
THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LYU2301 Term-End Report :

Large Language Models for Code
Intelligence Tasks

Author:

Canran Liu (SID: 1155157250)

Xingyun Ma (SID: 1155157282)

Supervisor: Michael R. Lyu

Supervising TA: Wenxuan Wang

Acknowledgement

We would like to express the deepest gratitude to our supervisor, Professor

Michael R. Lyu, and our advisor Mr. Wenxuan WANG, for their invaluable

guidance and support throughout this Final Year Project.

Contents

1 Introduction 5
1.1 Background . 5
1.2 TimeEval . 6
1.3 Empirical Study of Code Efficiency . 8
1.4 New Framework for Code Efficiency . 8
1.5 Summary of Contributions . 8

2 Related Works 10
2.1 Large Language Models for Code . 10
2.2 Coding Benchmark for LLMs . 11
2.3 Self-refinement . 12
2.4 LLM-based Multi-Intelligent Agents Collaboration 14
2.5 Prompt Engineering . 15
2.6 Fine-Tuning . 18
2.7 Code Efficiency . 19

3 Dataset Processing 20
3.1 Select the Dataset . 20
3.2 Processing Flow . 21
3.3 Updated Dataset Structure . 25

4 Benchmark Creation 29
4.1 Code Execution . 29
4.2 Metrics and Evaluation Framework . 32

5 Empirical Study on Code Efficiency 35
5.1 Self-refine . 35

5.1.1 Overview . 35
5.1.2 Experimental Details . 36
5.1.3 Results Analysis . 39

5.2 Multi-Agent Collaboration . 42
5.2.1 Overview . 42
5.2.2 Experimental Details . 42
5.2.3 Result Analysis . 46
5.2.4 Multi-agent collaboration with new Tester for code efficiency . . 47

6 Methodology 51
6.1 Generative Executor Module . 51
6.2 Self-Refine-Executor Framework . 55

6.2.1 Motivation . 55
6.2.2 Framework Description . 56

3

6.3 Multi-Agent-Executor Framework . 58
6.3.1 Motivation . 58
6.3.2 Framework Description . 58

7 Experiments 61
7.1 Setup . 61
7.2 Baseline Experiment . 62
7.3 Self-Refine-Executor . 63

7.3.1 Experimental Details . 63
7.3.2 Results Analysis . 66

7.4 Multi-Agent-Executor . 68
7.4.1 Experimental Details . 68
7.4.2 Results Analysis . 71

7.5 In-context Learning . 72
7.5.1 Experimental Details . 72
7.5.2 Results Analysis . 77

7.6 Others . 79
7.6.1 Simple Prompt Engineering . 79
7.6.2 Chain-of-Thought(CoT) . 80

8 Conclusion 82

9 Division of Labor 83
9.1 Xingyun Ma . 84
9.2 Canran Liu . 84

4

1 Introduction

1.1 Background

Code generation tasks have garnered considerable attention from researchers and have

evolved significantly since the introduction of Large Language Models (LLMs). There

are many different perspectives in exploring LLM-based code generation. For instance,

code readability, code accuracy, and code robustness. One of the most important metrics

to measure is the efficiency of the code. Ensuring efficiency is a crucial aspect of

programming, particularly when computational resources are limited or the program is

utilized at a large scale[13].

The vast majority of existing research on LLM-based code generation focuses only on

exploring the accuracy and the readability of the code. In these few studies that discuss

the efficiency of generating code, Mandaan et al. and Chen et al. in their studies used

fine-tuning CODEGEN and training seq2seq models respectively, and achieved impressive

improvements in code efficiency [5, 13]. However, their approach requires a lot of

computational resources and a massive code dataset to support model training. How to

enable users who lack computing resources to realize the efficiency improvement of the

code becomes a research topic worth pondering.

Inspired by many previous outstanding studies using LLM-based self-refinement and

multi-agent collaboration frameworks to improve code accuracy [4, 8, 14, 15, 17], we

would like to propose a novel LLM-based self-refinement and multi-agent collaboration

5

framework, since relatively small API charges were required to implement methods in

their study. Our framework can achieve similar performance as previous studies, which

can significantly improve code efficiency, under limited computational resources and

training datasets.

Moreover, no existing benchmark can systematically measure the efficiency of code

generation tasks. We would like to create a benchmark that makes it possible to measure

the efficiency of different code generation methods under the same scale.

1.2 TimeEval

To achieve the aforementioned goals, We have introduced a benchmark named timeEval,

rooted in two datasets: the APPS[7] and the CodeContests[12]. TimeEval is an abbrevia-

tion for time evaluation. The specific benchmark build process is described in detail in

Section ??.

The following components are included in the timeEval benchmark:

• Problem set of size 111. The problem set comprises 111 questions designed to

assess the efficiency of generated code. These problems frequently admit multiple

solutions, and opting for a different approach can lead to significant variations

in execution time. These differences in execution time are usually caused by

differences in the time complexity of the algorithms.

• Canonical solution for each problem. We provide an optimal solution for each

6

problem. So when exploring the efficiency of the generated code, the efficiency can

be confirmed by comparing the execution time with that of the optimal solution.

It’s important to note that the term optimal solution in this context doesn’t denote

absolute optimality. Rather, a solution is deemed optimal if it attains the best

possible time complexity and successfully passes all test cases. Consequently, we

refer to it as the canonical solution.

• Correct but slow solution for each problem. We also provide a correct but

less efficient solution for each problem, which is generated by the ‘gpt-3.5-turbo-

0613’ model. And we ensure that this solution passes all the test cases, while it

is less efficient compared to the canonical solution. We offer this solution firstly

to demonstrate that all problems in our dataset have room for improvement in

terms of code efficiency, and secondly to facilitate researchers in tasks such as code

optimization or experiments like self-refinement that require original inputs.

• Test cases for each question. We prepared 30 test cases for each problem, which

contained some very small-sized cases to check the correctness of the code, and

some very large-sized cases to highlight the difference between the generated code,

which has a large time complexity, and the canonical solution.

• A framework for automated measurement of code efficiency. We provide

an automated code framework in benchmark to comprehensively measure the

efficiency of the generated code.

7

1.3 Empirical Study of Code Efficiency

After establishing the timeEval benchmark, we first conducted an empirical study on the

efficiency of generated code on our benchmark. In this empirical study, we focused on

analyzing the performance in code efficiency of two frameworks: self-refinement and

multi-agent collaboration. This successfully addresses the current research gap concern-

ing the efficiency of generated code. The design and discussion of the experiments are

detailed in Section 5.

1.4 New Framework for Code Efficiency

After conducting an empirical study, we identified several issues within the existing

frameworks. To address these issues, we developed our own framework, which achieves

a balance between improving code efficiency and accuracy. This tradeoff is crucial for

enhancing the performance of code generation systems. The design and discussion of

the experiments are detailed in Section 6.

1.5 Summary of Contributions

The following are some of the main contributions we have made during this semester’s

project.

• Propose metrics. Propose a set of metrics that comprehensively evaluate the

execution efficiency of generated code.

8

• Measure and process code contests dataset. We finished in-depth testing of

the code contests dataset. In total, we tested more than 13,000 problems with

520,000 corresponding solutions and 780,000 corresponding test cases. Proposed

a reasonable process for processing the dataset, and filtered out the problems

that were difficult to be solved efficiently by the gpt-3.5-turbo model through this

process.

• Improve timeEval benchmark. We have successfully extended last semester’s

TimeEval benchmark from monolingual Python to encompass multilingual support

for Python, C++, and Java. Additionally, we’ve developed a comprehensive

automated code execution framework, marking it as the first multilingual code

efficiency benchmark of its kind that we have known of.

• Propose multiple frameworks. We explore strategies for improving the efficiency

of generated code from several perspectives. These include, but are not limited to:

simple prompt engineering, chain-of-thought, In-context learning, self-refinement,

and multiagent collaboration frameworks. We first migrated these frameworks to

the code efficiency task and then improved them with encouraging results.

9

2 Related Works

2.1 Large Language Models for Code

With the continuous development of LLMs, their applications have expanded broadly

across various domains. Among these, research in the area of LLMs for coding tasks

has emerged as a popular topic, encompassing tasks such as code understanding, code

completion, code generation, and code repair. Notably, the LLM CodeX, pioneered by

Chen et al[2]., has achieved remarkable results in code-related tasks, leading to a surge

of commercial products such as GitHub Copilot, as well as numerous coding models

including StarCoder[10] and Code LLaMA[16][21]. Moreover, general large language

models like ChatGPT, which are not solely focused on coding, also exhibit exceptional

performance in coding tasks. Figure 1, taken from a survey on language models for code

written by Zhang et al.[21], illustrates the current major types of language models for

code and their typical representatives.

10

Figure 1: The overview of current language models for code[21]

2.2 Coding Benchmark for LLMs

Existing code benchmarks primarily focus on assessing the functional correctness of code.

For instance, the most popular LLM code benchmark currently is the HumanEval dataset,

proposed by Chen et al. in 2021[2]. It consists of 164 hand-crafted Python programming

problems, primarily testing language understanding, reasoning, algorithms, and simple

mathematical problems. Each problem is accompanied by several test cases and a

canonical solution, allowing for the evaluation of the code’s functional correctness. APPS

is another Python coding dataset, comprising 10,000 coding problems, 131,836 test cases

for checking solutions, and 232,444 human-written actual solutions, aimed at measuring

11

coding skills and problem-solving abilities[7]. There are also datasets for testing other

languages, such as HumanEval-X[22], which includes Python, C++, Java, JavaScript,

and Go, and the WikiSQL dataset for evaluating SQL[23], among others. However, we

have observed that most current code datasets focus on the functional correctness of

code generated by LLMs or LLMs’ ability to understand text and code, lacking a dataset

that can assess code efficiency. Therefore, we propose a new benchmark aimed at testing

and evaluating the efficiency of code generated by LLMs.

2.3 Self-refinement

SELF-REFINE is a framework proposed by Madaan et al.[14], aiming to imitate human

thinking to enable LLMs to improve their outputs through iterative feedback. The core

concept of SELF-REFINE is to obtain an initial output generated by LLM and then make

LLM provide feedback on its initial output; finally, the LLM refines its previous output

based on its own feedback.

