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Win odds in horse racing reflect public opinions because the more confidence the
public has about winning a horse, the lower the win odds due to the pari-mutuel
betting system. The transformer model in the natural language process has
successfully dealt with the prediction of sequence input. Still, there is no research
exploring the transformer model's use in horse racing prediction. The ratings given by
rating systems have been used in many competitions to represent the skill level of
players. In this project, we combine these two techniques for horse racing prediction
and see if it can have the same effect as the win odds in helping the forecast. By
comparing the results of using each technique alone, we show that combining the two
approaches can achieve better prediction accuracy and positive net gain in betting
simulation. Furthermore, horse token embedding is proposed to replace the word
embedding in the transformer model to boost the prediction accuracy and maintain a
steady growth of net gain in betting simulation. To develop a deeper understanding of
the transformer model, probing, analysis of attention map, and integrated gradient are
methods used to assess model capability, data shuffling impact, and input-output

behaviors.
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Chapter 1

Overview

Reproducing the effects of win odds in horse racing prediction with machine learning
methods and understanding the underlying mechanism and behaviors of those
methods are the purposes of this final year project. As the win odds keep changing
before the start of a horse race, data collection of the win odds may not be accurate
enough before the race. However, betting is not permitted after the beginning of the
race. Hence, we attempt to use only static data which do not vary within the betting
period, combined with a neural network to resemble the helpfulness of win odds in
horse racing prediction in the first stage. In the next stage, we endeavor to understand
the underlying mechanism and behaviors of the neural network used for horse racing
prediction. The introduction to machine learning methods and the background about
horse racing are provided at the beginning of this section. Then, our motivation for
this project and the respective objectives of the first and second semesters will be

stated.

1.1 Introduction

Machine learning has become a hot topic in technical fields with the dramatic
advancement of the hardware and appearance of big data in recent years. It has been
applied to real-world problems such as weather forecast, image recognition, speech
recognition, natural language process, etc. The concept of machine learning is
optimizing the parameters defined in a model with the guidance of training experience

to get intuition and prediction [1]. Machine learning is not specific to one particular



field but the junctions of different domains such as statistics, computer science, and
data science. For instance, it uses the knowledge in statistics to build models and
knowledge in computer science to convert the models into computer representations

and design an efficient algorithm to deal with the optimization problem of the model

[2].

Machine learning can be divided into two types. The first type is supervised learning,
in which the known target outputs are used to correct the values of the parameters in
the mapping model between the input and outcome [3]. The mapping will then be
employed for predicting the output of new incoming data. The second type is
unsupervised learning, in which there is no explicit target output to guide the
optimization of parameters in the model. Instead, an assessment of the
representation’s quality is learned in a self-organizing process [4]. Supervised
learning is our choice for this project because the win odds can easily be collected

from the HKJC website.

The primitive neural network architecture in machine learning was the single-layer
perceptron proposed in 1958. It was further developed into a multilayer perceptron in
1975 to solve nonlinear problems and linearly sparable problems that the perceptron
cannot solve [5]. The multilayer perceptron gradually evolves to different neural
network architecture such as deep neural network, convolutional neural network,
recurrent neural network, and long/short term memory network. The original design
of the neural network was to emulate how the brain function in doing a task by
treating each neuron in the neural network as the neuron in the brain and aggregating

them into a complicated information system that is nonlinear [6].



Natural Language processing has been a popular topic in the research field. It had
initially addressed by the convolutional neural network and recurrent network due to
their exceptional performances until the appearance of the transformer architecture in
2017, which has an even better performance in understanding and generating the
natural language by parallel training and the ability to tackle lengthy sequence inputs
[7].

Previous FYP students made several attempts in horse racing prediction with machine
learning methods. LYU1603 tried to predict the winning horse with regression on time
[8]. LYU1703 attempted to predict the winning horse and the places with MLP and
rank network [9]. LYU1805 tried to predict the winning horse with deep probabilistic
programming [10]. We approach the horse racing prediction from a different
perspective for this project. Since both the inputs of this horse racing prediction and
natural language processing are sequences, we decide to reduce the horse racing
prediction to a natural language processing classification problem. We hope that the
techniques in natural language processing can capture the relationships between

horses in a single race and make the prediction according to the dependency.

This project makes four contributions. The first contribution is applying the
transformer model in horse racing prediction, which has not been explored yet. The
second contribution proposes a new embedding method suitable for horse racing data.
The second contribution shows a positive net gain when using the prediction of the
transformer model with ratings as input in horse racing betting. The fourth
contribution is revealing the behaviors of the transformer model with horse racing

data via different interpretability methods.



1.2 Background of Horse Racing

1.2.1 Horse Racing in Hong Kong

Horse racing in Hong Kong is a sports competition introduced by the British, which
usually has 10 — 14 jockeys riding on corresponding horses in a single race,
competing to reach the finish line in a shorter time. It has been an esteemed sports
event in Hong Kong for over 100 years as betting allows people to bet on the horses
they like. This event is mainly held on Sundays and Wednesdays. There are 10-day
races on Sundays and 8-night races on Wednesdays, respectively. The number of
competitors is limited to 14 for races on Sundays, while it is limited to 12 for races on
Wednesdays. Each year, the horse racing season starts in September and ends in July,

and roughly 88 days have the horse racing within a season [11].

1.2.2 The Hong Kong Jockey Club

The Hong Kong Jockey Club, founded in 1884, is a certified non-profit making and
charitable organization responsible for hosting horse racing events and other betting
entertainments. It gains enormous revenue from its sport betting events every year,
and those revenues will be split for operational costs and returned to the community.
HK$29.4 billion was returned to the community regarding duty, tax, and donations in

2020-2021 [12].
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1.2.3 Pari-mutuel Betting in Horse Racing.

In pari-mutuel betting, the bets from people are accumulated in a pool in each race.
The bookmaker will take a fixed percentage from the pool [13]. In Hon Kong, The
Hong Kong Jockey Club acquires 17.5% of the pool in winning bets as its revenue
and allocates the remaining in the pool to the betters with a correct prediction
concerning the odd, which is the ratio of return to the bet calculated before the start of
the race. The odds cannot be interpreted as the actual winning probability of a horse,
but it is just an estimation of how many betters favors the horse. In other words, it
reflects public intelligence. Since the betters are betting against each other, a positive

net gain is expected if we make a more accurate prediction than the public [14].

1.2.4 Types of Bets

The Hong Kong Jockey Club provides various types of bets for bettors. The types and

explanations can be found in Figure 1.

Telephone Interactive Off-Course Racecourses
Betting Sarvices® Betting
Branches
Self Service Self Service
Vending Counter Vending Counter
Terminal Terminal
Minimum Horse Pari-Mutuel Pools
Investment | Racing From 30 spplicable  HK$10 HK$20  HKE10 HK$10
Amount minutes s (any (30 mins {any time) (any
before Race Device(s)  time) before time)
1uptothe HK$10(any Race 1 to
last race time) start of
starts, last race)
« HK$20
until 10
minutes
before the
start of
each race
» HK$50
during the

last 10

minutes
of each
race

Figure 1. Pari-mutuel betting provided by the HKJC [15]
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As we see from Figure 1, the minimum amount to invest in the pari-mutuel pools is
$10 from a self-vending terminal such as the HKJC mobile application or the HKJC

WEB Application at any time.

Single-race Pool Dividend Qualification

Win Ist in a race

Place 1st, 2nd or 3rd in a race, or 1st or 2nd in a race of 4 to 6
declared starters (applicable to local races)
1st, 2nd, 3rd or 4th in a race, or 1st, 2nd or 3rd in a race of 7
to 20 declared starters, or 1st or 2nd in a race of 4 to 6

declared starters (applicable to designated simulcast races)

Quinella Ist and 2nd in any order in a race

Quinella Place Any two of the first three placed horses in any order in a race
3 Pick 1 Composite containing the 1st horse in a race

(Composite Win)

Winning Trainer

(Composite Win)

Winning Region

(Composite Win)

Forecast Ist and 2nd in correct order in a race

Trio Ist, 2nd and 3rd in any order in a race

Tierce Ist, 2nd and 3rd in correct order in a race
First 4 Ist, 2nd , 3rd and 4th in any order in a race
Quartet 1st, 2nd , 3rd and 4th in correct order in a race

Table 1. Types of bets in the single race pool [16]
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The single race pool and the dividend qualification for beginners are shown in Table

1.

Double Ist in each of the two nominated races
Consolation :1st in 1st nominated race and 2nd in
2nd nominated race

Treble Ist in each of the three nominated races

Consolation : 1st in the first two Legs and 2nd in 3rd Leg of
the three nominated races

Table 2. Type of bets in multi-race pool [16]

The multi-race pool and the dividend qualification for more experienced bettors are

shown in Table 2
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1.3 Motivation

Horse racing held by the Hong Kong Jockey Club has been the most favored sports
betting event in Hong Kong. Its popularity can be shown to be the colossal amount of
revenue, which is approximately HK$280 billion in 2020-2021, despite the economic

downturn caused by the coronavirus pandemic [17].

Tremendous efforts have been made to predict the winning horse of each race by
machine learning. Still, the outcome has been unsatisfactory as profitable results can
only be attained under certain circumstances. It is believed that the betting odds hide
the secret of beneficial plans from the observation that bookmakers consistently have
interests in providing profitable betting odds to gamblers. Therefore, building and
interpreting the machine learning model, which has a similar effect on the betting
odds in horse racing prediction, may help reveal the hidden message of the betting

odds and the reasons for the bookmaker’s enormous financial gain.
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1.4 Objectives

We have two objectives in this project. The first objective of this project is to
reproduce the effect of win odds from the Hong Kong Jockey Club in horse racing
prediction. As the horse with a low winning odd usually has a higher winning
probability, as implied from the public intelligence, the win odds contain helpful
information which guides the model prediction. However, the dynamic nature of the
win odds before the start of a race cannot guarantee the data which we get at a
particular time is accurate, and we, therefore, exclude the win odds from our input

data and try to reproduce the effect of win odds with only static variables.

The second objective is comprehending the decision made by the model by different
interpretability methods. Even though machine learning model usually provides more
accurate predictions than humans, we are advised to understand the decision
principles and vulnerabilities of the neural network so that we are convinced to apply

the model.
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First Term:
® Convert the data collected from the HKJC into a sequence that can be fitted
to a natural language processing model.
® Find other features that have a similar meaning as the win odds
® Build a natural language process model for winning horse classification
® Evaluate the performance of the proposed model on the test set.
Second Term:
® Improve the winning horse classification by designing a more appropriate
embedding scheme for the input
® Inspect the capabilities of the transformer model in the horse racing context
® Examine the vulnerabilities of the transformer model and find the possible
underlying reasons
® Enhance the interpretability of the transformer model by extracting intuitive

rules from the model decisions.
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1.5 Related Works

Researchers have been interested in applying machine learning methods to learn the
complex relationship between sports betting and predicting the outcome accurately.

Several studies investigated horse racing prediction by the artificial neural network

[18], conditional logistic regression [14], random forest [20], and support vector

machine [21].

Elnaz and Khanteymoori [18] applied an artificial neural network in horse racing
prediction with five supervised neural network learning algorithms: Conjugate
Gradient Descent, Quasi-Newton Levenberg-Marquardt, Backward-Propagation, and
Backward-Propagation with Momentum. The experiment used the horse racing
records in January 2010 in the United States, and the result was exceptional that all
learning algorithms produced satisfying predictions of 77% accuracy on average. The
performance differences between the learning algorithms are minor. Although
Backward-Propagation took a longer training time, it achieved a slightly better
prediction result than others. This research demonstrated that artificial neural

networks are applied to horse racing prediction.

