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These slides contain/adapt materials developed by

I Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In:
Proc. ICML, pp. 1737–1746

I Ritchie Zhao et al. (2017). “Accelerating binarized convolutional neural networks with
software-programmable FPGAs”. In: Proc. FPGA, pp. 15–24

I Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525–542
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State of the art recognition methods  

•  'Very'Expensive''
•  Memory'
•  ComputaIon'
•  Power'
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Fixed-Point Arithmetic 

7 

Number representation 

Granularity 

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
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(48-bits) 

WL-bit 
multiplier 

Granularity 
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Fixed-Point Arithmetic: Rounding Modes 

9 

Round-to-nearest 

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
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Fixed-Point Arithmetic: Rounding Modes 
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Stochastic rounding Round-to-nearest 

� Non-zero probability of rounding to 
either      or  

� Unbiased rounding scheme: 
expected rounding error is zero 

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
6 / 9



MNIST: Fully-connected DNNs 
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FL 8 

FL 10 

Float 

Lower precision 

FL 14 

Lower precision 
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MNIST: Fully-connected DNNs 

12 

� For small fractional lengths (FL < 12), a large majority of weight updates are 
rounded to zero when using the round-to-nearest scheme. 

� Convergence slows down 

� For FL < 12, there is a noticeable degradation in the classification accuracy 

 

FL 8 

FL 10 

Float 

Lower precision 

FL 14 

Lower precision 

1
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13 

� Stochastic rounding preserves gradient information (statistically) 

� No degradation in convergence properties 

� Test error nearly equal to that obtained using 32-bit floats 

MNIST: Fully-connected DNNs 

1

1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
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1Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML, pp. 1737–1746.
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Maximizing data reuse 
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A-cache  
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Re-use factor for Matrix A: M times 
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Stochastic rounding 
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Stochastic rounding 
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Binarized Neural Networks (BNN)
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� 6 conv layers, 3 dense layers, 3 max pooling layers
� All conv filters are 3x3
� First conv layer takes in floating-point input
� 13.4 Mbits total model size (after hardware optimizations)

7

BNN CIFAR-10 Architecture [2]

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.
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10

Number of feature maps

Feature map
dimensions
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1. Floating point ops replaced with binary logic ops

– Encode {+1,−1} as {0,1}  à multiplies become XORs
– Conv/dense layers do dot products à XOR and popcount
– Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
– Fewer bits per weight may be offset by having more weights

8

Advantages of BNN
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+1 −1 −1
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−1 −1 +1

b1 b2 b1	XOR b2

0 0 0
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Architecture Depth Param Bits
(Float)

Param Bits
(Fixed-Point)

Error Rate
(%)

ResNet [3]
(CIFAR-10)

164 51.9M 13.0M* 11.26

BNN [2] 9 - 13.4M 11.40

9

BNN vs CNN Parameter Efficiency

� Comparison:
– Conservative assumption: ResNet can use 8-bit weights
– BNN is based on VGG (less advanced architecture)
– BNN seems to hold promise!

* Assuming each float param can be quantized to 8-bit fixed-point

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1    
or -1. arXiv:1602.02830, Feb 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in Deep Residual Networks. ECCV 2016.
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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)+''−''×' 1x' 1x'

OperaIons' Memory' ComputaIon'

+''−''' ~32x' ~2x'

XNOR'
BitXcount' ~32x' ~58x'
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ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)
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out from the optimization and the optimal solutions can be achieved from equation 2 as
follow
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h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks 5

tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms
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where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
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Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)
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follow
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tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms
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where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
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and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)
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tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms

XNOR-Net:ImageNetClassificationUsingBinaryConvolutionalNeuralNetworks5

tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
isthenumberof

weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
Inthispaperweassumeconvolutionalfiltersdonothavebiasterms
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tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B
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2 In this paper we assume convolutional filters do not have bias terms
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by expanding equation 2, we have

