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Abstract

Many studies have been performed on the subject of
software reliability, but few explicitly consider the impact
of software testing on the reliability process. This paper
presents two important issues on sofiware reliability
modeling and sofiware reliability economics: testing effort
and efficiency. First, we will discuss on how to extend the
logistic testing-effort function into a general form. The
generalized logistic testing-effort function has the
advantage of relating the work profile more directly to the
natural flow of software development. Therefore, it can be
used to describe the actual consumption of resources
during software development process and get a
conspicuous improvement in modeling testing-effort
expenditures.  Furthermore, we will incorporate the
generalized logistic testing-effort function into software
reliability modeling and its fault-prediction capability is
evaluated through four numerical experiments on real
data. Then, we will address the effects of automated
techniques or tools on increasing the efficiency of software
testing. New testing techniques will usually increase test
coverage. We propose a modified software reliability cost
model to reflect these effects. From the simulation results,
we obtain a powerful sofiware economic policy which
clearly indicates the benefits of applying new automated
testing techniques and tools during sofiware development
process.

1. Introduction

When computer applications permeate our daily life,
reliability becomes a very important characteristic of a
computer system. In modern society, computer-controlled
and computer-embedded systems heavily depend on the
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correct performance of software. Software reliability is
one of the most important features for a critical system
which can affect human’s life. Therefore, it is necessary to
measure and control the reliability of a software system. A
number of Software Reliability Growth Models (SRGMs)
have been proposed [12, 26]. Among these models, Goel
and Okumoto considered an NHPP as the stochastic
process to describe the fault process [11]. Yamada et al.
[1-3] modified the G-O model and incorporated the
concept of testing-effort in an NHPP model to get a better
description of the software fault phenomenon. Later, we
[7-8] also proposed a new software reliability growth
model with the logistic testing-effort function. In this
paper, we extend the logistic testing-effort function to a
generalized form. The generalized logistic testing-effort
function has the advantage of relating a work profile more
directly to the natural structure of the software
development. Therefore, it can be used to pertinently
describe the resource consumption during the software
development process and get a conspicuous improvement
in modeling the distribution of testing-effort expenditures.

In general, we will have more confidence in the
measured software reliability with more software tests.
Unfortunately, testing with ineffective or redundant test
cases may lead to excessive cost. To avoid such
phenomenon, we need to know when to stop testing. One
alternative is to restrict the test data such that testing will
stop when the odds of detecting additional faults
(estimated by SRGMs) are very low. But this may not be
realistic since testers typically want to test for all possible
valuable failure data, even the cost of testing is significant.
Okumoto and Goel [11] first discussed the software
optimal release policy from the cost-benefit viewpoint and
proposed a software reliability cost model. It was shown
that the optimal software release time can be obtained
based on a cost criterion when minimizing the total
expected cost. Recently, many papers discussed such
optimal software release time problem based on the cost-
reliability relationship [4-6, 8-11, 113, 18-19, 21, 24]. In
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fact, to detect additional faults during the test phase of a
software development process, the testers or debuggers
may use some new automated tools or methods that are just
discovered and become available. These tools, techniques
or methods can greatly help the developers and testers to
create tests and eliminate some redundant test cases. As
time progresses, they can detect additional faults during
testing, which saves the greater expense of correcting
faults during the operational phase. These approaches have
improved software testing and productivity recently,
allowing project managers to maximize software
reliability. Hence the extra cost trade-off based on new
techniques and tools can be considered in software
reliability cost model and viewed as the investment
required to improve long-term competitiveness and to
speed up the software product release in the commercial
market. In this paper, we propose a new reliability cost
model that provides a means of assessing whether the
software cost is under control and the software quality is
improving with time. The methods we propose allow the
software testers and software quality assurance (SQA)
engineers to decide when the software is likely to be of
adequate quality for release.

2. Relationship between SRGM and testing-
effort function

In this section we propose a set of generalized software
reliability growth models incorporating testing-effort
functions. The mathematical relationship between
reliability models and testing effort expenditures is
explicitly described in detail. Numerical results are given
to illustrate the advantage of this new approach.

2.1 Software reliability modeling descriptions

2.1.1 Review of SRGM with Logistic testing-effort
function

A typical software reliability model is based on the
following assumptions [12]:

1.The fault removal process is modeled by a Non
Homogeneous Poisson Process (NHPP).

2. The software system is subject to failures at random
times caused by manifestation of remaining faults in the
system.

3. The mean number of faults detected in the time interval
(¢, t+Ar] to the current testing-effort is proportional to
the mean number of remaining faults in the system at
time ¢,

4. The proportionality is a constant over time.

5. Testing effort expenditures are described by a Logistic
testing-effort function.

6.Each time a failure occurs, the fault that caused it is

immediately removed and no new faults are introduced.

