
CENG5030
Part 2-4: CNN Inaccurate Speedup-2

—- Quantization

Bei Yu

(Latest update: March 25, 2019)

Spring 2019

1 / 9

These slides contain/adapt materials developed by

I Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In:
Proc. ICML, pp. 1737–1746

I Ritchie Zhao et al. (2017). “Accelerating binarized convolutional neural networks with
software-programmable FPGAs”. In: Proc. FPGA, pp. 15–24

I Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542

2 / 9

3 / 9

What'should'I'learn'
to'do'well'in'

computer'vision'
research?'I'want'to'research'

on'a'topic'with'DEAP'
LEARNING'in'it?'

3 / 9

DEEP'LEARNING'

3 / 9

GPU$

Serve
r$

3 / 9

Ohhh'No!!!'

3 / 9

State of the art recognition methods

•  'Very'Expensive''
•  Memory'
•  ComputaIon'
•  Power'

3 / 9

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

4 / 9

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

5 / 9

Fixed-Point v.s. Floating-Point

5 / 9

Fixed-Point v.s. Floating-Point

5 / 9

Fixed-Point v.s. Floating-Point

5 / 9

Fixed-Point Arithmetic

7

Number representation

Granularity

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Fixed-Point Arithmetic

8

Number representation Multiply-and-ACCumulate

(48-bits)

WL-bit
multiplier

Granularity

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Fixed-Point Arithmetic: Rounding Modes

9

Round-to-nearest

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Fixed-Point Arithmetic: Rounding Modes

10

Stochastic rounding Round-to-nearest

� Non-zero probability of rounding to
either or

� Unbiased rounding scheme:
expected rounding error is zero

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

MNIST: Fully-connected DNNs

11

FL 8

FL 10

Float

Lower precision

FL 14

Lower precision

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

MNIST: Fully-connected DNNs

12

� For small fractional lengths (FL < 12), a large majority of weight updates are
rounded to zero when using the round-to-nearest scheme.

� Convergence slows down

� For FL < 12, there is a noticeable degradation in the classification accuracy

FL 8

FL 10

Float

Lower precision

FL 14

Lower precision

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

13

� Stochastic rounding preserves gradient information (statistically)

� No degradation in convergence properties

� Test error nearly equal to that obtained using 32-bit floats

MNIST: Fully-connected DNNs

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

21

Systolic Array
(SA) of

Multiple-and-
ACCumulate
(MACC) units

L2
Cache

(BRAM)

READ

Top
Controller

WRITE

L2-to-SA

AXI Interface to
DDR3

8GB DDR3 SO-DIMM

Xilinx Kintex K325T FPGA

FPGA prototyping: GEMM with stochastic rounding

DSP
MACC

DSP
MACC

In
pu

t F
IF

O
s:

 M
at

rix
 A

Input FIFOs: Matrix B

MACC units
(n x n array)

DSP
MACC

DSP
MACC

DSP
MACC

DSP
MACC

FIFO

FIFO

DSP
MACC

DSP
MACCFIFO DSP

MACC

FIFO

FIFO

FIFOn x n
Systolic

Array

n

n

Wavefront systolic array for computing
matrix product AB. Arrows indicate dataflow

Top-level controller and memory hierarchy
designed to maximize data reuse

Computation

Communication

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Maximizing data reuse

22

L2-
Cache

p.n rows
n columns

A-cache
(p.n rows)

B-cache
(n cols)

Matrix A
[N x K]

Matrix B
[K x M]

MUX MUX

Inner Loop:
Cycle through columns of Matrix B
(M/n iterations)

Outer Loop:

Cycle through rows of Matrix A
(K/p.n iterations)

Re-use factor for Matrix A: M times
Re-use factor for Matrix B: p.n times

n : dimension of the systolic array
p : parameter chosen based on available
BRAM resources