Silverman and Suchard [14] proposed adjustments to the multinomial logit model for
horse racing prediction suggested by Bolton and Chapman [19]. They exploited the
winning dividends by introducing a frailty contribution and parameter regularization
to the regression model. They collected the data of 3681 races in Hong Kong from the
HKIJC, and 737 races were retained for testing the model. They discovered that they
could gain a remarkable higher return by changing the objective to simply increasing
the profit and combining a calculated inverse-frailty score in the experiment.

17



Lessmann, Sung, and Johnson [20] explored alternative methods for predicting horse
racing results. They admitted that the conditional logit model was a proper tool for
estimating the winning probability of a horse in conjunction with other horses in a
race. In addition to that, they showed that random forest could complement
conditional logit-based horseracing forecasting. Consequently, they adapted a two-
stage modeling framework that captured the complicated relationship between horses’
information and the results of races in the first stage. Then, the winning probability of
a horse within a single race was computed at the second stage. In the second stage, a
random forest revealed the winner horse by counting the number of votes regarding

whether the horse was a winner from the decorrelated decision trees.

Chung, Change, and Ko [21] utilized the support vector machine to predict horse
racing results in Hong Kong. They divided their training data into multiple similar
training sets and trained a support vector machine for each training set. They were
combined to form a more robust model for those weaker models. The outcome of a
race was determined similarly to a random forest. All trained support vector machines
created a committee machine and did voting. In the experiment, they collected data
from the HKJC official website. There were 33532 horse records and 2691 race
records dated from 1% Jan 2012 to 30™ June 2015 in the dataset. The result of the
experiment showed a 70.86% accuracy in predicting the winner horse by the

committee machine.

Tung and Hei [8] attempted to build a classification model for winning horse
prediction with Tensorflow. They used the neural network to create a binary
classification model and betted on the horse if the model's prediction revealed that the

horse was a winner. They set a confident threshold to be 0.8 so that they only gambled
18



the horse when the model predicted it as a winner with a certain threshold exceeding

0.8. As a result, they exhibited a 30% net gain after one year.

Liu [9] tackled the horse racing prediction problem by building a supervised neural
network in predicting the finishing time of each horse. After that, he compared horses’
anticipated finishing times and ranked them based on their anticipation. He set a
confident threshold of 0.5 and betted only on class 1 and 2 races. This setting was

shown to have a positive net gain over an entire race season.

Wong [10] applied Pyro, a probabilistic programming language supported by Python,
to build sophisticated probabilistic models. The PyTorch backend assisted automatic
differentiation, neural networks, and backward propagation. The abstraction provided
by the probabilistic programming language simplifies the code for inferences and
probabilistic sampling. The result of the experiment showed a profit of 14.43% could
be gained when using features including the win odds, while it dropped to 7.59%

when using features excluding the win odds.
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Chapter 2
Background Knowledge
2.1 Rating Systems

2.1.1 Glicko Rating System

Glicko rating system [22] extends the Elo rating system. It is a statistical model that
addresses the limitation of the Elo rating system by introducing an additional
measurement of the rating deviation. This measurement is intended for assessing the
reliability of a player’s rating. When the value of rating deviation is high, it infers that
the player has not played the game for an extended period, and the rating thus
becomes unreliable. In contrast, a low value of rating deviation indicates that the
player plays the game frequently, and the rating is more reliable. The intuition is that
the uncertainty of a player’s ability reduces because more information is obtained by

the player playing more games.

The rating and the rating deviation of horses are calculated in two steps. The formula
is recursive as the current rating and rating deviation are determined from the rating

and deviation from the last rating and last rating deviation.

During the new rating period, we should compute each horse's rating and rating
deviation based on its previous rating and rating deviation. In step 1, we focus on the

rating deviation.

If the horse is new to the race, which means it hasn’t participated in any races, we
20



assign 1500 and 350 to its rating and rating deviation respectively. Both 1500 and 350

are default values of the rating and the rating deviation.

If the horse participated in races in the past, we take its rating from the last race for

computing the current rating deviation with the formula below,

o = min(y/g,4% + c?,350). (1)

o 1is the current rating deviation and a,;4 is the rating deviation of the last race.
c is the constant controlling the uncertainty between races. The current rating
deviation is the minimum value between the computation from the old rating

deviation and 350.

In step 2, we update the rating and rating deviation for each horse in a race.

Let r be the horse's rating in the last race and o be the rating deviation computed in
step 1. Then, rq,15,...,7;, are the rating of the other horses from their last rating
period. The corresponding rating deviation is gy, 05, ..., 0,. The result of horses in the
race is Sy, Sy, ..., Sy. If the horse wins the race, s; equals to one. If the horse loses the

race, s; equals to zero.

Let 13,0, and 0, be the updated rating and rating deviation of a horse and we
repeat this procedure for each horse.

We first define the following terms,

__In(10)
" 400

2
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g(o) = : 3)
1+3q2(262)
T
E . 1
(slr, 1, 05) = L+ 10-9©@ )G —T))7400 ° (4)

d? = (q* Xj=1(g(0))? E(slr,1,07) (1 — E(s|r,7,05))) ()

The above terms are used in the update.

q
Taew = T + T 2j=19(0)) (5 — EGInm0p) . ()

Onew = \/(é‘k %)_1. (7
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2.1.2 TrueSkill Rating System

TrueSkill rating system [23] also measures the uncertainty of player skill level, but it
also has additional features to the Glicko rating system. The first one is the relaxation
of the number of players in a game. As the Glicko rating system is designed for 2-
players chess games, it assumes that there are only one winner and one loser in each
game. The TrueSkill rating system tries to adapt to a multiple-player environment by
taking that the outcome of each match is a permutation of multiple teams or players so
that it is dedicated to multiplayer games. The second is the inference for individual
skills in games requiring players to form groups. Each team only has one player in our
situation because horses in horse racing do not constitute a team, and we treat each

horse as a team.

We apply the Trueskill rating system in horse racing in which there are n horses
{1,...,n} in arace, and each horse forms a team with only one member.

Let T := {Ty, ..., T, } and T; be the i-th team which has horse i as the only team
member so that T; N T; = @ for i # j. Wealsolet R := (ry,...,7,) be the result
of each team in a race. If the i-th horse wins in a race, then 1; = 1. Otherwise, r; =

i if the i-th horse gets the i-th place in the race.

As our goal is to estimate the skill level of horses, we would like to calculate the
probability that the players have skill level S given the result of the race R and the
team assignment T. From the training dataset, we have the race result given the team
assignment T and skill level S. Therefore, we can obtain the probability P(R| S, T) of

the race with R as the race result and S as the skill level horse all participating horses.
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Then, P(S| R, T) can be obtained by Bayes’ rule,

P(R| S,T) P(S)

P(SIRT) = =20

(8)

We assume the skill level of each horse is a Gaussian distribution with parameters p;
and o; sothat P(S) = [Ix; N(si; w;, 07). The race performance of each team T; is
actually the race performance of each horse because every team has only one horse as
a member. So, the race performance t; of T; is modeled as N(p;; s;, f%). We then
order the teams in ascending order based on their rank so that the order of teams is
Ty < Ty <...< T(y). As aresult, the probability that the race has outcome R

given the team T is the following,

P(R|T) = P(R|{Ty,....T,})

=P(ty >t >...> t,). )

Assume a very simple horse race with 3 teams and each team has only one horse so
that T, = {1}, T, = {2} and T; = {3}. Also, team 1 is the winner while team 2
gets the second place and team 3 gets the third place respectively. The joint

distribution P(S,t | R,T) can be represented by the factor graph below.
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Figure 2. The factor graph describing the joint distribution

In Figure 2, the gray circles indicate the variables, and the black squares show the
factor nodes respectively. The joint distribution P(S,t | R,T) is computed by the
product of all the functions next to the factor nodes. The dependent relationships of
the factors are reflected in the graph, and the graph structure is utilized for an efficient

inference algorithm.

As we have the joint distribution from the factor graph, we can get back the posterior
distribution of the skill level of horses given R and T P(S| R, T ) by integrating the

team performances t; which is the same as the individual horse performances,

P(S|RT) = [__P(S,t|RT)dt. (10)
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In the factor graph, the results at the bottom will be used for the update in the

approximate message passing part, and the update equations for each section are

shown in Figure 3.

Factor

Update equation

. 1
?F};E“ — T+ =

. 17
T.frmi Ty 4 =5

Ty a(my — Try)
Ty & a(Ty —Tray)

a:=(1+¢c (my - J'L_f—:y))_l

V(z;m,¢7) My follows from N (z3y,) =N (y; z,2).
-1
mn af
Troe, ' '
& ; Tny Tf—y
o e —1 ! Tyy — Tf—yy
—r')l
a 1 :
My, = :
i f i b‘fi _!rjn_l
]I(I:b—r}r) ]I(EIH,ZEIT[?IH"' 'JyTl—l!I]) Hl
;,L_Ilﬂ'i.' .:_ - c
w * 1 =Wy (d/\/c,e4/E)
M= e AEVE TV (d/VEEVD)

I[z>z) I(lz|<e)

T

1 — Wy ldf\/re4/r)

CI= Ty =Mz, = Te = Tf—x

Figure 3. The update equations for the factor graph [23]
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2.1.3 Elo-MMR rating system

The Elo-MMR rating system [24] is a novel Bayesian rating system that can be
applied to multiplayer competitions with distinct ranks. In order to analyze and
quantify the skill levels of horses, all ranking records of horses in the past races are
aggregated together, and stronger horses that won consistently in the past will have a
higher skill level. The experiments shown in the original paper give a more accurate
result with a very efficient time complexity than the existing rating systems when the

number of players is large enough.

The Elo-MMR rating system is designed with clear goals. The first goal is to estimate
accurate results in a time-efficient manner even though the size of the population is
large. The second goal is to be incentive compatible. It means that horses’ ratings
should not have opposite changes to their race performance. For example, the horse’s
rating should not be escalated if it gets a place lower than it got in the last race or vice
versa. The third goal is to provide a human interpretable rating that the overall skill of
a horse can be encapsulated with a single number. One of the reasons for setting the
above goals is to avoid complex mechanisms like the message passing in the
TrueSkill rating system, which takes more time because the message passing process

needs to iterate until convergence has no rigorous justification due to the complexity.

Ultimately, the simplicity of the Elo-MMR system enables rigorous analysis of the
massive, monotonic, and robust properties, as mentioned in its name. The massive
property indicates that the computation time is scaled only linearly with the increasing
size of the population. The monotonic property is equivalent to the incentive-
compatible property mentioned in its goal, meaning stronger horses are always
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expected to have high ratings. The robust property sets a dynamic bound to the
change of the horse’s rating so that volatile horses have a larger bound than those
consistent horses. As a comparison, Elo-MMR should be better than the Trueskill
rating system because the Trueskill rating system cannot meet the robustness
requirement and intends to achieve the first two properties without rigorous

justification.

The races take place sequentially, and we denote the series of racesas t = 1,2,..,,
n. Then, we denote all horses in the race t as H;. The i-th horse’s skill level at race t
is a real random variable denoted as S; ;. The performance of the i-th horse in race t is
denoted as P;; and it should have a similar value to S; .. We further assume that each

horse's performance and skill level should be independent of its skill level.

