
CENG 3420
Computer Organization & Design

Lecture 03: Arithmetic Instructions

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Textbook: Chapters 2.1 – 2.7)

2024 Spring



1 Introduction

2 Arithmetic & Logical Instructions

3 Data Transfer Instructions

Overview

2/27



Introduction



RISC-V

• An open standard instruction set architecture (ISA)

• A clean break from the earlier MIPS-inspired designs

• Modular ISA organization

• Open standards, numerous proprietary and open-source cores

• Managed by RISC-V Foundation

Welcome to RISC-V

4/27



RISC-V Timeline

5/27



Specification of RISC-V

• Allow / Encourage custom extension

• Emphasize flexibility

• Standard extensions

• I (Integer-related extension)
• M (Standard integer multiply and divide extension)
• A (Atomic extension)
• F (Floating-point extension)
• D (double-precision extension)
• C (Compressed instruction extension)
• G (General purpose extension, including IMAFD)

• G extension in RV32I encodes in 32-bit, C extension encodes in 16-bit

• User / Supervisor / Machine level

Notice
Our Labs will focus on RV32I

Specifications

6/27



Table: RV32I Unprivileged Integer Register

Register Name ABI Name Description

x0 zero Hard-Wired Zero
x1 ra Return Address
x2 sp Stack Pointer
x3 gp Global Pointer
x4 tp Thread Pointer
x5 t0 Temporary/Alternate Link Register

x6-x7 t1-t2 Temporary Register
x8 s0/fp Saved Register (Frame Pointer)
x9 s1 Saved Register

x10-x11 a0-a1 Function Argument/Return Value Registers
x12-x17 a2-a7 Function Argument Registers
x18-x27 s2-s11 Saved Registers
x28-x31 t3-t6 Temporary Registers

RV32I Unprivileged Integer Register

7/27



Return pointer ra/x1

Used to save the subroutine / function return addresses. Before a subroutine call is
performed, x1 is explicitly set to the subroutine return address which is usually pc + 4.

Stack pointer sp/x2

Use to hold the base address of the stack. Stack base address must aligne to 4-bytes, if not,
a load / store alignment fault may arise.

Some Important Registers

8/27



Global pointer gp/x3

Data is allocated to the memory when it is globally declared in an application. RISC-V
places all the global variables in a particular area which is pointed by gp/x3. Hold the
base address of the location where the global variables reside.

Argument register x10–x17

In RISC-V, 8 argument registers (x10 to x17) are used to pass arguments in a subroutine /
function. Before a subroutine call is made, the arguments to the subroutine are copied to
the argument registers. The stack is used in case the number of arguments exceeds 8.

Some Important Registers

9/27



opcode 7-bits, opcode that specifies the operation
rs1 5-bits, register file address of the first source operand
rs2 5-bits, register file address of the second source operand
rd 5-bits, register file address of the result’s destination

imm 12-bits / 20-bits, immediate number field
funct 3-bits / 10-bits, function code augmenting the opcode

Introduction
RV32I Base Types

10/27



Four RV32I Encodes

• Immediate Encoding Variants, e.g., slti, addi, lui, and etc.

• Integer Computational Instructions, e.g., sll, sub, or, and etc.

• Control Transfer Instructions, e.g., jal, jalr, beq, and etc.

• Load and Store Instructions, e.g., lb, ld, sh, and etc.

Notice
We will be detailed in Lab 1-1

Selected Four RV32I Encodings

11/27



Arithmetic & Logical Instructions



• RISC-V assembly language arithmetic statement

add t0, a1, a2
sub t0, a1, a2

• Each arithmetic instruction performs one operation

• Each specifies exactly three operands that are all contained in the datapath’s register
file (t0, s1, s2)

destination = source1 op source2

• Instruction Format (R format)

RISC-V Arithmetic Instructions

13/27



• Small constants are often used in typical assemly code directly

Possible approaches?

• put “typical constants” in memory and load them

• create hard-wired registers (like zero) for constants like 1

• have special instructions that contain constants

addi sp, sp, 4 # sp = sp + 4
slti t0, s2, 15 # t0 = 1 if s2 < 15

• Machine format (I format)

• The constant is kept inside the instruction itself!

• Immediate format limits values to the range −211 to +211 − 1

RISC-V Immediate Instructions

14/27



RARS example: t0 = 0x2b, t1 = 0xfffffffd

RISC-V Immediate Instructions

15/27



• We’d also like to be able to load a 32 bit constant into a register

• For this we must use two instructions

1 A new “load upper immediate” instruction (U-type format, load top 20-bits)

lui t0, 1010 1010 1010 1010 1010b

2 Then must get the lower order bits right, use (I-type format, update low 12-bits)

ori t0, t0, 101010101010b

10101010101010101010

00000000000000000000 101010101010

000000000000

10101010101010101010 101010101010

Aside: How About Larger Constants?

