CMSC 5743

Efficient Computing of Deep Neural Networks

Mo03: Quantization

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: March 2, 2023)

Spring 2023

Overview

@ Floating Point Number

@ Overview

©® Post Training Quantization
@ Quantization Aware Training

@ Reading List

2/43

These slides contain/adapt materials developed by

Hardware for Machine Learning, Shao Spring 2020 @ UCB

8-bit Inference with TensorRT

¢ Junru Wu et al. (2018). “Deep k-Means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions”. In: Proc. [CML

Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”.
In: Proc. MICRO. IEEE, pp. 1-12

¢ Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network
computing”. In: ACM SIGARCH Computer Architecture News 44.3, pp. 1-13

3/43

Overview

@ Floating Point Number

4/43

Floating Point Number

P

Floating Point Number

Scientific notation: 6.6254 x 10~%7

A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)

Scale factors to determine the position of the decimal point (e.g. 10-% indicates
position of decimal point and is called the exponent; the base is implied)

Sign bit

5/43

Normalized Form

¢ Floating Point Numbers can have multiple forms, e.g.

0.232 x 10* =2.32 x 10°
=23.2 x 10%
=2320. x 10°
= 232000. x 102

e Itis desirable for each number to have a unique representation => Normalized Form

* We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

* [1..2) for BINARY
* [1..10) for DECIMAL

6/43

IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java

32 bits
- L
|s | F | M
Sign of M v
8-bit signed 23-bit
number :
L. exponentin mantissa fraction
0 signifies +
- excess-127
1 signifies —
representation
E'-127
Value represented = *1LM x2
(a) Single precision
0joo0o1o01ro00o0jooro1o - . - 0
—
-87
Value represented = +1.001010 =--- 0 x 2

00101000 > 40

(b) Example of a single-precision number

40-127 =-87

7/43

Note:

® minimum exponent: 1-127 =-126
® maximum exponent: 254 - 127 = 127

° Why 254? If exponents are all 1, the floating num has special values (please refer to
following part)

8/43

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

64 bits
N E' M
Sign J ' \
11-bit excess-1023 52-bit
exponent mantissa fraction
E'-1023
Value represented =+1L.M x2

(c) Double precision

9/43

Question:
What is the IEEE single precision number 40C0 0000;6 in decimal?

10/43

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

¢ Binary: 0100 0000 1100 0000 0000 0000 0000 0000
¢ Sign: +

¢ Exponent: 129 - 127 = +2

® Mantissa: 1.100 0000 ..., — 1.5;9 x 22

— +110.0000 ...,

Decimal Answer = +6.019

10/43

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

11/43

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

* Binary: 1.0... x 27! (in binary)

¢ Exponent: 127 + (-1) = 01111110

¢ Sign bit: 1

® Mantissa: 1.000 0000 0000 0000 0000 0000

¢ Binary representation: 1011 1111 0000 0000 0000 0000 0000 0000

11/43

Special Values

Exponents of all 0’s and all 1’s have special meaning

E=0, M=0 represents 0 (sign bit still used so there is +0)

E=0, M#£0 is a denormalized number +0.M x2 '“° (smaller than the smallest
normalized number)

E=All 1’s, M=0 represents £Infinity, depending on Sign
E=All 1’s, M#0 represents Nall

12/43

Ref: IEEE Standard 754 Numbers

® Normalized +/—1.d...d x 2¢xp

® Denormalized +/-0.d...d x 2min_exp - to represent near-zero numbers
e.g. + 0.0000...0000001 x 2-'26 for Single Precision

Format #bits # significant bits macheps # exponent bits exponent range
Single 32 1+23 224 (~1077) 8 2-126 _ 2+127 (~1(£38)
Double 64 1+52 2-53 (~10-16) 1 2-1022 _ 2+1023 (~q() £308)
Double Extended >=80 >=64 <=2-64(~10"19) >=15 2-16382 _ 2+16383 (~q () £4932)
(Double Extended is 80 bits on all Intel machines)
macheps =Machine Epsilon = = 2~ (#significand bits)

&

mach

vV V

normalized denormalized normalized
negative numbers pesitive
numbers numbers

13/43

Note:

e Smallest normalized: 1.000 0000 ... 0000 , x2 126 =2~126
* Largest denormalized: 0.111 1111 ... 1111 5 x27 120 = (1 — 271/28) x 27126
e Smallest denormalized: 0.000 0000 ... 0000 , x2 126 =2—149

® Smallest denormalized value is much closer to 0

14/43

Other Features

+, -, X, /, sqrt, remainder, as well as conversion to and from integer are correctly
rounded

¢ Asif computed with infinite precision and then rounded

¢ Transcendental functions (that cannot be computed in a finite number of steps e.g.,
sine, cosine, logarithmic, , e, etc.) may not be correctly rounded

Exceptions and Status Flags
¢ Invalid Operation, Overflow, Division by zero, Underflow, Inexact
Floating point numbers can be treated as “integer bit-patterns” for comparisons

¢ If Exponent is all zeroes, it represents a denormalized, very small and near (or equal
to) zero number

¢ If Exponent is all ones, it represents a very large number and is considered infinity
(see next slide.)