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Stochastic rounding

23

DSP
MACC

DSP
MACC

DSP
MACC

DSP
MACC

FIFO

FIFO

FIFO

FIFO

DSP
ROUND

FIFO

DSP
ROUND

FIFO

Output path

Output C FIFOs

Local registers

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Stochastic rounding

24

DSP
MACC

DSP
MACC

DSP
MACC

DSP
MACC

FIFO

FIFO

FIFO

FIFO

DSP
ROUND

FIFO

DSP
ROUND

FIFO

Output path

Output C FIFOs

Local registers

DSP ROUND
Accumulated result

•
LSBs to be rounded-off

Pseudo-random number
generated using LFSR+

Truncate LSBs, and saturate to
limits if result exceeds range

These operations can be implemented
efficiently using a single DSP unit

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

7 / 9

6

Binarized Neural Networks (BNN)

∗
Input Map

2.4		6.2		…

3.3		1.8

…

Weights

0.8		0.1		

0.3		0.8

∗
Input Map

(Binary)

1			−1			…

1					1

…

Weights
(Binary)

1		−1		

1		−1

=

Output Map

5.0		9.1		…

4.3		7.8

…

=

123
(Integer)

1				−3		…

3				−7

…

423 =
123 − 5

67 − 8
� : + <

Output Map
(Binary)

1			−1			…

1			−1	

…

=23 = >
+1			if	423 ≥ 0				
−1			otherwise		

→

Batch Normalization

Binarization

Key Differences
1. Inputs are binarized (−1 or +1)
2. Weights are binarized (−1 or +1)
3. Results are binarized after

batch normalization

CNN

BNN

7 / 9

� 6 conv layers, 3 dense layers, 3 max pooling layers
� All conv filters are 3x3
� First conv layer takes in floating-point input
� 13.4 Mbits total model size (after hardware optimizations)

7

BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

32x32
16x16

8x8
4x4

3 128
128 256

256 512
512

1024 1024

10

Number of feature maps

Feature map
dimensions

7 / 9

1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1} à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– Fewer bits per weight may be offset by having more weights

8

Advantages of BNN

b1 b2 b1	⨯	b2

+1 +1 +1

+1 −1 −1

−1 +1 −1

−1 −1 +1

b1 b2 b1	XOR b2

0 0 0

0 1 1

1 0 1

1 1 0

7 / 9

Architecture Depth Param Bits
(Float)

Param Bits
(Fixed-Point)

Error Rate
(%)

ResNet [3]
(CIFAR-10)

164 51.9M 13.0M* 11.26

BNN [2] 9 - 13.4M 11.40

9

BNN vs CNN Parameter Efficiency

� Comparison:
– Conservative assumption: ResNet can use 8-bit weights
– BNN is based on VGG (less advanced architecture)
– BNN seems to hold promise!

* Assuming each float param can be quantized to 8-bit fixed-point

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1
or -1. arXiv:1602.02830, Feb 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.

7 / 9

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)+''−''×' 1x' 1x'

OperaIons' Memory' ComputaIon'

+''−''' ~32x' ~2x'

XNOR'
BitXcount' ~32x' ~58x'

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Binary'Weight'Networks'

XNORXNetworks'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)+''−''×' 1x' 1x'

OperaIons' Memory' ComputaIon'

+''−''' ~32x' ~2x'

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

XNOR'
BitXcount' ~32x' ~58x'

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

R R

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

BR
WB

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

BR
WB

WB = sign(W)

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Quantization Error

WB = sign(W)

_' 0.75

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

R B

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

WB

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Optimal Scaling Factor

α∗,WB∗
= arg min

WB,α
{||W − αWB||2}

6 Rastegari et al.

by expanding equation 2, we have

J(B, ↵) = ↵2BTB � 2↵WTB + WTW (3)

since B 2 {+1,�1}n, BTB = n is a constant . WTW is also a constant because
W is a known variable. Lets define c = WTW. Now, we can rewrite the equation 3 as
follow: J(B, ↵) = ↵2n � 2↵WTB + c. The optimal solution for B can be achieved
by maximizing the following constrained optimization: (note that ↵ is a positive value
in equation 2, therefore it can be ignored in the maximization)