J(B, ↵) = ↵2BTB � 2↵WTB + WTW (3)

since B 2 {+1,�1}n, BTB = n is a constant . WTW is also a constant because
W is a known variable. Lets define c = WTW. Now, we can rewrite the equation 3 as
follow: J(B, ↵) = ↵2n � 2↵WTB + c. The optimal solution for B can be achieved
by maximizing the following constrained optimization: (note that ↵ is a positive value
in equation 2, therefore it can be ignored in the maximization)

B⇤ = argmax
B

{WTB} s.t. B 2 {+1,�1}n (4)

This optimization can be solved by assigning Bi = +1 if Wi � 0 and Bi = �1 if
Wi < 0, therefore the optimal solution is B⇤ = sign(W). In order to find the optimal
value for the scaling factor ↵⇤, we take the derivative of J with respect to ↵ and set it
to zero:

↵⇤ =
WTB⇤

n
(5)

By replacing B⇤ with sign(W)

↵⇤ =
WT sign(W)

n
=

P |Wi|
n

=
1

n
kWk`1 (6)

therefore, the optimal estimation of a binary weight filter can be simply achieved by
taking the sign of weight values. The optimal scaling factor is the average of absolute
weight values.

Training Binary-Weights-Networks: Each iteration of training a CNN involves three
steps; forward pass, backward pass and parameters update. To train a CNN with bi-
nary weights (in convolutional layers), we only binarize the weights during the forward
pass and backward propagation. For updating the parameters, we use the high precision
(real-value) weights. Because, in gradient descend the parameter changes are tiny, bina-
rization after updating the parameters ignores these changes and the training objective
can not be improved. [11,38] also employed this strategy to train a binary network.

Algorithm 1 demonstrates our procedure for training a CNN with binary weights.
First, we binarize the weight filters at each layer by computing B and A. Then we call
forward propagation using binary weights and its corresponding scaling factors, where
all the convolutional operations are carried out by equation 1. Then, we call backward
propagation, where the gradients are computed with respect to the estimated weight
filters fW . Lastly, the parameters and the learning rate gets updated by an update rule
e.g.,SGD update with momentum or ADAM [42].

Once the training finished, there is no need to keep the real-value weights. Because,
at inference we only perform forward propagation with the binarized weights.
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tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms
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Binary-Weight-Network
Strategy for computing ↵ top-1 top-5
Using equation 6 53.8 77.0
Using a separate layer 46.2 69.5

(a)

XNOR-Network
Block Structure top-1 top-5
C-B-A-P 30.3 57.5
B-A-C-P 44.2 69.2

(b)
Table 3: In this table, we evaluate two key elements of our approach; computing the optimal
scaling factors and specifying the right order for layers in a block of CNN with binary input.
(a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b)
shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-
Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary
activation), and Pooling respectively.

training algorithm for 80 epochs with batch size of 128. The learning rate starts at 0.1
and we use polynomial rate decay, � = 4.

Test: At inference time, we use a center crop of 224 ⇥ 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network binariaza-
tion methods; the binararization technique and the block structure in our binary CNN.
For binarization, we find the optimal scaling factors at each iteration of training. For
the block structure, we order the layers in a block in a way that decreases the quantiza-
tion loss for training XNOR-Net. Here, we evaluate the effect of each of these elements
in the performance of the binary networks. Instead of computing the scaling factor ↵
using equation 6, one can consider ↵ as a network parameter. In other words, a layer
after binary convolution multiplies the output of convolution by an scalar parameter for
each filter. This is similar to computing the affine parameters in batch normalization.
Table 3-a compares the performance of a binary network with two ways of computing
the scaling factors. As we mentioned in section 3.2 the typical block structure in CNN is
not suitable for binarization. Table 3-b compares the standard block structure C-B-A-P
(Convolution, Batch Normalization, Activation, Pooling) with our structure B-A-C-P.
(A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural networks.
We train a neural network that learns to find binary values for weights, which reduces
the size of network by ⇠ 32⇥ and provide the possibility of loading very deep neural
networks into portable devices with limited memory. We also propose an architecture,
XNOR-NET, that uses mostly bitwise operations to approximate convolutions. This
provides ⇠ 58⇥ speed up and enables the possibility of running the inference of state
of the art deep neural network on CPU (rather than GPU) in real-time.
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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)R
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Binary-Weight-Network
Strategy for computing ↵ top-1 top-5
Using equation 6 53.8 77.0
Using a separate layer 46.2 69.5