Dual Zeroes: +0 (0x00000000) and -0 (0x80000000): they are treated as the same

15/43

Other Features

T inityislike the mathematical one

® Finite / Infinity —0

® Infinity X Infinity — Infinity

¢ Non-zero / 0 — Infinity

e Infinity {FiniteorInfinity} , Tpfinity
1ail (Not-a-Number) is produced whenever a limiting value cannot be
determined:

® Infinity-Infinity — NaN

® Infinity / Infinity — NaN

* 0/0— NaN

® Infinity x 0 — NaN

If x is a NaN, x # x

¢ Many systems just store the result quietly as a NaN (all 1’s in exponent), some
systems will signal or raise an exception

16/43

Inaccurate Floating Point Operations

* E.g. Find 1%t root of a quadratic equation
* r=(—b +sqrt(b*b —4*a*c)) / (2*a)

Sparc processor, Solaris, gcc 3.3 (ANSI C),
Expected Answer 0.00023025562642476431
double 0.00023025562638524986
float 0.00024670246057212353

* Problem is that if c is near zero,
sqrt(b*b —4*a*c)~ b

* Rule of thumb: use the highest precision which does not give up too much speed

17/43

Catastrophic Cancellation

® (a-—b)isinaccurate when a~b

® Decimal Examples

O Using 2 significant digits to compute mean of 5.1 and 5.2
using the formula (a+b)/ 2:

a + b =10 (with 2 sig. digits, 10.3 can only be stored as 10)
10 /2 = 5.0 (the computed mean is less than both numbers!!!)

O Using 8 significant digits to compute sum of three numbers:
(11111113 + (-11111111)) + 7.5111111 =9.5111111
11111113 + ((=11111111) + 7.5111111) = 10.000000
® Catastrophic cancellation occurs when

| [round(x)"e" round(y)]—round(xe y)

>>¢

mach

round(xe y)

18/43

Overview

@ Overview

19/43

Floating-Point Representation

» Normal format: +1.xxx... X0 * 29 Yiwo

3130 23 22 0
S| Exponent | Significand

1bit 8bits 23 bits

* S represents Sign
* Exponent represents y’s
* Significand represents x’s

* Represent numbers as small as
2.0 x 10-38 o as large as 2.0 x 1038

19/43

Floating-Point Representation (FP32)

* IEEE 754 Floating Point Standard
 Called Biased Notation, where bias is number subtracted to get real number
» |EEE 754 uses bias of 127 for single prec.
 Subtract 127 from Exponent field to get actual value for exponent
» 1023 is bias for double precision

* Summary (single precision, or fp32):
3130 23 22 0
15| Exponent | Significand

1bit 8 bits 23 bits
*(-1)% x (1 + Significand) x 2(Exponent-127)

20/43

Floating-Point Representation (FP16)

* IEEE 754 Floating Point Standard
+ Called Biased Notation, where bias is number subtracted to get real number
» |EEE 754 uses bias of 15 for half prec.
* Subtract 15 from Exponent field to get actual value for exponent

* Summary (half precision, or fp15):

1515 109 0
IS | Exponent| Significand |
1bit 5 bits 10 bits

*(-1)° x (1 + Significand) x 2(Exponent-15)

21/43

Question:
What is the IEEE single precision number 40C0 0000;6 in decimal?

