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These slides contain/adapt materials developed by

> Yuzhe Ma et al. (2018). “A Unified Approximation Framework for Non-Linear Deep
Neural Networks”. In: arXiv preprint arXiv:1807.10119

» Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating
Very Deep Neural Networks”. In: Proc. ICCV



Im2col (Image2Column) Convolution

! Filters: n x ¢ x k x k
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» Transform convolution to matrix multiplication

» Unified calculation for both convolution and fully-connected layers
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Matrix Approximation or Matrix Regression?
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» Matrix approximation: W ~ W’
» Matrix regression: Y =W - X~ W .- X
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Compression Approach 1: Sparsity
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Sparse DNN

» Sparsification: weight pruning;
» Compression: compressed sparse format for storage;
» Potential acceleration: sparse matrix multiplication algorithm.
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Exploring the Granularity of Sparsity that is
Hardware-friendly

4 types of pruning granularity
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Our approach
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We aim to reduce the width of feature map B, while minimizing the
reconstruction error on feature map C. Our optimization algorithm performs
within the dotted box, which does not involve nonlinearity. This figure
illustrates the situation that two channels are pruned for feature map B. Thus
corresponding channels of filters W can be removed. Furthermore, even
though not directly optimized by our algorithm, the corresponding filters in
the previous layer can also be removed (marked by dotted filters). c, n:
number of channels for feature maps B and C, k;, X k,,: kernel size.
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Optimization

Formally, to prune a feature map with ¢ channels, we consider applying

n x ¢ X ky X k,, convolutional filters W on N X ¢ x kj X k,, input volumes X
sampled from this feature map, which produces N x n output matrix Y. Here,
N is the number of samples, 7 is the number of output channels, and kj, k,, are
the kernel size. For simple representation, bias term is not included in our
formulation. To prune the input channels from ¢ to desired ¢’ (0 < ¢’ < ¢),
while minimizing reconstruction error, we formulate our problem as follow:

2

l
arg mm — E BiXiW; '
BwW i=1 F

subject to |||, < ¢

1)

||-||  is Frobenius norm. Xj is N X kjk,, matrix sliced from ith channel of
input volumes X, i = 1, ...,c. Wjis n X kyk,, filter weights sliced from ith
channel of W. 3 is coefficient vector of length ¢ for channel selection, and j;
is ith entry of 3. Notice that, if 8; = 0, X; will be no longer useful, which

could be safely pruned from feature map. Wj could also be removed.
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Optimization

Solving this £y minimization problem in Eqn. 1 is NP-hard. we relax the ¢ to
¢, regularization:

2

o1 . T
ar%rxm N Y - E BiXiW; + MBI,
bl l:1 F

subject to || By < ¢, Vi [[Willp = 1

(@)

A is a penalty coefficient. By increasing A, there will be more zero terms in 3
and one can get higher speed-up ratio. We also add a constrain Vi ||Wj||, = 1

to this formulation, which avoids trivial solution. Now we solve this problem
in two folds. First, we fix W, solve 3 for channel selection. Second, we fix 3,
solve W to reconstruct error.

2= s =)
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Optimization

(i) The subproblem of 3: In this case, W is fixed. We solve 3 for channel
selection.

~ LASSO

g (V)= + A8l

Zﬁl

3)

subject to || 3|, < ¢’

Here Z; = X;W; | (size N x n). We will ignore ith channels if 3; = 0.

(ii) The subproblem of W: In this case, 3 is fixed. We utilize the selected
channels to minimize reconstruction error. We can find optimized solution by
least squares:

argmlnHY X'( W’)TH 4)

Here X' = [51X) 52Xz ... BiXj ... BcXc] (size N X ckyky,). W' is n X ckyky,
reshaped W, W' = [W; W, ... W; ... W]. After obtained result W', it is
reshaped back to W. Then we assign §; <— 3; [|Wil|p, Wi <= Wi/ |[Wi]| .
Constrain Vi ||Wjl|| = 1 satisfies.
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Compression Approach 2: Low-Rank
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Low-rank DNN

» Low-rank approximation: matrix decomposition or tensor decomposition.

» Compression and acceleration: less storage required and less FLOP in computation.
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Non-linearity Approximation

3
2 . —_— .
» Activation unit: ReL.U
Lr . » Error more sensitive to positive response;
0 ! ! » Enlarge the solution space.
-2 0 2
RelLU

N N
mvivnz; WX, — Yi|, — mvivnz; |r(WX;) — Yi|
= 1=

P> X: input feature map

&

> Y: output feature map
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Reading List
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Xiangyu Zhang et al. (2015). “Efficient and accurate approximations of nonlinear
convolutional networks”. In: Proc. CVPR, pp. 1984-1992

Hao Zhou, Jose M Alvarez, and Fatih Porikli (2016). “Less is more: Towards compact
cnns”. In: Proc. ECCV, pp. 662—677

Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating
Very Deep Neural Networks”. In: Proc. ICCV

Xiyu Yu et al. (2017). “On compressing deep models by low rank and sparse
decomposition”. In: Proc. CVPR, pp. 7370-7379



Proposed Unified Structure

X WXE:

ReLU -

X —

» Simultaneous low-rank approximation and network sparsification;
» Non-linearity is taken into account.
» Acceleration is achieved with structured sparsity.
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Formulation

Given a pre-trained network, the goal is to minimize the reconstruction error of the response
in each layer after activation, using sparse component and low-rank component.

