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Abstract 

Due to the limitation of manually designing neural network architecture, Neural 

Architecture Search arises to algorithmically learn the suitable network architecture for 

machine learning tasks. This report will emphasize on two elements of this project, i.e. 

Neural Architecture Search and its application on BERT, an attention-based neural 

network for natural language understanding. After experiments, we realized prediction 

distillation is the most effective objective for sub-architecture searching over the multi-

heads and the feed-forward layer connection. The latest experiment result shows that 

the result of our architecture searching algorithm can surpass the performance of the 

existing BERT models of similar architecture computational complexity. 

 

Abbreviation 

AutoML – Automatic Machine Learning 

BERT – Bidirectional Encoder Representations from Transformers  

FLOPS – Floating Point Operations Per Second  

LSTM – Long Short-Term Memory 

NAS – Neural Architecture Search 

NLP – Natural Language Processing 

RNN – Recurrent Neural Network 

TinyBERT 4L – A variant of BERT with 4 hidden layers from [28] 
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1  Introduction 

To understand NAS, we are trying to experiment with the possibility of NAS on 

deep neural network. Existing research results mainly focus on the implementation of 

NAS on state-of-the-art neural network modules such as convolution, residual 

connection, which shows the best performance on image cognition problems. Thus, we 

decide to work on the less explored architectures of neural network. 

 

We have seen the rapid development and success of deep neural network on natural 

language processing problems. A new emerging architecture named Transformer caught 

all the attention in the natural language processing community. Considering the 

constraints of our resources, we decide to focus on BERT and its application on 

sentence pairs classification problems using GLUE dataset. The transformer 

mechanism utilities the correlation of pairs of words within the sentences to infer 

information about the contextual meaning of the sentences. 

 

We propose to apply NAS on BERT architecture and perform network 

compression on the architecture. We foresee that at the end we should be able to remove 

redundancy in the architecture and reduce the number of parameters in the network. We 

might also hope that the network would improve in accuracy, as network compression 

can be thought of as an action of regularization. 

 

2  Background Study 

2.1  Neural Architecture Search, and AutoML 

A family of methodologies that allows computers to automatically learn the better 

computational model to solve a specific task is called Automated Machine Learning. 

Intuitively it can perform architecture development just like a machine learning 

developer will do, but better at being data-driven.  

 

It is common to describe the problem of AutoML as a Combined Algorithm 

Selection and Hyperparameter optimization problem, dubbed as CASH [7]. In a CASH 

problem, we are trying to minimize the evaluation loss of the model trained on the 

training dataset, where the model is parametrized by the hyperparameters and the choice 

of algorithms. This equivalently captures the idea of finding the best solution to solve 

the existing problems, using machine learning. 
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Under AutoML we have three popular areas of study, namely hyperparameter 

optimization, meta-learning and neural architecture search.  

 

Hyperparameter optimization [1, Chapter 1], as its name suggests, focuses on 

searching for the best hyperparameters of a machine learning model to attain the best 

performance. Common hyperparameters of a model are learning rate, batch size, 

number of training epoch etc. While it is not the focus of our project, it is worth to 

mention that hyperparameter optimization overlaps a lot with NAS. We can think of the 

architecture of a network as one of the hyperparameters of the network.  

 

Meta-learning suggests using meta-data to lead the learning of our model. Meta-

data is the data we get from learning other models on different datasets. Across datasets 

and across machine learning models we can observe and calculate statistically what is 

the factors behind that leads to the success of some models and the failure of some other 

models. For example, if we know certain models will not perform well on some tasks, 

we can predict that they will not perform well on similar tasks. Meta-learning utilizes 

this idea and allows the computer to learn how to learn [1, Chapter 2]. For example, 

Auto-PyTorch Tabular do both NAS and hyperparameter optimization on tabular 

datasets and set up a benchmark called LCBench for learning curve prediction [2]. 

 

NAS covers all the methods that use automatic algorithms to design the 

architecture of a neural network. NAS algorithms can be categorized according to its 

search space, search strategy and performance estimation strategies [1, Chapter 3]. 

Inside the search space are all the candidate architectures for the task. At each iteration 

of the searching, we sample one architecture from the search space for evaluation of its 

performance, using the performance estimation strategy. The most intuitive way to 

estimate the performance of the architecture is to use a training dataset for training until 

convergence and perform evaluation on the unseen dataset as the estimated 

performance of the architecture. 

 

 Most of the time NAS procedures are computationally expensive due to the cost 

of performance estimation. Training cost of a deep neural network can be as expensive 

as up to a GPU day. The more architecture that we have evaluated on, the more 

information about the search space we have and the higher chance that we can evaluate 

on a suitable architecture that performs well on the given tasks. This situation makes 

NAS different from other machine learning algorithms, where in general we can 

monitor the learning progress of a neural network by looking at its validation results 
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and infer that whether the model is converging or overfitting. But in NAS the search 

will not overfit on sampling too many architectures. So we cannot adopt strategies such 

as early stopping in our searching process. This motivates the choices of better search 

strategies and better performance estimation strategies that do prediction on the 

performance of the architecture without training the architecture to convergence, to 

overcome the large cost deep neural network training. Searching strategies that could 

achieve efficiency by this idea includes Bayesian optimization and gradient-based 

algorithms.  

 

Fig. from [1, Chapter 3]. An illustration of NAS. 

2.1.1  Search Strategy  

Here we will describe the details of different searching strategies. The major 

classes of NAS algorithms according to the search strategies are searching by Bayesian 

optimization, reinforcement learning, genetic algorithms and gradient-based algorithms. 

 

Bayesian optimization is the method that allows us to predict a certain function 

without a full evaluation of the function [6]. This is very helpful to NAS, when 

especially the function of interest is the function of network performance, given the 

hyperparameters and architecture as the input of the function. Using Bayesian 

optimization is like exploring an unknown function, and in each iteration, Bayesian 

optimization will tell us what is the best point to evaluate on to get a more accurate 

estimation of the high points of the function. With the objective of finding the best 

architecture, Bayesian optimization will save us a lot of time from preventing 

evaluation on weak architectures, or architectures that will not bring us new information 

about the best architecture. 
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Fig. from [6]. Top: 3 blue points represent observed data point, which can be referred 

as the evaluated architectures in NAS. Dashed red lines represent the confidence 

intervals of the estimation of unobserved input. Bottom: Acquisition function suggests 

the next relevant points of sampling to get the most unknown information about the 

distribution. 

When we consider architecture searching as a task of reinforcement learning, the 

agent’s action will choose how to build the next architecture for evaluation. The 

evaluation results of the architecture become the reward of the agent. So, the 

reinforcement agent will use achieving the best network performance as its target to 

generate the best architecture according to the given data and tasks.  

 

Using genetic algorithms to produce the best architecture for a certain task is also 

popular as an intuitive method to perform NAS. In a population each individual is a 

candidate architecture, and through mutation process new architectures will be 

generated, for example, by picking the fittest parent and generate its offspring by 

applying mutation on its architecture [1, Chapter 3]. Each candidate is evaluated on the 

unseen dataset to get their own scores as a fitness function, so suitable genes of 

architecture that perform well on the tasks will survive in the population. 