(a)

XNOR-Network
Block Structure top-1 top-5
C-B-A-P 30.3 57.5
B-A-C-P 44.2 69.2

(b)
Table 3: In this table, we evaluate two key elements of our approach; computing the optimal
scaling factors and specifying the right order for layers in a block of CNN with binary input.
(a) demonstrates the importance of the scaling factor in training binary-weight-networks and (b)
shows that our way of ordering the layers in a block of CNN is crucial for training XNOR-
Networks. C,B,A,P stands for Convolutional, BatchNormalization, Acive function (here binary
activation), and Pooling respectively.

training algorithm for 80 epochs with batch size of 128. The learning rate starts at 0.1
and we use polynomial rate decay, � = 4.

Test: At inference time, we use a center crop of 224 ⇥ 224.

4.3 Ablation Studies

There are two key differences between our method and the previous network binariaza-
tion methods; the binararization technique and the block structure in our binary CNN.
For binarization, we find the optimal scaling factors at each iteration of training. For
the block structure, we order the layers in a block in a way that decreases the quantiza-
tion loss for training XNOR-Net. Here, we evaluate the effect of each of these elements
in the performance of the binary networks. Instead of computing the scaling factor ↵
using equation 6, one can consider ↵ as a network parameter. In other words, a layer
after binary convolution multiplies the output of convolution by an scalar parameter for
each filter. This is similar to computing the affine parameters in batch normalization.
Table 3-a compares the performance of a binary network with two ways of computing
the scaling factors. As we mentioned in section 3.2 the typical block structure in CNN is
not suitable for binarization. Table 3-b compares the standard block structure C-B-A-P
(Convolution, Batch Normalization, Activation, Pooling) with our structure B-A-C-P.
(A, is binary activation).

5 Conclusion

We introduce simple, efficient, and accurate binary approximations for neural networks.
We train a neural network that learns to find binary values for weights, which reduces
the size of network by ⇠ 32⇥ and provide the possibility of loading very deep neural
networks into portable devices with limited memory. We also propose an architecture,
XNOR-NET, that uses mostly bitwise operations to approximate convolutions. This
provides ⇠ 58⇥ speed up and enables the possibility of running the inference of state
of the art deep neural network on CPU (rather than GPU) in real-time.
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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-
lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored
out from the optimization and the optimal solutions can be achieved from equation 2 as
follow

C⇤ = sign(Y) = sign(XT) sign(W) = H⇤TB⇤ (9)

Since |Xi|, |Wi| are independent, knowing that Yi = XiWi then,
E [|Yi|] = E [|Xi||Wi|] = E [|Xi|]E [|Wi|] therefore,

�⇤ =

P |Yi|
n

=

P |Xi||Wi|
n

⇡
✓

1

n
kXk`1

◆✓
1

n
kWk`1

◆
= �⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (where win � w, hin �
h) with the input tensor I 2 Rc⇥win⇥hin requires computing the scaling factor � for all
possible sub-tensors in I with same size as W. Two of these sub-tensors are illustrated
in figure 2 (second row) by X1 and X2. Due to overlaps between subtensors, comput-
ing � for all possible sub-tensors leads to a large number of redundant computations.
To overcome this redundancy, first, we compute a matrix A =

P |I:,:,i|
c , which is the

average over absolute values of the elements in the input I across the channel. Then
we convolve A with a 2D filter k 2 Rw⇥h, K = A ⇤ k, where 8ij kij = 1

w⇥h . K
contains scaling factors � for all sub-tensors in the input I. Kij corresponds to � for
a sub-tensor centered at the location ij (across width and height). This procedure is
shown in the third row of figure 2. Once we obtained the scaling factor ↵ for the weight
and � for all sub-tensors in I (denoted by K), we can approximate the convolution
between input I and weight filter W mainly using binary operations:

