons at the bottom of the graphics window.

Finally, the iconified window at the lower left corner of
the screen lists the summary statistics for the data. To
open this window, the user clicks on the icon. The fol-
lowing information is then displayed in a separate win-
dow:

- Number of observations in this data set

- Type of observations made (interfailure times or
test interval lengths and failure counts)

- Mean value of the observations

- Minimum and maximum values
- Median

- 25% and 75% hinges

- Standard deviation and variance
- Skewness and Kurtosis

e Screen 2 — selecting failure data range

The screen is shown in Figure 2(b). The user will fre-
quently use only a portion of the data set (o estimate the
current reliability of the software. This is because test-
ing methods may change during the testing effort, or dif-
ferent portions of the data set may represent failures in
different portions of the software. To use only a subset
of the selected data set, the user may simply "click and
drag" on the tabular representation of the data set to
highlight a specific range of observations. The user may
also select previously-defined data ranges. To do this,
the user chooses the "Select Range" option of the Edit
menu. This brings up a dialogue box containing a scrol-
ling text window in which the names of previously-
defined data ranges and the points they represent are
listed. To select a particular range, the user highlights
the name of the range in the scrolling text window and
presses the "OK" button. Pressing the "Cancel" button
removes the dialogue box and the Edit menu from the
screen.

Once a range has been selected, all future modeling
operations will be only for that range. The selected data
range is highlighted in the tabular representation. The
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graphics display will change to include only the
highlighted data range. All other observations will be
removed from the graphics display.

o Screen 3 — applying software reliability models

The screen is shown in Figure 2(c). After the user has
opened a file, selected a data range, and done any
smoothing or other transformation of the data, a
software reliability model can be run on the data. In the
Model menu, the user has the choice of 13 individual
models or a set of models which combine the results of
two or more of the individual models. The user may also
choose the method of parameter estimation (maximum
likelihood, least squares, or method of moments), the
confidence bounds that will be calculated for the
selected model, and the interval of time over which
predictions of future failure behavior will be made.

e Screen 4 — prioritization of model selection criteria

The screen is shown in Figure 2(d). There are many
models from which to choose in this tool. The user may
not know which model is most appropriate for the data
set being analyzed. Using CASRE, the user can request,
"display the results of the individual model which best
meets the four prioritized criteria of accuracy (based on
prequential likelihood), biasedness, trend, and noisiness
of prediction." To do this, the user first selects the "Indi-
vidual" option of the Model menu. A submenu then
appears, on which 13 individual models are listed, as
well as a "Choose Best" option. The user selects the
"Choose Best" option, which results in a "Selection Cri-
teria”" dialogue box being displayed. The user moves the
four sliders in this dialogue box back and forth to estab-
lish the relative priorities of the four criteria. Numerical
values of the priorities are displayed in the text boxes on
the right side of the dialogue box. Once the priorities
have been established, the user presses the "OK" button.
CASRE then proceeds to run all of the individual
models against the data set, first waming the user that
this is a time-consuming operation and allowing cancel-
lation of the operation. If the user continues, CASRE
provides the opportunity for cancellation at any time if
the user decides that the operation is taking too much
time.

o Screen 5 — display of model results

The screen is shown in Figure 2(e). Once a model has
been run on the failure data, the results are graphically
displayed. Actual and predicted data points are shown,
as are confidence bounds. The model is identified in the
window’s title bar; the percent confidence bounds are
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given at the right side of the graphics window. This
concludes one round of software reliability measurement
with CASRE.

e Screen 6 — determination of model bias

The screen in which one of the result of model evalua-
tion can be displayed is shown in Figure 2(f). Statistical
methods can be applied to determine the applicability of
the model to the failure data set on which it was exe-
cuted. To display the evaluation results, the user select
the "Evaluations" pull-down menu in the graphics
display window’s main menu bar. Several model
evaluation methods, including u-plots and y-plots, are
available to the user. In this example, the user has
chosen the "U-Plot" menu item. The u-plot, which indi-
cates biases in the model, is displayed on screen.
CASRE also indicates whether the model has an
optimistic bias (predictions of time to the next failure
tend to be greater than observed inter-failure times) or a
pessimistic bias. To return to the display shown in the
figure, the user may select the "Display Type" pull-down
menu and choose the desired type of reliability-related
display.