Based on the third assumption, we obtain the following
differential equation:
dm(t) 1
X——=rx[a—m(1)] ey
dt w(t)
Solving the above differential equation under the boundary
condition #(0)=0 (i.e., the mean value function m(¢) must
be equal to zero at time 0), we have

m(ty=a(1-exp[-r(W(O-WO)D=a(Ll-exp[-rW" (O]  (2)

where m(¥) is the expected mean number of faults detected
in time (0, 7], w(?) is the current testing-effort consumption
at time ¢, a is the expected number of initial faults, and »>0
is the error detection rate per unit testing-effort at time ¢,

Eq. (2) is an NHPP model with mean value function
considering the testing-effort consumption. From the
above description, we know that w(¢) represents the current
testing-effort consumption (such as volume of test cases,
human power, CPU time, and so on) at time ¢ during the
software testing/debugging phase. The consumed testing-
effort can indicate how effective the faults are detected in
the software. Therefore, this function plays an important
role in modeling software reliability and it can be
described by different distributions. From the studies in
[1-5, 14], several testing-effort pattern expressions, such as
Exponential, Rayleigh, and Weibull-type curves, can be
applied. Moreover, we [7-8] proposed a Logistic testing-
effort function to describe the possible test effort patterns,
in which the current testing-effort consumption is

NAo x expl-ar] B NAa

wi) = 3)

2
1+ tegral) @l 1+ Aep= )’

where N is the total amount of testing effort to be
eventually consumed, o isthe consumption rate of
testing-effort expenditures, and A is a constant.

The cumulative testing effort consumption of Logistic
testing-effort function in time (0, f] is

N
wit)y=—— C))

1+ Aexp|-at]
and W (1) = fyw(s)ds )

Besides, the testing effort w(¥) reaches its maximum value
at time
_In4

L max ©)
a

2.1.2 A generalized Logistic testing-effort function
From the previous studies in [7-8], we know that the
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Logistic testing-effort function (i.¢. the Parr model [14]) is
based on a description of the actual software development
process and can be used to describe the work profile of
software development. In addition, this function can be
used to consider and evaluate the effects of possible
improvements on software development methodology,
such as top-down design or stepwise refinement.
Therefore, if we relax some assumptions when deriving the
original Parr model and take into account the structured
development effort, we obtain a generalized Logistic
testing-effort function as:

/K
WK(t):NxﬁLD/B% @)
+Ae—aKt

where Kk is a structuring index with a large value for
modeling well-structured software development efforts,
and 3 isa constant.

If k =1, the above equation becomes

N 2
We@=—"—"—"x— ®
1+ Ae B

If Bis viewed as a normalized constant and 3 =2, the above
equation is reduced to Eq. (4).
Similarly, if K =2, we have

N \/?
1+ 4e7" \ B
Similarly, if we set B=k+1, we get a more generalized and

plain solution for describing the cumulative testing effort
consumption in time (0, f]:

N
K 1 + Ae —QaKt

In this case, the testing effort w(#) reaches its maximum
value at time

W, ()= )]

We @ = (10)

. 4
X = In(—) / ak (11)
K

2.2 Numerical examples

2.2.1 Numerical example 1

The first data set is from Ohba [17] where the testing
time is measured in CPU hours. The Maximum Likelihood
Estimation and Least Squares Estimation are used to
estimate the parameters of Eq. (2), Eq. (4), and Eq. (10),
and we substitute the calculated normalizing value for (.
The estimated values of parameters for the generalized
logistic testing-effort function are listed in Table 1. From
Table 1, k =2.63326 is the real estimated value for the first
data set and the other possible values of kare pre-
calculated. Figure 1 depicts the fitting of the estimated
current testing effort by using generalized logistic testing-

effort function, in which we find that the peak work rate
occurs when about half of the work on the project has been
done. This phenomenon can be interpreted as that in a
well-structured software development environment, the
slope of the testing-effort consumption curve may grow
slowly initially, but a compensating reduction will happen
later. Table 2 shows the estimated values of parameters by
using different SRGMs and two comparison criteria,
Accuracy of Estimation (AE) and Mean of Square Fitting
Faults (MSF) [7-8]. The smaller MSF and AE indicate
fewer number of fitting faults and better performance.
From Table 2, we know that when the value of Kk varies
from 1 to 3, both MSF and AE will be less than other
existing SRGMs; therefore, it is conceivable that the
proposed model has a better goodness-of-fit.

Table 1: Parameters of generalized logistic
testing-effort function for the first

data set.
N A a

54.8364 | 13.0334 | 0.226337 1
52.0072 | 40.6042 | 0.188809 1.5
50.2178  115.228 |1 0.170001 2

49.00 126.00 |0.158763 2.5
48.7768 | 429.673 [0.158042 | 2.63326
48.1368 | 833.105 [0.151344 3
48.1693 | 2188.22 (0.144234 3.5
47.8507| 5709.29 [0.139933 4
47.6561| 14839.3 [0.136507 4.5

Testing Effort(CPU Hours)

,/

———k=2
v K=2. . 63326
——-k=3

e Actual

Time (Weeks)

0 2.5 5 7.5 10 12.5 15 17.5

Figure 1: Observed/estimated testing-effort
vs. time for the first data set.