The ranking of the race t which is described as the evidence E; would be responsible
for the Bayesian updates. As a result, Elo-MMR calculates the skill level of horse 1 in
race t based on the entire ranking history before race t.

According to the above notations, we can write the joint distribution described by Elo-

MMR below,

P(S,P,E) = TI; P(Si0) [1it P(Sie | Sie—1) Iie P(PiclSie) [1e P(E¢ | Pp). (11)

The above equation includes one prior distribution and three models.
® P(S;) represents the initial skill level prior.
® P(S;:]|S;t—1) represents the skill evolution model with previous skill levels as

information.
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P(P;¢|S;¢) represents the performance model with current skill level as
information.

P(E; | P;) represents the evidence model with performances of all participating
horses as information. It is an indicator function that equals one if the relative
order of performance of all horses in race t P, is same as E;. Otherwise, it

equals zero.
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2.2 Transformer

In horse racing, the winner is believed to be a relatively skillful horse that defeats the
other somewhat weaker horses. Therefore, the dependencies between horses should be
captured for comparison and prediction instead of independently treating horses in a
single race. Our input is a long sequence of information about all horses in a race. We
need a model that can handle sequence modeling and dependencies between the
information in the input owing to its attention mechanism. Transformer turns out to be
a proper network structure fulfilling our requirements and solves our problem more

efficiently than the convolutional neural network and recurrent neural network.

2.2.1 Transformer

The transformer [25] has an encoder-decoder structure. The encoder in the
transformer converts input sequences of discrete values to an intermediate sequence
of continuous values. Then, the decoder makes use of the intermediate sequence to
produce the tokens in the output sequence one by one because the previous token in

the output is also the input for producing the next token.
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2.2.2 Model Architecture
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Figure 4. The transformer architecture [25]
In Figure 4, it shows the general structure of a transformer. It contains a stack of self-
attention and fully connected layers in the core components encoder and decoder.
Details are explained in the later sections.
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2.2.3 Encoder

The encoder is formed by N exactly the same layers, while each layer in the stack can
be further separated into two sub-layers. The input sequence is first embedded
through an embedding layer to have dimension d for each token before entering the
encoder stack. The input x of the layer enters the first sub-layer of the encoder stack,
which is the multi-head attention mechanism. Then, the original input is added to the
output of the multi-head attention mechanism, which is fed to the normalization layer,
LayerNorm(x + mutli — head_attention(x)). After that, the outcome of the
normalization layer is passed to a fully connected feed-forward layer, and the residual
connection is again employed here so that the normalization layer following the feed-

forward layer is LayerNorm(x + feed_forward(x)).

2.2.4 Decoder

The decoder is the same as the encoder, except it has additional multi-head attention.
A mask is introduced to the first multi-head attention in the decoder stack. The
modification aims to prevent positions from attending the unread positions and ensure

output at position k can only reference the output before position k.
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2.2.5 Attention

In an attention function, the input consists of three vectors: query, keys, and values.
Query and keys together undergo a compatibility function to give the weights. Then,
the weights are combined with the values to produce the output, a weighted sum of

the values.

2.2.6 Scaled Dot-Product Attention

Query and keys both have dimension k, while the values have dimension v. The
weights of values are computed by feeding the division of dot products of the queries
and keys by the square root of k to a SoftMax function. Generally, the output is
generated with the following formula: Q is the matrix of a set of queries, K is the
matrix of a set of keys, and V is the matrix of a set of values. The diagram describing

the scaled dot-product attention is shown in Figure 5.

T
Attention(Q,K,V) = softmax(%) -V (12)

Scaled Dot-Product Attention

| MatMul I

Figure 5. Scaled Dot-Product Attention [25]
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2.2.7 Multi-Head Attention

We take an approach alternative to inputting the original queries, values, and keys into
the single attention function. The queries, keys, and values of dimension d are linearly
projected to h different versions of queries, keys, and values with dimensions k, k, and
v respectively. These different versions of queries are parallelly processed with the
Scaled Dot-Product Attention. Each of them will produce the values vectors of
dimension v. Finally, we concatenate the values outputted from the Multi-head
attention, and they are projected as the final values. The following functions
mathematically describe the process. The diagram depicting multi-head attention is
shown in Figure 6.

head; = Attention(QW;°, KW,X,vw,") fori=1, ... h, (13)

MultiHead(Q,K,V) = Concat(head,,..., heady) - W°. (14)

Multi-Head Attention

{

Linear

)

Concat

3

[
Scaled Dot-Product h
Attention
(1l 1 t

& | £

Linear Linear Linear

P

V

Figure 6. Multi-head Attention [25]
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The attention mechanism helps us capture the dependencies between horses because
the self-attention layers in the encoder allow each position in the encoder to attend to

every position in the former layer of the encoder.

2.2.8 Positional Encoding

The information regarding each information's relative and absolute position in the
sequence is inserted because the Transformer does not have recurrence and
convolution. Therefore, positional encodings of dimension d are added to the
embeddings of the input before it enters the stacks for preserving the ordering and
position information. It uses two different functions for encoding the odd and even
dimension position.

Let i be the dimension and pos be the position,

Postional_Encoding (pos,2i + 1) = cos(pos/10000%/4),  (15)

Postional_Encoding (pos,2i) = sin(pos/100002/4). (16)
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2.3 Evaluation Strategies

We want to evaluate the model in the profit-making and accuracy aspects after
experiments on the horse racing datasets. We propose the following strategies to
decide the performance and effectiveness of adapting the transformer model with the

rating of horses as a replacement of win odds in the input.

2.3.1 Random betting (Profit-making Aspect)

We randomly select a horse number from all the participating horses in random
betting. If the chosen horse wins, we get back our bet multiplied by the win odd of the
winning horse. Otherwise, we lose our chance. It is assumed to be the worst betting

strategy because no knowledge is learned from the data before making the prediction.

2.3.2 Lowest Odds betting (Profit-making Aspect)

In Lowest odd betting, we always guess the horse with the lowest win odds as the
winner. If the prediction is correct, we gain the amount of bet times the win odd of the
winning horse. Otherwise, we lose our bet. It is believed that the lowest odd betting is
much better than random betting because the win odds of horses change according to
public opinion due to pari-mutuel betting, and thus it reflects the public intelligence.
As the public uses their knowledge and experience from the former races in making

the prediction, we assume this strategy surpasses random betting.

2.3.3 Multilayer Perceptron Prediction (Accuracy

Aspect)

The multilayer perceptron consists of multiple fully connected feed-forward layers is
a simple structure of the neural network for making the prediction. No specific
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assumption is made about the input properties, and we think it should have lower

accuracy than our model.

2.3.4 Transformer without Rating in the Input (Accuracy

Aspect)

From the study of previous FYP students, the win odds of horses are the essential
features in making the prediction [9]. Since we use the ratings of horses to replace the
win odds, we want to show that the ratings are equivalent to the win odds that they

could boost the accuracy of the prediction.
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Chapter 3
Data Preparation

3.1 Data Collection

Although past horse racing records could be bought directly via websites hosted by

companies such as https://horseracedatabase.com/ and https://www.hkhorsedb.com/,

which has a database storing the historical data, we prefer to collect the data by

ourselves because of the high prices.

In addition to the financial consideration, writing web crawlers to collect data by
ourselves provides us more flexibility in the choice of data because we are free to
retrieve the data that we want by simply configuring our web crawler. In this project,
a web crawler was written for collecting data on the HKJC official websites within a
given period. The user can specify the start date and end date so that the crawler will
automatically collect the horse race record and horse information from the start date

to the end date automatically.

3.2 Data Description

There is a total of 9191 race records in our dataset dated from June 6, 2008 to

October, 17 2021. Every row is a race record storing the attributes of a race such as
the venue, class, and distance. All races were hosted by the HKJC and took place in
Hong Kong. The information about the horses that appeared in the race records was

also collected from the HKJC official database.
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3.2.1 Racing Record

Table 3 below shows the features of our race record and their detailed information.

‘ Feature
Date
Race_id
Venue

Season_race_no

Horse_class

Distance

Going
Course_track
Course_track code
Horse_i_place
Horse_i_number
Horse i name
Horse _i_jockey

Horse_i_trainer

Horse i _actual weight

Description
Date of the race
The id of the race

Location of the race

The number of races in

the season

Class of the horses
Stronger horses
compete in high race

class

The distance of the race

Condition of the lane

The lane of the race

Description about the

lane

The rank of horse i in a

race

The number of horse 1

in a race

The name of horse 1

The name of jockey

The name of trainer

The total weight of

horse i and gears

Types
Index
Index
Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Categorical

Float

Values

Inrange [ 1,
800]
1-5

1000, 1200,
1400, 1600,
1650, 1800,
2000, 2200,
2400

>= 10 distinct
values

A, A+3, B, B+2,
C,C+3

TURF, ALL
WEATHER
14 distinct
values

14 distinct
values

> 5000 distinct
values

> 200 distinct
value

> 200 distinct

value
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Horse i _declared _weight The weight of horse i Float -
Horse_i_finish_time The time when horse i  Float -
finishes the race
Horse i_win_odds The win odd of horse i~ Float -

Table 3. Feature description of race records

3.2.2 Horse Information

Since the horse’s information was a helpful indicator of the horse’s performance in a
race, we gathered 6642 horses that all participated in the races recorded in our dataset
for making a comparison between horses in a particular race. Table 4 shows the traits

of a horse in our horse dataset.

‘ Feature Description Types ‘

Horse_origin The place of birth Categorical >10 distinct
values
Horse_age The age of horse Categorical In range [3, 10]
Horse_color The color of skin Categorical >6 distinct
values
Horse_sex The gender of horse Categorical Colt, Gelding,
Mare etc.
Horse_1° place_frequency The frequency of Categorical In range [0,20]
getting 1% place
Horse 2" place frequency The frequency of Categorical In range [0,30]
getting 2™ place
Horse 3" place_frequency The frequency of Categorical In range [0,30]
getting 3" place
Horse_total _race The total count of Categorical In range [0,100]

horse’s participation

Horse_sire Name of horse’s Categorical -
father

horse_dam Name of horse’s Categorical -
mother

horse_dam's_sire Name of horse’s Categorical -

maternal grandfather

Table 4. Feature description of horse records
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3.3 Data Analysis

Among all the features describing races and horses, it is believed that not all features
are equally important in predicting a horse’s performance. Therefore, we would like to
study the influences of features on the result of races. In the data analysis, we first
investigate the distribution of the selected categorical feature given the winning
horses and then look at the likelihood P(X = x |Y = y) where x is the selected
categorical feature and y is the winning horse. Then, we examine the performance of
horses by the correlation between numerical features, especially the finish time and
win odds as a horse usually performs well if it finishes the race in a shorter time and
has a low win odd. Finally, we want to improve the accuracy of our model and speed
up the training process so we carry out feature selection to eliminate unrelated

features and noises.
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3.3.1 Categorical Features

3.3.1.1 Age

Probability of Age Given the Winning Horse

0.30 +

0.25

0.20

0.15 4

probability

0.10

0.0 +

0.00 -

10

age

Figure 7. The distribution of age given the winning horse

Our data demonstrate the declining performance of horses with increased age, as
shown in Figure 7. Among all the winning horses, more than 50% are horses aged
between 5 and 6 as horses’ optimal body weight and skeleton are reached at 4 or 5
years old [26]. The number of winning horses decreases substantially after the age of
5. It implies that the overall performance of the majority of horses reaches its peak
when they are 5 or 6 years old and then declines due to the decrease in stamina, speed,
and power bought to aging. The horses aged between 3 and 4 accounts for
approximately 11% of the winning horses. One explanation for fewer winning horses

of lower age is that they have not joined enough competitions to be very skillful, and
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they are still growing.