B⇤ = argmax
B

{WTB} s.t. B 2 {+1,�1}n (4)

This optimization can be solved by assigning Bi = +1 if Wi � 0 and Bi = �1 if
Wi < 0, therefore the optimal solution is B⇤ = sign(W). In order to find the optimal
value for the scaling factor ↵⇤, we take the derivative of J with respect to ↵ and set it
to zero:

↵⇤ =
WTB⇤

n
(5)

By replacing B⇤ with sign(W)

↵⇤ =
WT sign(W)

n
=

P |Wi|
n

=
1

n
kWk`1 (6)

therefore, the optimal estimation of a binary weight filter can be simply achieved by
taking the sign of weight values. The optimal scaling factor is the average of absolute
weight values.

Training Binary-Weights-Networks: Each iteration of training a CNN involves three
steps; forward pass, backward pass and parameters update. To train a CNN with bi-
nary weights (in convolutional layers), we only binarize the weights during the forward
pass and backward propagation. For updating the parameters, we use the high precision
(real-value) weights. Because, in gradient descend the parameter changes are tiny, bina-
rization after updating the parameters ignores these changes and the training objective
can not be improved. [11,38] also employed this strategy to train a binary network.

Algorithm 1 demonstrates our procedure for training a CNN with binary weights.
First, we binarize the weight filters at each layer by computing B and A. Then we call
forward propagation using binary weights and its corresponding scaling factors, where
all the convolutional operations are carried out by equation 1. Then, we call backward
propagation, where the gradients are computed with respect to the estimated weight
filters fW . Lastly, the parameters and the learning rate gets updated by an update rule
e.g.,SGD update with momentum or ADAM [42].

Once the training finished, there is no need to keep the real-value weights. Because,
at inference we only perform forward propagation with the binarized weights.

6 Rastegari et al.

by expanding equation 2, we have

J(B, ↵) = ↵2BTB � 2↵WTB + WTW (3)

since B 2 {+1,�1}n, BTB = n is a constant . WTW is also a constant because
W is a known variable. Lets define c = WTW. Now, we can rewrite the equation 3 as
follow: J(B, ↵) = ↵2n � 2↵WTB + c. The optimal solution for B can be achieved
by maximizing the following constrained optimization: (note that ↵ is a positive value
in equation 2, therefore it can be ignored in the maximization)

B⇤ = argmax
B

{WTB} s.t. B 2 {+1,�1}n (4)

This optimization can be solved by assigning Bi = +1 if Wi � 0 and Bi = �1 if
Wi < 0, therefore the optimal solution is B⇤ = sign(W). In order to find the optimal
value for the scaling factor ↵⇤, we take the derivative of J with respect to ↵ and set it
to zero:

↵⇤ =
WTB⇤

n
(5)

By replacing B⇤ with sign(W)

↵⇤ =
WT sign(W)

n
=

P |Wi|
n

=
1

n
kWk`1 (6)

therefore, the optimal estimation of a binary weight filter can be simply achieved by
taking the sign of weight values. The optimal scaling factor is the average of absolute
weight values.

Training Binary-Weights-Networks: Each iteration of training a CNN involves three
steps; forward pass, backward pass and parameters update. To train a CNN with bi-
nary weights (in convolutional layers), we only binarize the weights during the forward
pass and backward propagation. For updating the parameters, we use the high precision
(real-value) weights. Because, in gradient descend the parameter changes are tiny, bina-
rization after updating the parameters ignores these changes and the training objective
can not be improved. [11,38] also employed this strategy to train a binary network.

Algorithm 1 demonstrates our procedure for training a CNN with binary weights.
First, we binarize the weight filters at each layer by computing B and A. Then we call
forward propagation using binary weights and its corresponding scaling factors, where
all the convolutional operations are carried out by equation 1. Then, we call backward
propagation, where the gradients are computed with respect to the estimated weight
filters fW . Lastly, the parameters and the learning rate gets updated by an update rule
e.g.,SGD update with momentum or ADAM [42].