 

Gradient-based searching stands out to be one of the most efficient searching 

strategies. We can see from the above strategies that evaluation of the architecture is 

done for each iteration of searching, for example genetic algorithms have to train each 
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of the candidate architectures to convergence in order to calculate its fitness score. For 

larger architecture or larger dataset, the cost of training an architecture is huge, thus 

becomes the reason of inefficiency. In contrast, gradient-based methods enable us to 

learn the architecture during the training of the network. Extra learnable weights are 

attached to the network, which serves as probabilities of the possible architectures. If 

we are training to minimize the training loss and architecture loss at the same time, we 

could have the gradient of the architecture weights with respect to the losses and have 

the architecture weights trained together with the original weights of the network. For 

example, [3] has shown a differentiable searching algorithm to search for the width and 

depth of a ResNet [4], a convolutional neural network with residual connection. 

 

In our project, we decide to use a gradient-based searching strategy to perform 

NAS by the reason that it is more feasible to execute within a reasonable period of GPU 

hours.  

2.1.2  AutoML System 

To get a better understanding of the state-of-the-art AutoML methods, here we 

introduce a few of those that become successful in the community of AutoML. 

Essentially each of the following is a product of “easy to use” machine learning library 

that allows normal users with no expert knowledge about machine learning or about the 

data to perform machine learning tasks.  

 

Auto-Keras is the realization of NAS that uses Bayesian optimization to guide the 

network morphism [5]. For efficiency of the searching procedure, Auto-Keras perform 

Bayesian optimization that searches for architectures on CPU while in parallel it 

performs model training on GPU so that evaluation results are passed back to the 

Bayesian optimization searcher to update its estimation of the performance graph of the 

model. By the constraint of Bayesian optimization methods that the search space of 

parameters needs to be continuous, it is not applicable to NAS since network 

architectures are discrete. To tackle this problem Auto-Keras decided to use the edit 

distance of two architectures to lay the discrete architecture onto continuous dimensions. 

It means that two architectures are close to each other when it only takes a few numbers 

of morphing to transform one architecture into the other one. Finally, it is reasonable to 

see that Auto-Keras focuses on searching the architecture of a deep neural network since 

we expect that a deeper network creates flexibility for the architecture to be changed, 

and thus being more probable that we will see a good performance of deep neural 

network after architecture searching comparing to shallow machine learning models. 
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In contrast to searching for the best deep neural network architecture for a certain 

task, Auto-sklearn takes the traditional machine learning approach and put together an 

ensemble of weak learners as the resulting model for the given task [7]. The system 

performs meta-learning to initialize the prediction of its Bayesian optimization searcher 

as a warm-starting operation. While in each searching iteration the Bayesian optimizer 

will search for the best hyperparameter for the base learner, after evaluation the trained 

weak model is also saved and serve as a candidate to participate in the final ensemble 

of the model. In the end, the system will perform ensemble selection using a held-out 

set of data to produce the ensemble of models.  

 

2.2  Network Compression 

State-of-the-art deep neural networks have a large size of trainable parameters, and 

certainly leads to more computational operations and longer inference time is required. 

For systems that want to achieve real-time performance, this is the bottleneck that limits 

the representation power of the neural network. Under the study of network 

compression, there are methods that will decrease the number of weights in the model 

while maintaining the model performance. In the following, we will try to introduce 

some of the existing compression methods. 

2.2.1  Weights Quantization 

In modern use of neural networks, weights of the network are often represented as 

32-bits float point values for precision. Using parameter quantization we can reduce 

memory consumption by limiting the precision of weights down to 16-bits or 8-bits, 

while correspondingly providing up to 2x and 4x more memory space on the GPU. This 

is advantageous in the case that we need to train very deep neural networks, as one of 

the bottlenecks for increasing model complexity is the memory size of a GPU. At the 

extreme people have tried using binary numbers as the weights of the network, however 

in practice this often suffers from the significantly lowered accuracy of the resulting 

model [8]. 

2.2.2  Network Pruning 

Network pruning achieve network compression by removing less informative and 

less impactful connections from the network to save computation. Early approaches 

such as using the second-order gradient information of the loss function to deduce the 

contribution of neurons have shown superior performance over the others in the early 
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times [8]. Network pruning is always applicable to connections of feed-forward layers, 

which are common types of connections among all the neural networks. Similarly 

approaches such as imposing L1-norm regularization can also be thought of as a kind 

of network pruning, since L1-norm regularization induces sparsity in the connection of 

the network. For the same reason we can say that network pruning has the same effect 

of regularization, which will limit the learning capacity of the network and avoid 

overfitting. 

2.2.3  Low-rank Approximation 

Aside from feed-forward layer, another common type of layer is convolution. 

Low-rank approximation allows us to split a big convolution filter into two smaller 

convolution filter, which reduces the number of learnable weights and the number of 

computational operations. Two famous examples of such kind are called spatial 

separable convolutions and depthwise separable convolutions [9]. Spatial separable 

convolution deals with the case where we want to factor a 2D convolution filter into 

two 1D convolution filter, thus the number of computations for a 𝑚 × 𝑛  matrix 

reduces from 𝑚𝑛 to 𝑚 + 𝑛. On the other hand, depthwise separable convolution is 

more power as it also deals with convolution across channels. It is common to see a 

network that adopts the use of 3D convolution filters. Depthwise separable convolution 

makes it possible to reduce computation by separating convolution into two parts, 

depthwise convolution and pointwise convolution. In depthwise convolution, we will 

be using 𝑘  filters to learn the spatial characteristic within the same channel, for 𝑘 

input channels. Using the output of depthwise convolution we perform the second step 

called pointwise convolution, which uses ℎ  1 × 1 × 𝑘  filters to learn the cross-

channel information and generate an output of ℎ  channels. We see that separable 

convolution is applicable to all shapes of convolution layers while being able to show 

a significant reduction in computational complexity.  

2.2.4  Knowledge Distillation 

If we look at a very deep neural network, we might ask ourselves how much each 

layer is contributing to the prediction results. When it is the case that some of the layers 

are redundant or even be no-op that does not learn any details of the data we will 

consider doing knowledge distillation. In the setup of knowledge distillation, we will 

transfer the knowledge of a trained teacher network to a smaller student network. It can 

be further separated into two types of distillation, the prediction layer distillation and 

intermediate layer distillation. In the prediction layer distillation, the final output of the 

smaller student network is trained with respect to the output of the teacher network. 
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This is based on the belief that the knowledge of the teacher is more informative than 

the data labels, which allows the student network to generalize well [10]. We can 

illustrate this by an example of MNIST, the recognition of handwritten digits. A typical 

MNIST classifier will have the final layer having softmax output, representing the 

probability of each class that the digit will belong to. To see how informative a teacher 

network output can be we can assume that upon taking a ‘2’ as the input, the teacher 

network will assign 𝑃(𝑥 is 2) = 0.95, 𝑃(𝑥 is 3) = 0.03, 𝑃(𝑥 is 7) = 0.02 and all the 

other classes as 0. These softmax outputs are referred as the “soft target” of the student 

network. From this distribution we can see that the teacher correctly predicts the input 

to its corresponding class, which provides the same information that the data label can 

give, while in extra is telling us that the digit ‘2’ is more similar to the digits ‘3’ and ‘7’ 

than the other digits. If the student network can also generate similar distribute of 

probability at its output layer, it is very likely that the student network has learnt the 

useful features from the input data that allows the model to make correct classification 

decision. If we extend the idea of knowledge distillation further into the output of the 

intermediate layers of the teacher network we have intermediate layer distillation. Each 

layer of the student network will be trained to match the intermediate layers’ output of 

the teacher network. Intuitively this is similar as we are trying to let one layer of the 

student network to mimic the operation of several layers of the teacher network. For 

example, in [11] this idea is referred as “Task-useful Knowledge Probe”, where the 

authors are performing task-specific fine-tuning of the language model BERT together 

with knowledge distillation to achieve network compression. 