Probability of Winning Given Age
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Figure 8. The distribution of winning horses given age

Although the likelihood tends to choose horses aged between 5 and 6 to be winners,

we observe that horses have a similar probability of winning at around 10% for all
ages except 3, shown in Figure 8. It suggests that the winning condition cannot be

determined solely by the age of an individual horse.
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3.3.1.2 Origin

Probability of Origin Given the Winning Horse

probability

T
AUS NZ SAF IRE GB USA FR ZIMCANGERBRZ GR ARG ITY JPN CH
origin

Figure 9. The distribution of origin given the winning horse

Most winning horses were born in Australia or New Zealand, as shown in Figure 9. It
reflects that horses born in Australia or New Zealand usually perform better than
horses from other countries. This information is useful when we want to do a simple
classification to identify all horses with various origins in a single race into two
classes that are likely and unlikely to win. In this situation, horses from Australia or
New Zealand will be classified as possible to win, while horses from other countries

will be classified as unlikely to win.
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Probability of Winning Given Origin
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Figure 10. The distribution of the winning horse given origin

Since most horses in horse races are imported from Australia and New Zealand, this
may bias the winning distribution that horses from Australia and New Zealand are
usually winners. After conditioning the winning probability by the origin, we see
horses from the Republic of Zimbabwe and Republica de Chile. Nevertheless, the
number of horses coming from the Republic of Zimbabwe and Republica de Chile is
tiny, while the number of horses from Australia and New Zealand is huge. Figure 10
shows that horses Australia and New Zealand are still likely to be the winner in the
actual case compared to other countries except for the Republic of Zimbabwe and

Republica de Chile.
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3.3.1.3 Color

Probability of Color Given the Winning Horse
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Figure 11. The distribution of color given the winning horse

More than 65% of winning horses have skin color Bay as shown in Figure 11. The
second most color is Chestnut with 17%. The remaining colors like Brown, Grey,
Dark, Roan, and Black only constitute a small portion of the winning horse. The
extensive distribution of color Bay in the winning horse suggests that color would be
a good choice for being the early decision boundary in machine learning methods that

adopt the greedy approach such as decision tree.
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Probability of Winning Given Color
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Figure 12. The distribution of the winning horse given color

When the winning probability is conditioned on the color, the advantage of horses
with the color Bay loses while those colors which are less likely to appear in winning,
such as Dark and Roan horses surpass. Also, the winning probability of a horse with
the color Bay is the second-lowest in Figure 12, and it implies that our observation

from Figure 11 is biased as a large portion of horses in horse races have skin color

Bay.
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3.3.1.4 Sex

Probability of Sex Given the Winning Horse
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Figure 13. The distribution of sex given to the winning horse

The sex Gelding dominates the likelihood distribution of sex in winning horses. Over
97% of winning horses with sex Gelding, as shown in Figure 13. The sex Horse and
Brown only constitute a tiny portion of the winning horse with approximately 3% in
total. This likelihood is highly biased because almost all horses in a horse race have

Gelding, and therefore this feature should have extremely few impacts on the race

result.

48



Probability of Winning Given Sex
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Figure 14. The distribution of winning horse given sex

The conditional probability of winning given the sex of the horses confirms our
assumption that the horse with the sex Gelding is the most likely the winner is flawed
because the chance of winning given the sex is Gelding has a similar value to the
probability of winning given other sex. From Figure 14, we are more confident that
the horse with sex Horse will win the race as it has the highest conditional probability

of winning among all horses of other sex.
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3.3.1.5 Draw

Probability of Draw Given the Winning Horse
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Figure 15. The distribution of draw given the winning horse

Horses with smaller draw numbers are considered to be opportune in horse racing
because they are arranged towards the center of the circular track, as shown in Figure
15. The running distance of those horses is thus relatively shorter than horses with
more significant draw numbers, which means horses with smaller draw numbers need
a shorter time in finishing the race. Our data agrees with our assumption about the
advantage of smaller draw numbers since there is a declining proportion of winning

horses with increasing draw numbers.
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Probability of Winning Given Draw
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Figure 16. The distribution of the winning horse given the draw

The conditional probability of winning given the draw has a similar shape to the
possibility of draw given the winning horses as shown in Figure 16. Hence, the fact
that the horses with a smaller draw number are more likely to be the winner is
assured. However, the horses with a large draw number also win in some races so the

other factors should be considered in determining their winning probability.
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3.3.2 Numerical Features
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Figure 17. The correlation matrix of numerical features
In analyzing the numerical features, we investigate the correlation between each pair
of horse features in our dataset from Figure 17. The cell of darker color in the
correlation matrix implies a stronger correlation or vice versa. Some essential horse
features that strongly influence the result of a race are selected for the following

discussion.
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3.3.2.1 Frequency of 1* Place

We examine the row of feature frequency of 1* place, which counts as a winner in a
race. It has a significant correlation with the frequency of 2" place and 3™ place,
which are 0.4500 and 0.4468 respectively. As the correlation coefficients are positive,
it infers the positive relationship between the frequency of 1% place, 2" place, and 3™
place. The relationship matches our expectation that a horse with good performance in
the past, getting first three places in the past race, often performs well in the next race.
Notice the negative correlation of -0.1882 between the frequency of 1% place and the
win odds. The public has the same opinion about the consistent performance of horses
in future races, so they tend to bet the horse with a large count of 1% place, and it
results in a lower win odds of the horse owing to the pari-mutuel betting system.
Besides, the consistent performance is proven by the negative correlation of -0.1980

between the count of 1% place and the horse's places in races.

3.3.2.2 Finish Time

The finish time measures horse performance since we assume a stronger horse will
finish a race in a shorter time. This motivates us to examine the correlation between
the finish time and other horse features. A negative correlation of -0.1547 between
finish time and declared weight is shown in the correlation matrix. The handicapping
policy by the HKJC adds weights to well-performed horses, and the declared weight
is increased so that the chances for horses of worse performance are increased [11].
Our data shows that the policy is not effective enough because the well-performed
horses with more declared weights still have a shorter finish time. On the other hand,

there is a positive correlation of 0.1695 between the finish time and the age. This
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agrees with our analysis of the age of horses that the performance of horses declines

with age.

3.3.2.3 Win Odds

The win odds of horses reveal the general guess of the public since the win odds of
horses change with the amount of bet. The more popular the horse, the lower the win
odds of the horse. From the correlation matrix, win odds have negative correlations of
-0.1882, -0.1979, and -0.1868 between the frequency of 1° place, 2" place, and 3™
place respectively. This implies that the frequency of 1% place, 2™ place, and 3™ place
guides the public to decide. The larger the number of this statistic, the lower the win
odds. Another discovery is the positive correlation of 0.4291 between the win odds
and the place. This shows that public intelligence is accurate in some sense. For
example, if the public does not think the horse will win, they will not bet on it, and the
hose will have very high win odds. If the public intelligence is accurate enough, the

horse with a high win odd should not perform well and get a small number.
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3.4 Data Preprocessing

The raw data scraped from websites are not clean and well organized, so they should
be preprocessed into a desirable format before feeding them into our neural network
models. We had done the following four steps data imputation, data encoding, input

normalization, and rating generation on our dataset before starting the experiments.

3.4.1 Data Imputation

In the data collection process, we inevitably encounter network errors such as link rot
or an unresponsive server, especially when the target data is old. This happened when
we collected the data of some retired horses that took part in the races before 2010.
Hence, our data set is missing a small part of horse data about those retired horses.
However, omitting or removing the horse records with missing information is
unadvisable. The records may affect the quality of the knowledge extraction

procedure, and biased estimation would be made when doing the analysis [27].

Addressing the missing information, we decided to do data imputation on our dataset
using the k nearest neighbors method. First, we extract all complete horse records
without missing values. Then, we place the missing value in an incomplete record by
looking for its k nearest neighbors in the complete horse records. The value filled in
the missing part will be the mean of neighbors if the type of feature is numerical.
Otherwise, we do a majority vote on the neighbors and place the most common

categorical value in the missing part [27].

Instead of implementing the k nearest neighbors, we invoked the KNN Imputer from

the Scikit Learn library to ensure simplicity and correctness.
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3.4.2 Data Encoding

The input of our neural network models must be numerical, but some of our data are
categorical. For instance, the horse’s name, jockey name, distance, and course track
are categorical values. For this reason, we need to transform our categorical data into

numerical by data encoding.

A straightforward method is converting the categorical data in the form of one-hot
encoding in which we use k binary features to represent a categorical feature of 2X
classes. The value of the binary feature is either 1 or 0. However, the dimension of our
input will be increased drastically for representing all categorical data, and it requires
extra memory and more computational time for the training [28]. The principal
component analysis is a possible solution to the expansion of dimension caused by
one-hot encoding because it can reduce the data dimension while preserving the

variance of data points.

The ordinal Encoding scheme is also a good option for our data as we do not want
additional memory usage and extra computational time due to the one-hot encoding.
In this scheme, a unique integer means a category, and no new columns are added, so
the data dimension is the same as the original. Furthermore, the order of ordinal
variables is preserved in this scheme [29]. For example, the feature place has 14
classes representing the ranks of horses in a race. We encode the horses of higher rank

with a smaller integer to preserve the ranking order.
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3.4.3 Normalization

Normalization of the input was done before the training of our models. It was shown
that the normalization of input data can produce a better result and speed up the
training process. On the one hand, values of all variables are scaled to have the same
range, which saves the effort for backward propagation in changing the weight of
variables. On the other hand, the same scale of all variables balances the focus of
error minimization in the weight correction algorithm, so that importance of variables

is distributed evenly to avoid bias [30].

We use z-score normalization which takes the mean and standard deviation of each
feature in the column direction of our input vector and uses that information to

compute the values for the corresponding feature. The formula is shown below,

xi = (17)

where x; is the computed value, X, is the mean of the feature and o; is the standard

deviation of the feature.
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3.4.4 Rating Generation

Rating the horse's performance is one of the focuses of this project. Nonetheless, the

ratings mentioned in the methodology do not exist on the HKJC websites, and we

need to calculate those ratings with the information provided by our dataset.

In rating generation, we mapped horse records to race records under the guidance of

the horse names in race records so that we obtain the race records with horse records

ordered from 1 place to the last place. Then, we reformatted each record into a JSON

file and named each file with a number. The smaller the number, the older the race.

After that, we invoked a rating computation library [31] and used all JSON files as the

input. Then we had a list of horses with their rating in each race which was then

merged into our original dataset. The list of JSON files is shown in Figure 18. The

content of the rating file for each horse is shown in Figure 19.