Table 2: Comparison results for the first

data set.
Model a r |AE(%) | MSF
Proposed |394.0760.042722| 10.06 | 118.29
Model (k=1)
(k=1.5) |384.707(0.045037| 7.46 114.32
(K=2) 377.15710.047815| 5.35 112.41
(k=2.6332)|369.029 |0.050955| 3.08 110.73

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on April 30,2021 at 08:36:05 UTC from IEEE Xplore. Restrictions apply.



(K=3) 367.82910.051905| 2.75 105.91

(k=3.5) |[412.871)0.039938| 1532 | 820.76

(k=4) 414.426 10.039861| 15.76 | 889.21

(k=4.5) [416.114]0.039732| 16.23 | 952.38
G-O Model | 760.00 {0.032268| 112.29 | 139.82

G-O with | 565.35 |0.019659| 57.91 | 122.09
Weibull fun

G-O with | 459.08 |0.027336| 28.23 | 268.42
Rayl. Fun.

G-O with |828.25210.011783| 131.35 | 140.66

Exp. fun.

Inflection S| 389.1 [0.093549| 8.69 | 133.53

Model
Delayed S | 374.05 |0.197651| 4.48 | 168.67

Model
Exp. Model | 455.371 [0.026736( 27.09 | 206.93
Delayed S | 333.18 |0.100415| 6.93 | 798.49
Model with

Ray. fun.

S-Shaped |338.136 | 0.10004 | 5.54 | 242.79
Model with
logistic fun.

HGDM 387.71 NA 8.3 138.12
HGDM with| 387.709 [ NA 8.30 | 138.11
linear factor
HGDM with| 385.132 NA 7.56 | 111.24
Exp. factor
Musa Log. NA * * 171.23

Poisson

2.2.2 Numerical example 2

The second data set is cited from Musa et al. [4-5]. The
software were tested for 21 weeks (25.3 CPU Hours were
used) and 136 faults were detected. The Maximum
Likelihood Estimation and Least Squares Estimation are
used to estimate the parameters of the Eq. (2), Eq. (4), and
Eq. (10) and we substitute the calculated normalizing value
for B. The estimated values for the parameters are listed in
Table 3. In fact, from Table 3, k =1.27171 is the real
estimated value for the second data set and other possible
values of K are pre-calculated. Figure 2 depicts the fitting
of the estimated current testing effort by using generalized
logistic testing-effort function. Table 4 shows the
estimated values of parameters and the comparison results
between the observed and the estimated values obtained by
the other SRGMs. Similarly, smaller AE and MSF indicate
less fitting errors and better performance. We find that
when the value of K varies from 1.5 to 4.5, both AMSF and
AFE will be less than other existing SRGMs. Hence, we
still can conclude that the proposed model is good enough
to give a more accurate description of resource
consumption during the software development phase and
gives a better fit in this experiment.

Table 3: Parameters of generalized logistic
testing-effort function for the
second data set.

N A a K
29.1095 | 4624.89 | 0.493515 1
28.153 | 20903.9 | 0.44470 |1.27171
28.1513 | 45843.8 | 0.39737 1.5
28.1458 | 260550 0.33307 2
28.0464 | 3784150 | 0.257234 3
27.5626 | 5329270 | 0.221165 3.5
27.0202 | 7428092 | 0.195207 4
26.0532 122955900 | 0.186095 4.5

Testing Effort (CPU Hours)

3.

i
o o Rk O N O W O

10 15

20

Time (Weeks)

Figure 2: Observed/estimated testing-effort
vs. time for the second data set.

Table 4: Comparison results for the second

data set.
Model a r AE (%)| MSF
Proposed |138.026|0.145098| 26.58 | 62.41
Model (k=1)
(k =1.27171) |140.013(0.137916| 25.52 | 53.79
(k=1.5) [139.191(0.141159| 25.96 | 35.04
(K =2) 142.505( 0.12406 | 24.19 | 17.62
(K =3) 147.808(0.103272| 21.37 | 9.17
(Kk=3.5) |154.144(0.089175| 18.01 | 18.58
(K =4) 162.235(0.077407| 13.70 | 32.38
(k=4.5) |168.265(0.072116| 10.49 | 36.58
G-O Model |142.32| 0.1246 | 24.29 | 24383
G-O with | 866.94 10.009624| 361.13 | 89.24
Rayleigh fun.
Exp. Model | 137.2 | 0.156 | 27.12 [3019.66
Delay S-  |237.196|0.096344( 26.16 | 245.25
shaped Model
Delayed S |688.593(0.019762| 266.27 | 235.19
with Exp. fun.
Delayed S | 137.49 |0.330611| 26.86 | 207.37
with Logistic
function.
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2.2.3 Numerical example 3

The third set of real data is the pattern of discovery of
faults in the software that supported Space Shuttle flights
STS2, STS3, STS4 at the Johnson Space Center [22]. The
system is also a real-time command and control
application. A weekly summary of software test hours and
the faults of various severity discovered is given in [22].
The cumulative number of discovered faults up to thirty-
eight weeks is 227. Similarly, the Maximum Likelihood
Estimation and Least Squares Estimation are used to
estimate the parameters of the Eq. (2), Eq. (4), and Eq. (10),
and we substitute correct normalizing value for 8. The
estimated values of parameters for the generalized logistic
testing-effort function are listed in Table 5. In fact, from
Table 5, k=1.25262 is real estimated value for this data set
and the other possible values of k are pre-calculated.
Figure 3 depicts the fitting of the estimated current testing
effort by using generalized logistic testing-effort function.
Table 6 shows the estimated values of parameters by using
different SRGMs and the comparison criteria. Therefore,
the estimation results of individual models show that the
proposed model gives the better AE.