 

 

Fig. Example illustrating intermediate layer distillation, red arrows represent that the 

student is training w.r.t the output of intermediate layers of the teacher network, the 

same color of the layer blocks represent that they have a similar function for 

processing the input. 
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There are also cases where the student network is deeper than the teacher network 

but thinner [12]. This will allow the student network to perform a richer feature 

extraction process, while still being better than the teacher model by having shorter 

inference time and smaller model size. 

 

While there are a variety of techniques to do network compression, a rule of thumb 

is that we should not sacrifice too much of the performance of the network for efficiency, 

unless under the situation where memory efficiency or computation efficiency is more 

important than the accuracy of the model. Network compression can not only reduce 

the resource required to build and use a deep neural network, it also enables us to train 

a deeper neural network and gain more learning capacity.  

2.2.5  Lottery Ticket Hypothesis 

 Inspired by all kinds of pruning techniques, [32] proposed the famous Lottery 

Ticket Hypothesis which states that a randomly-initialized dense neural network 

contains a subnetwork which is able to be trained to match the test accuracy of the 

original network under the same initialization of the original network. An analogy to 

lottery ticket is mentioned where different subnetwork of the initialized neural network 

is similar to a lottery ticket and a larger model have more combination of subnetwork, 

thus it has a larger chance of winning the lottery, i.e. converge to the parameters that 

obtains high test accuracy. 

 

 In [32] the author also proposed an iterative pruning method such that it can 

identify the winning ticket (i.e. the best subnetwork) after 𝑛 rounds of iteration: 

 

 

 By repeating the above algorithm for 𝑛  iterations, each time with 𝑝 = (𝑝∗)
1
𝑛 

where 𝑝∗ is the final ratio of weights we want to prune, this is referred as Iterative 

pruning in [32]. In step 3 we are pruning the first 𝑝% smallest magnitude parameters. 

Intuitively the parameters with small magnitude should be the least influential in the 

network. 

  

 In the discussion of [32], it is hypothesized that the initialization of weights is the 

core behind determining the subnetwork to be well trained. 
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 Beyond the idea of Lottery Ticket Hypothesis [34] found out the phenomenon that 

within a large randomly weighted network there exist subnetwork that performs well, 

even without training the network weights. These results strongly suggest the 

importance of an architecture over weight optimization, and reveal more underlying 

unknown about state-of-the-art deep neural networks. 

 

2.3  Natural Language Processing 

 Natural language processing concerns with all the machine learning algorithms 

that allow computers to understand and extract useful information from sentences of 

the same language. This area is getting most of the attention of the machine learning 

community, with its advancement in architecture that it brings to the study of machine 

learning. In the old days, the common approach is to use a recurrent network to capture 

contextual information from a sequence of words. Notice that in NLP we need models 

that could handle sequence to sequence operation. By design, popular layer choices in 

other problems such as convolution will not work for NLP problems since information 

of a sentence is not positional invariant property. The order of word appearance will 

affect the meaning of the word. For example, for sentiment analysis problem such as 

customer review analysis, “Although I like the product, but the delivery is too late.” 

and “Although the delivery is too late, but I like the product.” will have different scores 

of positiveness, where the first one is more negative than the second one. By this we 

see that using convolution operation will not help much in problems of NLP. Instead, 

there are other kinds of neural networks that are more suitable for NLP. 

 2.3.1  Recurrent Neural Network, LSTM 

Recurrent neural network has first been used to tackle NLP problems. Due to its 

cyclic connection between current states and previous states, RNN can model 

sequential information flow and have been successfully used for sequence labelling and 

sequence prediction tasks [13]. RNN is a sequence to sequence model, that it inputs in 

a sequence of data input and outputs a sequence of hidden representation. At the 

segment of input data, RNN will take the combination of the internal output of the 

previous layer and the data to generate its output. The internal output acts as an internal 

memory of RNN, which allows the network to remember useful information that is 

encountered while taking in the previous segment of the input data. Sometimes the 

internal outputs will be referred as the hidden states of the RNN. 
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Fig. from [14]. An illustration of the computational graph of RNN. ℎ𝑖 represents the 

internal output (hidden states) of the RNN at time 𝑖 after manipulating the input 𝑥𝑖−1 

and ℎ𝑖−1. 𝑦𝑖 are the outputs of the RNN at time i. 

 

 One limitation of the vanilla RNN is that it can only consider sequential 

information flow in one direction. This leads to an improved version of RNN called 

Bidirectional RNN, where essentially it is two vanilla RNN that one takes the input 

sequence from head to tail while the other one takes the input sequence from tail to 

head. The i-th output of the two RNN is the combination of the i-th output of each of 

the RNN.  

 

 Another problem is that it is difficult for vanilla RNN to represent the long-term 

dependencies within the sequence in practice. To further expand the representation 

power of RNN, the popular and practical solution of RNN type network is the Long 

Short-term Memory network, introduced back in 1997 [15]. In LSTM, it has expanded 

the mechanism of the internal states of RNN. There are several gates around the hidden 

states to allow LSTM to decide what to remember and what to forget in its internal 

memory. The input gate unit is to protect the memory content and allows the network 

to decide what information is allowed to manipulate the hidden states. The output gate 

unit is to control what content to flow out of the hidden states, and irrelevant memory 

contents will not be received by the neurons outside. Finally, the forget gate decides 

whether to accept the hidden state from the previous layer or not, depending on the 

current input and current internal state. Such a mechanism allows LSTM to model long-

range dependencies and learn useful information out of the sequential data input. 
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Fig. from [16]. An overview of LSTM. The non-linearities in the connection of gates 

expanded the learning capacity of the memory mechanism. 

 

 2.3.2  Transformer 

 Right now, when we talk about the state-of-the-art model for modelling sequence 

many people would refer to a better design of architecture called self-attention 

mechanism. Transformer is the sequence transduction model that only uses self-

attention mechanism, dispensing with recurrence and convolutions entirely [17]. To 

understand self-attention, we can assume that within a sequence each word is probably 

related to each other word. Self-attention tries to capture all pairs of relationship 

between the word tokens within the sequence. We say that a token i is attended to the 

other token j when the attention score of the i,j position is large. For a better 

understanding, we look at the following figure and explain how we do computation 

from the input of the attention layer to the output of the same layer. 

 

Fig. from [17]. On the right side is the illustration of a self-attention layer. On the left 
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side is the illustration of the attention mechanism. 