Figure 2: The process of SELF-REFINE[14]

12

The primary process of SELF-REFINE is depicted in Figure 2. It includes two iterative

workflows: ‘Feedback’ and ‘Refine’. Initially, the model generates an output based on

the prompt, which is then fed back to the model, followed by obtaining feedback on

this original output. This feedback is then provided to the model to refine the initial

output. This process can be iterated multiple times to achieve optimal results, simulating

the process of human thinking and correcting errors. The results indicated that in all

seven different tasks, the outcomes generated by SELF-REFINE were an improvement

over those produced directly by GPT-3.5 and GPT-4.

In the empirical study, we followed the experimental setup of the SELF-REFINE frame-

work proposed by Madaan et al[14] to implement this framework on our dataset timeEval.

This framework, which allows the model to think and adjust, inspired us and enabled us

to propose our own framework.

13

2.4 LLM-based Multi-Intelligent Agents Collaboration

Figure 3: Related work on using LLMs as brains for agents[20].

14

LLMs possess characteristics of autonomy, reactivity, and pro-activeness, making them

exceptionally well-suited to serve as the main part of the brains of AI agents [20]. As

shown in Figure 3, there is a large amount of work that employs LLMs as a brain for

intelligent agents. Among them, code generation task using LLM-based agents is a

highly promising work. In certain studies, these forms of intelligence iteratively refine

each other’s actions over multiple conversational rounds. Notably, concerning the code

generation task, previous research in references [3] and [8] addressed the critical coding

aspect of software development by employing LLMs in the capacities of Manager, Tester,

and Programmer. It’s worth noting that the majority of existing research tends to involve

the agent’s role in software engineering development, with limited exploration of LLM-

based agents aimed at enhancing the efficiency of specific code. There is still a gap in

research on using multi-agent collaboration to improve code efficiency.

2.5 Prompt Engineering

The generation of outputs by large language models is fundamentally a process of

predicting the next token, and this prediction is based on the prompt provided by the

user. Therefore, the prompt is crucial to the model’s output. Prompts can control

the content generated by the model, and guide it to produce specific outcomes, and

optimizing prompts can enhance the accuracy and efficiency of the model’s outputs.

Consequently, prompt engineering has emerged as a popular research trend. Here, we

introduce several prompt methods that will be utilized in our subsequent experiments.

15

Zero-shot Prompt[1]

Figure 4: Example of zero-shot[1]

As illustrated in Figure 4, zero-shot learning involves providing the model directly with

the task description without any examples. In this scenario, the model only relies on

the task description to infer the answer. The advantage of zero-shot learning is its high

flexibility. However, a drawback is that the model may not grasp the subtle nuances of

some tasks, leading to answers that are either inaccurate or overly general.

One-shot Prompt/ Few-shot Prompt[1]

Figure 5: Example of one-shot[1]

16

Figure 6: Example of few-shot[1]

One-shot learning involves providing the model with a single example along with a task

description (as shown in Figure 5), while few-shot learning (as illustrated in Figure 6)

entails presenting the model with multiple examples and a task description. These

examples typically include both inputs and expected outputs, enabling the model to

better understand the task requirements. Therefore, the outcomes of one-shot and

few-shot learning are often superior to those of zero-shot learning. However, a downside

is the potential to reach the limits of input and output length.

Chain of Thought (CoT)[19]

17

Figure 7: Example of CoT[19]

Chain of Thought (CoT) refers to the process of human thinking. Applying the CoT

concept to language models can encourage the model to reason about questions, allowing

it to decompose a complex problem into multiple intermediate steps to obtain more

accurate answers. CoT is often used in conjunction with one-shot/few-shot learning,

as its principal idea is to provide the model with examples that include explanatory

reasoning processes. Consequently, the model tends to simulate this reasoning process

in the examples. This type of reasoning often leads to more accurate results. Figure 7

illustrates an example of CoT, where the addition of a reasoning process in the example

changes the model’s answer from incorrect to correct.

2.6 Fine-Tuning

Fine-tuning is a common method for enhancing the performance of LLMs. Many studies

have explored the effectiveness of fine-tuning LLMs. Particularly, in the paper ‘Learning

Performance-Improving Code Edits’[18], researchers utilized their own PIE dataset to

18

fine-tune pre-trained models, aiming to achieve better performance in code optimization.

They addressed data imbalance issues during the fine-tuning process and implemented

strategies such as introducing high-quality data subsets and performance tags. Their

findings suggest that fine-tuning LLMs can effectively improve their performance in

code optimization tasks. However, it’s important to note that the fine-tuning process

may face challenges, especially regarding its high costs, particularly with large-scale

datasets or when numerous iterations are needed. Therefore, in practice, researchers

need to balance the relationship between the performance benefits of fine-tuning and its

associated costs to determine whether it is worthwhile.

One of the main reasons for our choice not to use fine-tuning is that other studies

have already explored this method in terms of code optimization. Thus, we aim to

explore different approaches to enhance the efficiency of LLMs for code. Additionally, the

relatively high cost of fine-tuning, along with the high requirements for dataset quality

and balance, presents certain challenges for us. Hence, we opted to use other different

strategies to improve the efficiency of the code generated by LLMs.

2.7 Code Efficiency

Code efficiency is another critical aspect of code quality, in addition to correctness. We

typically analyze it from two dimensions: time and space, represented by time complexity

and space complexity, respectively. We employ a universal method, the Big O notation,

to measure and describe complexity. The definition of Big O notation is as follows: A

19

function g(n) is said to be O(f (n)) if there exist positive constants c and n0 such that

0 ≤ g(n) ≤ c · f (n) for all n ≥ n0

In this case, we write g(n) =O(f (n)).

This allows us to ignore factors like hardware and analyze code efficiency more funda-

mentally and intuitively. There is an inherent trade-off between time complexity and

space complexity. Generally, it is not possible to optimize both simultaneously. However,

since space complexity is more challenging to assess and measure automatically, our

research focuses on evaluating and improving the time complexity of code.

3 Dataset Processing

3.1 Select the Dataset

Last semester, we presented the Python code efficiency benchmark timeEval. This

semester, we started to extend timeEval to a multilingual dataset. First, we have to pick

a suitable dataset as a cornerstone. The data will be processed and filtered and then

added to timeEval.

The code contests dataset consists of 13328 samples in the training set, 117 samples

in the validation set, and 165 samples in the test set. Additionally, the code contests

dataset covers multiple programming languages, including Python 2, Python 3, Java, and

20

C++[11]. In addition, the questions in code contests are derived from programming

competitions, which are generally answered by different algorithms, and the differences

in these algorithms often bring about differences in time complexity and thus differences

in code execution time.

To summarize, the codeContests dataset offers the advantages of large sample size,

support for multiple programming languages, and challenging questions. Therefore, we

have selected this dataset as the foundation for processing and filtering. The processing

flow is as follows.

3.2 Processing Flow

First, we realized that we would face several problems if we randomly selected some

questions directly from APPS as our dataset to evaluate the efficiency of the generated

code.

• Uneven number of test cases. Certain problems within the dataset feature a

limited number of test cases (less than 10), and these cases may involve only

small-sized inputs. In such instances, the disparity in execution time between

algorithms with varying efficiencies, such as different time complexities, is not

notably significant. This can potentially impact the accuracy of the measurement

results.

• The quality of the problem varies. Certain problems within the dataset are

unsuitable for exploring code efficiency. Typically, these problems offer only one

21

fixed solution, leaving no room for potential efficiency enhancements.

• The quality of the solutions in the dataset varies. In the solutions that come

with the dataset, certain solutions employ algorithms with high time complexity,

making them unsuitable for evaluation as the ground truth for generated code.

Due to these considerations, in the initial phase of the process, For Python3, C++, and

Java, we conducted tests on the first 20 self-contained solutions within the dataset, which

comprises 13,328 problems. We excluded problems where the number of test cases

was less than 10 or none of the self-contained solutions could pass all the test cases. In

addition, we have also removed languages that only support Python2, as we consider

Python2 to be a niche language nowadays. After completing this step, we can ensure

that all remaining problems have a correct solution in at least one language and that

there are enough test cases for each problem.

Following that, we measured the time and manually analyzed the solutions for each

problem across all test cases to confirm optimal time complexity. After filtering out these

solutions with optimal time complexity. We then select the solution with the shortest

specific execution time from them. We ensured that the selected solution exhibited

the least execution time among all the solutions tested for that specific problem. After

this step, we are guaranteed to have at least one correct solution with optimal time

complexity for the remaining problems, and this solution will be used as the canonical

solution in our benchmark. This canonical solution plays a role similar to ground truth

in our benchmark. We will execute the canonical solution and compare it with the

22

execution time of the generated code to discuss the efficiency of the generated code.

Figure 8: Screenshot of some of the data in the flow of processing the APPS dataset.

Next, we employed the gpt-3.5-turbo model to generate code for the remaining problems.

We assessed both the time and accuracy of these generated codes. In detail, we measured

the execution results and execution times of the generated code for each test case in every

problem. The execution results were categorized into three types: correct input/output

correspondence (passed tests), incorrect input/output correspondence (wrong answers),

and timeout (time limit exceeded). In this filtering round, we utilized the ratio of the

execution time (opt time) of canonical solutions to the execution time (gen time) of the

23

generated solutions, ordering them in ascending order, as depicted in Figure 8. A smaller

value of opt time/gen time indicates a larger gap between the execution time of the

gpt-3.5-turbo generated code and the execution time of the optimal solution. We also

make a preliminary inference based on this metric that the code generated by LLMs is

less efficient on these problems. So we picked the problem in which opt time/gen time

was in the interval [0,0.5].

Furthermore, we corrected erroneous considerations in how we handled the data last

semester. We aimed to ensure that the chosen questions underwent modeling with gpt-

3.5-Turbo to generate accurate yet inefficient code. In the prior semester, our selection

process focused on questions with fewer than 20% wrong cases, which lacked rigor.