I ⇤ W ⇡ (sign(I) ~ sign(W)) � K↵ (11)
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tion of BinaryConnect propsed by BinaryNet[11], where both weights and activations
are binarized. Our method is different from them in the binarization method and the
network structure. We also compare our method with BinaryNet on ImageNet, and our
method outperforms BinaryNet by large margin.[39] argued that the noise introduced
by weight binarization provide a form of regularization, which could help to improve
test accuracy. This method binarizes weights while maintaining full precision activa-
tion. [40] proposed fully binary training and testing in an array of committee machines
with randomized input. [41] retraine a previously trained neural network with binary
weights and binary inputs.

3 Binary Convolutional Neural Network

We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms
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We represent an L-layer CNN architecture with a triplet hI, W, ⇤i. I is a set of ten-
sors, where each element I = Il(l=1,...,L) is the input tensor for the lth layer of CNN
(Green cubes in figure 1). W is a set of tensors, where each element in this set W =
Wlk(k=1,...,Kl) is the kth weight filter in the lth layer of the CNN. Kl is the number of
weight filters in the lth layer of the CNN. ⇤ represents a convolutional operation with
I and W as its operands2. I 2 Rc⇥win⇥hin , where (c, win, hin) represents channels,
width and height respectively.W 2 Rc⇥w⇥h, where w  win, h  hin. We propose
two variations of binary CNN: Binary-weights, where the elements of W are binary
tensors and XNOR-Networks, where elements of both I and W are binary tensors.

3.1 Binary-Weight-Networks

In order to constrain a convolutional neural network hI, W, ⇤i to have binary weights,
we estimate the real-value weight filter W 2 W using a binary filter B 2 {+1,�1}c⇥w⇥h

and a scaling factor ↵ 2 R+ such that W ⇡ ↵B. A convolutional operation can be ap-
priximated by:

I ⇤ W ⇡ (I � B)↵ (1)

where, � indicates a convolution without any multiplication. Since the weight values
are binary, we can implement the convolution with additions and subtractions. The bi-
nary weight filters reduce memory usage by a factor of ⇠ 32⇥ compared to single-
precision filters. We represent a CNN with binary weights by hI, B, A,�i, where B is
a set of binary tensors and A is a set of positive real scalars, such that B = Blk is a
binary filter and ↵ = Alk is an scaling factor and Wlk ⇡ AlkBlk

Estimating binary weights: Without loss of generality we assume W,B are vectors
in Rn, where n = c⇥w ⇥ h. To find an optimal estimation for W ⇡ ↵B, we solve the
following optimization:

J(B, ↵) = kW � ↵Bk2

↵⇤,B⇤ = argmin
↵,B

J(B, ↵) (2)

2 In this paper we assume convolutional filters do not have bias terms
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tionofBinaryConnectpropsedbyBinaryNet[11],wherebothweightsandactivations
arebinarized.Ourmethodisdifferentfromtheminthebinarizationmethodandthe
networkstructure.WealsocompareourmethodwithBinaryNetonImageNet,andour
methodoutperformsBinaryNetbylargemargin.[39]arguedthatthenoiseintroduced
byweightbinarizationprovideaformofregularization,whichcouldhelptoimprove
testaccuracy.Thismethodbinarizesweightswhilemaintainingfullprecisionactiva-
tion.[40]proposedfullybinarytrainingandtestinginanarrayofcommitteemachines
withrandomizedinput.[41]retraineapreviouslytrainedneuralnetworkwithbinary
weightsandbinaryinputs.