 

 Generally, the self-attention layer takes in three sequences of input, namely the 

query sequence (Q), the key sequence (K) and the value sequence (V), where the key 

and value sequences come in pair and describe a certain value of a key. Each of the 

input is linearly transformed into sequences of the head size, where the head size is the 

size of a hidden representation within the self-attention mechanism. Within the scaled 

dot-product attention computation, each query position will be attended to each key 

position. A high value will be yield in this step if this query has related semantic 

information with the specific key, which is further passed through a softmax to generate 

probability weight. With this attention weight, it is used to weight the values of the 

corresponding keys and summed up as the output for this query. In practice, the 

attention computation of all tokens in the query is done by matrix multiplication for 

computational efficiency. So, in forward through the self-attention mechanism, only 

two matrix multiplication is required, as shown on the left of the figure above. This is 

significantly important to sequence transduction process since we want to allow long-

range dependencies within the sequence. The operation required between temporal 

sequence unit is bounded by the operation stated on the left of the figure, which shows 

that we ensure a constant path length for the temporal information flow [17]. Unlike 

the situation in RNN where the path length of temporal information flow can grow in 

𝑂(𝑛), depending on how far away the locations of the two information is within the 

sequence. 

 

 

Table from [17]. Comparison of self-attention with recurrent layer and convolutional 

layer. n is the sequence length, d is the representation dimension, k is the kernel size 

of convolutions and r is the size of neighbourhood in restricted self-attention (masked 

self-attention). Showing that self-attention is more parallelizable and has a constant 

path length of long-range dependencies.  
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Fig. from [18]. An example of the attention mechanism used in the decoder of 

Transformer. The query will match with all the related keys in the input sequence. In 

this case, attention is masked and is limited to the word tokens at earlier locations. 

 

In practice, we can assign different kinds of input to query, key and value for different 

desired behaviour of the attention. In the Transformer architecture, it adopts the 

encoder-decoder structure and uses self-attention differently in the encoder and the 

decoder. The following figure will illustrate the architecture of Transformer.
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Fig. from [17]. The architecture of Transformer. On the left is the encoder stack, on 

the right is the decoder stack. 

  

The encoder-decoder structure generally can be understood as the encoder takes 

the original input and learn a representation of the input sequence, and the decoder 

generates a sequence of output according to the learned representation of the data from 

encoder and the previously outputted sequence tokens by itself. 

 

 The encoder of Transformer will take the input of data word sequence, such as 

sentence or pairs of sentences, and use learned embedding to convert the input tokens 

into embedding token sequence. Notice that positional encoding is added to the 

embedding sequence because from the design of attention mechanism we know that 

there is no ordering information during the calculation of attention. When positional 

encoding information is added to the embedding tokens ordering information is kept 

within the embedding token, so the network has the chance to refer to the ordering 

information during attention. For self-attention in the encoder, the input embedding 

sequence is used as query, key and value inputs equally, to let the network to learn the 

contextual knowledge of the given sequence and generate the encoded representation 
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of the input sequence. After self-attention we have a feed-forward layer, to generate the 

output of one encoder layer. For self-attention in the decoder, they serve different 

purposes as those in the encoder. At each step of decoding, the decoder is only allowed 

to look at the full encoded representation and the previously decoded output tokens. 

That is why a masked self-attention layer is used in the lower half of the decoder, to 

ensure that there is no leftward information flow during decoding and preserve auto-

regressive nature of the decoding process. There is one more type of self-attention in 

the decoder, referred as the “encoder-decoder attention”, that it takes the encoded 

representation of the corresponding encoder as the memory keys and values. The query 

is given by the output of the previous masked attention, which is essentially the output 

of the previous layer of the decoder stack. This serves the purpose that we want the 

decoded sequence to consider all the information we have from the whole sequence, by 

taking in the representation learned by the encoder. Notice that across each layer of 

operation there is a residual connection, which allows gradient to propagate further and 

allows Transformer to stack more encoder-decoder structure while still being able to 

train well. 

2.3.3  Language Modelling: ELMo, GPT, BERT 

 To handle NLP tasks, we want our model to understand the syntax and semantics 

of the language in order to learn useful information from sentence input. State-of-the-

art projects use large text corpus to perform unsupervised pre-training of the model. 

Generally, language modelling requires the model to be capable of predicting future 

tokens or missing tokens of the sentence, which is kind of a behaviour of understanding 

the language. The following paragraphs will introduce three well-known methods of 

language modelling. 

 

 First, we have a language model that uses bidirectional LSTM to generate its 

contextualized word representations, famously known as ELMo [19]. The 

representations learnt by ELMo are contextualized in the sense that the same word 

appearing in different locations could have different learnt representation. Bidirectional 

language model essentially uses a forward LSTM and a backward LSTM to generate 

the representation and jointly maximize the log likelihood of both two of the outputs 

given the history of the sequence, where for a sentence 𝑡, 𝑡1, … , 𝑡𝑘−1 is the history of 

the forward LSTM and 𝑡𝑘+1, … , 𝑡𝑁  is the history of the backward LSTM when 

computing the probability of 𝑡𝑘. We can train a deep bidirectional LSTM by taking the 

output of each LSTM as the input of the upper layer LSTM, which allows the model to 

learn a deeper representation of the input sequence. ELMo builds on top of deep 

bidirectional language models by learning the task-specific weighting of the 
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intermediate layer representations in a stack of bidirectional language models. ELMo 

puts together all the weighted representation of the token and generates its own 

representation, and these richer representations can be used as extra inputs to other 

supervised models solving downstream NLP tasks, where this is referred as a feature-

based approach. 

 

 

Fig. from [18]. An illustration of bidirectional LSTM used in ELMo. ℎ1, ℎ2 in the 

middle represents the intermediate layer representations of the stack of LSTMs. 

 

 Second, we have an attention mechanism based approach that uses the decoder of 

Transformer to perform language modelling, which is famously known as GPT [20]. 

GPT performs its unsupervised generative pre-training on large text corpus by a forward 

language modelling objective, by using a stack of decoders of the Transformer and 

masking out the future attentions to simulate forward predictions. At the last layer of 

the decoders, a softmax layer is used to model the probability distribution of the target 

tokens we want to predict. After pre-training, according to the downstream task we want 

to solve we perform supervised fine-tuning of the parameters with respect to the target, 

and depending on the structure of the downstream tasks we will need to use the output 

of the decoder differently, where usually the final layer would be a linear connection. 

During the fine-tuning process, GPT continues unsupervised language modelling as an 

auxiliary objective, which can improve the generalization of the supervised model and 

accelerate convergence [20]. 

 

 At last, we would like to introduce BERT [21], which uses a stack of encoders of 

the Transformer to build a deep bidirectional language model. Bidirectional understand 
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of the sentence is done by the attention mechanism. During unsupervised pre-training, 

two objectives are used to perform language modelling, i.e. the masked language 

modelling (Masked LM) and next sentence prediction (NSP). At each iteration of pre-

training, a percentage of input tokens are chosen at random to either be masked by 80% 

probability, or be replaced with a random token by 10% probability or be unchanged 

by 10% probability, and BERT is required to perform predictions of the original token 

on these chosen locations as to perform language modelling. At the same time, the given 

masked sentences come in pairs and BERT is required to predict the relationship of the 

two sentences, whether the given sentence B is the next sentence of sentence A as a 

binary classification task. The combined pre-training methods of BERT allows the 

model to utilize the language information given by surrounding tokens, and understand 

language structure across sentences, which is useful for some downstream tasks such 

as Question-Answering. After pre-training, we perform downstream tasks fine-tuning 

on the BERT model using the same pre-trained model parameters for initialization. It is 

reported that the fine-tuning procedure is way less expensive than the pre-training 

procedure [21], and in fact it is obvious by the difference of sizes of the dataset used. 