According to the academic definition of code pass or fail, the presence of just one

failed test case deems the code incorrect. Therefore, in the processing procedure, we

eliminated all questions associated with incorrect answers. Moreover, we apply the same

filtering criteria to our previous TimeEval data. Subsequently, the filtered data from the

code contests dataset and the old timeEval dataset are combined to create a new dataset.

In this new dataset, we are able to guarantee that all problems are gpt-3.5-turbo can

directly generate correct but inefficient code, thus allowing us to more accurately measure

the impact of the code generation framework on efficiency as well as correctness. The

statistics of the dataset are shown in the table below:

24

Supported Language Number of Problems
C++ only 52
Java only 18

Python only 32
Python and C++ only 1
Java and C++ only 7

C++, Java and Python 1
Intotal 111

Table 1: Supported Languages and Number of Problems

Note: Ours aims to provide a dataset that is challenging on code generation tasks. We

expect that using the gpt3.5-turbo model directly on our dataset will generate slow but

correct code. This allows for a more systematic measurement of methods to improve

code efficiency. For these reasons, a situation may arise where the same problem occurs

in the Python language that meets our filtering criteria, but not in the Java and C++

languages. We then use the problem only as data for testing code efficiency in the Python

language.

3.3 Updated Dataset Structure

After the update, we have a total of 111 samples inside the dataset. The file structure of
each of these samples is shown below.

question.txt

canonical solution.cpp

canonical solution.java

canonical solution.py

input output.json

metadata.json

canonical solution.language denotes the ground truth solution for the corresponding

programming language, as depicted in Figure 10. The content in the file input out.json

25

are pairs of input and output test cases. metadata. json file has detailed data about the

source of this question, and the types of programming languages supported. As shown in

the example in Figure 9, the problem supports three languages C++, Java, and Python.

26

{

"name": "p02470 Euler ’s Phi Function",

"source": 6,

"difficulty": 0,

"cf_contest_id": 0,

"cf_index": "",

"cf_points": 0.0,

"cf_rating": 0,

"cf_tags": [

""

],

"is_description_translated": false ,

"untranslated_description": "",

"time_limit": {

"seconds": 1,

"nanos": 0

},

"memory_limit_bytes": 134217728 ,

"language": [

"C++",

"Java",

"Python"

],

"dataset_source": "CodeContests_03751"

}

Figure 9: metadata.json in question 157 in the timeEval dataset

27

#include <iostream >

#include <map >

#define itr(it ,a) for(auto it=(a).begin ();it!=(a).end();++it)

std::map <int , int > prime_factor(int n)

{

std::map <int , int > ret;

for(int i = 2; i*i <= n; ++i) while(n % i == 0)

{

++ret[i];

n /= i;

}

if(n != 1)

++ret[n];

return ret;

}

int phi(int n)

{

auto m = prime_factor(n);

itr(it , m)

{

n /= it->first;

n *= it->first -1;

}

return n;

}

int main()

{

int n;

std::cin >> n;

std::cout << phi(n) << std::endl;

return 0;

}

Figure 10: canonical solution.cpp in question 157 in the timeEval dataset

28

4 Benchmark Creation

In addition to the dataset, we added a framework for measuring the efficiency of

generated code to the timeEval benchmark.

4.1 Code Execution

Last semester, our dataset contained only Python, but now our dataset supports not only

Python but also C++ and Java. Accordingly, we have added frameworks for executing

C++ and Java programs to our benchmark.

As shown in figure 11. After running the timeEval benchmark’s test framework, the test

framework asks the user for the language to be tested. After the user enters the language

to be tested, the code execution framework automatically detects the metadata.json file

in each problem in the dataset. If a problem corresponds to the metadata.json file that

exists in the language, it means that the problem supports that language. The generated

solution and canonical solution of the problem will be executed.

Figure 11: Test framework inquiry.

Python code execution Since Python is an interpreted language, executing Python

does not require compilation. Python codes will be executed directly using subpro-

cess.check output() within the execution framework.

C++ code execution C++ code needs to be compiled for execution. We took g++ to

29

compile the C++ code. The compile command is executed by subprocess.run(). The rele-

vant code snippet is shown in the figure 12. If compiled successfully, the output executable

file generated by the compilation will be executed using subprocess.check output(). If

the compilation is unsuccessful, the compilation error message will be displayed in the

result.

It is worth noting that in order not to take up too much storage space. The out-

put executable file is deleted by the code execution framework after each execution.

Moreover, the compilation time will not be counted as part of the program run time.

Figure 12: C++ code compilation

Java code execution Java code not only needs to compile but also to ensure that the

name of the public class and the file name are the same. So the implementation of the

framework to automatically execute the Java code process is more complex. We used

the following strategy to execute the Java program:

First, as shown in Figure 13. We designed the get public java class() function to detect

the name of the public class in each .java file. Then copy the original .java program file

to a temporary folder tmp. And change the name of the .java file to the public class name

we got in the previous step. We then compile the Java file using a Java virtual machine

and execute the compiled executable.

Similar to the execution of a C++ program, we delete the tmp folder after execution to

30

reduce the storage footprint. Also, when executing the framework execution to calculate

the code runtime, the time spent on copying, compiling, etc. will not be counted.

Figure 13: Get the public class name.

Our measure of the generated code’s efficiency requires comparing the generated code’s

running time with the optimal solution’s running time. To ensure that they run on

the same hardware environment, e.g., CPU, we execute the canonical solution and

the generated solution for each measurement and generate a report(shown in figure

14). If the result is correct, we label the case as True. If the result is incorrect, it is

marked as False. In the case of a timeout, it is labeled as Timeout. Users employing our

benchmark have the flexibility to adjust the value of the timeout parameter directly from

the command line. Moreover, if the program has a compilation error, then all results will

show a compilation error and the output will be empty.

31

Figure 14: TimeEval performs the case-by-case evaluation of the generated code.

4.2 Metrics and Evaluation Framework

Unlike last semester’s less rigorous metrics, we have updated our metrics for code

efficiency this semester. Following the code execution in the previous step, we obtain a

comprehensive record of the generated code’s execution. Subsequently, our evaluation

framework translates these statistics into concise quantitative metrics. In terms of

metrics to measure the accuracy of the code, we have taken the metric Pass@k, which is

commonly used in academia[2].

The five metrics we set up are as follows:

• Total Time TT : Total time(TT) measures the average time it takes for the gen-

erated code to finish executing all test cases. In our experiments, each time we

encountered a timeout case, we added five seconds of penalty to the TT of that

program. TT is defined as:

32

T T = 1
N

∑
tgen

This metric allows the user to roughly determine the overall execution time of the

code.

• Efficiency Level %EL : In a problem, find the total execution time of the generated

code on all passed test cases and find the total execution time of the optimal solution

on the corresponding test cases. Efficiency Level (EL) is the ratio of the latter to

the former. In our experiments, we used the average EL of all generated programs

as a metric.

Let’s assume in the kth problem, there are n passed test cases, where each test

case can be divided into two scenarios: the execution time of the generated code,

denoted as Gi , and the execution time of the corresponding optimal solution,

denoted as Oi . Then, two sets can be defined:

G = {G1,G2, ...,Gn}

O = {O1,O2, ...,On}

Then, the Efficiency Level (EL) can be defined as the ratio of the total execution

time of the optimal solution to the total execution time of the generated code:

ELk =

∑
Oi∈OOi∑
Gi∈GGi

%EL = 1
N

∑N
K=1ELk ∗ 100%

This metric allows us to determine the efficiency gap between the generated code

33

and the optimal solution. As this metric approaches 100, the efficiency of the

generated code approaches that of the optimal code; conversely, as it approaches 0,

the efficiency of the generated code diminishes relative to the optimal code.

• Timeout Rate %TR : Percentage of timeout test cases out of all test cases. We

use this metric to see what percentage of test cases will make the generated code

unable to complete execution within the time limit.

• Pass@1: The metric was proposed by Chen et al. [2] to measure the accuracy of

the code and is defined as follows:

pass@1 := E

Problems

[
1−

(n−c
1
)(n

1
)]

(1)

Where c is the number of correct codes passed in all the test cases.

• optimal solution ratio %Opt : Proportion of programs where the execution time

of the generated code is close enough to the execution time of the optimal solution

in the test set (Canonical solution). That is, the code execution time that satisfies

the equation,

tgen−topt
topt

< θ

where tgen represents the execution time of generated code, topt represents the

execution time of optimal code and θ represents the threshold. The execution

time is defined as close enough when the LHS is less than the threshold. In our

experiments, we set θ to 0.5.

34

Our benchmark will automatically measure the above metrics and provide feedback

to the user. In addition, the user has the option of exporting the test results to Excel

for more detailed analysis. (Shown in Figure 15) In the table, the user can observe

some additional information, such as the problem index, the number of passed tests, the

number of wrong answers, and the number of time limits exceeded.

Figure 15: An example of generated Excel form.

5 Empirical Study on Code Efficiency

5.1 Self-refine

5.1.1 Overview

To explore the practicality and effectiveness of self-refinement, we conducted an empirical

investigation based on the self-refinement framework proposed in the paper “SELF-

REFINE: Iterative Refinement with Self-Feedback”[14]. This framework is shown in the

35

figure 16 and mainly includes two steps: feedback and refinement. The main process is

as follows: First, the model generates an initial output based on the given initial input;

then, this output is fed back to the model to obtain feedback for improvement; next, the

output is refined based on the feedback. This process is iterated continuously until it

meets specific stopping criteria for the iteration.

Figure 16: The process of SELF-REFINE[14]

5.1.2 Experimental Details

Framework and Process

While respecting the original experimental setup in the paper, we modified the framework

according to the structure of timeEval to suit our dataset. The specific process is as

follows:

• Initialization Phase: The model is first provided with a correct yet slow version

of code, and it is tasked to directly generate an optimized version of this code.

• Feedback Phase: Then, the optimized version of code is given back to the model

to obtain feedback.

36

• Refine Phase: After receiving the feedback, it is again passed back to the model

for further improvements based on the feedback.