B9 AAAGILITY(D466).csv
B3] AASHIQ(K175).csv

B AASHIQUI(BOGS).csv

£33 ABBADJINN(KE29).csv
37 ABEAUTIFUL(T421).csv
£33 ABLECHARM(MOTS).csv
37 ABLEDEED(V136).csv
B33 ABLEDRAGON()308).cov
E3° ABLEFRIEND(P303).csv
B35 ABLEGREY(L224).csv

£33 ABLEMAGIC(L290).csv
B33 ABLEONE(CG108).csv
E37 ABLEREIGN(E202).csv
B33 ABLESPEED(K210).csv
B35 ABLESTANDARD(CGO43).cav

Figure 18. The list of JSON files for rating computation

24/1

0/2021 11-1
/10/2021 11-1
/10,2021 11-1
4/10/2021 11-1
/10/2021 11-1
/10,2021 11:1
4/10/2021 11:1
/10/2021 11:1
/10,2021 11:1
4/10/2021 11:1
/10/2021 11:1
/10,2021 11:1
4/10/2021 11:1
/10/2021 11:1
/10,2021 11:1

L L L L L L L L L L L L L L

L

Microsoft Excel _.
Microsoft Excel _.
Microsoft Excel .
Microsoft Excel .
Microsoft Excel .
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...
Microsoft Excel ...

Microsoft Excel ...

1 KB
1 KB
1 KB
1 KB
1 KB
1 KB
1 KB
2KB
1 KB
1 KB
1 KB
1 KB
1 KB
1 KB
1 KB
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1
2
3
4
5
3]
7

A

contest_index
8315
8372
o444
8515
8586
5704

B C D
rating _mu rating sig  perf score
1329 174 1294
1373 133 1421
1337 114 1270
1336 102 1332
1305 95 1208
1283 Q0 1211

Figure 19. The rating of the horse

E

place

13
12
14
12
14
11
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3.5 Feature Selection

As the data dimension is large, the number of parameters increases, and the time for

training parameters in the model is expensive. Furthermore, irrelevant features in the

data are noises that cause the model to consider irrelevant information and harm the

neural network's performance [32]. Feature selection is used to reduce the dimension

of the data so that a small but sufficient subset of features becomes the input of the

model to achieve a shorter learning time and higher accuracy.

3.5.1 Random Forest

A measure of the feature relevance is needed to filter out unnecessary features with
low relevance scores. The random forest classifier combined with the Gini index
could estimate the feature relevance because the changes of Gini impurities due to a
feature indicated the importance of the feature [33]. The higher the increment in the
leaf’s purity, the more the relevance of the feature. This enables an explicit feature
elimination based on the changes in the leaf’s purity and results in using a small

subset of significant features only.
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Figure 20. Accuracy versus Number of Trees in Random Forest

The random forest classifier must be trained first before viewing the Gini feature
importance associated with it. However, the accuracy of the random forest classifier
varied with the number of trees, and we believe that the classifier with the highest
accuracy could provide a more precise estimation of the feature relevance. In Figure
20, the random forest classifier has the highest accuracy of 19.3% when there are 560
decision trees, and the Gini feature importance of this classifier is picked to be an

indicator of feature relevance.
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3.5.2 Importance of Features
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Figure 21. Gini Feature Importance

The Gini feature importance shown in Figure 21 is extracted from the random forest
classifier and arranged in descending order. Ratings, declared weights, the total

number of winning a race, and the frequency of getting the first places are essential
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among all the features in the input data, and they are candidates to be kept in the

feature selection.

0.20
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Figure 22. Accuracy of Random Forest with n Most Important Features

Determining the number of the most important features kept for in the input of our
neural network, we investigate how the accuracy changes with a varying number of
features. In Figure 22, The random forest classifier reaches its maximum accuracy
when the number of features is around 50, and the accuracy remains more or less the
same after it. So, only the 50 important features are kept in the input of the neural
network, and other features are eliminated if we want to speed up the training or lack

memory in training.
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Chapter 4
Methodologies

4.1 Overview

The win odds capture the relative expected performance of horses in a race because
bettors tend to bet on a relatively more robust horse, and the pari-mutuel betting
setting will therefore decrease the win odds of the horse with better-expected
performance. Moreover, previous final year project, students in LYU1805 illustrated
the significance of win odds in horse race prediction [10]. Finish time is also an
important metric to evaluate the relative performance of horses since stronger horses
can finish the race in a shorter time. However, both win odds and finish time should
be excluded from the feature list because we cannot obtain accurate win odds until the
start of the race owing to the dynamic nature of win odds, and we do not know the
finish time of horses when we predict new races. Therefore, we decide to find another

metric to help us figure out the relative performance of horses.

Rating systems estimate the relative skill level of horses based on their historical
performance. As we can quickly assess a horse’s past racing record from the HKJC
website, we apply rating systems here to calculate the relative skill point of horses,

and we wish the ratings could replace the effect of win odds in our prediction.

Rating systems have different underlying assumptions in calculating the relative skill
point. We want to see which rating system best represents the relative skill point of

horses, so we will experiment with three different rating systems and find the one that
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produces the best result.

Besides the relative skill level of horses, win odds also rely on the dependencies
between horses’ attributes. The attributes of horses in a race are not independent in
our context, and thus the probability of winning for each horse should be conditioned
on the attributes of all participating horses. Simple models such as linear regression
and a single decision tree are not suitable for this problem because the relationships
between the attributes of horses are sophisticated and cannot be easily captured by
these simple models. So, models that can learn complex non-linear relationships and
are dedicated to referencing all attributes of horses in estimation should be selected
for the prediction. Multilayer perceptron and transformer are chosen to be the models

for this consideration.

Therefore, we will experiment with the combinations of rating systems and the
selected neural network architectures to see whether they can compensate for the
exclusion of win odds in prediction. Then, we will compare the results of different
combinations and evaluate their performance by using the evaluation strategies

proposed in section 2.3.

A customized embedding scheme named Horse Token embedding scheme is designed
to encapsulate the horse attributes better and improve the model accuracy in the
second stage of the project. The impact of the embedding scheme on the prediction is
evaluated by comparing the preciseness of the predictions before and after applying
the embedding scheme to the best model selected through the model comparison in

the first stage of the project. The methodology diagram is shown in Figure 23.
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Figure 23. The diagram describing the methodology
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4.2 Horse Attributes Embedding Scheme

In the first semester, every input was embedded as a text sentence, and every feature

was converted as a word representation with the word embedding layer provided by

PyTorch before entering the transformer encoder. This simulation of mimicking a race

as a sentence and a feature as a word is retained but with a customized embedding

scheme which produces better results.

4.2.1.1 Word Embedding Layer from PyTorch

EMBEDDING

CLASS torch.nn.Embedding (num_embeddings, embedding dim padding idx=None, max_nomm=None,
norm_type=2.0, scale_grad_by_freq-False, sparse=False, _weight=None, device=None,
dtype=None) [SOURCE]

A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of
indices, and the output is the correspending word embeddings.

Parameters

num_embeddings (int) - size of the dictionary of embeddings

embedding_dim (int) - the size of each embedding vector

padding_Idx (int, optional) - If specified, the entries at padding_idx do not contribute to the gradient;
therefore, the embedding vector at padding_idx is not updated during training, i.e. it remains as a fixed
“pad”. For a newly constructed Embedding, the embedding vector at padding_idx will default to all zeros,
but can be updated to another value to be used as the padding vector.

max_norm (float, optional) - If given, each embedding vector with norm larger than max_nozm is
rencrmalized to have norm max_nozm.

norm_type (float, optional) - The p of the p-norm te compute for the max_norm option. Default 2.
scale_grad_by_freq (boolean, optional) - If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default False.

sparse (bool, optional) - If True, gradient w.rt. weight matrix will be a sparse tensor. See Notes for more

details regarding sparse gradients.

Variables

~Embedding.weilght (Tensor) - the learnable weights of the module of shape (num_embeddings,

embedding_dim) initialized from (0, 1)

Shape:

Input: {*), IntTenser or LongTensor of arbitrary shape containing the indices to extract

output: (*, H ), where *is the input shape and H = embedding_dim

Figure 24. The Interface of Word Embedding Layer from PyTorch [34]
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In order to feed the input data into the word embedding layer from PyTorch [34], all
features have to be first encoded into an integer value according to the ordinal
encoding scheme. Every integer is treated as a word, and distinct integers represent
different words. Suppose every input has n features and m is the expected dimension
for each word, the input of the embedding layer is thus a sequence of integers with the
length equal to n and the output of the layer is a matrix of size n x m so that m real
values describe every word/feature. The details of the word embedding layer from

PyTorch are shown in Figure 24.

4.2.1.2 Appropriateness of Word Embedding Layer for

Horse Racing Data

From the perspective of the word embedding layer, it expects different integers
represented distinct words from a bag of words. The information about the
inequalities of numbers in the original data may lose after converting the data into
sequences of words drawn from a bag of word because a bag of words does not
characterize the relationship between numbers or words. For example, the original
input contains the declared weights shown in Figure 25 with values 1098, 1103, 1331,
etc. They may be encoded into integers of values 1, 2, 3 before feeding them into the
embedding layer. We knew that 1331 is much greater than 1103 and 1098 is slightly
smaller than 1103 but this relationship may not be well captured after embedding

since 1 and 3 are expected to have equal distance from 2.

Also, the data contains the finishing time in types of real values, and it is
unreasonable to encode real values into distinct integers and treats them as words. For

example, it is not sensible to encode the real values 50.5, 51.0, 55.5, .... into integers
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1,2, 3, .... as the distance relationship is not preserved, and every real value must

occupy as a unique word which hugely increases the size of the bag of words.

Therefore, the word embedding layer is not appropriate for horse racing data.

horse_1_jockey_name
DWhyte
CWWong
DWhyte
GBoss
EPrebble
KTYeung
MNunes
GBoss
ZPurton
FCoetzee
CWWong
ZPurton
ESaint-Martin
KELChui

Y TCheng
ZPurton
DBeadman
ZPurton
CWWong
MDuPlessis
¥ TCheng
GMosse
HWLai
CWWong
MW Leung
ODoleuze
KLChui
GBoss
ESaint-Martin

ISize
CHYip
Alee
DEFerraris
[DJHall
ATMillard
PO'Sullivan
IMoore
PFYiu
I8ize
CHYip
ASchutz
ASchutz
YSTsui
TWLeung
ASchutz
SWoods
DEFerraris
CHYip
PF¥iu
KWLui
Alee

LHo
DCruz
KWLui
CFownes
PO'Sullivan
Alee
CSShum

Figure 25. A Subset of Input Features

133
128
129
131
133
128
133
128
133
132
129
133
133
128
131
133
132
132
128
129
129
133
131
128
130
133
128
131
133

horse_1_trainer_name horse_1_actual_weight horse_1_declared_weight

1098
1103
1331
1107
1071
1032
1117
1034
1126
1117
1151

972
1035
1140

960
1103
1200
1152
1098
1125
1175
1024
1044
1151
1141
1131
1127
1168
1033

horse_1_finish_time 1

01:09.9
01:36.3
01:10.0
01:25.1
01:09.9
01:23.5
01:10.2
01:08.9
01:09.4
01:36.8
01:27.1
00:58.8
01426
01:09.8
02:08.1
01:30.8
01:42.0
01:099
02:10.8
01:13.1
01:27.3
01:25.0
01:11.2
01:23.7
01:37.4
01:11.0
01:50.3
01:23.7
01:22.8

4.2.2.1 Word Embedding Simulation by Horse Token

As the word embedding layer is inappropriate for horse racing data, the embedding

scheme is customized to suit the data. The input of the neural network was initially

been a sequence of words, but it is now a sequence of horse tokens. The main idea of

horse token generation is that some real values describe both horse tokens and words

after embedding. A comparison between word embedding and horse token generation

1s provided as follows.
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>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)

>>> # a batch of 2 samples of 4 indices each

>>> input = toxch.LongTensox([[21,2,4,5],[4,3,2,9]1])

>>> embedding(input)

Figure 26. Example of Word Embedding [34]

Suppose a sequence of 4 words encoded as a sequence of integers 1,2 4, 5 is
embedded with the word embedding layer and the embedding dimension is 3 as
shown in Figure 26. Then, the output of the embedding layer is a matrix of size 4 x 3
such that each row represents a word, each column represents a dimension of the

words, and each element is a real value.