Once the training finished, there is no need to keep the real-value weights. Because,
at inference we only perform forward propagation with the binarized weights.

WB∗
= sign(W)

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

14 Rastegari et al.

Binary-Weight-Network
Strategy for computing ↵ top-1 top-5
Using equation 6 53.8 77.0
Using a separate layer 46.2 69.5

(a)

XNOR-Network
Block Structure top-1 top-5
C-B-A-P 30.3 57.5
B-A-C-P 44.2 69.2

(b)
Table 3: In this table, we evaluate two key elements of our approach; computing the optimal
scaling factors and specifying the right order for layers in a block of CNN with binary input.
(a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b)
shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-
Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary
activation), and Pooling respectively.

training algorithm for 80 epochs with batch size of 128. The learning rate starts at 0.1
and we use polynomial rate decay, � = 4.

Test: At inference time, we use a center crop of 224 ⇥ 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network binariaza-
tion methods; the binararization technique and the block structure in our binary CNN.
For binarization, we find the optimal scaling factors at each iteration of training. For
the block structure, we order the layers in a block in a way that decreases the quantiza-
tion loss for training XNOR-Net. Here, we evaluate the effect of each of these elements
in the performance of the binary networks. Instead of computing the scaling factor ↵
using equation 6, one can consider ↵ as a network parameter. In other words, a layer
after binary convolution multiplies the output of convolution by an scalar parameter for
each filter. This is similar to computing the affine parameters in batch normalization.
Table 3-a compares the performance of a binary network with two ways of computing
the scaling factors. As we mentioned in section 3.2 the typical block structure in CNN is
not suitable for binarization. Table 3-b compares the standard block structure C-B-A-P
(Convolution, Batch Normalization, Activation, Pooling) with our structure B-A-C-P.
(A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural networks.
We train a neural network that learns to find binary values for weights, which reduces
the size of network by ⇠ 32⇥ and provide the possibility of loading very deep neural
networks into portable devices with limited memory. We also propose an architecture,
XNOR-NET, that uses mostly bitwise operations to approximate convolutions. This
provides ⇠ 58⇥ speed up and enables the possibility of running the inference of state
of the art deep neural network on CPU (rather than GPU) in real-time.

R B
WB

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)R

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

14 Rastegari et al.

Binary-Weight-Network
Strategy for computing ↵ top-1 top-5
Using equation 6 53.8 77.0
Using a separate layer 46.2 69.5

(a)

XNOR-Network
Block Structure top-1 top-5
C-B-A-P 30.3 57.5
B-A-C-P 44.2 69.2

(b)
Table 3: In this table, we evaluate two key elements of our approach; computing the optimal
scaling factors and specifying the right order for layers in a block of CNN with binary input.
(a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b)
shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-
Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary
activation), and Pooling respectively.

training algorithm for 80 epochs with batch size of 128. The learning rate starts at 0.1
and we use polynomial rate decay, � = 4.

Test: At inference time, we use a center crop of 224 ⇥ 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network binariaza-
tion methods; the binararization technique and the block structure in our binary CNN.
For binarization, we find the optimal scaling factors at each iteration of training. For
the block structure, we order the layers in a block in a way that decreases the quantiza-
tion loss for training XNOR-Net. Here, we evaluate the effect of each of these elements
in the performance of the binary networks. Instead of computing the scaling factor ↵
using equation 6, one can consider ↵ as a network parameter. In other words, a layer
after binary convolution multiplies the output of convolution by an scalar parameter for
each filter. This is similar to computing the affine parameters in batch normalization.
Table 3-a compares the performance of a binary network with two ways of computing
the scaling factors. As we mentioned in section 3.2 the typical block structure in CNN is
not suitable for binarization. Table 3-b compares the standard block structure C-B-A-P
(Convolution, Batch Normalization, Activation, Pooling) with our structure B-A-C-P.
(A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural networks.
We train a neural network that learns to find binary values for weights, which reduces
the size of network by ⇠ 32⇥ and provide the possibility of loading very deep neural
networks into portable devices with limited memory. We also propose an architecture,
XNOR-NET, that uses mostly bitwise operations to approximate convolutions. This
provides ⇠ 58⇥ speed up and enables the possibility of running the inference of state
of the art deep neural network on CPU (rather than GPU) in real-time.