 

Fig. from [21]. Overall pre-training and fine-tuning procedures for BERT. 

Unsupervised pre-training is shown on the left, where two tasks are simultaneously 

used to train the model. Supervised fine-tuning is shown on the right, depending on 

the task specification we use the output of the BERT encoder differently. 

 

 As we know from our previous discussion about Transformer, the ordering 

information of tokens will be lost during attention. BERT uses a combination of token 

embedding (word representation), segment embedding (whether the token belongs to 

sentence A or B) and position embedding (index of the token position) as the input to 

the BERT model. 
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Fig. from [21]. An illustration of how the input embedding is produced. 

 

 We can summarize their differences in the following table. 

 

 ELMo GPT BERT 

Language modelling 

mechanism 

LSTM Attention, decoder 

of Transformer 

Attention, encoder 

of Transformer 

Language modelling 

direction 

Bidirectional Unidirectional Bidirectional 

Downstream task 

approach 

Feature-based, 

combining with 

other models 

Fine-tuning Fine-tuning 

Table 1. Comparison between ELMo, GPT, BERT. 

 

2.3.4  Tokenization 

Tokenization of words is an important procedure to preprocess the input before 

feeding it into any language model. Since a word can appear in a different form while 

carrying similar meaning, for example in English the word “walk”, “walks”, “walking” 

and “walked” all refer to the action of moving around but with different time scenario. 

In this case, we want the model to understand these words as having a similar meaning, 

where then we need similar encoding of these words as tokens.  

 

WordPiece [22] is one of the tokenization algorithms, where it initializes its 

vocabulary starting with every character present in the corpus. By merging two of its 

vocabulary according to the likelihood of subwords of the corpus, it progressively 

generates new word units until a predefined limit of word units is reached. This allows 

the vocabulary to capture all the frequently occurring sub word tokens in the corpus. 
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2.3.5  GLUE 

To allow experiment with a language model, we need a benchmark to compare the 

performance of different architectures. General Language Understanding Evaluation 

benchmark [23] (GLUE) is the set 9 of tasks and dataset that combines a diverse range 

of existing language understanding tasks. At the following paragraphs, we will describe 

three of the tasks that are of small, medium and large size of corpus respectively. 

 

CoLA is a relatively small dataset consisting of English sentences, designed for 

the acceptability judgment of the grammatical correctness of the sentence. Matthews 

correlation coefficient (mcc) is used as the evaluation metric, which evaluates binary 

classification performance on an unbalanced dataset. 

 

SST-2 is the medium-sized dataset consisting of movie reviews. The 

corresponding task is to predict the sentiment of the sentence, whether it is positive or 

negative. 

 

RTE is the large-sized dataset consisting of textual entailment. Binary 

classification is done on RTE to distinguish the sentence pairs as entailment or not 

entailment. 

 

The remaining tasks also cover a broad range benchmark on language 

understanding ability.  

 

MRPC is a corpus of sentence pairs from online news sources and annotated for 

whether the sentences in the pair are semantically equivalent. 

 

QQP is a collection of question sentence pairs from Quora, a community question-

answering website, and the corresponding task is to determine whether the pair is 

semantically equivalent. 

 

STS-B is a collection of sentence pairs form news headlines and annotated by 

human with a similarity score from 1 to 5, the corresponding task requires to predict 

the similarity scores. 

 

MNLI is a crowd-sourced collection of sentence pairs, annotated according to 

textual entailment of the pairs. Labels are either entailment, contradiction or neutral. 
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QNLI is a dataset for question-answering training. The dataset consists of 

question-answer pairs, where the corresponding task is to predict whether the given 

answer sentence is the correct answer to the question sentence. 

 

WNLI consists of sentence pairs where the first sentence contains a pronoun and 

the second sentence has the pronoun substituted with other possible referents. The 

corresponding task is to predict whether the sentence with the pronoun substituted is 

entailed by the original sentence with the correct substitution. 

  

3  Problem Statement 

In our project, we propose that there exist redundancies in the pre-trained BERT 

model. During fine-tuning, these redundancies are learnt to be omitted and useful 

connections are learnt to perform the downstream tasks well. To efficiently use the pre-

trained model to solve downstream tasks, we would like to use Neural Architecture 

Search methods to search for the best sub-network architecture of the pre-trained model 

during the fine-tuning stage of BERT. 

 

 We will be using BERT for Natural Language Understanding tasks. These 

downstream tasks are taken out from the GLUE dataset. The objective of our problem 

is to find a minimal set of connections in the fine-tuned BERT model that has the 

minimal performance drop comparing to the original fine-tuned model.  
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4  Related Works 

 In the works of this project, we have referenced to several of the following existing 

methods that work with NAS and network compression of BERT. 

 4.1  DARTS 

 Differentiable architecture search (DARTS) [24] perform its architecture search 

by formulating a continuous relaxation of the architecture representation. DARTS is a 

cell-based approach to architecture searching, meaning that it targets to find the best 

cell architecture and the final network architecture is a stack of the searched cell. For 

example, when DARTS searches for convolutional cells on CIFAR-10, two types of 

cells are searched including the normal cell that maintains the same size for the input 

and output dimensions and the reduction cell that is used to reduce the output dimension 

to be smaller than the input dimension. 

 

 DARTS formulate its searching as a bilevel optimization problem, which uses 𝛼 

as an upper-level architecture variable and 𝑤  as the lower-level model parameters 

variable: (by [24, equations (3), (4)]) 

min
𝛼

 ℒ𝑣𝑎𝑙(𝑤∗(𝛼), 𝛼) 
(1) 

s. t. 𝑤∗(𝛼) = argmin𝑤 ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) (2) 

 

 To solve the above optimization, we need a solution to (2)  for solving (1) . 

However, in practice solving (2) requires large amount of computation and it becomes 

expensive to solve (1). DARTS is the algorithm that approximate the gradient of the 

target function in (1) without solving (2). 

 

 

Fig. from [24]. Algorithm of DARTS. 

  

From the above definition we see that DARTS iterate between optimizing (1) 

and (2) alternatively using gradient descent. The overall idea is to use 
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𝑤 − 𝜉∇𝑤ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) as an approximation to 𝑤∗(𝛼), the solution of (2). This term 

is obtained by performing one step of training of the network parameters 𝑤 under the 

current 𝛼 . By this approach, we have an efficient searching algorithm that can 

approximately solve the bilevel optimization problem stated above. 

 

 To model the continuous search space using 𝛼, within a cell we learn a set of 𝛼 

that models the probability of each candidate operations on each edge using softmax. 

The set of candidate operations defines the discrete search space of the architecture, for 

example convolution, max pooling and zero operation of different dimensions forms a 

set of candidate operations. 

 

 

Fig. from [24]. An overview of DARTS. (a) shows that the operation on each edge is 

initially unknown. (b) shows that a continuous relaxation of the discrete search space 

is done by allowing a mixture of the operations happening on each edge. (c) by 

learning the set of 𝛼 we can tell which operation is the most important on each edge. 

(d) the final architecture is determined by the operation of maximal probability. 