The feedback and refine steps are iteratively continued until the stopping conditions.

There are two conditions for stopping the iteration: one is when the model’s feedback

indicates that the code is efficient enough, and the other is reaching the maximum

number of iterations, which is set to four as per the experimental setup in the paper. For

the first condition, our marker is to check whether the feedback included the words “is

not slow.”

Prompt

Madaan et al[14] also use the few-shot prompt approach to enhance the model’s perfor-

mance. Few-shot prompts were applied during the initialization and feedback phases.

More specifically, the prompts used in the experiment are as follows:

• Initialization Prompt:

slower version:

a, b = input().split()

n = int(a + b)

flag = False

for i in range(n):

if i ** 2 == n:

flag = True

break

print(’Yes’ if flag else ’No’)

optimized version of the same code:

a, b = input().split()

37

n = int(a + b)

flag = False

for i in range (1000):

if i ** 2 == n:

flag = True

break

print(’Yes’ if flag else ’No’)

END

More examples...

slower version:

{The correct but slow code provided by timeEval}

optimized version of the same code:

• Feedback Prompt:

a, b = input().split()

n = int(a + b)

flag = False

for i in range(n):

if i ** 2 == n:

flag = True

break

print(’Yes’ if flag else ’No’)

Why is this code slow?

38

This code is slow because it is using a brute force

approach to find the square root of the input number.

It is looping through every possible number starting

from 0 until n. Note that the sqare root will be

smaller than n, so at least half of the numbers it is

looping through are unnecessary. At most , you need to

loop through the numbers up to the square root of n.

END

More examples...

{The correct but slow code provided by TimeEval}

Why is this code slow?

• Refine Prompt:

{The correct but slow code provided by TimeEval}

Why is this code slow?

{Feedback from the model}

How to improve this code? Please provide the improved version of the code.

5.1.3 Results Analysis

The experimental results (shown in Table 2, 3 & 4) showed that, compared to the

baseline model, the code after self-refinement significantly improved in efficiency. Both

the Efficiency Level and %opt, the metrics used to measure efficiency, showed significant

improvement, indicating that the self-refinement framework is effective in enhancing

39

code efficiency. However, the drop in accuracy is also obvious. To address this, we

conducted case studies to explore potential reasons for the decrease in accuracy.

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

Self-refinement Python 7.0 41.9 2.5 61.8 11.8

Table 2: Experimental Results of Self-refinement in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

Self-refinement C++ 4.3 63.4 2.2 52.5 37.7

Table 3: Experimental Results of Self-refinement in C++

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0.0 100.0 3.8

Self-refinement Java 7.5 30.7 2.6 46.1 7.3

Table 4: Experimental Results of Self-refinement in Java

Case Studies

A specific example is question 71 in the dataset. The question is: “Once Max found an

electronic calculator from his grandfather Dovlet’s chest. He noticed that the numbers were

written with seven-segment indicators. Max starts to type all the values from a to b. After

typing each number Max resets the calculator. Find the total number of segments printed

on the calculator. For example if a = 1 and b = 3 then at first the calculator will print 2

segments, then - 5 segments and at last it will print 5 segments. So the total number of

printed segments is 12.”. And the slow but correct code provided by TimeEval is:

40

a, b = map(int , input ().split())

segments = [6, 2, 5, 5, 4, 5, 6, 3, 7, 6]

total_segments = 0

for num in range(a, b+1):

for digit in str(num):

total_segments += segments[int(digit)]

print(total_segments)

After initialization, the model returned an optimized code:

a, b = map(int , input ().split())

segments = [6, 2, 5, 5, 4, 5, 6, 3, 7, 6]

total_segments = sum(segments [(num // 10) % 10] +

segments[num % 10] for num in range(a, b+1))

print(total_segments)

Analysis revealed that the original code converts each number to a string and then

processed it character by character, which was especially time-consuming for larger

numbers. The optimized code accesses each digitś units and tens directly through

arithmetic operations, avoiding string operations. The optimized code uses the list

segments to directly obtain and sum the corresponding display segment counts. Thus,

the optimized version reduced internal loops and simplified calculations. However, the

optimized code did not pass all the test cases because it assumes that all numbers are two

digits, leading to incorrect results for numbers with more than two digits. For example,

for a three-digit number like 123, the optimized code would only calculate the display

segments for the tens and units of 12, ignoring the contribution of the highest digit 3,

resulting in incorrect outcomes.

41

We manually analyzed 20 cases where errors occurred after self-refinement and found

that in 12 cases, errors were present right from the initialization, 5 cases had errors after

the first round of self-refinement, 1 case after the second round, and 2 cases after the

fourth round. It is evident that most cases had errors from the initialization or after

the first round, but since the feedback only concerned code efficiency, subsequent self-

refinements did not correct the errors, leading to worse code. This discovery suggests that

in the self-refinement framework, detection, and feedback regarding code correctness

should be enhanced to ensure that code optimizations do not compromise accuracy.

5.2 Multi-Agent Collaboration

5.2.1 Overview

To explore the practicality and effectiveness of multi-agent collaboration, we conducted

an empirical investigation based on the multi-agent collaboration framework proposed in

the paper “Self-collaboration Code Generation via ChatGPT” [6], as shown in Figure 17

. We chose this framework because it clearly splits the roles into Analyst, Coder, and

Tester. The division of responsibilities among these roles aligns with the conventional

workflow in software engineering, and the structure of the framework is clear, which

facilitated our further adjustments and optimizations.

5.2.2 Experimental Details

Experimental Framework and Process

42

Figure 17: Multi-Agent Collaboration Framework

Based on the paper, the multi-agent collaboration framework we chose includes the

following core steps:

• Analysis Phase: The task is first given to the Analyst, who then writes a high-level

plan based on the task requirements.

• Coding Phase: Then, this plan is passed on to the Coder, who writes the corre-

sponding code according to the plan.

• Testing and Iteration Phase: The completed code is handed over to the Tester for

testing, and the Tester summarizes the test results into a report. If the code passes

the test, the process ends, and the correct code is output. If the test fails, the test

report is fed back to the Coder, who then tries to correct the code. This iterative

process continues until reaching the maximum number of iterations mentioned in

the paper, which is four.

Role Instructions and Prompts

43

Figure 18: An example of role instruction for coder

To enhance the model’s execution performance, the experiment in the paper employed

the Role Instruction method, setting specific responsibilities for each agent through

targeted prompt information. For example, figure 18 shows the prompt of Coder, which

is composed of Team Description, User Requirement, and Role Description. In our

experiment, we tried as much as possible to replicate the settings mentioned in the

paper. But we made a practical change by splitting the Coder role into two: Coder and

Repairer. The Coder is responsible for writing the original version of the code based on

the Analyst’s plan. The Repairer takes over to adjust the code after getting a report from

the Tester. Below are the specific role prompts we used for the Analyst, Coder, Repairer,

and Tester:

• team description: “There is a development team that includes a requirements

44

analyst, a developer, and a quality assurance tester. The team needs to develop

programs that satisfy the requirements of the users. The different roles have

different divisions of labor and need to cooperate with each other.”

• user requirement: “The requirement from users is: {problem}.”

• Analyst: team description + “I want you to act as a requirements analyst on

our development team. You will receive the requirements from users. Your job

is: 1. Decompose the requirement into several easy-to-solve subproblems that can

be more easily implemented by the developer. 2. Develop a high-level plan that

outlines the major steps of the program. Remember, your plan should be high-

level and focused on guiding the developer in writing code, rather than providing

implementation details.” + user requirement.

• Coder: team description + user requirement + “I want you to act as a developer

on our development team. You will receive plans from a requirements analyst. Your

job is: to write code in language that meets the requirements following the plan.

Ensure that the code you write is efficient, readable, and follows best practices.

Remember, do not need to explain the code you wrote.” + “The plans from a

requirements analyst is: {plan}”.

• Repairer: team description + user requirement + “I want you to act as a

developer on our development team. You will receive test reports from a tester.

Your job is: to fix or improve the code based on the content of the report. Ensure

that any changes made to the code do not introduce new bugs or negatively impact

45

the performance of the code. Remember, do not need to explain the code you

wrote.” + “The code is script. The test reports from a tester is {report}”.

• Tester: team description + user requirement + “I want you to act as a quality

assurance tester on our development team. You will receive code from a devel-

oper. Your job is: 1. Test the functionality of the code to ensure it satisfies the

requirements. 2. Write reports on any issues or bugs you encounter. 3. If the code

or the revised code has passed your tests, write a conclusion ’Code Test Passed’.

Remember, the report should be as concise as possible, without sacrificing clarity

and completeness of information. Do not include any error handling or exception

handling suggestions in your report.” + “The code from a developer is: {code}”.

5.2.3 Result Analysis

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

Multi-agent Collaboration Python 24.9 53.0 17.0 20.1 5.9

Table 5: Experimental Results of Multi-Agent Collaboration in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

Multi-agent Collaboration C++ 11.9 39.8 6.0 55.7 16.4

Table 6: Experimental Results of Multi-Agent Collaboration in C++

46

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0.0 100.0 3.8

Multi-agent Collaboration Java 14.8 40.5 6.2 57.7 3.8

Table 7: Experimental Results of Multi-Agent Collaboration in Java

This experimental result shows that, compared to the baseline result, the multi-agent

collaboration framework performed significantly worse on our dataset. Although the

Efficiency Level metric has slightly improved, the %Opt did not increase and even

decreased in the Python language data. Moreover, pass@1 decreased significantly,

particularly in the Python language data, where pass@1 was only 20.1%. This indicates

that this multi-agent collaboration framework is not effective in solving coding problems

on our dataset.