Table 5: Parameters of generalized logistic
testing-effort function for the third

data set.

N A a K
2828.88 | 10.5057 | 0.0988842 1
2626.32| 18.3734 [0.093100622 | 1.25262
2664.54 | 30.3765 0.082482 1.5
2570.80 | 80.3661 0.074041 2
2507.67| 203.404 | 0.0689604 2.5
2463.20| 503.125 | 0.0655753 3

2460.83 | 1229.1 0.063166 3.5
Testing Effort (CPU Hours)
120
1

100

80 o

60 =

oS >
40 rkd ——k=1
z= ———K=1.25262
= K=2
201 F —-—-K=3
e Actual
0 Time (Weeks)

o} 10 20 30

Figure 3: Observed/estimated testing-effort
vs. time for the third data set.

Table 6: Comparison results for the third

data set.
Model a r AE (%)
Proposed Model (241.325| 0.000907 75.5
(k=1

(k=1.25262) |240.842| 0.000908 | 63.4065
(k=1.5) 234.686( 0.000983 | 71.9053
(K=2) 229.605( 0.001078 | 71.9443
(K=2.5) 227.027| 0.001108 | 73.6626

G-0O Model 597.887| 0.000209 | 78.87

G-O with Rayleigh (245.017[0.0007158 | 183.366
Function

2.2.4 Numerical example 4

The fourth set of real data is the pattern of discovery of
faults by Thoma in [23]. The debugging time and the
number of detected faults per day are reported. The
cumulative number of discovered faults up to twenty-two
days is 86 and the total consumed debugging time is 93
CPU hours. All debugging data are used in this
experiment. Similarly, we can estimate each parameter by
the Maximum Likelihood Estimation and Least Squares
Estimation in the proposed SRGM and they are shown in
Table 7. Infact, from Table 7, k=1.76033 is real estimated
value for this data set and the other possible values of k are
pre-calculated. Figure 4 depicts the fitting of the estimated
current testing effort by using generalized logistic testing-
effort function. Table 8 shows the estimated values of
parameters by using different SRGMs and the comparison
criteria. Therefore, in this data set, we conclude that our
proposed model gets a reasonable prediction in estimating
the number of software faults and fits this data set better
than others.

Table 7: Parameters of generalized logistic
testing-effort function for the fourth

data set.
N A a
99.9028 [ 28.0091 0.257426 1
95.6453 | 109.068 | 0.2148526 1.5
95.00 231.00 0.2055126 | 1.76033
94.90 | 389.026 | 0.1936605 2
9320 | 1336.10 | 0.1811212 2.5

Testing Effort(CPU Hours)

K=1
——=—K=1.76033
12.5 k=2
—-—-K=2.5

e Actual

AN
A

Time (Weeks)

0 5 10 15 20

Figure 4: Observed/estimated testing-effort
vs. time for the fourth data set.
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Table 8: Comparison results for the fourth

data set.

Model a r AE (%)
Proposed Model | 88.8931 |0.0390591( 55.015

(k=1)
(k=1.5) 88.699 (0.0385438(22.2717
(k=1.76033) 90.354 [0.0371217(29.4215
(K=2) 90.4078 10.0373532(28.4941
(K=2.5) 90.6226 10.0373478(28.2564
G-0O Model 137.072 [0.0515445( 25.33
HGDM 88.3 * 33.6812

3. Optimal release time incorporating test
efficiency

In the last section we describe a generalized approach to
incorporate testing effort into software reliability models.
In this section we will identify the efficiency of testing and
study its impact on software reliability. In particular, we
discuss how to incorporate testing efficiency into
reliability models and how to determine the optimal
software release time.

3.1 Impact of new tools/techniques on software
testing efficiency

As soon as software coding is completed, the necessary
but expensive testing phase starts. During the testing
phase, the developers will need to make a software
reliability evaluation and determine when to stop testing.
If the results meet the requirement specifications and the
reliability criteria are also satisfied, then the software
product is ready for release. Therefore, adjusting specific
parameters in an SRGM and adopting the corresponding
actions appropriately can help to achieve the goal of
determining the software release time. Several approaches
can be applied. For example, we have discussed the
applications of testing-cffort control and management
problem in our previous study [7]. Using the proposed
methods, we can easily control the modified consumption
rate of testing-effort expenditures and detect more faults in
a specified time interval. This means that the developers
and testers can devote their time and resource to complete
their testing tasks based on well-controlled expenditures.