3: Introduction of the combination models

The major feature of CASRE is the introduction of a
new and practical approach toward software reliability
measurement which tends to produce better reliability
estimations. This general combination modeling
approach is formalized as follows:

1. Identify a basic set of models (called component
models).

2. Select models that tend to cancel out in their biased (if
any) predictions.

3.Keep track of the software failure data with all the
component models.

4. Apply certain criteria to weigh the selected com-
ponent models and form one or several linear combi-
nation models for final predictions. The weights
could be either constants or variables which are
dynamically changed with time.

In general, this model could be expressed as follows:

o =3 o0f0
j=1

Where ff (¢) is the predictive probability density function
of the jth component model, given that i -1 data of times
between successive failures have been observed. Note

that Y 0;(t) = 1forall s,
J

As an example to illustrate this combination approach,
we chose GO, MO, and LV in CASRE as the three com-
ponent models to form a set of linear combination
models. Reasons for choosing these three component
models are:

1. Their predictive validity has been observed in our
recent investigation[3]. In fact, they are judged to
perform well by many practitioners [26], [27], and
they have been widely used.

2. They represent different categories of models: GO
(similar to JM and SM) represents the exponential
shape non-homogeneous Poisson process (NHPP),
MO represents the logarithmic shape NHPP model,
and LV represents the inverse-polynomial shape
Bayesian model.

3. Their predictive biases tend to cancel: GO tends to be
optimistic, LV tends to be pessimistic, and MO might
go either way.

As a result, we formulated a set of four combination
models as follows:

1. ELC - Equally-Weighted Linear Combination Model
This model is formed by assigning the three com-
ponent models a constant, equal weight{28]. The
arithmetic average of all component models’ predic-
tions is taken as the ELC model prediction, namely,

ELC = %GO + %—MO + %LV. These weightings

remain constant and unchanged throughout the
modeling process. The motivation of this approach
is to reduce the risks of relying on any particular
model, while preserving the simplicity of the predic-
tion process.

2. MLC - Median-Oriented Linear Combination Model
Instead of choosing the arithmetic mean for the pred-
iction in ELC, the median value is used. In other
words, each time when a prediction is called for, the
component model whose predicted value is the
median is selected as the output of this model. The
justification for this approach is that median might
be a more moderate choice than the mean in some
cases, since it can better tolerate an erroneous pred-
iction which is far away from the others.

3.ULC - Unequally-Weighted Linear Combination
Model
This model is similar to MLC except that instead of
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being dominated by the median value, the optimistic
and pessimistic predictions will get certain weightings
in the outcome of the final prediction. Here we use
the weightings similar to Program Evaluation and
Review Technique (PERT), i.e., the formulation of

this model is —é—O + %M+%P, where O

represents an optimistic prediction, P represents a
pessimistic prediction, and M represents the median
prediction.

4, DLC - Dynamically-Weighted Linear Combination
Model
In this model, we use a meta-predictor 1o form a
linear combination of several predictions with the
weightings chosen in some optimal way (e.g., poste-
rior probabilities)[2]. A Bayesian interpretation of
"prequential likelihood" as a posteriori could be
dynamically calculated in a long run or in a short
time window to determine the weight assignments.
Here we pick one time frame prior to each prediction
as the reference in assigning weights. For this
model, the weighting function for each of the com-
ponent models varies with time.