R B() ≈R

How'to'train'a'CNN'with'binary'filters?'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Training Binary Weight Networks

Naive Solution:

�	  ���
�
�
�	.1���
1
.�
�	��
����	
�����	.	���
�	  �
���
2	
.�	
1	
��.

�.	���

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

Full'Precision' Naïve'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

''.'.'.''' '.'.'.''W R
R R

''.'.'.''' '.'.'.''WB BB
B

Binarization

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

''.'.'.''' '.'.'.''BB
B

Person'
Dog'

''.'.'.''' '.'.'.''W R
R R

Binarization

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network

''.'.'.''' '.'.'.''
R

R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network W

''.'.'.''' '.'.'.''
R

R R''.'.'.''' '.'.'.''
R

R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network

''.'.'.''' '.'.'.''

''.'.'.''' '.'.'.''
W

WB

R
R R

BB
B

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network W
''.'.'.''' '.'.'.''

''.'.'.''' '.'.'.''
WB

R
R R

BB
B

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network

LOSS$

''.'.'.''' '.'.'.''
W R

R R

''.'.'.''' '.'.'.''
WB

BB
B

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network

sign(x) ! Gx ! X1' +1'X1'

+1'
+1'

[Hinton et al. 2012]

LOSS$''.'.'.''' '.'.'.''
WB

''.'.'.''' '.'.'.''
W R

R R

BB
B

''.'.'.''' '.'.'.''
Gw R

R R

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Weight Network

W = W - �Gw

''.'.'.''' '.'.'.''
R

R R

''.'.'.''' '.'.'.''
R

R R

''.'.'.''' '.'.'.''
R

R R
Gw

W

Train for binary weights:

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

56.8'

Full'Precision' Naïve' Binary'Weight'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

+''−''×' 1x' 1x'

OperaIons' Memory' ComputaIon'

+''−''' ~32x' ~2x'

XNOR'
BitXcount' ~32x' ~58x'

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B

1

XNORXNetworks'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Input and Binary Weight (XNOR-
Net)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

R

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

R B
WB XB

B

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Binary Input and Binary Weight (XNOR-
Net)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

… … …
…

…
…

…

…
… …

…

…

… … …

…
…

c

…

…
… … …

…

…

…
…

…
…

… …

…

…
…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

… …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

8 Rastegari et al.

-1.4 0.5 … 0.2 2 -1 1 … 1 1

Redundant computations in overlapping areas

=

…

…

…
 …

…

…

…

…

…

…

…

…

…

…

…
 …

…

…

c

…

…

…
 …

 …

…

…

…

…

…

…

…
 …

…

…

…

≈

=

=

=

=

(1) Binarizing Weight

(2) Binarizing Input

(4) Convolution with XNOR-Bitcount

…

…

…

…
 …

Inefficient

Efficient

=

=

(3) Binarizing Input

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

R

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

R B
WB XB

B

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

1

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

1

Y γ YB

Y

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms

γ YB

γ∗ =
1

n
∥Y∥ℓ1YB∗

= sign(Y)

α∗ =
1

n
∥W∥ℓ1 β∗ =

1

n
∥X∥ℓ1

WB∗
= sign(W)XB∗

= sign(X)

YB∗
, γ∗ = arg min

YB,γ
∥Y − γYB∥2

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

B

sign(X)

R B

(1) Binarizing Weights

=

=
=

(3) Convolution with XNOR-Bitcount

BBR R

sign(X)

≈

c"

(2) Binarizing Input

Efficient
=∑ |X:,:,i|

c

Redundant computation in overlapping areas

Inefficient

(2) Binarizing Input

X

R

B

sign(X)

=

Average Filter

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

BBR R

sign(X)

≈

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 7

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight Wt and
current learning rate ⌘t.