In addition to controlling the testing-effort expenditures,
we can achieve a given operational quality at a specified
time by introducing new automated testing tools and
techniques. That is, through the adoption of new testing
techniques and tools, we can detect and remove more
additional faults (i.e. those faults that are not easily
exposed during the testing phase). These new methods,
however, will impose extra software development cost.
For example, professional experts can help developers to
assess the original software development process, to meet

their quality goals, and to reduce risks. In general, these
external personnel can offer efficient and effective
approaches to test planning, module-level unit testing, or
testing strategies. Moreover, many automated testing tools
and techniques are available to increase test coverage and
replace traditional manual testing. The benefits of
applying new techniques and tools include increased
software quality, reduced testing costs, improved release
time to market, repeatable test steps, and improved testing
productivity [5, 12, 15, 20]. Consequently, it is desirable
that these experts and automated testing tools/techniques
can greatly help the developers in detecting additional
faults that are difficult to find during regular testing and
usage, in identifying and correcting faults effectively, and
in improving their software development processes.

An important step toward these new approaches, then,
is to offer enough information about these approaches to
software developers and reliability engineers. Before
adopting the automated techniques and tools, we should
get quantitative information from the industrial data
relative to these methods' past performance (i.e. the
previous testing experience), or get qualitative information
from the evaluation on the methods' attributes. Basically,
these methods' past performance should be evaluated in
determining whether they will be successful in managing
reliability growth [20]. In addition, they can be evaluated
by performing various simulations based on actual data
sets. Finally, the test team’s capacity in applying these
techniques and tools and the related operational profiles
also play an important role. We discuss how the software
reliability modeling process can include these testing
methods, and how a new optimal software release time
problem can be formulated and solved.

3.2 Optimal software release time problem

Okumoto and Goel [11] first discussed the software
optimal release policy from the cost-benefit viewpoint.
The total cost of testing-effort expenditures at time 7,
C1(7), can be expressed as [1-3, 7, 9-11, 13, 18-19, 24]:

CUT) = Cm(T) + Cy[m(T, ) = m(T)] + Cy X [y w(x)dx
12)
where 7, =software life-cycle length
C =cost of correcting an error during testing
C,=cost of correcting an error during operation
Cy=cost of testing per unit testing-effort
expenditures.

From the work by B. Bochm [16], we know C,>C, as C,
is usually an order of magnitude greater than C,. In order
to detect additional faults during testing, the testers and
debuggers may use new automated tools or techniques.
The cost trade-off of these new tools and techniques,
therefore, should be considered in the software cost model,
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including their expenditures and benefits. Consequently,
we modify the overall software cost model as follows [24]:

CUT) =Cy(T)+C, x(1+P)xm(T) +C, [m(T, )~ (1 +P)

xm(T) +Cy % [ w(x)dx (13)
where Cy(7) is the cost function for developing and

acquiring the automated tools and techniques that detect an
additional fraction P of faults during testing.

We note that the cost for developing and acquiring new
tools or techniques, Cy(7), does not have to be a constant
during the testing. Moreover, the testing cost for C«(7) can
be parameterized and estimated based on actual data.
From our experience, we found that Cy 7) may have
different forms as time progresses, which depends on the
characteristics of a tool’s performance, testing effort
expenditures, effectiveness, and so on. We can formulate
this cost function as simple linear functions or simple
non-linear functions. In general, the longer the software is
tested, the more the testing cost Cy(7). Under the cost-
benefit considerations, the automated tools or techniques
will pay for themselves if

CUT)-C2(T) =0 (14)
That is, C,m(T)+C,[m(T,.) —m(T)] +Cy X fy w(x)dx -
Co(T)=Ci(A+Pym(T) = Cy[m(Ty ) = (1 + Pym(T)] = Cy x
fo w(x)dx 20
Rearranging the above equation, we obtain

Co(TY < Pxm(T)x(C, =C,) (15)

Eq. (15) is used to decide whether the new automated
tools or techniques are effective or not. If C,(7) is low
enough or if the new methods are effective in detecting
additional faults, this investment is worthwhile. Usually
appropriate automated tools or techniques are best selected
depending on how thoroughly failure data are collected
and faults are categorized [15]. Sometimes incorporating
new automated tools and techniques into a software
development process may introduce excessive, that is,
CI(T)-C2(T)<0. This phenomenon usually occurs

infrequently, but if it can really shorten the testing period
under the same software reliability requirements, we may
still consider applying the new techniques. By
differentiating Eq. (13) with respect to the time 7 we have:

d d d
—C2AT) = —Cy(T) +C, —((1 + Pym(T)) -C, %
ar ar ar

d
— (1 + Pym(1)) + Cy xw(T) (16)
dr

If we let Eq. (16) be equal to zero and use the mean value
function in Eq. (2), we can get a finite and unique solution
T, for the determination of an optimal software release

time problem based on the new cost criterion.
From Eq. (16), if we let C,(1+P)= C," and C,(1+P)= C;’,
then we have

d d x d x d
—C2AT)=—Cy(T)+C, —m(T)-C, —m(T)
dT dT dT dT

+C, xw(T) a7
If the mean value function is given in Eq. (2), we obtain
d d * *
—C2AT) = —Cy(T) +C, arw(T)exp[-rIW (T)] -
dar dar

*

C, arw(T)x exp[ =7 (T] + C, xw(T) (18)

Without loss of generally, we consider several possibilities

for Cy(7) in order to interpret the cost consumption:

(1) Cy«(7) is a constant.