3BinaryConvolutionalNeuralNetwork

WerepresentanL-layerCNNarchitecturewithatriplethI,W,⇤i.Iisasetoften-
sors,whereeachelementI=Il(l=1,...,L)istheinputtensorforthelthlayerofCNN
(Greencubesinfigure1).Wisasetoftensors,whereeachelementinthissetW=
Wlk(k=1,...,Kl)isthekthweightfilterinthelthlayeroftheCNN.K

l
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weightfiltersinthelthlayeroftheCNN.⇤representsaconvolutionaloperationwith
IandWasitsoperands2.I2R

c⇥win⇥hin
,where(c,win,hin)representschannels,

widthandheightrespectively.W2R
c⇥w⇥h

,wherewwin,hhin.Wepropose
twovariationsofbinaryCNN:Binary-weights,wheretheelementsofWarebinary
tensorsandXNOR-Networks,whereelementsofbothIandWarebinarytensors.

3.1Binary-Weight-Networks

InordertoconstrainaconvolutionalneuralnetworkhI,W,⇤itohavebinaryweights,
weestimatethereal-valueweightfilterW2WusingabinaryfilterB2{+1,�1}

c⇥w⇥h

andascalingfactor↵2R
+

suchthatW⇡↵B.Aconvolutionaloperationcanbeap-
priximatedby:

I⇤W⇡(I�B)↵(1)

where,�indicatesaconvolutionwithoutanymultiplication.Sincetheweightvalues
arebinary,wecanimplementtheconvolutionwithadditionsandsubtractions.Thebi-
naryweightfiltersreducememoryusagebyafactorof⇠32⇥comparedtosingle-
precisionfilters.WerepresentaCNNwithbinaryweightsbyhI,B,A,�i,whereBis
asetofbinarytensorsandAisasetofpositiverealscalars,suchthatB=Blkisa
binaryfilterand↵=AlkisanscalingfactorandWlk⇡AlkBlk

Estimatingbinaryweights:WithoutlossofgeneralityweassumeW,Barevectors
inR

n
,wheren=c⇥w⇥h.TofindanoptimalestimationforW⇡↵B,wesolvethe

followingoptimization:

J(B,↵)=kW�↵Bk
2

↵⇤,B⇤=argmin
↵,B

J(B,↵)(2)

2
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Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight Wt and
current learning rate ⌘t.

Output: updated weight Wt+1 and updated learning rate ⌘t+1.
1: Binarizing weight filters:
2: for l = 1 to L do
3: for kth filter in lth layer do
4: Alk = 1

n
kWt

lkk`1
5: Blk = sign(Wt

lk)

6: fWlk = AlkBlk

7: Ŷ = BinaryForward(I, B, A) // standard forward propagation except that convolutions are computed

using equation 1 or 11

8: @C

@fW = BinaryBackward( @C

@Ŷ
, fW) // standard backward propagation except that gradients are computed

using fW instead of Wt

9: fW = UpdateParameters(fWt,
@C

@fW , ⌘t) // Any update rules (e.g.,SGD or ADAM)

10: ⌘t+1 = UpdateLearningrate(⌘t, t) // Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network hI, W, ⇤i
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
Rn by a dot product between two vectors in {+1,�1}n. Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X,W 2 Rn such that
XTW ⇡ �HT↵B, where H,B 2 {+1,�1}n and �, ↵ 2 R+, we solve the following
optimization:

↵⇤,B⇤, �⇤,H⇤ = argmin
↵,B,�,H

kXTW � �↵HTBk (7)

We define Y 2 Rn such that Yi = XiWi, C 2 {+1,�1}n such that Ci = HiBi and
� 2 R+ such that � = �↵. The equation 7 can be written as:

�⇤,C⇤ = argmin
�,C

k1TY � �1TCk (8)
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Algorithm 1 Training an L-layers CNN with binary weights:

Input: A minibatch of inputs and targets (I,Y), cost function C(Y, Ŷ), current weight Wt and
current learning rate ⌘t.