Output: updated weight Wt+1 and updated learning rate ⌘t+1.
1: Binarizing weight filters:
2: for l = 1 to L do
3: for kth filter in lth layer do
4: Alk = 1

n
kWt

lkk`1
5: Blk = sign(Wt

lk)

6: fWlk = AlkBlk

7: Ŷ = BinaryForward(I, B, A) // standard forward propagation except that convolutions are computed

using equation 1 or 11

8: @C

@fW = BinaryBackward(@C

@Ŷ
, fW) // standard backward propagation except that gradients are computed

using fW instead of Wt

9: fW = UpdateParameters(fWt,
@C

@fW , ⌘t) // Any update rules (e.g.,SGD or ADAM)

10: ⌘t+1 = UpdateLearningrate(⌘t, t) // Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network hI, W, ⇤i
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
Rn by a dot product between two vectors in {+1,�1}n. Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X,W 2 Rn such that
XTW ⇡ �HT↵B, where H,B 2 {+1,�1}n and �, ↵ 2 R+, we solve the following
optimization:

↵⇤,B⇤, �⇤,H⇤ = argmin
↵,B,�,H

kXTW � �↵HTBk (7)

We define Y 2 Rn such that Yi = XiWi, C 2 {+1,�1}n such that Ci = HiBi and
� 2 R+ such that � = �↵. The equation 7 can be written as:

�⇤,C⇤ = argmin
�,C

k1TY � �1TCk (8)

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

0'

10'

20'

30'

40'

50'

60'

'''

AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

56.8'

30.5'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Network Structure in XNOR-Networks

sign(x) !
X1'

+1'

A'typical'block'in'CNN'
BN

or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

✗InformaIon'Loss'

✓MulIple'Maximums'

MaxXPooling'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Network Structure in XNOR-Networks

BN
or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

✗InformaIon'Loss'

✓MulIple'Maximums' 2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Network Structure in XNOR-Networks

✓InformaIon'Loss'
✓MulIple'Maximums'

BN
or
m
'

Ac
Iv
'

BN
or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

BN
or
m
'

Ac
Iv
'

Po
ol
'

Co
nv
'

'

Myformulaeditor

Mohammad Rastegari

October 2016

1 Introduction
R B ↵ �

[mathescape, columns=fullflexible, basicstyle=,
]
1. Randomly initialize W

2. For iter = 1 to N

3. Load a random input image X

4. WB = sign(W)
5. ↵ = kWk`1

n

6. Forward pass with ↵,WB

7. Compute loss function C

8. @C
@W = Backward pass with ↵,WB

9. Update W (W = W � @C
@W)

1

BBR R

sign(X)

≈

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 7

Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight Wt and
current learning rate ⌘t.

Output: updated weight Wt+1 and updated learning rate ⌘t+1.
1: Binarizing weight filters:
2: for l = 1 to L do
3: for kth filter in lth layer do
4: Alk = 1

n
kWt

lkk`1
5: Blk = sign(Wt

lk)

6: fWlk = AlkBlk

7: Ŷ = BinaryForward(I, B, A) // standard forward propagation except that convolutions are computed

using equation 1 or 11

8: @C

@fW = BinaryBackward(@C

@Ŷ
, fW) // standard backward propagation except that gradients are computed

using fW instead of Wt

9: fW = UpdateParameters(fWt,
@C

@fW , ⌘t) // Any update rules (e.g.,SGD or ADAM)

10: ⌘t+1 = UpdateLearningrate(⌘t, t) // Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network hI, W, ⇤i
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
Rn by a dot product between two vectors in {+1,�1}n. Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X,W 2 Rn such that
XTW ⇡ �HT↵B, where H,B 2 {+1,�1}n and �, ↵ 2 R+, we solve the following
optimization:

↵⇤,B⇤, �⇤,H⇤ = argmin
↵,B,�,H

kXTW � �↵HTBk (7)