5.2.4 Multi-agent collaboration with new Tester for code efficiency

The original multi-agent collaboration framework completely follows the experimental

setup in the paper[6]. However, the purpose of our project is to test and improve the

efficiency of code generated by LLMs. Therefore, in this experiment, we modified the

Tester to not only check the accuracy of the code but also to analyze its efficiency. The

modified Tester is defined as follows:

Tester = team description + user requirement + “I want you to act as a quality assurance

tester on our development team. You will receive code from a developer. Your job is: 1. Test

the functionality of the code to ensure it satisfies the requirements. 2. Test the efficiency of

47

the code to ensure it has good time complexity. 3. Write reports on any issues or bugs

you encounter. 4. If the code or the revised code has passed your tests, write a conclusion

’Code Test Passed’. Remember, the report should be as concise as possible, without sacrificing

clarity and completeness of information. Do not include any error handling or exception

handling suggestions in your report.” + “The code from a developer is: {script}”.

Experimental Results

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

Original Multi-agent Collaboration Python 24.9 53.0 17.0 20.1 5.9

Multi-agent collaboration with new Tester Python 21.8 46.7 14.3 26.5 5.9

Table 8: Experimental Results of Multi-agent Collaboration with New Tester in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

Original Multi-agent Collaboration C++ 11.9 39.8 6.0 55.7 16.4

Multi-agent collaboration with new Tester C++ 8.3 39.0 4.1 50.8 18.0

Table 9: Experimental Results of Multi-agent collaboration with new Tester in C++

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0.0 100.0 3.8

Multi-agent Collaboration Java 14.8 40.5 6.2 57.7 3.8

Multi-agent collaboration with new Tester Java 16.0 39.0 6.7 57.7 3.8

Table 10: Experimental Results of Multi-agent collaboration with new Tester in Java

The test results are shown in the Tables 8, 9 & 10. For metrics measuring efficiency,

only the %opt of C++ problems improved, but the ‘Efficiency Level’ all decreased. This

indicates that the changes we made to the Tester do not effectively achieve the desired

48

effect of improving code efficiency. And the pass@1 of C++ decreased, while the pass@1

of Python increased. These results seem to be irregular, so next we analyze the reasons

through a few case studies.

Case Studies

• Case One: the 124th problem in the dataset

The question description for this problem is: “One quite ordinary day Valera went

to school (there’s nowhere else he should go on a weekday). In a maths lesson, his

favorite teacher Ms. Evans told students about divisors. Despite the fact that Valera

loved math, he didn’t find this particular topic interesting. Even more, it seemed so

boring that he fell asleep in the middle of a lesson. And only a loud ringing of a

school bell could interrupt his sweet dream. Of course, the valuable material and the

teacher’s explanations were lost. However, Valera will one way or another have to

do the homework. As he does not know the new material absolutely, he cannot do

the job himself. That’s why he asked you to help. You’re his best friend after all, you

just cannot refuse to help. Valera’s home task has only one problem, which, though

formulated in a very simple way, does not have a trivial solution. Its statement looks

as follows: if we consider all positive integers in the interval [a;b] then it is required

to count the number of such numbers in this interval that their smallest divisor will be

a certain integer k (you do not have to consider divisor equal to one). In other words,

you should count the number of such numbers from the interval [a;b], that are not

divisible by any number between 2 and k - 1 and yet are divisible by k.”

49

Then the plan given by Analyst is:

To decompose the requirement , we can break it down into

the following subproblems:

1. Determine the range of numbers to consider , given

the values of a and b.

2. Iterate through each number in the range and check

if it meets the conditions specified in the

requirement.

3. Count the number of numbers that meet the

conditions.

4. Print the count as the output.

Based on these subproblems , we can develop a high -level

plan for the program:

1. Read the values of a, b, and k from the input.

2. Initialize a count variable to 0.

3. Iterate through each number in the range [a, b].

4. For each number , check if it is divisible by any

number between 2 and k-1, and not divisible by k.

5. If the number meets the conditions , increment the

count variable.

6. Print the value of the count variable as the

output.

This plan can correctly solve the problem, but it directly traverses the interval

[a, b] and performs a division operation on each number to check if it meets the

conditions. This direct iteration may cause significant performance issues when

the distance between ‘a’ and ‘b’ is very large. Therefore, the test results of the

code written by the Coder according to this plan show that 13 out of 30 test cases

resulted in “timeout”. And the Tester just outputs “Code Test Passed.”, indicating

that the tester cannot effectively judge the efficiency of the code.

• Case Two: the 127th problem in the dataset

After analysis, the Analyst’s high-level plan to solve this problem is also correct

but inefficient. However, the code provided by the Coder has an error: “undefined

50

variable”. And the Tester also simply outputs “Code Test Passed.”, which shows

that the Tester also cannot effectively detect errors in the code.

We manually analyzed a total of 20 cases and summarized four situations: Correct but

low-efficient plan, timeout code and useless tester; Correct but low-efficient plan, wrong

code, and useless tester; Wrong plan, wrong code and useless tester; Others. The specific

results are shown in Table 11.

Type Number
Correct but low-efficient plan, timeout code, and useless tester 6
Correct but low-efficient plan, wrong code, and useless tester 11

Wrong plan, wrong code, and useless tester 1
Others 2

Table 11: Analysis result of 20 cases

From the results, we believe that there are mainly two issues:

• The plans given by the Analyst are generally correct but often inefficient;

• The Tester is not able to effectively detect obvious errors in the code, nor can it

effectively judge the efficiency of the code.

6 Methodology

6.1 Generative Executor Module

As mentioned in the previous sections, the accuracy of code testing is very low if it is

done by LLM alone. Neither the self-testing in the self-refine framework nor the Tester

51

agent in the multi-agent collaboration framework does a satisfactory job of detecting

problems in the generated code and providing feedback. So we tried to introduce an

external executor to assist LLM in code testing. To involve an external executor, we

must ensure that the test cases differ from those in the dataset to avoid potential test

set leakage issues. Therefore, we aim to leverage the LLM’s generation capabilities to

automatically produce additional test cases.

Thus, we proposed the LLM-based Generative Executor Module to assist in code testing.

The workflow of the Generative Executor Module is shown in the figure 19.

Figure 19: Workflow of generative executor module.

The module is divided into two parts: test case generation and unit test.

In the test case generation phase, we provide the problem description and a sample

test case input to the LLM. The LLM then generates additional test case inputs for the

problem. After obtaining these test case inputs, we execute the slow but accurate code

52

that needs optimization, utilizing the inputs generated in the previous step. This process

yields the corresponding test case outputs. At the end of this phase, the module produces

several input-output pairs for subsequent testing. Figure 20 shows the terminal output of

the test cases generation phase in the module. The details of the prompt that triggered

the LLM to generate test case inputs are depicted in Figure 21.

Figure 20: Terminal output after test cases generation phase.

def get_messages(prompt , example_input):

messages = []

system_prompt = f"I will give you a programming problem and

a corresponding test input. The problem is: {prompt }.

And the sample input case is: {example_input }. Please

mimic the format of the test input to generate 5 test

inputs and put them in a list. The list should only

contain the test inputs and should not contain any other

information. For example , if the sample input is ’1 2 3

4\\n’, the list should be [\"1 2 3 4\\n\", \"4 3 2 1\\n

\", \"1 1 1 1\\n\", \"0 0 0 0\\n\", \"1 0 1 0\\n\"]"

messages.append(

{"role": "user", "content": system_prompt}

)

return messages

Figure 21: Prompt of test inputs generation.

In the unit test phase, the module executes the new code intended for testing, verifies

its correctness using the test cases generated in phase 1, and then presents the test

results. Specifically, the module generates a file named feedback.txt. The details of the

53

feedback.txt file are as follows:

• Test Result: The first line of the file has only two possibilities: Pass or Fail If

the first line is Pass, it indicates that the newly generated code was compiled

successfully and passed all the generated test cases. Otherwise, if the first line is

Fail, the subsequent content of the file elaborates on the reason for the failure.

• Cause of Error: If a syntax error or compilation error is detected, An error occurred

in the program: will be displayed on the second line of the file. Subsequently, the

output from the Python interpreter, C++, or Java compiler will be presented. As

illustrated in Figure 22, an example of Java program error feedback is provided.

Figure 22: Error message output by the generative executor.

• Failed Test Cases: If the program compiles and runs without syntax errors but

encounters logic errors leading to incorrect test cases, the second line of the file

will state: ”The new code failed following test cases:” followed by the specific

errors. Each test case with errors will be presented in the following format: When

the input is..., The expected output is..., and The output is.... Figure 23 illustrates the

above error scenario.

54

Figure 23: Error message output by the generative executor.

6.2 Self-Refine-Executor Framework

6.2.1 Motivation

In the previous empirical study, we conducted experiments with the self-refine framework,

which did not perform well on our dataset. Through case studies, we identified that the

main issue was the focus on code efficiency during feedback, which often led to errors in

the refined code. Unfortunately, the feedback did not correct these errors. Therefore, we

aimed to improve this aspect and consequently developed our framework.

55

6.2.2 Framework Description

Figure 24: Workflow of Self-Refine-Executor Framework

A major improvement in our framework is the introduction of the generative executor

module discussed earlier. This means that we use this external code execution module

to obtain feedback on the correctness of the code. After each round of feedback and

refinement, the code is tested, and only the code that passes the test is retained for the

56

next round of self-refinement. In essence, we always retain only the correct code. The

specific process is as follows:

• Initialization Phase:

Provide the model with a correct but inefficient version of code and ask for an

optimized version.

• Execution Phase:

Submit the code for testing by the execution module. If the test result is “pass,” the

code is retained. If it fails, the code is discarded, and the previous correct code is

used for the next feedback and refinement.

• Feedback Phase:

The model provides feedback on the efficiency of the code. If the model determines

the code is efficient enough, it outputs “is not slow,” signaling the end of the

iteration.

• Refine Phase:

The model refines or improves the code based on the feedback, and this code is

sent for testing by the execution module.

The Execution, Feedback, and Refinement phases continuously iterate until the model

believes no further optimization is needed or the maximum number of iterations is

reached, which is set to four.

By incorporating an external module to check the correctness of code, we are able

57

to ensure that the code retained is always correct. The worst-case scenario would be

retaining the original version we provided to the model, which was correct but inefficient.