To catch the local trend of the prediction accuracy, the
described DLC model uses only one time frame as the
reference to determine the weights on the component
models. This "one observation window" approach
might lose the global trend in the measurement effort. It
is natural to extend the window size to a larger number,
say, N, as the reference. This leads to two types of DLC
models:

(1) DLCIFIN ("DLC with Fixed N-size-window")
model: Make a weight assignment by observing
the predictive accuracy on N predictions. The
weight assignment remain fixed for the next N
predictions, at the end of which the weightings
will be recomputed according to that N predic-
tions. So on and so forth.

(2) DLC/SIN ("'DLC with Sliding N-size-window")
model: Make a weight assignment by observing
the prediction accuracy on N predictions. The
weight assignment is recomputed each time for a
new prediction, using the observed predictive
accuracy of the most recent N predictions.

The difference of these two models is illustrated by Fig-
ures 3(a) and 3(b).
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Figure 3(b): DLC/S Weight Computation Events

Insofar we have discussed the accuracy measure in
terms of the prequential likelihood. It is noted that in
forming the DLC/F and DLC/S models, other accuracy
measures, e.g., The Akaike Information Criterion
(AIC)[24], could also be considered. The main strength
of the DLC-type models is their dynamic feature in
combining the component models, which allows the pro-
duced output to be fed back for model adjustment,
depending on what the target measure is.

4: Evaluation procedure and preliminary
results

In order to compare different models objectively and
quantitatively, four formally defined measures have
been implemented in CASRE. These measures, includ-
ing Accuracy, Bias, Trend, and Noise, represent various
quantities for the quality of software reliability measure-
ment from a particular model(29], [30]. To demonstrate
the applicability of the CASRE tool and the advantage
of its linear-combination approach, ten competing
software reliability models in CASRE were applied to
eight project data sets presented in[31]. These models
are classified as a control group (JM, GO, MO, DU, LM,
LV) and an experimental group (ELC, ULC, MLC,
DLC).
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Summary of model ranking for each data by all four criteria
Model JM | GO | MO | DU | LM | LV | ELC | ULC | MLC | DLC
Datalin(32] | (10) | (9 | (1) | 6) | ®) | 6) || () @) 3) &)
Data2in{32] | O) | (A0) | ® | (D | & | D | @4 ®) @) @
Data 3 [32] ONEOREROERUERORRON KOS @ O
Voyager WERUCENONEEUERORRON EOREC) &) O]
Galileo G) | M 1A |6 | O | @ | O | 3 ®) @
Galileo CDS 8) ©6) ®) | ] | (10) | (D) 1) 1) 4) (5)
Magellan ONEOBEOBREOREORECON K, &) @ &)]
Alaska SAR UEROENONECREORECORNO) U] (3 ©
Sum of Rank 54 57 42 53 65 40 25 30 31 25
"Handicap" +22 | 425 | +10 | +21 | +33 +8 -7 -2 -1 -7
Total Rank @ | ®|® M a)| G | O | 3 @ )
Table 1: Overall model comparisons using all four criteria
Summary of model ranking for each data using the accuracy measure
Model JM | GO | MO | DU | LM | LV || ELC | ULC | MLC | DLC
Data 1{32] 1O A | ® [ ©®» | Dl6G | @ (©)] O]
Data 2[32] M1 ®|&®|a O O] @ @ ©)] @
Data 3[32] CEEOEROBECORRCONEON RY) @ @ @
Voyager a1 M 16 | & O | O] 3 @ &) )
Galileo ONEUERORKOREOREON RO ® &)
Galileo CDS | (6) S [ ® 10| ©6) | 2 3) 4) 8) 1)
Magellan © 16 |6 | @6 |66 | @ © O]
AlaskaSAR | 2 | ©) | () {(10) | 2 [ O 8) | () 2 0]
Sum of Rank || 50 56 41 68 49 39 30 32 39 9
"Handicap" +18 | +24 | 49 | 436 | +17 | +7 -2 0 +7 -23
Total Rank & 1O |©® [4) | D | @) @ | 3 @ O]