[

[ 2000, x.xxx, X.xxx], (horse token 1)
[ x000¢ x.xxx, X.xxx], (horse token 2)
[ 3o, o0, Xx.xxx ],  (horse token 3)
[ 3o, X0, Xx.xxx ],  (horse token 4)

]

Figure 27. Example of Horse Tokens
Similarly, suppose there is a horse race with only 4 horses, and we want the output of
our customized embedding to be a sequence of 4 horse tokens. Each token has 3
dimensions so that 3 real values describe every horse token as the matrix shown in

Figure 27.
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4.2.2.2 Horse Tokens Generation by PCA

In the generation of horse tokens, the horse racing dataset consisting of 9191 races is

partitioned into 14 matrices. The matrix i contains only attributes of the horse with

number i in all 9191 races and the size of the matrix was 9191 x n where n is the

number of attributes. Principal component analysis (PCA) is utilized to reduce the

dimensionality of every matrix from n to m. The generation process is illustrated in

Figure 28.

All 14 matrices are concatenated horizontally after PCA so that a matrix of size 9191

x 14 x m is obtained. The first dimension is the index for the race, the second

dimension is the index for the horse token and the third dimension is the index for real

values which describe the token.

Horse 1 Horse 2 Horse 3 Horse 14
attributes attributes attributes (| 7 | | T attributes
v
Horse 1 Token|Horse 2 Token|Horse 3 Token| ... | ... Horse 14
Token

Transformer Encoder

Figure 28. Horse Tokens Generation by PCA

71




4.3 Model Design

4.3.1 Multilayer Perceptron Classification

The number of classes in our multilayer perceptron equals the number of horses in the
race. For instance, there will be 14 classes if the race has 14 participating horses, and
each class corresponds to a horse number. The input is a race record joined with horse
records according to the horse names listed in the race record. The neural network's
output is a vector consisting of the values resembling the probabilities of winning
horses, and classification is done based on these values. If the horse with horse
number 7 wins the race and our multilayer perceptron predicts it correctly by giving it

the highest value in the vector, the model assigns this input to class 7.

The multilayer perceptron has a total of 5 linear layers. The first linear layer is the
input layer that takes the input vector's values. There are 3 hidden linear layers with a
number of neurons in the range of 100 — 400 to increase the model's sensitivity in the
learning process [35]. The output of each hidden linear layer has to be passed through
the ReLU activation function, which determines the activity of the neurons. For the
second and third hidden layers, dropout layers are inserted for regularization, which
helps the model avoid overfitting by randomly losing connections between neurons in
the training process [36]. The last linear layer is the output layer storing the outcome.
We pick the cross-entropy function and stochastic gradient descent as the model’s loss

function and optimizer. The diagram of the model is shown in Figure 29.
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Figure 29. The Multilayer perceptron architecture
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4.3.2 Transformer Classification

As our ultimate goal of designing two neural network models is to compare the effect
of using different neural network architectures in horse racing prediction, we decide to
have a similar setting regarding the input and output in the transformer model as the
multilayer perceptron. Therefore, the input of the transformer classification is joined
by race records and horse records, and the output is the horse number belonging to the

winning horse.

The transformer model does not use the decoder [25] mentioned in the original paper
because the output of our classification problem is a single number instead of a
sequence. We partition our model into three stages. The first stage is about the data
formatting of the input vector. We use an embedding layer to increase the dimension
of each feature which mimics the word embedding in natural language processing.
Then, we use a position embedding layer to remember the position of each feature as
the position is meaningful in our input data which features of one horse are in closer
distance than other features. Next, the processed input enters the encoder of a
transformer to learn the dependencies between features. The output of the encoder is
sent to a simple, fully connected feedforward network consisting of 2 hidden linear
layers and an output layer. We pick the cross-entropy function and stochastic gradient
descent as the model’s loss function and optimizer. The diagram of the model is

shown in Figure 30.
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Figure 30. The Transformer architecture
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Chapter 5

Experiments and Results

Our experiment has two phases. In the first phase, we have trained three models with
changes in input features and the neural network architecture. The first model is the
multilayer perceptron classification model with inputs including ratings. The second
model is the transformer classification model with inputs excluding ratings. The third
model is the transformer classification model with inputs including the rating. We
want to study whether the third model achieves a better result. Therefore we use the
results of the first and the second models to be the reference when evaluating the
performance of the third model. After the model selection, we figure out the more
appropriate embedding scheme among the word embedding and horse token

embedding through their performance on the best model found in the first stage.

5.1 Input Data

We separate the most recent 688 horse races between 9 December 2020 and 10
October 2021 from our original horse race dataset for testing. The remaining 8503
horse races are used in the training process. Splitting the training data and testing data
randomly is inappropriate in our context because we are more interested in correct
predictions of new races, and the past races having retired horses should not be
involved in the test data when we want to evaluate the performance of our models in

predicting the new races.

We formulate each race as a single input after data preprocessing, as shown in Table

5. All information about a race, including the track's conditions, attributes of horses,
76



and ratings, are packed into a row in our input matrix. This ensures that the neural
network receives sufficient data when predicting the winning horse in a race. For
further comparison of different combinations of neural network architectures and data,

a few columns in the input matrix are discarded to study the effect of the discarded

features.
‘ Feature Description ‘
Venue Location of the race
Horse_class Class of the horses
Stronger horses compete in high race class
Distance The distance of the race
Going Condition of the lane
Course_track The lane of the race
Course_track code Description about the lane
Horse_i_number The horse number in the race
Horse i _name The name of horse
Horse_i_jockey The name of jockey
Horse_i_trainer The name of trainer

Horse _i_declared_weight The weight of horse

Horse_i_origin The place of birth
Horse_i_age The age of horse
Horse_i_color The color of skin
Horse _i_sex The gender of horse

Horse i 1% place frequency The frequency of getting 1% place
Horse _i_total race The total count of horse’s participation
Horse i rating The rating of the horse

Table 5. The schema of the input data
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5.2 Model Comparisons

This section evaluated several combinations of models and rating systems to find the
best model and ratings input in the horse racing context. The performance evaluation
was based on the strategies proposed in chapter 2.3, which mainly focused on the test

accuracy and profits in betting simulation.

5.2.1 Multilayer Perceptron

5.2.1.1 Accuracy
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Figure 31. The loss of multilayer perceptron on test data

In Figure 31, this graph shows the average loss of all batches on the test data with
respect to the training epoch number. Three curves represent the average loss of the
models with different ratings in the input. In the graph, we see that the average loss of
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all three models has a general decreasing trend from epoch number 1 to epoch number
17. The multilayer perceptron with Elo-MMR rating input has a low average loss at
epoch number 18. The multilayer perceptron with Glicko ratings as input has a low
average loss at epoch 18. The multilayer perceptron with the TrueSkill rating as input
has a low average loss at epoch 17. After epoch number 18, the average loss of all
three models increases remarkably, indicating the overfitting. The model with the Elo-
MMR rating as input has the highest average loss among the other models, while the

model with the Glicko rating as input has the lowest average loss among the other

models.
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Figure 32. The accuracy of multilayer perceptron on test data

We observe the testing accuracy in Figure 32. We notice that the testing accuracy of
all three models keeps dropping after the epoch number 17. This is because the

models overfit, as reflected in Figure 32. The model with the Glicko rating reaches the
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highest test accuracy of 20.4%, while the model with the Elo-MMR rating has the
lowest accuracy among the other models. This is related to the same pattern in the
graph of average loss in Figure 32. We can also see that the model's accuracy with
Glicko fluctuates in a larger range than that with Elo-MMR and TrueSkill because the
Glicko rating is dedicated to 2 player games while Elo-MMR and TrueSkil ratings are

dedicated to multiplayer games.

5.2.1.2 Betting Simulation
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Figure 33. The betting simulation of multilayer perceptron on test data

We use the prediction of the betting models and show the result in Figure 33. In our
betting simulation, all three models perform better than random betting. The model
with the Elo-MMR rating has a similar performance as the lowest odd betting,

reflecting public intelligence. This means that the Elo-MMR rating is comparable to
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the win odds in betting guidance. However, none of the models can give us a positive

net gain.
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5.2.2 Transformer classification without Ratings

5.2.2.1 Accuracy
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Figure 34. The loss of transformer on test data without rating

In Figure 34, this graph shows the average loss of all batches on the test data with
respect to the training epoch number. In the chart, we see that the average loss of this
model has a general decreasing trend from the start to epoch number 8. After epoch
number 8, the average loss of the model increases remarkably, which indicates the
overfitting. We observe that this model reaches the converges earlier than multilayer
perceptron models. The transformer classification model is more complex than the

multilayer perceptron and it learns faster.
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Figure 35. The accuracy of transformer on test data without rating

We examine the testing accuracy in Figure 35. We see that the testing accuracy of this
model is in the range of 17% to 20% for epoch numbers larger than 3. The reason for
considering the test accuracy after epoch number 3 is that the model is learning, and
its average loss on test data has not reached the minimum before epoch number 3.
From the implication of the average loss in Figure 34, the best performance of this

model has 19.2% at epoch number 6.
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5.2.2.2 Betting Simulation

betting simulation (mean)
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Figure 36. The betting simulation of transformer on test data without rating

We use the prediction of the transformer model to guide our bet on the test data.
Figure 36 reveals the performance of this model in the profit-making aspect. Our test
data shows that the net gain is -4% after betting on all 688 races. The performance of
this model in betting is better than the multilayer perceptron, which has -13% as the

highest net gain with the Elo-MMR rating included in the input.
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5.2.3 Transformer classification with Ratings

5.2.3.1 Accuracy

test loss (mean)

3000 A
= mmr

trueskill

2600 -

2400

avg loss

2200

2000 4

1800 T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epoch_num

Figure 29. The loss of transformer on test data with rating

Figure 37 shows the average loss of transformer models with different ratings
involved in the input. All models overfit after the epoch number 8 because their
average loss on test data keeps increasing after the epoch number 8. When compared
to the graph for models using multilayer perceptron, we see that using different
ratings is not significant here because the differences in average loss between the
transformer models that use different ratings are more minor than that of the

multilayer perceptron models.
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Figure 38. The accuracy of transformer on test data with rating

As Figure 37 indicates overfitting after epoch number 8, we focus on the test accuracy
before epoch number 8. We notice that the test accuracy increases consistently from
the start. The transformer model with the Elo-MMR rating included has the highest
test accuracy of 21.4% among the other models. Compared to the test accuracy of the
transformer model without rating in the input, we conclude that including ratings in
the transformer model as input slightly increases the test accuracy. Compared to the
test accuracy of multilayer perceptron models, we conclude that using the transformer
model slightly increases the test accuracy and narrows down its confidence level

because its fluctuation is slight, as shown in Figure 38.
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5.2.3.2 Betting Simulation
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Figure 39. The betting simulation of transformer on test data with rating