22/43

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

¢ Binary: 0100 0000 1100 0000 0000 0000 0000 0000
¢ Sign: +

¢ Exponent: 129 - 127 = +2

® Mantissa: 1.100 0000 ..., — 1.5;9 x 22

— +110.0000 ...,

Decimal Answer = +6.019

22/43

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

23/43

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

* Binary: 1.0... x 27! (in binary)

¢ Exponent: 127 + (-1) = 01111110

¢ Sign bit: 1

® Mantissa: 1.000 0000 0000 0000 0000 0000

¢ Binary representation: 1011 1111 0000 0000 0000 0000 0000 0000

23/43

Fixed-Point Arithmetic

* Integers with a binary point and a bias
* “slope and bias”:y =s*x + z
* Qm.n: m (# of integer bits) n (# of fractional bits)

s=1,z=0 s=1/4,2=0 s=4,2=0 s=1.5,z=10
EIEIEINN EIEDENEN EICIEIN EE I
0 1.5%0 +10
0 0 1 1 0 0 1 1/4 0 0 1 4 0 0 1 1.5*1+10
0 1 0 2 0 1 0 2/4 0 1 0 8 0 1 0 1.5%2+10
0 1 1 3 0 1 1 3/a 0 1 1 12 0 1 1 1.5*3+10
1 0 0 4 1 0 0 1 1 0 0 16 1 0 0 1.5%4+10
1 0 1 5 1 0 1 5/4 1 0 1 20 1 0 1 15*5+10
1 1 0 6 1 1 0 6/a 1 1 0o 24 1 1 0 15%+10
1 1 1 7 1 1 1 7/ 1 1 1 28 1 1 1 1.5*7+10

24/43

Hardware Implications

Multipliers

Sa Sg

Multiplier Example: C=Ax B

€a €g my mg

me

Floating-point multiplier

Fixed-point multiplier

25/43

Background: Quantization in DNN

¢ Formulation:

® Quantization: Q(r) = Int(r/S) — Z
® Dequantization: 7 = S(Q(r) + Z)

¢ Granularity:

¢ Layerwise
¢ Groupwise
¢ Channelwise

Output: §

Layer N-1

Input: x

' ' ' '
' I I I
' I ' i
' I I i
' I I i
' I ' i
Filter 1 ' ' r d
' v '
g H : /\ : :/\:
I i [i
I i [i
Filter 2
(;ﬁ :,,//“\\\J:A,//A\\\H
I I " i
| y I 1k
Filter 3
= | ['
. /\ L :
L b ;
Filter ¢ Layerwise Channelwise
Quantization Quantization

26/43

Background: QAT and PTQ

Pre-trained model [Pre- tralned model] [Callbratlon data]
Training data
Quantization [Calibration]
v v
[Retraining / Finetuning] [Quantization]
v v
[Quantized model] [Quantized model]

¢ QAT: a pre-trained model is quantized and then finetuned using training data to
adjust parameters and recover accuracy degradation.

® PTQ: a pre-trained model is calibrated using calibration data (e.g., a small subset of
training data) to compute the clipping ranges and the scaling factors.

¢ Key difference: Model parameters fixed /unfixed.

27/43

Quantization Algorithms

¢ Symmetric vs Asymmetric: Z =07?

Static vs Dynamic: clipping range of [«, 5] fixed during runtime ?

¢ Uniform vs Non-Uniform Quantization: How to assign bits and discreitize the range
of parameter

Always a trade-off. However in practice, always the prior choice

28/43

Quantization Algorithms

Quantized Weight @

Some practical approaches:
* Weight: Straight Through Estimator (STE) :"‘i Qe =7
* Forward integer, Backward floating point ﬁ> A ﬁ> 2 ﬁ>
® Rounding to nearest it L
o é’(zig;’;ion: PArameterized Clipping acTivation Q= { Qe @

¢ Relu6 — clipping, threshold — clipping

range in quantization
® range upper/lower bound trainable
0, zé€(—0,0)

y=PACT(z)=0.5(z| — |z —a|+a) =q=z, z€[0,a)
a, € [o,+00)

29/43

Simulated quantization vs Integer-Only quantization

FP32 Weight FP32 Activation INT4 Weight INT4 Activation INT4 Weight INT4 Activation
))
J B [Dequantize] J J
L o2]
[Multiplication (FP32) | [Muttiplication (FP32) | [Multiplication (INT4)
| FP32 | FPa2 | INT4
[Accumulation (FP32)] [Accumulation (FP32)] [Accumulation (INT32)]
| FP32 1 INT32
[Requantize] [Requantize]
v
FP32 Activation INT4 Activation INT4 Activation

30/43

Backend Support for Quantization Deployment

¢ Hardware Support

Nvidia GPU: Tensor Core support FP16, Int8 and Int4

Arm: Neon 128-bit SIMD instruction: 4x32bit or 8 x 16bit up to 16 x8bit
Intel: SSE intrinsics, same as above

DSP, AI Chip

® Some common architectures:

® For CPU: Tensorflow Lite, QNNPACK, NCNN
¢ For GPU: TensorRT
¢ Versatile Compiler such TVM.qnn

31/43

- @z

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

...
Do we really need bias?