(2) Cy(7) is proportional to the testing-effort expenditures.

(3) CyD) is exponentially related to the testing-effort
expenditures.

A.Co(D=Co, T = T C(1)=0, T<T,
d % ®
—C2T) =w(T)x[(C, —C, darexp[-r(W(T) -
dr
WONl+ ] (19)

d
Since w(#)>0 for 0 <7 <0, —C2(T) =0 if
dar
£ £
(C, =C, arexp[-r(W(T)-W(0))] =C, (20)
The left-hand side in Eq. (20) is a monotonically

decreasing function of 7. Here we let 7, be the starting
time of adopting new techniques/tools. If

(cz* - Cl* Yar exp[-r(W (Ts) = W (0))] < C, , then

£ £
(C, =C, arexp[—r(W (Tic) =W (0))] < C, for T,<T <Ty.
Therefore, the optimal software release time 7*=7, since

d
=0Ty > 0 for T,<T<T,.. Similarly, if
dr

(cz* - Cl* Yar exp[-r(W (Ts) =W (0))] > C, and

£ £
(C, =C, darexp[-r(W(Itc) =W (0))] < C,, there exists a
finite and unique solution 7, satisfying Eq. (20). That is,
AO©

To=—xIn - %minimizes C2(T) 1)
)

a _
% %
B0 et -~
where © = — Jdn —r +
di ¢, Hy drea
d

d
since —C2(T) <0 for T,<7<T, and —C2(T)>0 for
dr dr
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Ty<T<T,..

If (cz* - Cl* Yar exp[-r(W (Trc) =W (0))] = C, , then

£ £
(C, =C, darexp[-r(W(T) =W (O)]>C, for T.<T<Tj.
Therefore, the optimal software release time 7*#=7; . since

d
—CT) <0 for T<T <T,.
dT

Theorem 1:
Assume Cy(7)= C,(constant), C,>0, C>0, C,>0, C>0,
C,>C,, we have

CASE (Cz* - Cl* Yar exp[—+(W (T5) =W (0))] > C,and

(Cz* - Cl* Yarexp[—r(W (Tec) =W (0))] < Cy :

there exists a finite and unique solution 7},
satisfying Eq. (20) and the optimal software
release time is 7= 7,

CASE (Cz* —Cl* Yarexp[—r(W (Ts) =W (0)] < Cy: T"=T,

CASE (cz* - Cl* Yar exp[—r(W (Tic) =W (0))] > C, :
=T,

B, C(I)=Cy +C fr,w)dt, T = Ts: Cy(1)=0, T<T,

where Cy, is an nonnegative real number that indicates the
basic cost of adopting new techniques/tools, and 7 is the
start time of adopting new techniques/methods.

d * *
—C2AT) = Cyw(T) +C, arw(T)expl-riV (T)] -
dar

Cz*arw(T) exp[—rW*(T)] +Cy xw(T)

= w(T)X[(C," =C, Yarexp[~r((F(T) W (0))]

+C, +C, ] 2)

d
Since w(®)>0 for 0 <7 <o, —C2T) =0 if
dar
£ £
(C, =C, Yarexp[-r(W(T)=W(O)]=C, +C,  (23)
As the left-hand side in Eq. (23) is a monotonically
decreasing function of 7, therefore, if

«,’ —Cl*)arexp[—r(W(Ts) -W(0))] > C, +C, and

2

(Cz* - Cl* Yarexp[—r(W (Tic) =W (0)] < C, +C, , there
exists a finite and unique solution 7, satisfying Eq. (23).
1 AO©

To=—xIn p p
a -0

K

%minimizes CAT)  (24)

% %
BH ¢ et
where © = — dn—ar +
rH C, +C, H% K1 +4

Theorem 2:
Assume C (T)=C, +Cyfrw(t)dt, Co, C>0, C>0,
C>0, C>0, C>C,, we have

CASE (Cz* - Cl* Yar exp[—r(W (Ts) =W (0)] >C, + C,
and (C," =C, Yarexp[-r(¥ (Tie) =W (0)] <Cyt Cy:

there exists a finite and unique solution 7,
satisfying Eq. (23) and the optimal software release

time is 7" =T

CASE (C," =, Yarexp[-r(W (Ts) =W (0)] < C, + C, :
T=T.

CASE (€, =, Yarexp[-r(¥ (Tic) =W (0)] > C, + C, :
7'=T.