 4.2  TAS 

 Transformable architecture search [2] (TAS) is another differentiable architecture 

searching algorithm, which searches for the best width and depth of the network 

efficiently. TAS achieve differentiable searching by modelling the probability of 

choices of architecture as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼) . TAS also adopts the idea of sampling the 

options of architecture at each training step, to avoid traversing all the paths of possible 

architectures for a more efficient searching [26]. In order for sampling to be 

differentiable, [26] uses the Gumbel-softmax trick to turn categorical sampling into a 

differentiable procedure of sampling. The sampled k-dimensional vector 𝑦 is given by 

the equation ([27, equation (2)]) 
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𝑦𝑖 =
exp ((log(𝜋𝑖) + 𝑔𝑖)/𝜏)

∑ exp ((log(𝜋𝑖) + 𝑔𝑗)/𝜏)𝑘
𝑗=1

, for 𝑖 = 1, … , 𝑘 

 

, where 𝜋 is the class probabilities and 𝑔 ~ Gumbel(0, 1). This Gumbel-softmax will 

behave like one-hot sampling when 𝜏 approaches 0, and similarly it will behave like 

uniform sampling when 𝜏  approaches ∞ . The class probability 𝜋  is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼) 

in TAS. 

 

 For example, when searching for the width of a convolutional neural network, TAS 

sampled two architectures of different width in one layer and weight their output 

according to the class probabilities. To deal with the difference in dimension of the 

sampled width choices, TAS perform a channel-wise interpolation which transformer 

the smaller width output to the same size as the larger width output so as to do weight 

sum of their output. The implementation of channel-wise interpolation can be 

considered as expanding the smaller dimensional output with the mean values of 

neighbour dimensions output.  

 

 

Fig. from [3]. An illustration of the procedure of searching for the width of a 

convolutional neural network using TAS. At each layer, 2 choices of the number of 

channels are sampled and the architecture for one forward step is determined after all 

the sampling. 

 

 In TAS, the training set of data is used to train the pruned network’s weights and 

the validation set of data is used to train the architecture parameters 𝛼.  TAS has 

combined two searching objectives for 𝛼, i.e. the cross-entropy classification loss of 

the network and the penalty for computation cost. The loss of validation that is used to 

update 𝛼 is given by the following equations [25, equations (7),(8)]: 
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cross-entropy classification loss computational cost loss 

ℒ𝑣𝑎𝑙 = − log (
exp(𝑧𝑦)

∑ exp(𝑧𝑗)|𝑧|
𝑗=1

) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 

 

 

ℒ𝑐𝑜𝑠𝑡 = {
log (𝔼𝑐𝑜𝑠𝑡(𝔸))

0 
−log (𝔼𝑐𝑜𝑠𝑡(𝔸))

 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) > (1 + 𝑡) × 𝑅 

when (1 − 𝑡) × 𝑅 < 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

 

, where 𝔸  represents the architecture parameters modelled by 𝛼 , 𝔼𝑐𝑜𝑠𝑡(𝔸)  is the 

expected computation cost of the possible architectures and 𝐹𝑐𝑜𝑠𝑡(𝔸) is the actual cost 

of the sampled architecture. Here we are using the target R as a parameter to control the 

network to converge at having R computation cost, and we use 𝑡 ∈ [0,1] to model the 

tolerance of efficiency of the model.  

 

 When the optimal architecture is found, TAS performs knowledge distillation from 

the unpruned network to the searched architecture. 

 

 4.3  AdaBERT 

 AdaBERT [11] inherit the work of DARTS [24] and implements neural 

architecture search to find a convolutional-based architecture cell that performs similar 

to a fine-tuned BERT by knowledge distillation. In the search space of AdaBERT 

operations like convolution, pooling, skip connection and zero operation are possible. 

As similar to DARTS, each operation is allowed to take two inputs within the cell and 

provide one output. To achieve knowledge distillation, the searching objective of the 

architecture is to learn generating the intermediate layer output of the teacher BERT 

model with the searched architecture. The resulting architecture would be a stack of the 

searched cells, composed of only the operations in the search space, without attention 

operation of BERT. AdaBERT uses downstream tasks from GLUE for knowledge 

distillation and architecture searching. 

 

 The results of AdaBERT is promising, showing the advantage of inference 

speedup of the searched architecture and significant compression ratio of the network. 

This implies the computational efficiency of convolutional operations over attention 

mechanism.  
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Fig. from [11]. The searched cells for different downstream tasks from GLUE. 

 4.4  TinyBERT 

TinyBERT [28] provides a solid demonstration of network compression by 

knowledge distillation on the BERT model. BERT as the encoder of the Transformer 

has several intermediate operations before the output layer. TinyBERT looks into the 

details of BERT operations and performs knowledge distillation of transformer layers 

by comparing the attention matrices and the hidden states, while also distillate the 

embedding layer and the prediction layer of BERT. Attention matrices distillation is 

motivated by the fact that self-attention of BERT can capture rich linguistic knowledge 

[29], and that would be important for natural language understanding. 

        

Knowledge distillation is performed first on the pre-trained model, using the large 

text corpus that is used to train the original general model and this is referred as General 

Distillation. Knowledge distillation is also performed using the downstream task 

augmented training set, which is referred as Task-specific Distillation. So, we need to 

prepare two teacher models for a downstream task, one being the pre-trained general 

BERT model and one being the fine-tuned BERT model. 
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Fig. from [28]. An illustration of how the attention matrices and hidden states are 

used to perform knowledge distillation. 

 

 

Fig. from [28]. An overview of TinyBERT learning. 

 

 Notice that data augmentation in TinyBERT uses the language model BERT and 

a pre-trained embedding GloVe to generate new training data. Given a sequence of 

words, we can generate a similar sentence as follows. First, we choose which and how 

much of the words to replace. If the chosen word is a single-piece word, BERT is used 

by taking the sentence and mask out the target word to feed it into BERT, where the 

predictions of BERT is used as candidate words to replace the chosen word. If the 

chosen word is a multi-piece word, GloVe embedding is used to retrieve the most 

similar words for replacement. 

 

 GloVe is the embedding representation of words where training is performed on 

aggregated global word-word co-occurrence statistics from a corpus. 
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 4.5  Overview on Pruning NLP Model 

 By the summary of [36], most of the pruning methods regarding Transformer-

like models can be overviewed by the following diagram. 

 

 

Fig. Illustration of all types of pruning over Transformer network, from [36]. 

  

 Besides the difference in search space of each pruning method, the rule of 

determining which weights to be removed also varies. Hessian based method uses a 

measure of saliency of each weight to determine the importance of a weight. Hessian 

based methods are usually expensive since second derivatives are computationally 

expensive to calculate. A more efficient and computationally feasible method is to prune 

the weight according to the magnitude. Weights with smaller magnitude are considered 

to be less influential to the prediction output. Another variant of magnitude weight 

pruning is iterative magnitude pruning where pruning is done gradually during training.  

 

For computationally efficiency on GPU, some methods decide to group the 

weights into blocks and prune the blocks according to the maximum magnitude within 

the same block. For a bigger group of weights, we can consider pruning the attention 

heads. A few possible ways to consider the important of the heads are by gradient 

information to the attention score of the heads, or computing the average maximum 

attention weights over tokens in a set of sentences, or by layer-wise relevance 

propagation. 
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5  Methodology 

5.1  Differentiable Search Method 

 To facilitate differentiable architecture searching similar to [24] and [3], we need 

to design how to generate the architecture from the architecture variable 𝛼 . The 

following paragraphs will describe how to model 𝛼  to perform searching on the 

representation dimensions. 