Two matrices:

A = scale A * QA + bias A
B = scale B * OB + bias B

Let’s multiply those 2 matrices:
A * B = scale A * scale B * QA * QOB +
scale A * QA * bias B +

scale B * OB * bias A +
bias A * bias B

- @z

Do we really need bias?

Two matrices:

A = scale A * QA + biasA
B = scale B * OB + bias B

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB +

scale A * OA * hias B +
sga;e_g * OB * bjas_A +

...
Do we really need bias? No!

Two matrices:

A = scale A * QA
B = scale B * QOB

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB

- @z

Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

If use [-127, 127], s =%

Range is symmetric

1/256 of int8 range is not used. 1/16 of int4 range is not used

If use full range [-128, 127], s = 128

a

Values should be quantized to 128 will be clipped to 127

Asymmetric range may introduce bias

18 <AnviDIA

EXAMPLE OF QUANTIZATION BIAS

05
A=[-22 -11 11 22],B= 8-3 LAB =0
0.5

8bit scale quantization, use [-128, 127]. s

=128/2.2, 55=128/0.5

127
[- —-64 64 127] = —127
127

Dequantize -127 will get -0.00853. A small bias is introduced towards -«

EXAMPLE OF QUANTIZATION BIAS

A=[-22 -11 11 22],B= Igg‘ JAB =0

8-bit scale quantization, use [-127, 127]. s,=127/2.2, sg=127/0.5

127
[-127 —64 64 127]+
127

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

MATRIX MULTIPLY EXAMPLE

(—1.54 0.22) . (0.35)

—0.65
—0.26 0.65 —0.51 (04 1)

—0.423
8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

The result has an overall scale of 63.5* . We can dequantize back to float
(—5222) . _ (—0.648)
—3413 63.5 * —0.423

REQUANTIZE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second
(—98 14) " A4) _ (—5222)
—-17 41 —65 —3413
Requantize output to a different quantized representation with fp range [-3, 3]:

_ 127/3 _
(_giﬁ) * 635%127 (—2573)

Overview

©® Post Training Quantization

32/43

Greedy Layer-wise Quantization!

Quantization flow

¢ For a fixed-point number, it representation is:
bw—1

n= Z Bi.z_fl.zi7
i=0

where bw is the bit width and f; is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

* Weight quantization: find the optimal f; for weights:
fi = arg H}inz |Whoar — W(bw, f1)],
1

where W is a weight and W(bw, ;) represents the fixed-point format of W under the
given bw and f;.

!Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural
network”. In: Proc. FPGA, pp. 26-35. 32/43

Greedy Layer-wise Quantization

Quantization flow

[Input images] (CNN model]
T T

¥

Weight quantization phase

Weight dynamic range analysis
¢ Feature quantization: find the optimal f;
for features:

| Weight quantization configuration |

fi=arg H}IIDZ |X;foat —xt(bw.fi)l, *

Data quantization phase

Fixed-point CNN model Floating-point CNN model
where xT represents the result of a layer [oo] [|
when we denote the computation of a L — L‘ng;—_'m,ysis e I

" optimal quantization strategy

layerasx™ = A - x. [b [o]
I Layer N I I Layer N I

1
[‘Weight and data quantization configuration]

33/43

Dynamic-Precision Data Quantization Results

Network

Data Bits 16 16 8 8 8

Weight Bits Single-float 16 8 8 8 8
Data Precision N/A 2= 22 Impossible 2521 Dynamic Dynamic
Weight Precision N/A 215 27 Impossible 27 Dynamic Dynamic

Top-1 Accuracy 68.1% 68.0% 53.0% Impossible 28.2% 66.6% 67.0%

Top-5Accuracy | 88.0% | 87.9% 766% Impossible 49.7% 87.4%
| Network | CaffeNet VGG16-SVD

Data Bits Single-float 16 8 Single-float 16 8
Weight Bits Single-float 16 8 Single-float 16 8or4
Data Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Weight Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Top-1 Accuracy 53.9% 53.9% 53.0% 68.0% 64.6% 64.1%
Top-5 Accuracy 77.7% 771% 76.6% 88.0% 86.7% 86.3%

34/43

Industrial Implementations — Nvidia TensorRT

No Saturation Quantization — INT8 Inference

° o saturation: map |max| to 127

-|max| 0.0 ; +|max|
3903036362636 36202

Map the maximum value to 127, with unifrom step length.