C. C,(T) =Cy +(Cy X fr w()d)" . T > T5;Co( D=0, T<T,

d _ ®
—C2T) = Cymw(T) x (C, 1 w(t)dD)" ~' +C, X
dr

arw(T) exp[—rW* (] - Cz*arw(T) X

expl =7 (T)] + Cyxw(T)

=w(t) x[(C : —Cz* )arexp[—rW*(t)] +C5+

1

Cymx(Cy frow(t)dt)" ']

d
Because w(t)>0for 0 <7 <o, —C2(T) =0 if
dr

Py =((C, —Cl*)arexp[—rW*(t)] - Cym x(C, %

2

1

frw(d)" "= C, (25)
The left-hand side in Eq. (25) is a monotonically
decreasing function of 7. Therefore, if

©,” = Yarexpl-r(W (T5) - W (0))] > C, and P(T,)<C,,

it means that there exists a finite and unique solution 7
satisfying Eq. (25), which can be solved by numerical

d
methods. It is noted that —C2(7) <0 for 0<7, <7 <
dr

d
T, and —C2(T) >0 for 7>T, Thus, 7=7, minimizes
dr
C2(T) for T, <T;,. Similarly, we can get the following
theorem.
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Theorem 3:

Assume Cy(T) = Cy, +(C, [z, w()dD)" , Cop, Cp>0, C;>0,
C>0, C>0, C>C,, we have

CASE (C, -C, Yarexp[-r(W(T5) -7 (0))] > C, and

P(T,-)<Cj: there exists a finite and unique solution
T, satisfying Eq. (25) and the optimal software
release time is 7" =7,

CASE (Cz* —Cl*)arexp[—r(W(Ts) —WON<Cy: T=T,.
CASE P(1,)>C;: T"= T, .

D. C(T)=Cy +Cy x(explmfpyw()dt] = 1), T > Ty
CO(T): 0: T<Ts .

d *
—C2(T) = Cymw(T) eXp[mJ‘TTS w(t)dt] + C| arw(T) %
dar

expl -+l * (] - Cz*arw(T) eXp[-rW* (M) +

Cy xw(T)

£ £ £
=w()x{(C, -C, Jarexp[-rW (T)]+

C, +C, xmexp[mfp, w(t)dt]}

d .

Since w(t)>0 for 0 <7 < oo, —C2(T) = 01if

dr

£ £ £
o) =(C, -C, yxarexp[-+W ()] -C,m x

explmf] w(t)dt] = C, (26)
The left-hand side in Eq. (26) is a monotonically
decreasing function of 7. Therefore, if
£ £
(C, =C, arexp[-r(W(T;) =W (0)] - Cym > Cyand O(T;c)

<(,, it means that there exists a finite and unique solution
T, satisfying Eq. (26), which can be solved by numerical

d
It is noted that —C2(I')<0 for
dr

methods [26].

d
0<T, <T <To and —C2(T) >0 for 7>7,. Thus, 7=7,
dr

minimizes C2(T) for 7, <7;.. Similarly, we can get the
following theorem.

Theorem 4:
Assume C,(T) = C,, +C,y x (explmfy, w(t)dt] = 1), Cp>0,
C>0, C>0, C>0, C>0, C,>C,, we have

CASE (Cz* —Cl*)areXp[—r(W(Ts) ~W(0)]-Cym >C,

and O(77)<C; : there exists a finite and unique
solution 7, satisfying Eq. (26) and the optimal
software release time is 77 = 7, .

CASE (Cz* - Cl* Yar exp[—r(W (Ts) =W (0)] = Cym < Cy :
T=T,.
CASE OQ(1;)>Cy, : T'= T,

3.3 Numerical example

We have considered several different cases of
minimizing the software cost in which the new automated
tools and techniques are introduced during testing. Due to
the limitation of space, we choose Eq. (10) as the testing-
effort function for a software development project. Other
logistic testing-effort functions with different K values can
be similarly applied based on the same procedure. From
the previously estimated parameters for the first data set in
Table 2, we get N=48.7768, 4=429.673, a=0.158042,
K=2.63326, a=369.029, r=0.0509553. We further set
Cy=$1000, C=$10 per error, C,=$50 per error, C~$100
per unit testing-effort expenditures, and 7, =100 weeks.
We will consider the following two types of cost function
Co(D):

1. Cy(T)=Cy +(Cy fr w(t)dD)"

2. Cy(T)=Cy +Cy x(explmfp w(t)de] = 1)
Here we assume C=$10, 7.=19, 7;,~100, and m=1, that

is, C,(7) =1000 + 10f° w()dt .

relationship of the cost optimal release time with different
P is given in Table 9. From Table 9, we find that if the P
value is larger, the optimal release time is larger and the
total expected software cost is smaller. This reflects that
when we have better testing performance, we can detect
more latent faults through additional techniques and tools.
Therefore, we can shorten testing time and release
software soon. Compared with the estimated values of
traditional software cost model (i.e. Eq. (12)) where
T*=24.2828, C(T*)=4719.66, we can sce that in Table 9,
same optimal release time is achieved when P=0.10 (i.c.,
7*%=24.2839), then C(7T*)= 4130.91. It means that the
C2(7) is smaller than C/(7) with equal optimal release
time; that is, the assumption CU(T)-C2(7)=0 is
satisfied. Besides, the Operational Quality Index (OQI) is
increased from 89.15% to 98.062% [7]. Similarly, the
relationships of the optimal release time with various P
values based on different cost functions are shown in Table
10-14. From these tables we conclude the following facts:
1) As P increases, the optimal release time 7* increases
but the total expected software cost C(7T*) decreases.
This is because we can detect more faults and reduce
the cost of correcting faults during operational phase.
2) Under the same P value and with different cost

From Theorem 3, the
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functions (such as C (T) = C,, +(C, fr, w(t)dt)" or

C,(T) = C,, +C,y x(explmfy, w(t)dr] - 1)), the larger
the cost function is, the smaller the optimal release time

is. However, the difference in estimating the total
expected software cost is insignificant.