Output: updated weight Wt+1 and updated learning rate ⌘t+1.
1: Binarizing weight filters:
2: for l = 1 to L do
3: for kth filter in lth layer do
4: Alk = 1

n
kWt

lkk`1
5: Blk = sign(Wt

lk)

6: fWlk = AlkBlk

7: Ŷ = BinaryForward(I, B, A) // standard forward propagation except that convolutions are computed

using equation 1 or 11

8: @C

@fW = BinaryBackward( @C

@Ŷ
, fW) // standard backward propagation except that gradients are computed

using fW instead of Wt

9: fW = UpdateParameters(fWt,
@C

@fW , ⌘t) // Any update rules (e.g.,SGD or ADAM)

10: ⌘t+1 = UpdateLearningrate(⌘t, t) // Any learning rate scheduling function

3.2 XNOR-Networks

So far, we managed to find binary weights and a scaling factor to estimate the real-
value weights. The inputs to the convolutional layers are still real-value tensors. Now,
we explain how to binarize both weigths and inputs, so convolutions can be imple-
mented efficiently using XNOR and bitcounting operations. This is the key element of
our XNOR-Networks. In order to constrain a convolutional neural network hI, W, ⇤i
to have binary weights and binary inputs, we need to enforce binary operands at each
step of the convolutional operation. A convolution consist of repeating a shift operation
and a dot product. Shift operation moves the weight filter over the input and the dot
product performs element-wise multiplications between the values of the weight filter
and the corresponding part of the input. If we express dot product in terms of binary
operations, convolution can be approximated using binary operations. Dot product be-
tween two binary vectors can be implemented by XNOR-Bitcounting operations [11].
In this section, we explain how to approximate the dot product between two vectors in
Rn by a dot product between two vectors in {+1,�1}n. Next, we demonstrate how to
use this approximation for estimating a convolutional operation between two tensors.

Binary Dot Product: To approximate the dot product between X,W 2 Rn such that
XTW ⇡ �HT↵B, where H,B 2 {+1,�1}n and �, ↵ 2 R+, we solve the following
optimization:

↵⇤,B⇤, �⇤,H⇤ = argmin
↵,B,�,H

kXTW � �↵HTBk (7)

We define Y 2 Rn such that Yi = XiWi, C 2 {+1,�1}n such that Ci = HiBi and
� 2 R+ such that � = �↵. The equation 7 can be written as:

�⇤,C⇤ = argmin
�,C

k1TY � �1TCk (8)
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Fig. 4: This figure shows the efficiency of binary convolutions in terms of memory(a) and
computation(b-c). (a) is contrasting the required memory for binary and double precision weights
in three different architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by
binary convolution under (b)-different number of channels and (c)-different filter size

version of AlexNet is only 2.9% below the full precision version of AlexNet. This clas-
sification accuracy out performs competitors on binary neural networks by large margin.
We also present an ablation study, where we evaluate the key elements of our proposed
method; computing scaling factors and our block structure for binary CNN. We shows
that our method of computing the scaling factors is important to reach high accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is cNWNI, where c is the
number of channels, NW = wh and NI = winhin. Our binary approximation of
convolution (equation 11) has cNWNI binary operations and NI non-binary operations.
With the current generation of CPUs, we can perform 64 binary operations in one clock
of CPU, therefore the speedup can be computed by

S =
cNWNI

1
64cNWNI + NI

=
64cNW

cNW + 64
(12)

The speedup depends on the channel size and filter size but not the input size. In
figure 4-(b-c) we illustrate the speedup achieved by changing the number of channels
and filter size. While changing one parameter, we fix other parameters as follow: c =
256, nI = 142 and nW = 32 (majority of convolutions in ResNet[4] architecture have
this structure). Using our approximation of convolution we gain 62.27⇥ theoretical
speed up, but in our CPU implementation with all of the overheads, we achieve 58x
speed up in one convolution. With the small channel size (c = 3) and filter size (NW =
1 ⇥ 1) the speedup is not considerably high. This motivates us to avoid binarization at
the first and last layer of a CNN. In the first layer the chanel size is 3 and in the last
layer the filter size is 1 ⇥ 1. A similar strategy was used in [11]. Figure 4-a shows the
required memory for three different CNN architectures(AlexNet, VGG-19, ResNet-18)
with binary and double precision weights. Binary-weight-networks are so small that can
be easily fitted into portable devices.
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