6.3 Multi-Agent-Executor Framework

6.3.1 Motivation

In the previous research, we experimented with multi-agent collaboration, but the

outcomes were not as expected. Through 20 case studies, we identified two main issues:

the Analyst’s plans were inefficient, and the Tester relying solely on the model itself

without external feedback to review code often failed to detect errors in the code. Based

on this, we proposed improvements in these two areas, which led to the development of

our own framework.

6.3.2 Framework Description

Our Multi-Agent Executor Framework still consists of three agents: the Analyst, the Coder,

and the Tester. And each agent is still assigned by specific role instructions. But unlike

the original framework, here we added a new component called “Execution”, realized

by the “Generative Executor module” introduced before. This means we introduced an

external code executor to obtain correct feedback on code correctness. Additionally, we

have reduced the role of the Analyst, making it only be called upon when the initial

code generated by the Coder is wrong. Therefore, the Analyst only serves a supportive

function.

58

Figure 25: Workflow of Multi-Agent-Executor Framework

More specifically, the workflow of the Multi-Agent Executor Framework is as follows:

• Initialization Phase: The task is firstly given to the Coder, who will write code

according to the requirements of users. The code will then be passed to the

Executing Phase directly. If the execution result of this initial code is “Pass”, it then

goes to the Testing Phase. If the code fails, the Analyst would be called to give a

high-level plan for this task.

• Coding Phase: This plan is passed back to the Coder, and then the Coder will

59

write the code according to the plan.

• Executing Phase: The completed code will be executed through the external

“Generative Executor module”. The module returns a result, indicating “Pass” if the

code passes all test cases, or “Fail” along with the test cases that failed and any

error information (if available).

• Testing Phase: The execution result is given to the Tester. If the result is “Pass”,

the Tester analyzes whether there is room to improve the efficiency of the code; if

the result is “Fail”, the Tester drafts a report based on the error information. If the

code is correct and the Tester believes it is efficient enough, the Tester will make a

“Code Test Pass” conclusion, marking the end of the iteration.

• Repairing Phase: If the test is not passed, the test report is sent back to the Coder,

who revises the code according to the report.

The Executing Phase, Testing Phase and Repairing Phase will continuously iterate until

receiving the end signal “Code Test Pass” from the Tester or reaching the maximum

number of iterations, which is set to 4 for this experiment.

60

7 Experiments

7.1 Setup

Metrics. We adhered to the evaluation strategy outlined in the timeEval benchmark. The

assessment involves five metrics: Pass rate, Fail rate, Timeout rate, Percent Optimized,

and Speedup, utilized to evaluate the efficiency of the generated code. For a detailed

explanation of these metrics, please refer to Section 4.

Models. Our primary experimental foundation is the gpt-3.5-turbo model. Additionally,

we conducted a comparative experiment in Section 7.6 using the gpt-4 model. In future

work, we aim to explore other types of LLMs to provide a more detailed evaluation of

the efficiency of code generated by different LLMs.

Platform. The timeEval benchmark executes both the canonical solution and the gener-

ated code during each test, comparing their running times. This approach enables tests

to be conducted on different configurations or platforms while maintaining consistent

results. Our experimental platform involves several different personal computers.

Interpreter and compiler version. We used Python 3.11.4 as the interpreter version,

g++ 8.1.0 as the C++ language compiler, and java 18.0.2.1 as the Java language

version in our experiments.

61

7.2 Baseline Experiment

The prompt for the baseline experiment is shown in Figure 26. We enforce a constraint

on LLMs to refrain from generating text descriptions for two primary reasons. Firstly,

we aim to eliminate the influence of chain-of-thought (CoT) processes on experimental

outcomes, enabling us to isolate and analyze the impact of CoT on code efficiency in

subsequent experiments. Secondly, in the majority of code-generation scenarios, it is

unnecessary for LLMs to generate textual descriptions before code-generation

def get_messages(prompt , language):

messages = []

system_prompt = "Please generate " + language + "code that

can be run directly to solve the following programming

problem. Do not add any text description!"

messages.append(

{"role": "system", "content": system_prompt}

)

messages.append(

{"role": "user", "content": prompt}

)

return messages

Figure 26: The baseline prompt.

62

7.3 Self-Refine-Executor

7.3.1 Experimental Details

Figure 27: Workflow of Self-Refine-Executor Framework

We conducted the experiment of this Self-Refine-Executor framework following the

process mentioned in the Methodology 6. The specific process is shown in Figure 27. For

the prompt, we continue with the design used in the self-refine experiment, utilizing a

few-shot prompt to enhance efficiency. The specific prompt is as follows:

• Initialization Prompt:

slower version:

63

a, b = input().split()

n = int(a + b)

flag = False

for i in range(n):

if i ** 2 == n:

flag = True

break

print(’Yes’ if flag else ’No’)

optimized version of the same code:

a, b = input().split()

n = int(a + b)

flag = False

for i in range (1000):

if i ** 2 == n:

flag = True

break

print(’Yes’ if flag else ’No’)

END

More examples...

slower version:

{The correct but slow code provided by timeEval}

optimized version of the same code:

• Feedback Prompt:

a, b = input().split()

n = int(a + b)

64

flag = False

for i in range(n):

if i ** 2 == n:

flag = True

break

print(’Yes’ if flag else ’No’)

Why is this code slow?

This code is slow because it is using a brute force

approach to find the square root of the input number.

It is looping through every possible number starting

from 0 until n. Note that the square root will be

smaller than n, so at least half of the numbers it is

looping through are unnecessary. At most , you need to

loop through the numbers up to the square root of n.

END

More examples...

{The correct but slow code provided by TimeEval}

Why is this code slow?

• Refine Prompt:

{The correct but slow code provided by TimeEval}

Why is this code slow?

{Feedback from the model}

How to improve this code? Please provide the improved version of the code.

65

7.3.2 Results Analysis

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

Self-refinement Python 7.0 41.9 2.5 61.8 11.8

Self-Refine-Executor Python 7.1 40.2 2.3 91.2 17.6

Table 12: Experimental Results of Self-Refine-Executor in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

Self-refinement C++ 4.3 63.4 2.2 52.5 37.7

Self-Refine-Executor C++ 3.4 53.8 0.7 90.1 29.5

Table 13: Experimental Results of Self-Refine-Executor in C++

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0.0 100.0 3.8

Self-refinement Java 7.5 30.7 2.6 46.1 7.3

Self-Refine-Executor Java 7.6 33.2 0.9 87.3 4.4

Table 14: Experimental Results of Self-Refine-Executor in Java

The experimental results are shown in the Table. From the data in the tables, compared

to the baseline, our framework shows significant improvements in the Efficiency Level

and %opt, indicating that the code generated through our framework generally has better

time complexity than the baseline, while the decrease in pass@1 is minimal. Compared

to the original self-refine framework, although the Efficiency Level and %opt are not as

high as the original self-refine framework, the pass@1 of our framework remains at a

66

relatively high level. This indicates that our framework can ensure high accuracy while

improving the efficiency of the code.

However, we also noticed that according to our hypothesis, the correctness of the code

generated by this framework should be 100% because we always retain only the correct

code. To explore why pass@1 is not 1, we conducted a case study. We identified two

main reasons why the final output code did not pass all the test cases:

• After self-refine, the efficiency of the code actually decreased, but the executor-

generated test cases were not large enough to detect timeout situations, so this

inefficient version of the code passed the tests of the execution module and was

retained.

• After self-refine, the optimized code had errors, but the executor-generated test

cases were not comprehensive enough to detect these errors, so this erroneous

version of the code passed the tests of the execution module and was retained.

67

7.4 Multi-Agent-Executor

7.4.1 Experimental Details

Figure 28: Workflow of Multi-Agent-Executor Framework

We conducted the experiment of this Multi-Agent-Executor framework following the

process mentioned in the Methodology 6, and we have accordingly adjusted the prompt.

Specifically, we divided the Coder into Coder1, Coder2, and Repairer. Coder1 generates

code directly based on the task requirements without referring to the Analyst’s plan,

68

while Coder2 generates code by referring to the Analyst’s plan. The Repairer modifies

or improves the previous code based on the Tester’s report. We also emphasize to the

Analyst that the plan provided should be efficient. The specific prompt for each agent is

as follows.

• team description: “There is a development team that includes a requirements

analyst, a developer, and a quality assurance tester. The team needs to develop

programs that satisfy the requirements of the users. The different roles have

different divisions of labor and need to cooperate with each other.”

• user requirement: “The requirement from users is: {problem}.”

• Analyst: team description + “I want you to act as a requirements analyst on

our development team. You will receive the requirements from users. Your job

is: 1. Decompose the requirement into several easy-to-solve subproblems that can

be more easily implemented by the developer. 2. Develop a high-level plan that

outlines the major steps of the program. Remember, your plan should be high-

level and focused on guiding the developer in writing code, rather than providing

implementation details. And your plan should have good time complexity.” +

user requirement.

• Coder1 (no plan needed): team description + user requirement + “I want

you to act as a developer on our development team. Your job is: to write code in

language that meets the requirements of users. Ensure that the code you wrote is

efficient, readable, and follows best practices. Remember, do not need to explain

69

the code you wrote.”.

• Coder2 (plan needed): team description + user requirement + “I want you

to act as a developer on our development team. You will receive plans from

a requirements analyst. Your job is: to write code in language that meets the

requirements following the plan. Ensure that the code you write is efficient,

readable, and follows best practices. The code you write also should always have

the code for reading the inputs and printing the outputs of test cases from the

tester later. Remember, do not need to explain the code you wrote.”.

• Repairer: team description + user requirement + “I want you to act as a

developer on our development team. You will receive test reports from a tester.

Your job is: to fix or improve the code based on the content of the report. Ensure

that any changes made to the code do not introduce new bugs or negatively impact

the performance of the code. Remember, do not need to explain the code you

wrote.” + “The code is {code}. The test reports from a tester is {report}”.