Suffer from outliers.

35/43

Industrial Implementations — Nvidia TensorRT

Saturation Quantization — INT8 Inference

above |threshold| to 127

T| 0.0 - +T]
R IR IR R e 22

5398 36 9 300¢ 3¢
-127 0: 127

Set a threshold as the maxiumum value.
Divide the value domain into 2048 groups.

Traverse all the possible thresholds to find the best one with minimum KL

divergence.
36/43

Industrial Implementations — Nvidia TensorRT

Relative Entropy of two encodings

¢ INT8 model encodes the same information as the original FP32 model.
® Minimize the loss of information.

® Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative
entropy or information divergence).

® P, Q - two discrete probability distributions:

N

Di(P|Q) = ZP(xi)log

i=1

P(x;)
Q(x;)

¢ Intuition: KL divergence measures the amount of information lost when
approximating a given encoding.

37/43

Overview

@ Quantization Aware Training

38/43

Straight-Through Estimator (STE)?

® A straight-through estimator is a way of estimating gradients for a threshold
operation in a neural network.

¢ The threshold could be as simple as the following function:

f(x)={1’ =0

0, else

¢ The derivate of this threshold function will be 0 and during back-propagation, the
network will learn anything since it gets 0 gradients and the weights won’t get
updated.

2Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating
gradients through stochastic neurons for conditional computation”. In: arXiv preprint
arXiv:1308.3432. 38/43

PArameterized Clipping acTivation Function (PACT)?

® A new activation quantization scheme in which the activation function has a
parameterized clipping level a.

¢ The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

¢ In PACT, the convolutional ReLU activation function in CNN is replaced with:

0, x € (0,0)
fx)=05(x|—|x—a|+a)=< x, x€[0,a)
a, X € [a,+00)

where « limits the dynamic range of activation to [0, «.

3]ungwook Choi et al. (2019). “Accurate and efficient 2-bit quantized neural networks”. In:
Proceedings of Machine Learning and Systems 1. 39/43

PArameterized Clipping acTivation Function (PACT)

¢ The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:
2k 1 e
=round (y- ——) - =——
Yq (y a) 2k _1
* With this new activation function, « is a variable in the loss function, whose value
can be optimized during training.

¢ For back-propagation, gradient % can be computed using STE to estimate %—y; as 1.

y=0.5(x| - |x —a|l + a)
a 9y
Jda

a X a X
PACT activation function and its gradient.

40/43

Better Gradients

Is Straight-Through Estimator (STE) the best?

y =05(x| - |x —al + a)

oa

a X a X

PACT activation function and its gradient.

¢ Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

¢ Poor gradient: STE fails at investigating better gradients for quantization training.

41/43

Knowledge Distillation-Based Quantization*

¢ Knowledge distillation trains a student model under the supervision of a well
trained teacher model.

¢ Regard the pre-trained FP32 model as the teacher model and the quantized models
as the student models.
L(z; Wr, Wa) = aH(y,p") + BH(y,p™) + vH(",p*))
where, W and W4 are the parameters of the teacher and the student (apprentice) network, respec-

tively, y is the ground truth, 7{(-) denotes a loss function and, ¢, 8 and +y are weighting factors to
prioritize the output of a certain loss function over the other.

I

Teacher network

W &
|

Filter bank

q Hard
Input image knowiedge| | |apel
x Apprentice network distillation
—n

S N

Filter bank

*Asit Mishra and Debbie Marr (2017). “Apprentice: Using knowledge distillation techniques to 42/43

Overview

® Reading List

43/43

Further Reading List

¢ Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). “Fixed point
quantization of deep convolutional networks”. In: Proc. ICML, pp. 2849-2858

¢ Soroosh Khoram and Jing Li (2018). “Adaptive quantization of neural networks”. In:
Proc. ICLR

¢ Jan Achterhold et al. (2018). “Variational network quantization”. In: Proc. I[CLR

¢ Antonio Polino, Razvan Pascanu, and Dan Alistarh (2018). “Model compression via
distillation and quantization”. In: arXiv preprint arXiv:1802.05668

® Yue Yu, Jiaxiang Wu, and Longbo Huang (2019). “Double quantization for
communication-efficient distributed optimization”. In: Proc. NIPS, pp. 44384449

® Markus Nagel et al. (2019). “Data-free quantization through weight equalization and
bias correction”. In: Proc. ICCV, pp. 13251334

43/43

	Main Talk
	Floating Point Number
	Overview
	Post Training Quantization
	Quantization Aware Training
	Reading List