We define Y 2 Rn such that Yi = XiWi, C 2 {+1,�1}n such that Ci = HiBi and
� 2 R+ such that � = �↵. The equation 7 can be written as:

�⇤,C⇤ = argmin
�,C

k1TY � �1TCk (8)

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

0'

10'

20'

30'

40'

50'

60'
AlexNet'TopX1'(%)'ILSVRC2012'

56.7'

0.2'

56.8'

30.5'

44.2'

✓ 32x'Smaller'Model'

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

AlexNet	 VGG	 ResNet-18	

Float	

Binary	

245 MB

500 MB

100 MB

7.4 MB 16 MB 1.5 MB

✓ 58x'Less'ComputaIon'

10 Rastegari et al.

0"

200"

400"

600"

800"

1000"

1200"

VGG*19" ResNet*18" AlexNet"

Double"Precision"

Binary"Precision"

16MB

1GB

1.5MB
100MB

475MB

7.4MB

(a)

1 32 1024

number of channels

0x

20x

40x

60x

80x
Speedup by varying channel size

(b)

0x0 10x10 20x20

filter size

50x

55x

60x

65x
Speedup by varying filter size

(c)

Fig. 4: This figure shows the efficiency of binary convolutions in terms of memory(a) and
computation(b-c). (a) is contrasting the required memory for binary and double precision weights
in three different architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by
binary convolution under (b)-different number of channels and (c)-different filter size

version of AlexNet is only 2.9% below the full precision version of AlexNet. This clas-
sification accuracy out performs competitors on binary neural networks by large margin.
We also present an ablation study, where we evaluate the key elements of our proposed
method; computing scaling factors and our block structure for binary CNN. We shows
that our method of computing the scaling factors is important to reach high accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is cNWNI, where c is the
number of channels, NW = wh and NI = winhin. Our binary approximation of
convolution (equation 11) has cNWNI binary operations and NI non-binary operations.
With the current generation of CPUs, we can perform 64 binary operations in one clock
of CPU, therefore the speedup can be computed by

S =
cNWNI

1
64cNWNI + NI

=
64cNW

cNW + 64
(12)

The speedup depends on the channel size and filter size but not the input size. In
figure 4-(b-c) we illustrate the speedup achieved by changing the number of channels
and filter size. While changing one parameter, we fix other parameters as follow: c =
256, nI = 142 and nW = 32 (majority of convolutions in ResNet[4] architecture have
this structure). Using our approximation of convolution we gain 62.27⇥ theoretical
speed up, but in our CPU implementation with all of the overheads, we achieve 58x
speed up in one convolution. With the small channel size (c = 3) and filter size (NW =
1 ⇥ 1) the speedup is not considerably high. This motivates us to avoid binarization at
the first and last layer of a CNN. In the first layer the chanel size is 3 and in the last
layer the filter size is 1 ⇥ 1. A similar strategy was used in [11]. Figure 4-a shows the
required memory for three different CNN architectures(AlexNet, VGG-19, ResNet-18)
with binary and double precision weights. Binary-weight-networks are so small that can
be easily fitted into portable devices.

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

0'

10'

20'

30'

40'

50'

60'

70'

80'

90'
AlexNet'Top.1$&$5'(%)'ILSVRC2012'

2

2Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary convolutional neural networks”. In:
Proc. ECCV, pp. 525–542.

8 / 9

Overview

Fixed-Point Representation

Binary/Ternary Network

Reading List

9 / 9

Further Reading List

Fixed-Point Representation:
I Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). “Fixed point

quantization of deep convolutional networks”. In: Proc. ICML, pp. 2849–2858
I Soroosh Khoram and Jing Li (2018). “Adaptive quantization of neural networks”. In:

Proc. ICLR
Binary/Ternary Network:
I Hyeonuk Kim et al. (2017). “A Kernel Decomposition Architecture for Binary-weight

Convolutional Neural Networks”. In: Proc. DAC, 60:1–60:6
I Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR

9 / 9

	Main Talk
	Fixed-Point Representation
	Binary/Ternary Network
	Reading List