• Tester: team description + user requirement + “I want you to act as a quality

assurance tester on our development team. You will receive code from a developer

and its execution result on the test cases. Your job is: 1. If the execution result

shows ‘pass’, analyze the efficiency of the code and see if it could have better

time complexity. 2. If the execution result shows ‘fail’, find the reason for the

incorrectness and give suggestions on how to fix the error. 3. Write reports of your

findings and suggestions for the coder to repair the code. 4. Only if the execution

70

result of the provided code shows ’pass’ and the provided code is efficient enough,

write a conclusion ’Code Test Passed’ at the end of the report, otherwise, write

’Code Test Failed’. Remember, the report should be as concise as possible, without

sacrificing clarity and completeness of information. And remember your job is

only to write the report for the Coder to repair the code, so please do not include

any detailed code in the report.” + “The code from a developer is: {code}. The

execution result is:{execution result}”.

7.4.2 Results Analysis

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

Original Multi-agent Collaboration Python 24.9 53.0 17.0 20.1 5.9

Multi-agent collaboration with new Tester Python 21.8 46.7 14.3 26.5 5.9

Multi-Agent-Executor Python 10.2 53.2 4.6 73.5 14.7

Table 15: Experimental Results of Multi-Agent-Executor with New Tester in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

Original Multi-agent Collaboration C++ 11.9 39.8 6.0 55.7 16.4

Multi-agent collaboration with new Tester C++ 8.3 39.0 4.1 50.8 18.0

Multi-Agent-Executor C++ 8.9 63.7 3.4 70.2 32.8

Table 16: Experimental Results of Multi-Agent-Executor with new Tester in C++

71

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0.0 100.0 3.8

Multi-agent Collaboration Java 14.8 40.5 6.2 57.7 3.8

Multi-agent collaboration with new Tester Java 16.0 39.0 6.7 57.7 3.8

Multi-Agent-Executor Java 15.8 45.5 8.0 59.1 7.4

Table 17: Experimental Results of Multi-Agent-Executor with new Tester in Java

The results are shown in the Table 15, 16 & 17. Compared with the previous experiments

of Original Multi-agent Collaboration and Multi-agent Collaboration with a new Tester,

every metric in the result of our Multi-Agent-Executor framework has improved. The

reduction in Total Time and Timeout Rate indicates shorter average execution times,

while increases in Efficiency Level and %opt suggest that more problems are closer to

the optimal solution, and on average each problem is closer to the optimal solution as

well. Compared to the baseline, there is a notable improvement in Efficiency Level and

%opt, while the decrease in pass@1 is not as much as in the previous two experiments.

Overall, our Multi-Agent-Executor framework has found a balance between improving

efficiency and accuracy, performing well in tasks that enhance code efficiency.

7.5 In-context Learning

7.5.1 Experimental Details

In this experiment, we take an in-context-learning approach to improve the efficiency of

LLM-generated code. The experiment was specifically divided into the following steps:

72

Problem Collection In this step, selecting the appropriate case is crucial to steer

LLM toward generating more efficient code. We’ve chosen four classic programming

problem types from the LeetCode[9] website and selected a representative topic from

each category. These four problem types include Binary Search, Divide and Conquer,

Dynamic Programming, and Sorting. The details of the problem are represented in

figure 29,30,31, and 32.

Given a string s, return the longest palindromic substring in s

.

Example 1:

Input: s = "babad"

Output: "bab"

Explanation: "aba" is also a valid answer.

Example 2:

Input: s = "cbbd"

Output: "bb"

Constraints:

1 <= s.length <= 1000

s consist of only digits and English letters.

Figure 29: Dynamic programming question in in-context-learning experiment

73

Given two sorted arrays nums1 and nums2 of size m and n

respectively , return the median of the two sorted arrays.

Example 1:

Input: nums1 = [1,3], nums2 = [2]

Output: 2.00000

Explanation: merged array = [1,2,3] and median is 2.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]

Output: 2.50000

Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2

= 2.5.

Constraints:

nums1.length == m

nums2.length == n

0 <= m <= 1000

0 <= n <= 1000

1 <= m + n <= 2000

-106 <= nums1[i], nums2[i] <= 106

Figure 30: Binary search question in in-context-learning experiment

74

Given an integer array nums , find the

subarray

with the largest sum , and return its sum.

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]

Output: 6

Explanation: The subarray [4,-1,2,1] has the largest sum 6.

Example 2:

Input: nums = [1]

Output: 1

Explanation: The subarray [1] has the largest sum 1.

Example 3:

Input: nums = [5,4,-1,7,8]

Output: 23

Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.

Constraints:

1 <= nums.length <= 105

-104 <= nums[i] <= 104

Figure 31: Divide and conquer question in in-context-learning experiment

75

Given an integer array nums and an integer k, return the kth

largest element in the array.

Note that it is the kth largest element in the sorted order ,

not the kth distinct element.

Example 1:

Input: nums = [3,2,1,5,6,4], k = 2

Output: 5

Example 2:

Input: nums = [3,2,3,1,2,4,5,5,6], k = 4

Output: 4

Constraints:

1 <= k <= nums.length <= 105

-104 <= nums[i] <= 104

Figure 32: Sorting question in in-context-learning experiment

Sample Creation After successfully obtaining the four problems in the previous step,

we find a positive and negative example pair for each problem. Positive example means

efficient and code, negative example means inefficient but correct code. We designed

two parallel experiments for in-context learning, one with only positive examples and

one with both positive and negative examples. Where the time complexity of the positive

example and negative example for each problem is shown in the table x. In addition, to

eliminate the influence of the programming language of the sample itself on the results

generated by LLM, we set up samples in different languages for different programming

76

languages. Samples in different languages are equivalent at the algorithmic level.

Sample Combination In addition to examining the impact of positive and negative

examples in in-context learning techniques on the efficiency of generated code, we

also explore the effects of combining different numbers of examples. Specifically, we

experiment with combining examples in sets of 1, 2, and 4 for in-context learning, with

the combinations being randomized.

Problem Type Negative Positive
Binary search O(m+n) O(log(m+n))

Divide and conquer O(n2) O(n)
Dynamic programming O(n3) O(n)

Sorting O(n logn) O(n)

Table 18: Time Complexity of Different Problem Types

7.5.2 Results Analysis

The experimental results of In-context learning are presented in Table 19, 20, and

21. In-context learning will be replaced with the abbreviation ICL below. From the

experimental data, we observe that utilizing ICL (2 Positive and Negative Examples) in

Python yields balanced efficiency and accuracy, resulting in improved performance. In

the case of C++, employing ICL (2 Positive and Negative Examples) achieves balanced

efficiency and accuracy with superior performance. For Java, employing ICL (4 Positive

and Negative Examples) leads to balanced efficiency and accuracy, along with better

performance. We posit that the optimal parameters for optimizing ICL experiments vary

across programming languages, suggesting no significant correlation between them.

77

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

ICL(1 Positive Example) Python 7.4 32.1 6.8 26.5 2.9

ICL(2 Positive Examples) Python 3.1 36.4 2.0 50.0 8.8

ICL(4 Positive Examples) Python 3.4 32.5 2.5 50.0 8.8

ICL(1 Positive and negative Examples) Python 3.3 30.1 2.5 50.0 11.7

ICL(2 Positive and negative Examples) Python 3.7 39.3 2.0 58.8 8.8

ICL(4 Positive and negative Examples) Python 6.2 34.3 4.3 50.0 5.9

Table 19: Experimental Results of In-Context Learning in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

ICL(1 Positive Example) C++ 5.6 38.6 1.1 81.8 21.2

ICL(2 Positive Examples) C++ 5.2 57.1 1.3 90.2 42.6

ICL(4 Positive Examples) C++ 6.7 50.8 1.9 83.6 39.3

ICL(1 Positive and negative Examples) C++ 5.4 48.9 1.3 85.2 26.2

ICL(2 Positive and negative Examples) C++ 5.3 49.1 1.3 83.6 31.1

ICL(4 Positive and negative Examples) C++ 5.6 48.5 1.4 80.3 23.0

Table 20: Experimental Results of In-Context Learning in C++

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0 100.0 3.8

ICL(1 Positive Example) Java 10.3 29.8 2.6 65.4 0

ICL(2 Positive Examples) Java 8.8 28.4 1.5 73.0 0

ICL(4 Positive Examples) Java 7.3 23.9 0.5 69.2 3.8

ICL(1 Positive and negative Examples) Java 9.6 27.4 2.0 65.3 3.8

ICL(2 Positive and negative Examples) Java 9.2 26.4 1.5 69.2 0

ICL(4 Positive and negative Examples) Java 7.0 26.2 0 76.9 0

Table 21: Experimental Results of In-Context Learning in Java

78

7.6 Others

7.6.1 Simple Prompt Engineering

We explored the effect of different prompts on the efficiency of code generation by simply

modifying the prompt. We try to remind LLM of the time complexity right in the prompt.

The details are shown in Figure 33. The results of the experiment are presented in Table

22, 23, and 24. We can see from these data that a simple prompt change directly does

increase the efficiency of the generated code. But the increase is relatively limited.

def get_messages(prompt , language):

messages = []

system_prompt = "Please generate " + language + "code that

can be run directly to solve the following programming

problem. Do not add any text description!" + "Please pay

attention to the time complexity of your solution."

messages.append(

{"role": "system", "content": system_prompt}

)

messages.append(

{"role": "user", "content": prompt}

)

return messages

Figure 33: Mind time complexity prompt.

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

Mind time complexity prompt Python 7.49 42.2 5.2 67.7 11.7

Table 22: Experimental Results of Simple Prompt Engineering in Python

79

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0 100.0 3.8

Mind time complexity prompt Java 11.0 31.1 2.4 80.7 7.7

Table 23: Experimental Results of Simple Prompt Engineering in Java

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

Mind time complexity prompt C++ 4.8 50.1 0.6 80.3 37.7

Table 24: Experimental Results of Simple Prompt Engineering in C++

7.6.2 Chain-of-Thought(CoT)

We explored the impact of CoT on code generation. We formed the CoT by allowing

LLMs to generate textual descriptions. The details are shown in Figure 34. The results of

the experiment are presented in Table 25, 26, and 27. We can see from the results that

CoT is useful for improving code efficiency. But it will reduce the accuracy of the code to

some extent.