When following the predictions of these transformer models in betting, we obtain a
satisfactory result. The models give us a positive net gain of 3% to 6% after betting on
688 races in the test data, as shown in Figure 39. The transformer models with rating
do have a better performance than the transformer model without rating and the
multilayer perceptron models with rating. Also, we find that the change of net gain is
confined to a smaller interval throughout the betting simulation when using the

transformer model with the Elo-MMR rating.
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5.3 Embedding Methods Comparison

Beyond the neural network architecture and rating estimation system, input
embedding is an essential ingredient in the learning process. A better embedding
method could provide a more precise vector representation of input carrying semantic
meanings. Therefore, a proper embedding method helps the model better understand
the similarities and differences of inputs and affect the model's performance. During
the investigation, the inappropriateness of fitting horse racing input into word
embedding is spotted, and the horse token embedding is then advocated to replace the
word embedding. So, the two embedding methods are compared under the same
architecture and rating input, the transformer model with Elo-MMR ratings, to
determine a more suitable embedding method. As the result of using word embedding
in the transformer model with Elo-MMR ratings is shown in Figure 38, we only offer

the result of using horse token embedding with the specified transformer below.
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5.3.1 Transformer with Horse Token Embedding

5.3.1.1 Accuracy
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Figure 40. Test accuracy when horse token embedding was used

Overfitting occurs when the transformer model, which uses word token embedding, is
applied to the input with horse token embedding. Therefore, the number of encoder
layers is decreased to form a simpler transformer model, but more epochs are needed
instead. The maximum accuracy of 23.4% was reached with 420 epochs, as shown in
Figure 40. Compared to the accuracy of using the word embedding layer, the accuracy
of using the horse token embedding is increased by 2%, from 21.4% to 23.4%. The
accuracy is stabilized at around 22.5% in later epochs after reaching the maximum,
and it differs from the performance shown in Figure 37 that the accuracy has a
significant drop of 2% after its maximum. The difference evinces that the horse token

embedding is more applicable for input in the horse racing context.
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5.3.1.2 Betting Simulation
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Figure 41. The betting simulation of transformer with horse token embedding

The replacement of the word embedding by the horse token embedding excels in the
profit-making capability of our transformer model. From Figure 41, the net gain over
the races in test cases has a gentle trend of increase in which the profits from the
correct predictions compensate for the losses caused by the wrong predictions. The
steady growth of the net gain implies that the horse token embedding is more
favorable than the word embedding, which leads to large fluctuations in the net profit,

as shown in Figure 39, towards the profit-making aspect.
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Chapter 6
Interpretability

6.1 Assessment to Model Capability

The comparison between a transformer classification model and a multilayer
classification model discussed in Chapter 5 exhibits the privilege of the transformer
classification model in the horse racing context. Also, horse token embedding instead
of word embedding leads to higher accuracy in winning horse prediction. These
observations bring interest in investigating how information encoded in horse token
embedding allows the transformer model to perform better. One possible way to
examine the information, the internal vector representation, carried in every layer of
the encoder layer in the transformer is using probing tasks for reasoning the
capabilities of the transformer in relation to properties of a race that helps in correct

prediction [37].

Regarding the process of learning useful properties for a correct prediction, we lay
down an assumption here, and we will revisit them with the results obtained after the
probing tasks. We assume that layers at the front of the encoder learn only simple
features and layers at the end of the encoder learn more abstract concepts. The internal
vector representations at the layers towards the end of the encoder should have more

helpful information about the properties of a race.

91



6.1.1 Probing Model

The probing model could partially reveal the information captured in the internal
vector representations because the probing model could have accurate predictions if
the information in the internal vector representation is sufficient for the probing model
to make correct decisions. The precise prediction of the probing task for a particular
property entails the capability of the transformer model to learn that property because
it has sufficient information stored in the interval vector representation for a better

understanding of that property [38].

A probing dataset is constructed for each property that will be investigated. In a
probing dataset, the input of the probing model is the internal vector representation,
while the target is an integer indicating the class of the input. The architecture of the
probing model is illustrated in Figure 42. The internal vector representation in the
probing dataset is extracted from the transformer model, which will be assessed and
fed to a simple multilayer perceptron for binary classification. To avoid overfitting,
the multilayer perceptron consists of two fully connected layers with ReLU activation
and dropout. The output of the multilayer perceptron is then compared to the
corresponding target in the dataset for evaluation. This probing model could be
generalized for multi-class classification by allowing the multilayer perceptron to

have more than two outputs if the property has more than two expressions.
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Figure 42. The probing model [38]

6.1.2 Number of Participants

The number of participants varies in races, and it is usually in the range of 10 to 14.
While maintaining the input to have 14 horse tokens consistently even though the
number of participants is sometimes fewer than 14, the model is expected to know the
number of the participant when predicting the winner horse so that the prediction of
the winning horse number is within the range. For example, the transformer's output
should be in the range of 1 to 10 if the number of participants is 10. Therefore, the
capability of understanding the number of participants is investigated to see if the
model can avoid giving an out-of-bound prediction to minimize the probability of

producing an unreasonable forecast.
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In the generation of the probing dataset, the count of participants in each race is
extracted from the data frame of the original dataset, and it is marked as the target for
that particular race. The input x; for each race is a row vector of length n where n is
the length of the internal vector representation and i was the i-th layer in the
transformer encoder for 1 < i < 5. The target y for each race is an integer such
that 1 < y < 5 represents 5 possible numbers of participants. The probing task is

thus a classification task of 5 classes.
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Figure 43. Accuracy of probing model (number of participants)

The accuracy of classifying the number of participants in all layers is at least 86%, as
shown in Figure 43. The high accuracy indicates the capability of the transformer to
identify the number of participants correctly in most cases. This essentially reduces
the probability of incorrect prediction due to misunderstanding of race conditions by
the model and pushes the forecast towards the ground truth. Another substantial
interpretation is the preservation of information about participant count over all

layers, as we see those similar accuracies in determining the participant count in all
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layers. One possible explanation is that the knowledge of participants is essential in

predicting the winning horse so that the model does not forget it but preserves it.
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Figure 44. Loss of probing model (number of participants)

We expected more complex concepts are learned by later layers, like the aggregation
of the existence of horses into count, while earlier layers learn only simple features
such as the dichotomy in regard to the existence of a particular horse. Although the
result shown in Figure 44 did not strongly verify the assumption, it does not disagree
at all as the loss of model using the fourth encoder layer is lower than that of the
second and third layers. Therefore, further investigation into other properties is

needed to verify our assumption.
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6.1.3 Most Popular Horse

Wining odds could improve the model's performance since it involves the public
intelligence and reflects the most popular horse with the lowest win odds. However, it
is excluded from our input because it keeps changing until the start of the race and we
want to resemble the effect of win odds by static rating and transformer architecture.
To determine whether rating and transformer could have a similar impact on finding
the most popular horse, we study whether the internal vector representation contains

enough information for identifying the most popular horse.

The input in the probing dataset was the same as the input in section 6.1.2. The target
of the dataset is the horse with the lowest win odds as the win odds of the horse
decrease if more people bet on that horse. So, target y will be an integer such that

1 < y < 14 indicates the horse number of the winner. The probing task is thus a

classification task of 14 classes.
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Figure 45. Accuracy of probing model (most popular horse)
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In Figure 45, the model using vector representation of the second encoder layer as
input reached the maximum accuracy of 26.6%, followed by that of the third encoder
layer, the fourth encoder layer, the embedding layer, and the first encoder layer, which
had maximum accuracies of 26.1%, 25.4%, 24.4%, and 24.2% respectively. The
transformer indeed learned to distinguish the most popular horse, albeit with a
seemingly low accuracy of 26.6%. There were 14 horses in a race, and the probability
of selecting the most popular horse in a random guess was 0.0714, but the accuracy
was boosted to 0.266 when the internal vector representation was used to assist the

selection. The model could find the most popular horse indicated by the lowest win

odds.
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Figure 46. Loss of probing model (horse with lowest odds)

The internal vector representation of the second encoder layer has the lowest loss
among all layers, as shown in Figure 46. Furthermore, the loss of the third encoder

layer is lower than all other layers except the second layer. Since the concept of the
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most popular horse includes a comparison between horses’ attributes and it is
complex, we expect the later layers to learn better at the abstract idea and they always
perform better than the earlier layer. Nonetheless, the result in Figure 46 does not
entirely support it because the third and the second layers have higher losses than that
of the second layer. This concludes that the later layers usually grasp the abstract

concept better, but it is not a must in the horse racing context.

6.1.4 Usefulness of Ratings

Although the rating is an important factor in winning horse prediction as it
summarizes a horse’s overall performance based on its past records, there are some
cases in which the winning horse does not have a high rating. In these cases, the rating
is useless, and the prediction should not depend on the rating. We want to know
whether the model could determine the usefulness of rating and make use of it in

prediction.

The input in the probing dataset is the same as the input in section 6.1.2. The target of
the dataset is a truth value about the usefulness of rating, which has True and False as
the value. The target y of a race is an integer 0, indicating that the rating is useless if
the horses with low ratings win the first three places. Otherwise, y is an integer 1,

indicating that the rating is useful.
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Figure 47. Loss of probing model (rating contribution)

In the classification of the rating usefulness, the internal vector representation at the
third layer shows the best performance of attaining 57.7% accuracy. The vector
representations at the second and fourth layers both get 55.9% accuracy while the first
layer and the embedding out result in 54.5% and 54% respectively, as shown in Figure
47. The highest accuracy obtained is 57.7% which is slightly better than making a
correct random guess between useful and useless of 0.5 probability. One reason for
the result is the complexity of deciding the usefulness of a rating. Suppose the model
fully understands the usefulness of rating in the race. In that case, it can just give a
prediction directly relying on the rating, and the expected accuracy of our transformer
model would be much higher. However, this task is very complex, and our
transformer model has only 23.4% accuracy in the correct prediction of the winner

from Figure 40.
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Figure 48. Loss of probing model (rating contribution)

As detecting the usefulness of rating is a very complex task, our assumption states
that earlier layers are not as capable as the later layers in this task because earlier
layers learn only simple features. In Figure 48, it shows that the claim is valid to a
certain extent because the embedding output and the first encoder layer, which are the
earlier layers, produce higher loss when their internal vector representations are used

for finding the usefulness of rating than that of the second, third and fourth layers.
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6.2 Better Performance with Ascending Horse Number

The input of the transformer model is a sequence of horse tokens arranged in
ascending order according to the horse number. Therefore, a horse with horse number
1 is positioned on the first horse token, and the horse with horse number 2 is arranged
on the second horse token. The other horses are placed in the same way. We want to
inspect the performance change of our model in a situation where the horse tokens in
the input are reordered randomly so that they are no longer in ascending order. In
Figure 49, the model's accuracy drops by 1.7%, from 23.4% to 21.7% after data
shuffling. Also, the loss of the model before the shuffling is obviously lower than that
after the shuffling, as shown in Figure 50. We will explain this phenomenon from the

perspectives of distribution in the dataset and the attention map.
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Figure 49. Comparison of accuracy before and after data shuffling
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Figure 50. Comparison of loss before and after data shuffling
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6.2.1 Distribution of Horses with the Lowest Odds

Arranging the horse tokens in ascending order in terms of horse number implies
hidden information about the probability of winning for horses. Figure 51 shows the
distribution of horses with the lowest odds. If the horse has the lowest odds in a race,
it is the most popular horse perceived by the public, and this information was proven
helpful in prediction [9]. The model may learn the distribution in Figure 51 after the
training and it may know that the probability of the horse with the lowest odd
decreases as the horse number increases. This hidden information may induce bias in
the model, and it tends to guess horses with a smaller number to be the winner more
often. If the horse tokens are rearranged randomly, the model may not learn the
negative relationship between the horse's probability with the lowest odds and the

horse number. It loses this information, and the predicting power may be undermined.
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Figure 51. Distribution of horses with lowest odds.
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6.2.2 Properties of Attention Map in Successful

Transformer Model

Since we attempt to reduce the horse racing classification to a language processing
classification by using the transformer and embedding, we expect the attention map of
our transformer model will be similar to that of a successful transformer model such
as BERT if our model performs well. It suggests a comparison of the attention map in
our model with that in BERT to evaluate our model performance. Therefore, we will
analyze the attention maps of our model before and after data shuffling based on the

properties of the attention map in BERT.