 

 In this method, we use the architecture variable 𝛼  to generate the mask by 

sigmoid(𝛼). Since we want to simulate the mask with sigmoid(𝛼), we want 𝛼 to be 

outside of the range [−5, 5] so that the mask would contain {0, 1} values. We do some 

trick to make sure that the gradient arriving at 𝛼 would make a large enough step to 

jump across -5 and 5, by rescaling the gradient arriving at 𝛼 and adding limitation to 

the update of 𝛼  according to the magnitude of the gradient. Details are referred to 

Section 7.4. 

 

Fig. from Wikipedia. Sigmoid function. 

  

Algorithm: Search Method for Representation Dimension 

Initialize 𝛼 to a constant value 5, since sigmoid(5) ≈ 1. 

Initialize encoder weights 𝑤 from pre-trained model. 

For each forward pass: 

1. Generate mask by sigmoid(𝛼). 

2. Mask the corresponding representation during forwarding of the encoder. 

3. Backpropagate the cross-entropy loss w.r.t labels and FLOPS loss to learn 𝛼. 

Choose the dimensions according to the activated α, i.e. sigmoid(𝛼) > 0.99 

 

https://en.wikipedia.org/wiki/Sigmoid_function
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prediction distillation loss computation cost loss 

5.2  Search Objective 

The objective of our NAS algorithm is to maximize network efficiency. In 

particular, to model the network efficiency, we propose to calculate the floating point 

operations per second (FLOPS) to represent the network efficiency. At the further 

development of the project, we can change the objective to other measures of the 

network efficiency, such as the network parameter size or the inference time. 

 

To facilitate the minimization of architecture FLOPS, we adopt a similar approach 

like [3] and formulate the objective loss function as follows: 

 

ℒ𝑎𝑟𝑐ℎ = MSE(𝑜𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑜𝑡𝑒𝑎𝑐ℎ𝑒𝑟) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 (3) 

 

 

ℒ𝑐𝑜𝑠𝑡 = {
log (𝔼𝑐𝑜𝑠𝑡(𝔸))

0 
−log (𝔼𝑐𝑜𝑠𝑡(𝔸))

 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) > (1 + 𝑡) × 𝑅 

when (1 − 𝑡) × 𝑅 < 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

(4) 

 

ℒ𝑎𝑟𝑐ℎ represents the loss function value of the architecture variables and is used 

to train the architecture variables only. ℒ𝑎𝑟𝑐ℎ consists of two parts, the first part is the 

cross-entropy classification loss with respect to the data labels, which trains the 

architecture to prune away the connections that do not contribute to the task 

performance. The second part is the weighted ℒ𝑐𝑜𝑠𝑡, where ℒ𝑐𝑜𝑠𝑡 models the network 

efficiency and train the architecture variables to approach a target 𝑅 within a range of 

tolerance. The target 𝑅 is usually determined by a portion of the maximum FLOPS of 

the architecture, which is the unpruned architecture FLOPS. According to different 

searching methods we would have a different formulation of 𝔼𝑐𝑜𝑠𝑡(𝔸), the expected 

FLOPS of the architecture. 

 

5.3  Search Space 

 To fully extend the ability to compress the network into any targeted computational 

cost, i.e. any sub-architecture, we model the searching algorithm in the way that it 

covers all the computations involving matrix multiplication. While keeping the 

connection between hidden layers and the choice of activation functions unchanged, 

our searching algorithm will decide on the dimension reduction of hidden 

representations. The overall effective search space can be divided into two parts, the 
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multi-heads attention and the feed-forward intermediate dimension. 

 

 In BERT model we use multiple attention heads to learn different aspects of 

similarity among the hidden representation. We expect that after fine-tuning towards 

the downstream task, not all heads trained are responsible for the prediction task, by 

evident shown from [31], where attention heads are removed without much of an impact 

towards the prediction performance of the final model. In our searching algorithm each 

head is independently assigned with one parameter variable 𝛼. 

 

 In BERT model we have a large intermediate size in the feed-forward block before 

each hidden layer output. We can prune the intermediate dimensions of each feed-

forward block as long as the output dimension of the first linear layer matches with the 

input dimension of the second linear layer. In our searching algorithm each dimension 

in the intermediate representation is independently assigned with one parameter 

variable 𝛼. 

 

Within the BERT architecture, there are several parts that we consider as the 

candidates to be pruned. 

 

First, we consider reducing the hidden representation size. In the original BERT 

architecture, a fixed hidden size is used throughout all the layers so that within one layer 

of the encoder of the Transformer each token is represented with the same hidden size. 

We investigate bottom-up to see which operations allow reduction of hidden 

representation size. The following illustrations are adapted from [17]. 

 

 

Fig. An overview of a hidden layer of BERT, read from left to right. Red and blue lines 

represent what are the inner operations of the concerned layer. 
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 On the leftmost, we have a hidden layer of BERT. We suggest that we can search 

for the hidden representation size of the multi-head attention layer since [31] have 

shown that there are redundancies among the multiple heads in each layer of BERT. To 

understand where the hidden size flexibility is, we take a look at the multi-head 

attention layer and scaled dot-product attention individually. 

5.3.1  Input Embedding 

Fig. [𝑥, 𝑦] represents a linear transformation of a vector from x dimensions to y 

dimensions. 

 

(𝑒𝑣 , 𝑒𝑘, 𝑒𝑞)  In the original setup, the linear transformation before scaled dot-

product attention takes the sentence token embedding as inputs. In this case 𝑒𝑣 = 𝑒𝑘 =

𝑒𝑞 =  the representation size of a token embedding, which is often referred as the 

hidden representation size or the hidden size of a BERT model. We can search on how 

much of the hidden representation is required as input to this linear transformation to 

gain enough information for specific downstream tasks, and we refer to this as 

searching on the dimensions of the input embedding. 

5.3.2  QKV Hidden Representation 

(ℎ𝑣 , ℎ𝑘 , ℎ𝑞)  Constrained by the nature of the matrix multiplication operation 

within the attention mechanism, we require ℎ𝑞 = ℎ𝑘 . By the definition of BERT 

attention, the output of the attention matrix is precisely ([17], equation (1)) 

 

[𝑒𝑞, ℎ𝑞] 

[𝑒𝑘, ℎ𝑘] 

[𝑒𝑣 , ℎ𝑣] 

[ℎ𝑣 , ℎ] 
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Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

 

Fig. (𝑥1, 𝑥2) × (𝑦1, 𝑦2) → (𝑜1, 𝑜2) represents a matrix multiplication 𝑂 = 𝑋𝑌, 

where 𝑋 ∈ ℝ𝑥1×𝑥2 and 𝑌 ∈ ℝ𝑦1×𝑦2. 𝑠 represents the maximum sentence length. 

 

 We can search on the dimensions of ℎ𝑣, ℎ𝑘, ℎ𝑞 constrained by ℎ𝑞 = ℎ𝑘. We will 

refer to this as searching on the qkv hidden representation. 

 

At the top layer of multi-head attention, we have a linear transformation [ℎ𝑣 , ℎ]. 

The output size of this transformation is fixed to be the hidden size of the network 

because its output will be added with the residual connection from before the attention 

layer. 