16/27



• We’d also like to be able to load a 32 bit constant into a register

• For this we must use two instructions

1 A new “load upper immediate” instruction (U-type format, load top 20-bits)

lui t0, 1010 1010 1010 1010 1010b

2 Then must get the lower order bits right, use (I-type format, update low 12-bits)

ori t0, t0, 101010101010b

10101010101010101010

00000000000000000000 101010101010

000000000000

10101010101010101010 101010101010

Aside: How About Larger Constants?

16/27



• Need operations to pack and unpack 8-bit characters into 32-bit words

• Shifts move all the bits in a word left or right

slli t2, s0, 8 # t2 = s0 << 8 bits
srli t2, s0, 8 # t2 = s0 >> 8 bits

• Instruction Format (I format)

• Such shifts are called logical because they fill with zeros

• Notice that a 5-bit shamt field is enough to shift a 32-bit value 25 − 1 or 31 bit
positions

RISC-V Shift Operations

17/27



RARS example: t0 = 0x50, t1 = 0x0b

RISC-V Shift Instructions

18/27



There are a number of bit-wise logical operations in the RISC-V ISA

R Format

and t0, t1, t2 # t0 = t1 & t2
or t0, t1, t2 # t0 = t1 | t2
xor t0, t1, t2 # t0 = t1 & (not t2) + (not t1) & t2

I Format

andi t0, t1, 0xFF00 # t0 = t1 & 0xff00
ori t0, t1, 0xFF00 # t0 = t1 | 0xff00

RISC-V Logical Operations

19/27



RARS example: t0 = 0x14, t1 = 0x17, t2 = 0x03, t3 = 0x10, t4 = 37

RISC-V Logical Instructions

20/27



Data Transfer Instructions



• Two basic data transfer instructions for accessing memory

lw t0, 4(s3) # load word from memory
sw t0, 8(s3) # store word to memory

• The data is loaded into (lw) or stored from (sw) a register in the register file – a 5 bit
address

• The memory address – a 32 bit address – is formed by adding the contents of the base
address register to the offset value

• A 12-bit field in RV32I meaning access is limited to memory locations within a region
from −2 KB to 2 KB of the address in the base register

RISC-V Memory Access Instructions

22/27



RARS example: t0 = 0x01, t1 = 0x02, t2 = 0x03, t3 = 0x04, t4 = 0x06, t5 = 0x06

RISC-V Memory Access Instructions

23/27



Load/Store Instruction Format (I format):

Machine Language – Load Instruction

24/27



Load/Store Instruction Format (I format):

Machine Language – Load Instruction

24/27



• Since 8-bit bytes are so useful, most architectures address individual bytes in memory

• Alignment restriction – the memory address of a word must be on natural word
boundaries (a multiple of 4 in RV32I)

• Big Endian: leftmost byte is word address

• IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian: rightmost byte is word address

• RISC-V, Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb
3                    2                    1                      0

little  endian  byte  0

0                    1                    2                      3
big  endian  byte  0

Byte Addresses

25/27



RISC-V provides special instructions to move bytes

lb t0, 1(s3) # load byte from memory
sb t0, 6(s3) # store byte to memory

• What 8 bits get loaded and stored?

• Load byte (lb) places the byte from memory in the rightmost 8 bits to the destination
register; signed-extension

• Store byte (sb) takes the byte from the rightmost 8 bits of a register and writes it to a
byte in memory

Aside: Loading and Storing Bytes

26/27



EX-1:
Given following code sequence and memory state:

add s3, zero, zero
lb t0, 1(s3)
sb t0, 6(s3)

Memory

0x  0  0  9  0  1  2  A  0
Data Word  Address

(Decimal)

0
4
8
12
16
20
24

0x  F  F  F  F  F  F  F  F
0x  0  1  0  0  0  4  0  2
0x  1  0  0  0  0  0  1  0
0x  0  0  0  0  0  0  0  0
0x  0  0  0  0  0  0  0  0
0x  0  0  0  0  0  0  0  0

1 What value is left in t0?

2 What word is changed in Memory and to what?

3 What if the machine was Big Endian?

27/27


	Main Talk
	Introduction
	Arithmetic & Logical Instructions
	Data Transfer Instructions