From the observations of the attention map in BERT, we concluded that there are four
general properties of a good attention map [39]. The first property is the appearance of
recurring patterns in attention heads. The second property is the similar behaviors of
heads in the same layer. The third property is the little attention on the same token in
most heads. The fourth property is the broad attention of heads in lower layers. The
attention maps before and after data shuffling are visualized by an open-source tool
[40]. These four properties will be used to evaluate our attention maps and explain the

better performance of using horse tokens with ascending order as the input.
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6.2.3 Attention Map Evaluation
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Figure 52. Attention map trained by data before shuftling

The attention map trained by data before in Figure 52 is considered with reference to
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the four properties mentioned in section 6.2.2. Firstly, the appearances of recurring
patterns in attention heads are recognized. For example, the fourth head in the first
layer, the second to fourth heads in both the second and third layers, and the fourth
head in the last layer exhibit a recurring pattern in which the first few tokens tend to
pay more attention to the last few tokens. In comparison, the last few tokens tend to
pay more attention to the first few tokens, and a cross pattern is likely to form.
Secondly, we observe similar behaviors for heads in the same layer. All heads in the
first layer, second and fourth, tend to pay strong attention to tokens further away from
the current tokens. All heads in the second layer tend to pay attention broadly to every
token, satisfying the fourth property simultaneously. Also, the third property is
satisfied because there are only a few numbers of heads having weak attention to the
same token. Therefore, the attention map trained by data before shuftling has all

properties of the attention map in a successful transformer model.

The existence of those four properties is examined in the attention map trained by data
after shuffling. Firstly, a recurring pattern of paying strong attention to tokens in the
first few and last few tokens exists in some heads such as the first and second heads in
the first layer, the first head in the second layer, and the third and fourth heads in the
third layer. However, the second property does not exist because all heads in the first
layer tend to behave differently. Also, the first head in the third layer exhibits broad
attention while the second head does not. The third property is not satisfied because
many heads pay attention to the same tokens. For example, the third and fourth heads
in the first layer, the fourth head in the second layer, the second head in the third layer,
and the first, second, and third heads in the fourth layer. The fourth property is also
unsatisfied because broad attention is only observed in the third layer's first head,

which disagrees with the fourth property that there is broad attention of heads in the
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lower layer.

Heads

yers

La

Figure 53. Attention map trained by data after shuffling.
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6.2.4 Explaining the Results

Our investigations of the phenomenon of the better performance of the model when
the horse tokens input is in ascending order provide two possible reasons. The first
reason is that the model can learn the negative relationship between the probability of
being the most popular horse and the horse number if the horse tokens are in

ascending order. This information may lose after the shuffling of the horse tokens.

The second reason is that the shuffling of horse tokens leads to the poorer behaviors
of the attention map as the attention map trained before the data shuffling has all
properties of the attention map in a successful model while that after the data

shuffling possesses only one of the properties. The comparison can be found in Table

6.

Attention map trained Attention map trained
by data before shuffling by data after shuffling

Recurring pattern v v

Similar behavior in the « X

same layer

Little attention to the v X

same token

Broad attention in lower «+ X

layers

Table 6. Existence of properties of successful attention map
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6.3 Contribution of Horse Tokens to the Prediction

Our transformer demonstrates its capability in making a profit in betting simulation,
and this means that the model generalizes some ideas in the learning process, which
provides profitable prediction. We want to look at those ideas and conceptualize them
into simple rules that assist the betting. The integrated gradient is chosen to be the tool
for us to realize the input-output behavior of the model and determine the importance

of each horse token [41].

Before the investigation, we have prior assumptions below about the contributions of
horse tokens to the prediction, which will be verified in the analysis. Suppose the
horse with horse number i is the predicted winner, we expect it should have the
highest positive contribution to the prediction. Horses other than the winner should
give negative contributions because they are competitors of the winner. Besides, the
contributions of the strong horses should be more significant because they are more

influential in the race.
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6.3.1 Integrated Gradient

We select the integrated gradients method because we can utilize the gradient
operations to compute the integrated gradients by integrating the first-order
derivatives with little effort while maintaining our model architecture [41]. After the
computation, the input features' attribution of the model prediction can be obtained for
further analysis. Hence, integrated gradients can approximate the importance of horse

tokens in the race.

Suppose the input sequence of horse tokens for a race is x and the baseline input is
x’. We denote our transformer model as F, and the model's outputis F(x). The
gradients of all points along the straight-line path from the baseline x’ to the input x
are integrated to obtain the integrated gradient [42]. Therefore, we can use the
following equation to see how the m** horse token in the input sequence x

contributes to the model prediction F(x),

IntegratedGradient,,(x) = (Xm — Xm') falOW da. (18)
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6.3.2 Contributions in Different Situations

In this section, the contributions of all horse tokens in different situations are

computed for extraction of commonalities, and every situation has a distinctive

winner. The positive contribution of the horse token is colored in blue, while the

negative contribution is colored in red.

Token

ribution

cont

lllwm re— —

Winner: Horse 4

N II ---l
ol

1%

contribution

\\\\\\\\\\\\\
Pigese 13

Token

Figure 54. Contributions of horse tokens when horses 1 — 4 are winners

When the winners are a horse with numbers 1 to 4, the winner contributes positively

to a large extent and most other horses contribute negatively as seen in Figure 54. We

notice that horses with numbers 8, 9, and 10 contribute a significant negative value

while the remaining horses contribute relatively low negative values.
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Figure 55. Contributions of horse tokens when horses 5 — 8 are winners

For races whose winners are horses with a number from 5 to 8, the winner contributes
a significant amount of positive value, and most other horses contribute negatively. In
Figure 55, we discover that the horse that contributes most negatively are not the
horses next to the winner but the horses further away from it. For example, if the
winner is horse number 5, horse number 11 has the most negative value instead of

horse number 4 or number 6.
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Figure 56. Contributions of horse tokens when horses 9 — 14 are winners

For races whose winners are horses with a number from 9 to 14 in Figure 56, we
observe that the contribution patterns for winners from 12 to 14 are different. For
these three cases, the input regarding the race information contributes a positive value
while it contributes a negative value for all the other cases. Besides, the number of

horses giving positive contributions increases when the winners are a horse with a
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number from 12 to 14.

winner_number_1 4 2 0072 0 0 0 0.041
winner_number_2 £ . £ 0 003a | 013
winner_number_3

winner_number_4 0 0051 014 00 7 00055

winner_number_5 4 3 0.01

winner_number_§ 0.026 0 0 .15
-0.75
winner_number_7 3 0.011 1 X 0 0. 4 0 0.014
winner_number_8 SEIREEES 4 0. 24 0 0.01 0017
-0.50
winner_number 9
winner_number_10 0.0053 0. 0.033 0.15 . 013
-0.25

winner_number_11 S84 k 0.03 0. 0027 015 0.019 2 0054 0.005

winner_number_12 ) 0 0.006 3 0.076 ) 0.01

winner_number_13 0. 0.053

winner_number_14 0.057 3 0014 0.011

'
race  horse 1 horse 2 horse 3 horse 4 horse 5 horse 6 horse 7 horse 8 horse @ horse 10 horse 11 horse 12 horse 13 horse 14

Figure 57. Heatmap showing contributions of horse tokens in all situations
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6.3.3 Simple Rules Extraction

The advantage of the integrated gradient in model inspection is showing the mapping

of input-output behavior [41]. We can often gain insights from the visualizations of

the mapping to generalize a set of simple rules that help us predict the output. From

the results obtained in section 6.3.2, we conclude the following simple rules that guide

the betting people.

1.

Given that you want to bet on a horse with horse number i for 1 < i < 14,
you should focus on the horses far from horse i and consider their ratings. If
those horses’ ratings are high, horse i is not likely to win. This rule is based on
the observation that the negative contribution of horse j with |i — j| which
indicates that the negative impact of horse j will likely be enlarged when it is

distant from horse i

Given that you want to bet on horse i for 12 < i < 14, you should consider
the race condition. If horse i performed well in a similar race condition in the
past, the probability for horse i to be the winner is large because we observe
that the race condition contributes a significant amount of positive value when

the winners are horses with a number greater than 11.

Given that you want to bet on horse i for 12 < i < 14, a few strong horses
with a horse number smaller than i should not discourage you from betting on
horse i. We discover that some horses with numbers smaller than i contribute
positively when the winner is i. One possible explanation is that those horses are
strong that they block the other horses in the race and leave chances for horse i

to catch up with them.
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Chapter 7

Conclusion

The first phase of the project aims at understanding the betting odds in horse racing
by analyzing the impact of using both the rating systems and transformer architecture
on the accuracy and profit-making aspects of horse racing prediction. From previous
studies, the win odds in the feature list enhance the accuracy and net gain [8][9]. We
exclude the win odds from the feature list this time and attempt to resemble the effect
of the win odds by combining the performance judgment and natural language

processing techniques.

We contrast the differences in performance by experimenting with three models:
multilayer perceptron with ratings, transformer without ratings, and transformer with
rating. We discover that the best case of our models is the transformer with Elo-MMR
ratings, which has the highest test accuracy of 21.4% and gives a positive net gain of
6% in the betting simulation of the test data. This shows that ratings and transformer

architecture have similar influences on the horse racing prediction.

The second phase of the project extends the work of the first phase from two
perspectives. The first perspective focuses on accuracy improvement. When applying
the transformer architecture in the horse racing context, a more appropriate horse
token embedding is suggested to replace the word embedding. The horse token
embedding can be efficiently generated with proper data segregation and the aid of
Principal component analysis. The accuracy of the best model chosen in the first

phase is boosted by 2%, from 21.4% to 23.4% after replacing the embedding.
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The other perspective shifts the attention to the interpretability of the best model
found in the first phase. Three different aspects are investigated using different
interpretability methods. The first one is the assessment of the model's capabilities in
learning helpful information by probing. It exposes that later layers are usually more
capable of discovering useful information. The second aspect is the impact of input
order perturbation on the model performance. It shows that the perturbation causes the
loss of information and poor attention heads' behaviors, which results in worse model
performance. The third aspect is studying the input-output behaviors of the model by
the integrated gradient. Simple rules are extracted from the input-output behaviors to

guide the betting.
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