Table 2: Overall model comparisons by the accuracy measure

To compare several models for a data set, we use the
following evaluation procedure. First we determine the
rank of each model for each measure, then we equally
weigh the ranks of the four measures by summing them
up. The models with a lower overall sum are judged
better than those with a higher sum. In case there is a
tie, the model with a better accuracy measure is ranked
higher since this measure is considered more important
than the other three measures. It is recognized, how-
ever, that different weights for these measures might be
applied. Moreover, the value of each measure should be
examined in case some "wild" measure might totally
disqualify a model in that measurement.
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Tables 1 and 2 summarize the performance comparisons
for all the eight project data sets. The overall com-
parison is done by using all four measures in Table 1, or
by using the accuracy measure alone in Table 2, since
this is the most important criterion. In general, we con-
sider a model as being satisfactory if and only if it is
ranked 4 or better out of the 10 models for a particular
project. To extend this idea, we define a "handicap”
value, which is calculated by subtracting 4 (the "par”
value) from the rank of a model for each data set before
its ranks being summed up in the overall evaluation. (Or
subtract 32 from the "Sum of Rank" row in Tables 1 and
2.) A negative handicap value represents satisfactory
overall preformance for the eight data sets.
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Figure 4: Comparisons on DLC/F and DLC/S for window sizes up to 10

We can observe from these summary tables that in gen-
eral, the set of combination models perform better than
the set of single models. The acceptable models (those
with a negative "handicap"”), when considering all four
measuring criteria (Table 1), are exactly the four linear
combination models. When considering the Accuracy
criterion alone (Table 2), the three acceptable models,
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DLC, ELC, ULC, also belong to the combination model
set. Moreover, the DLC model consistently produces
the best accuracy measure for almost every data set.
This is not surprising, though, since the DLC model is
allowed to dynamically change its weightings according
to the outcome of the accuracy measure. This further
suggests that, when other measure is decided to be



important, we could use that measure as weighting cri-
teria in forming the DLC model to get the best result.

The accuracy measure of the DLC/F and DLC/S type
models is of particular interest for further study. In Fig-
ure 4, results of both models with window sizes from 1
to 10 are plotted for the eight data sets. The summary of
this measure for both models is shown in Figure 5,
where the accuracy measure is normalized with respect
to the number of measured points in each data set before
summed up for the eight data sets.

Accuracy
Measure

41.0 -
409
408 e

40.7 o DLC/S
40.6

405

404

1 2 3 4 5 6 7 8 9 10
( Window Size )
Figure 5: Summary of DLC/F vs. DLC/S

It can be observed from Figures 4 and 5 that the DLC/S
type model is superior to the DLC/F type model. Intui-
tively, this makes sense, as DLC/S allows the observing
window to advance dynamically as the step-by-step
prediction moves ahead. In general, the accuracy of the
DLC/F type model deteriorates when window size
increases, while a better performance could be achieved
for the DLC/S type model by slightly increasing the
window size.

It is also suggested from Figure 5 that a small window
size of 3 to 4 time frames is the optimal solution for
DLC/S model under the investigated data sets. An
optimal window size heavily depends on software
development environment, its testing schemes and the
operational profile. However, such a size is not hard to
obtain with the application of the CASRE tool.

5: Conclusions and future work

Software reliability modeling and estimation have been
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an enriched ficld for software engineering researchers
and practitioners to explore. However, no conclusive
work has been done in the past regarding practical
software reliability applications to various projects. One
crucial factor was the lack of an appropriate tool for the
systematic, user-friendly, and complete investigation in
software reliability estimation. We have proposed and
prototyped a CASE tool, called CASRE, to remove the
above drawbacks. This tool can fully automate the
software reliability modeling and estimation procedure
with graphical user interface. Moreover, it features a set
of linear-combination models for accurate estimations of
software reliability. Real-world project applications of
this tool and its models have shown promising results.
For the purpose of achieving model validation and tool
applicability, we need to obtain more data to compare
software reliability models and estimations across vari-
ous types of software projects. In future investigations,
we will analyze more data sets to to refine the structure
and functionality of the CASRE tool for broader usage.
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