Table 9: Relationship between the cost optimal
release time T%* C(T%), and P based on
the cost function

Cyo(T) = 1000 + 10 x f° w(t)dt

P ¢ [can]| P | ¢ [Ca™®
0.01 |19.7381]5574.05] 0.07 |21.8541[4613.69
0.02 [20.0016] 5414.5 | 0.08 |22.4464[4452.94
0.03 |20.2887|5254.74] 0.09 |23.2027[4292.02
0.04 [20.6072|5094.77] 0.10 [24.2839]4130.91
0.05 | 20.965 | 4934.6 | 0.11 |26.1106/3969.62
0.06 |21.9747|4774.24

Table 10: Relationship between the cost optimal
release time T* C(T%, and P based on
the cost function

Co(T) = 1000 + (10 x 3% w(tydt) "

P T [ca®n | P | ¢ | CT™
0.01 |19.1465|5574.88] 0.07 |19.6383[4620.26
0.02 [19.20135415.96] 0.08 |19.7589[4460.84
0.03 |19.2669]5256.98] 0.09 |19.8915[4301.32
0.04 [19.3433[5097.93] 0.10 |20.0358[4141.69
0.05 [19.4307| 4938.8 | 0.11 |20.1936/3981.95
0.06 |19.5289[4779.57

Table 11: Relationship between the cost optimal
release time T* C(T%, and P based on
the cost function

100

Cy(T) = 1000 + (exp[f1o W(t)dt] - 1)

P 1 [arn]| P | 1 [T
0.01 |21.3447| 5565.5 | 0.07 |23.0113[4601.14
0.02 [21.5892] 5405.0 | 0.08 |23.3608[4440.12
0.03 [21.8434]5244.41] 0.09 | 23.747 |[4279.03
0.04 [22.1096]5083.72] 0.10 |24.1866]4117.88
0.05 [22.3909[4922.94] 0.11 | 24.682 [3956.67
0.06 |22.6902[4762.08

Table 12: Relationship between the cost optimal
release time T* C(T%, and P based on
the cost function

100

Cyo(T) = 1000 + (exp[1.2 x fio° w(t)dt] - 1)

P 1 [arn]| P | 1 [T
0.01 |20.8548]5565.97] 0.07 |21.82784603.35

0.02 121.0159|5405.72| 0.08 [21.9943]4442.68
0.03 121.1771|5245.39] 0.09 | 22.163 |4281.96
0.04 121.3384|5084.98| 0.10 |22.3349]4121.18
0.05121.5003]| 4924.5 | 0.11 |22.5104]3960.35
0.06 121.6634|4763.96

Table 13: Relationship between the cost optimal
release time T* C(T%, and P based on
the cost function

Co(T) = 1000 + 5 x (exp[fio” w(t)dt] — 1)

P 1 [CTH]| P | 1T | QTH
0.01 | 19.775 |5572.13] 0.07 [20.3058[4613.99
0.02 [19.8669|5412.61] 0.08 [20.3903[4454.09
0.03 [19.9572]5253.02] 0.09 [20.4739[4294.13
0.04 [20.0461|5093.36] 0.10 [20.5568[4134.12
0.05 [20.1338]4933.63] 0.11 | 20.639 [3974.06
0.06 [20.2203[4773.84

Table 14: Relationship between the cost optimal
release time T* C(T%, and P based on
the cost function

100

Co(T) = 1000 + 5 x (exp[1.2 x fic° w(t)df] - 1)

P 1 [CTH]| P | 1T | QTH
0.01 | 19.545 [5573.23] 0.07 [19.9397[4616.49
0.02 [19.6152[5413.91] 0.08 [20.0002[4456.85
0.03 [19.6834]5254.54] 0.09 [20.0594[4297.17
0.04 [19.7499]5095.11] 0.10 [20.1175[4137.45
0.05 [19.8147[4935.62] 0.11 [20.1745[3977.68
0.06 [19.8779]4776.08

4. Summary and conclusions

In this paper we study the impact of software testing
effort and efficiency on the modeling of software
reliability, including the reliability measure and the cost
for optimal release time. We propose a generalized logistic
testing-effort function which relates work profile directly
to the natural flow of software development. This function
is used to describe the actual consumption of resources
during software testing which provides more accurate
information for reliability modeling purpose. We also
describe the effects of applying new tools and techniques
for increased efficiency of software testing and studied the
related optimal software release time problem from the
cost-benefit viewpoint. New reliability problems are
formulated to incorporate software testing effort and
efficiency. Finally, numerical examples are provided to
demonstrate these new approaches.
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