80

def get_messages(prompt , language):

messages = []

system_prompt = "Please generate " + language + "code to

solve the following programming problem. Let’s think it

step by step."

messages.append(

{"role": "system", "content": system_prompt}

)

messages.append(

{"role": "user", "content": prompt}

)

return messages

Figure 34: Mind time complexity prompt.

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Python 6.0 31.5 0.0 100.0 8.8

CoT Python 14.6 40.5 11.3 50.0 11.7

Table 25: Experimental Results of CoT in Python

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline Java 12.6 24.0 0 100.0 3.8

CoT Java 9.6 39.8 2.0 69.2 3.8

Table 26: Experimental Results of CoT in Java

Experiment Language Total Time(TT) Efficiency Level (EL) Timeout Rate (TR) pass@1 %opt

Baseline C++ 3.5 40.4 0.0 100.0 16.4

CoT C++ 3.2 54.9 0.7 77.0 31.1

Table 27: Experimental Results of CoT in C++

81

8 Conclusion

The following are some of the main contributions we have made during this semester’s

project.

• Propose metrics. Propose a set of metrics that comprehensively evaluate the

execution efficiency of generated code.

• Measure and process code contests dataset. We finished in-depth testing of

the code contests dataset. In total, we tested more than 13,000 problems with

520,000 corresponding solutions and 780,000 corresponding test cases. Proposed

a reasonable process for processing the dataset, and filtered out the problems

that were difficult to be solved efficiently by the gpt-3.5-turbo model through this

process.

• Improve timeEval benchmark. We have successfully extended last semester’s

TimeEval benchmark from monolingual Python to encompass multilingual support

for Python, C++, and Java. Additionally, we’ve developed a comprehensive

automated code execution framework, marking it as the first multilingual code

efficiency benchmark of its kind that we have known of.

• Propose multiple frameworks. We explore strategies for improving the efficiency

of generated code from several perspectives. These include, but are not limited to:

simple prompt engineering, chain-of-thought, In-context learning, self-refinement,

and multiagent collaboration frameworks. We first migrated these frameworks to

82

the code efficiency task and then improved them with encouraging results.

9 Division of Labor

In this project, our team made equal contributions throughout the entire year. Together,

we strategized for the project, researched similar projects, wrote code, and collectively

finished the project. In terms of dataset processing, we jointly surveyed existing datasets

and discussed selecting the one that best suited our research purposes. Then, we

worked together on data filtering and analysis, selecting 111 suitable problems for our

dataset. Then for benchmark creation, We also collaborated on designing metrics for our

benchmark and designing the framework for evaluating code efficiency. Details of the

division of work are outlined in the table below:

Details of Work Responsible Member

Research on various related works Canran Liu & Xingyun Ma

Dataset Processing Canran Liu & Xingyun Ma

Benchmark Construction Canran Liu & Xingyun Ma

Empirical study of Self-refinement Xingyun Ma

Empirical study of Multi-Agent Collaboration Xingyun Ma

In-context Learning Experiment Canran Liu

Generative Executor Module Implementation Canran Liu

Self-Refine-Executor Framework and Experiment Canran Liu & Xingyun Ma

Multi-Agent-Executor Framework and Experiment Canran Liu & Xingyun Ma

83

9.1 Xingyun Ma

In this semester’s final-year project, I took on several crucial tasks. Firstly, I was primar-

ily responsible for conducting empirical study on our dataset, including implementing

self-refinement and multi-agent collaboration. I strictly adhered to the experimental

settings outlined in the referring papers, while also making necessary adjustments and

modifications based on our dataset to ensure accurate and reference-worthy empirical

research. Through in-depth analysis of experimental data and case studies, I identi-

fied issues existing in both frameworks and actively engaged in discussions with my

teammate, advisor and supervisor, which were crucial for successfully proposing our

framework. Ultimately, based on the outcomes of these discussions, we put forward our

own framework, making a pivotal contribution to the project’s success.

In addition to the individual responsibilities I undertook, I also collaborated with team

members to ensure the project’s consistency and refinement. Overall, through effective

division of tasks and proactive discussions with team members, advisor and supervisor, I

played a key role in this semester’s graduation project.

9.2 Canran Liu

In this semester’s final-year project, I embarked on a multi-faceted journey. Initially, I laid

the groundwork by meticulously crafting a series of scripts engineered to meticulously

measure the dataset’s parameters and facilitate efficient data processing procedures. Fol-

lowing this preparatory phase, I delved into the development of the autorun framework

84

tailored specifically for the timeEval benchmark, streamlining its execution process for

enhanced reliability and efficiency. Moreover, I undertook the intricate task of design-

ing and coding the generative executor, a pivotal component essential to our project’s

success. This involved not only conceptualizing its architecture but also implementing

robust coding solutions to ensure its seamless integration and functionality within the

broader project framework. Additionally, my involvement extended beyond individual

components to encompass broader project architecture, where I actively participated in

the design and refinement of various frameworks. By collaborating with team members

and contributing to the conceptualization of these frameworks, I played a key role in

shaping the project’s overall structure and ensuring its coherence and effectiveness.

85

References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher

Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and

Dario Amodei. Language models are few-shot learners, 2020. pages 16, 17

[2] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,

Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe

Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,

Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,

Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William

Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant

Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Mu-

rati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,

Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained

on code, 2021. pages 10, 11, 32, 34

86

[3] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan,

Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie,

Zhiyuan Liu, Maosong Sun, and Jie Zhou. Agentverse: Facilitating multi-agent

collaboration and exploring emergent behaviors, 2023. pages 15

[4] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large

language models to self-debug, 2023. pages 5

[5] Zimin Chen, Sen Fang, and Martin Monperrus. Supersonic: Learning to generate

source code optimizations in c/c++, 2023. pages 5

[6] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via

chatgpt, 2023. pages 42, 47

[7] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,

Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob

Steinhardt. Measuring coding challenge competence with apps, 2021. pages 6, 12

[8] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao

Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,

Lingfeng Xiao, and Chenglin Wu. Metagpt: Meta programming for multi-agent

collaborative framework, 2023. pages 5, 15

[9] ITCharge. Jump game ii. https://leetcode.cn/problems/jump-game-ii/

solutions/1703944/by-itcharge-xn4b/. Accessed 28 November 2023. pages 73

87

https://leetcode.cn/problems/jump-game-ii/solutions/1703944/by-itcharge-xn4b/
https://leetcode.cn/problems/jump-game-ii/solutions/1703944/by-itcharge-xn4b/

[10] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,

Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu,

Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig

Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, Nicolas Gontier,

Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian

Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason

Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,

Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,

Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero,

Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf,

Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane

Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,

Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas

Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the

source be with you!, 2023. pages 10

[11] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi

Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas

Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,

Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,

Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,

Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with

88

alphacode. Science, 378(6624):1092–1097, 2022. pages 21

[12] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi

Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas

Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen,

Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,

Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,

Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with

alphacode. Science, 378(6624):1092–1097, December 2022. pages 6

[13] Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy Ran-

ganathan, Yiming Yang, Graham Neubig, and Amir Yazdanbakhsh. Learning

performance-improving code edits, 2023. pages 5

[14] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah

Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank

Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir

Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback,

2023. pages 5, 12, 13, 35, 36, 37

[15] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio

Savarese, and Caiming Xiong. Codegen: An open large language model for code

with multi-turn program synthesis, 2023. pages 5

[16] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-

89

aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom

Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-

rer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal

Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel

Synnaeve. Code llama: Open foundation models for code, 2023. pages 10

[17] Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik

Narasimhan, and Shunyu Yao. Reflexion: Language agents with verbal rein-

forcement learning, 2023. pages 5

[18] Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad

Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir

Yazdanbakhsh. Learning performance-improving code edits, 2024. pages 18

[19] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,

Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning

in large language models, 2023. pages 17, 18

[20] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming

Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang,

Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang

Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang,

Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, and Tao Gui. The rise

and potential of large language model based agents: A survey, 2023. pages 14, 15

90

[21] Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo

Li, and Rui Wang. A survey on language models for code, 2023. pages 10, 11

[22] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang,

Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-

trained model for code generation with multilingual evaluations on humaneval-x,

2023. pages 12

[23] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured

queries from natural language using reinforcement learning, 2017. pages 12

91

	1 Introduction
	1.1 Background
	1.2 TimeEval
	1.3 Empirical Study of Code Efficiency
	1.4 New Framework for Code Efficiency
	1.5 Summary of Contributions

	2 Related Works
	2.1 Large Language Models for Code
	2.2 Coding Benchmark for LLMs
	2.3 Self-refinement
	2.4 LLM-based Multi-Intelligent Agents Collaboration
	2.5 Prompt Engineering
	2.6 Fine-Tuning
	2.7 Code Efficiency

	3 Dataset Processing
	3.1 Select the Dataset
	3.2 Processing Flow
	3.3 Updated Dataset Structure

	4 Benchmark Creation
	4.1 Code Execution
	4.2 Metrics and Evaluation Framework

	5 Empirical Study on Code Efficiency
	5.1 Self-refine
	5.1.1 Overview
	5.1.2 Experimental Details
	5.1.3 Results Analysis

	5.2 Multi-Agent Collaboration
	5.2.1 Overview
	5.2.2 Experimental Details
	5.2.3 Result Analysis
	5.2.4 Multi-agent collaboration with new Tester for code efficiency

	6 Methodology
	6.1 Generative Executor Module
	6.2 Self-Refine-Executor Framework
	6.2.1 Motivation
	6.2.2 Framework Description

	6.3 Multi-Agent-Executor Framework
	6.3.1 Motivation
	6.3.2 Framework Description

	7 Experiments
	7.1 Setup
	7.2 Baseline Experiment
	7.3 Self-Refine-Executor
	7.3.1 Experimental Details
	7.3.2 Results Analysis

	7.4 Multi-Agent-Executor
	7.4.1 Experimental Details
	7.4.2 Results Analysis

	7.5 In-context Learning
	7.5.1 Experimental Details
	7.5.2 Results Analysis

	7.6 Others
	7.6.1 Simple Prompt Engineering
	7.6.2 Chain-of-Thought(CoT)

	8 Conclusion
	9 Division of Labor
	9.1 Xingyun Ma
	9.2 Canran Liu