N
min Y [|¥; — r((4 +B)X)r,
=1

st JlAllp < S,
rank(B) < L.

» X: input feature map
> Y: output feature map

Not easy to solve: [y minimization and rank minimization are NP-hard.
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Relaxation

N

. 2

min Y [[¥; — (A + B)X)[7+ At Al + A2 B,
=1

» The [y constraint is relaxed by /> 1 norm such that the zero elements in A appear
column-wise;

» The rank constraint on B is relaxed by nuclear norm of B, which is the sum of the
singular values;

> Apply alternating direction method of multipliers (ADMM) to solve it;
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Alternating Direction Method of Multipliers (ADMM)

Reformulating the problem with an auxiliary variable M,

N
in > 1Y r(MX) [} 4+ A Al + 2 B,
bh bh l:
st. A+B=M.

Then the augmented Lagrangian function is

Lt(AvBa ) )

N

t
=" 1¥i = r(MX)IE + M Al + 2o Bl + (A A+ B — M)+ [A+B - M2,
i=1
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Alternating Direction Method of Multipliers (ADMM)
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Iteratively solve with following rules. All of them can be solved efficiently.

t Ay l]?
Agy1 = argmin A; [|A] +§ HA +Bk—Mk+J ,
A U llF
. t AP
By, = argmin )\2||B||*+§ B+A g — M+ —|
B U llF

N
. t
My, = argmin Y [|¥; — r(MX,)|7 + (Ax, Ax1 + Biyr — M) + 5 Akt + Bryr — M,
M

i=1

[ Akr1 =Ag + t(Agr1 + Brrr — Myq).
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Solving /> 1-norm

t Ay 2
min \; HAHZ 1 + = HA +B, — M+ —
A ' 2 F
Closed Form Update Rule’
A
Arer = proxyy (M —Be—=5),
A
C =M~ B~ =F,
t
1€ ill, — 3 Al
e [Cliis A [|[Cliill, > =
[Ass1]:i = I[C.ill, l T
0, otherwise.

@

'G. Liu et al., “Robust recovery of subspace structures by low-rank representation”, TPAMI, 2013.
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Solving nuclear norm

) t Acll
min A, |B||, + = ||B +Aky1 — Mix + —
B 2 t g
Closed Form Update Rule?
A
Bk—H = PrOXﬁH.” (Mk _Ak—l—l - Tk)a
A
D =M~ A — =",
A

Bii1 = UD», (X)V, where Dy, (%) = diag({(0; — 72)+}).
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2J-F. Cai et al., “A singular value thresholding algorithm for matrix completion”, SIOPT, 2010.
17/21



Comparison on CIFAR-10 dataset

Model | Method | Accuracy | | CR | Speed-up

Original 0.00% 1.00 1.00

VGG-16 | ICLR17° 0.06% 2.70 1.80
Ours 0.40% 4.44 2.20

Original 0.00% 1.00 1.00

NIN ICLR’16% 1.43% 1.54 1.50
[JCAI'18° 1.43% 1.45 -
Ours 0.41% 2.77 1.70

SHao Li et al. (2017). “Pruning filters for efficient convnets”. In: Proc. ICLR.
4Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In: Proc. ICLR.
5Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin (2018). “Network Approximation using Tensor ﬂ@<
Sketching”. In: Proc. IJCAI, pp. 2319-2325.
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Preliminary Results

——Non-linear —— Linear
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Comparison of reconstructing linear response and non-linear response: (a) layer conv2-1; (b) layer conv3-1.
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Approximation Example

1000

1500

(a) 250+

Approximated filters of conv3-1. Blue dots have non-zero values. Low-rank filter B with rank 136 is decomposed into UV,
both of which have rank 136. (a) Matrix U; (b) Matrix V. (c) Column-wise sparse filter A. Freee
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Comparison on ImageNet dataset

Model Method | Top-5 Accu.l | CR | Speed-up
Original 0.00% 1.00 1.00
AlexNet ICLR’16° 0.37% 5.00 1.82
ICLR’16” 1.70% 5.46 1.81
CVPR'188 1.43% 1.50 -
Ours 1.27% 5.56 1.10
Original 0.00% 1.00 1.00
GoogleNet ICLR’'162 0.42% 2.84 1.20
ICLR’'163 0.24% 1.28 1.23
CVPR'18'4 0.21% 1.50 -
Ours 0.00% 2.87 1.35

8Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In: Proc. ICLR.
7Yong-Deok Kim et al. (2016). “Compression of deep convolutional neural networks for fast and low power mobile

applications”. In: Proc. ICLR.

8Ruichi Yu et al. (2018). “NISP: Pruning networks using neuron importance score propagation”. In: Proc. CYPR.
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