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These slides contain/adapt materials developed by

» Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter (2018). “Neural architecture
search: A survey”. In: arXiv preprint arXiv:1808.05377
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Basic Neural Architecture Search Spaces
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Chain-structured space More complex space ﬁ
(different colours: with multiple branches S

different layer types) and skip connections



Cell Search Spaces

Introduced by

input

Two possible cells Architectt.ire composed ﬁ;
of stacking together PN

47 individual cells
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NAS as Hyperparameter Optimization

e Cell search space by
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Select method to
combine hidden state

layer

Select second
hidden state

Select operation for
first hidden state

softmax

Select operation for
second hidden state

Select one
N | hidden state |\
\

controller
hidden layer

I repeat B times |

— 5 categorical choices for Nth block:
o 2 categorical choices of hidden states, each with domain {0, ..., N-1}
e 2 categorical choices of operations
e 1 categorical choice of combination method
— Total number of hyperparameters for the cell: 5B (with B=5 by default)

e Unrestricted search space
— Possible with conditional hyperparameters
(but only up to a prespecified maximum number of layers)

— Example: chain-structured search space
o Top-level hyperparameter: number of layers L
o Hyperparameters of layer k conditional on L >= k
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Reinforcement Learning

o NAS with Reinforcement Learning
— State-of-the-art results for CIFAR-10, Penn Treebank

— Large computational demands
¢ 800 GPUs for 3-4 weeks, 12.800 architectures evaluated
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Sample architecture A
with probability p
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Trains a child network
The controller (RNN) with architecture
A to get accuracy R

1 J

Compute gradient of p and
scale it by R to update
the controller
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e Neuroevolution (already since the 1990s)

— Typically optimized both architecture and weights with
evolutionary methods

— Mutation steps, such as adding, changing or removing a layer
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Regularized / Aging Evolution
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e Standard evolutionary algorithm
— But oldest solutions are dropped from the population (even the best)

o State-of-the-art results (CIFAR-10, ImageNet)
— Fixed-length cell search space
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Bayesian Optimization

e Joint optimization of a vision architecture with
238 hyperparameters with TPE

e Auto-Net
— Joint architecture and hyperparameter search with SMAC

— First Auto-DL system to win a competition dataset against
human experts

e Kernels for GP-based NAS
— Arc kernel
— NASBOT

o Sequential model-based optimization
— PNAS
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Main approaches for making NAS efficient

o Weight inheritance & network morphisms
o Weight sharing & one-shot models

o Multi-fidelity optimization

o Meta-learning
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Network morphisms
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o Network morphisms

— Change the network structure, but not the modelled function

e |.e., for every input the network yields the same output
as before applying the network morphism

— Allow efficient moves in architecture space

T B =



6/7

modelpest
perf. = 82%

modely
perf. = 82% train
< —_—
N\o&“ I
N
o
o
modely
ApplyNetMorphs i
APPYTETVOTPIS | pert. = 82% train
I
\ mOd?lnnewh
perf. = 82% train
I

perf. =90%

modely
perf. = 88%

mOddTLngigh
perf. = 84%

modely J—

1529 pous aippdn

modelpest
perf. = 0.90

|1

— enables efficient architecture search

S
("
S

ApplyNetMorphs

T~



6/7

Weight Sharing & One-shot Models
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e Convolutional Neural Fabrics
— Embed an exponentially large number of architectures

— Each path through the fabric is an architecture

Layers

Input

1 ML
Output

Figure: Fabrics embedding two 7-layer CNNs (red, green).
Feature map sizes of the CNN layers are given by height.

Scales
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Weight Sharing & One-shot Models

o Simplifying One-Shot Architecture Search
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o ENAS

— Use RL to sample paths (=architectures) from one-shot model

o SMASH |

— Train hypernetwork that generates weights of models
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DARTS: Differentiable Neural Architecture Search
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o Relax the discrete NAS problem
— One-shot model with continuous architecture weight a for each operator

— Use a similar approach as to interleave
optimization steps of a (using validation error) and network weights

(a) (b)

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint @
optimization of the mixing probabilities and the network weights by solving a bilevel optimization e
problem. (d) Inducing the final architecture from the learned mixing probabilities.
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