Fig. Red arrow shows the residual connection in concern. The same hidden size h 

(𝑠, ℎ𝑞) × (ℎ𝑘 , 𝑠) → (𝑠, 𝑠) 

(𝑠, 𝑠) × (𝑠, ℎ𝑣) → (𝑠, ℎ𝑣) 

 

ℎ 

ℎ 
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must be maintained at the output of the multi-head attention layer. 

5.3.3  Feed Forward Intermediate Representation 

Fig. An illustration of the feed-forward layer of the encoder of the Transformer. 

 

At the top layer of the encoder, we have a feed-forward layer consists of two linear 

transformations. We can search for the intermediate representation. 

5.3.4  Multi-heads Pruning 

 Motivated by [31], we would like to reproduce the result of [31] using our 

differentiable NAS method. It has been shown that across the multiple heads, only 

several of them at each layer are responsible for the performance on the downstream 

task. In [31] the experiment covers the setup of manually choosing one head to be 

removed from the model and manually choosing only one head to remain in each layer. 

While the combination of important heads is yet to be observed by the experiment. We 

suggest investigating whether our searching methods could find the suitable 

combination of heads in each layer. 
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Fig. Observe that the output of each attention head is combined in the above circled 

layer. Pruning the multi-heads will prune away part of the linear transformation at 

the top as well. 

5.4  Knowledge Distillation - BERT-Base to TinyBERT 

5.4.1 Procedure 

We follow the procedure below throughout the experiment to obtain the results. 

Notice that during distillation we perform architecture search at the same time, similarly 

as the DARTS algorithm (refer to 4.1). For distillation, we always use fine-tuned bert-

base-uncased model of the specific task as the teacher model. We would record the 

intermediate models only during prediction layer distillation, and only when the model 

performs better than the previous best model on the evaluation set. Each of the 

following steps is trained on 10 epochs of the training data. 

 

1. Use 2nd_General_TinyBERT_4L_312D as student model, perform intermediate 

layer distillation and architecture search. 

2. Inherit the resulting model of 1. as the student model, perform prediction layer 

distillation and architecture search. 

3. Inherit the resulting model of 2. as the searched architecture, extract the 

architecture to initialize 2nd_General_TinyBERT_4L_312D as student model, 

and perform intermediate layer distillation. 

4. Inherit the resulting model of 3. as student model and perform prediction layer 

distillation. 
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5. The final resulting model is obtained by the output of step 4. 

 

5.5  Self-Knowledge Distillation 

5.5.1  Procedure 

 Most of the training, including architecture searching and fine-tuning, uses 10 

epochs unless specified, especially for larger dataset we will use less epochs. In our 

experiment the teacher model is always the fine-tuned TinyBERT_4L_312D on the 

specific downstream task. The searching and fine-tuning procedure is as follows: 

 

1. Use TinyBERT_4L_312D as student model, perform prediction layer distillation 

and architecture search. 

2. Inherit the resulting model of 1. as the searched architecture, extract the 

architecture to initialize a subnet of TinyBERT_4L_312D as student model, and 

perform intermediate layer distillation. 

3. Inherit the resulting model of 3. as student model and perform prediction layer 

distillation. 

4. The final resulting model is obtained by the output of step 3.  

 

5.6  Search Scheduling and Parameter Control 

 In our approach to architecture searching, we use a moving architecture target size 

(𝑅 in equation (4)) in the search objective so that the architecture converges to the 

target architecture size slowly. The scheduling of the architecture target size is 

determined by the target architecture size 𝑅∗ and the number of training step 𝑠, where 

𝑠 = ⌈
# 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒
× #𝑒𝑝𝑜𝑐ℎ⌉ and 

𝑅(𝑖) =
1 − 𝑅∗

𝑠
× 𝑖 (5) 

 

 Using equation (5)  we can determine the architecture target size at the 𝑖 -th 

training step. The intuition behind is that the scheduling is done linearly so that 𝑅(𝑖) 

decreases linearly towards 𝑅∗. 

 

 To avoid early convergence of the architecture, we limit the update of gradient to 
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the architecture parameters in the way that at the backpropagation step, only a certain 

ratio of gradients can be propagated to the architecture parameter, while the rest of the 

updates are not allowed in the same backpropagation step. The best ratio depends on 

the architecture size. We evenly distribute the allowed updates over each search region 

so that the resulting architecture is not biased on pruning any of the search region 

because of this parameter control. 

 

5.7  Conclusion 

 As a wrap up of all the methodology, our final approach towards architecture 

searching relies on searching the subnetwork by self-prediction distillation. For 

prediction performance concern it is best that we do not change the connection of the 

input embedding dimensions and the QKV hidden dimensions alone, but instead 

searching for the pruning by grouping them as individual heads and prune the 

connection of heads. Aside from the pruning of heads we also prune the intermediate 

dimension of the feed-forward layer in each BERT layer for the sake of large 

computation reduction. 
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6 Experiment  

 By implementing our method on PyTorch we managed to experiment over the 

searching algorithm in hopes of understanding the relationship between the search 

space, search objective, data augmentation and prediction performance. 

 

 By configuring different search space and different composition of architecture 

parameter it provides different level of freedom for the searching algorithm. We 

investigate the relationship between constrained search and less constrained search. 

Using different search objectives like distillation and prediction loss by cross entropy 

will lead to different architecture. We would like to understand which objectives is most 

suitable in the context of architecture search. 

 

 Motivated by the result from [33] where experiments show that retraining the 

network after pruning would help upholding prediction performance, after our 

searching algorithm we fine-tune the searched architecture before evaluating the final 

model. 

 

 Limited by the resources we have, and the fact that BERT model and other NLP 

deep learning models are expensive to train [35], we would mainly inherit the result 

from TinyBERT [28] where it provides a BERT model of smaller size for 

experimentation.  

 

 The major contribution of this project is that we suggest pruning only the multi-

head attention and the intermediate dimensions of the feed-forward layer, while keeping 

the hidden embedding unpruned for performance consideration. Also, we proposed an 

iterative learning procedure to learn the subnetwork by distillation. 

6.1  Knowledge Distillation - BERT-Base to TinyBERT 

6.1.1  Reproducing TinyBERT & Setup 

 In our experiment we inherit the setup and results of TinyBERT and extend the 

project by applying NAS for network pruning during the fine-tuning stage of TinyBERT. 

We will expand the code for task-specific distillation in TinyBERT and add new 

functionality to perform pruning on the representation of input embedding, qkv hidden 

representation, feed-forward intermediate representation and the multi-head attentions 

of each layer. 
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 For task-specific distillation, we need a teacher model that is fine-tuned on specific 

downstream task. In our setup, we use bert-base-uncased pre-trained model from 

HuggingFace’s implementation [30] and perform fine-tuning on all the tasks on GLUE 

to obtain the teacher models for task-specific distillations. Bert-base-uncased is the 

implementation of BERT that has 12 hidden layers, 768 hidden representation size, 

performing 12 heads attention, 3072 feedforward size and has 110 million parameters. 

Bert-base-uncased is pre-trained on all lower-case English corpus. We will be using the 

teacher models as baseline performance of any fine-tuned models. In our experiment 

we will focus on three tasks from GLUE, each represents a small, medium and large-

sized dataset respectively. To obtain a fine-tuned BERT model, we trained the pre-

trained model for the following three tasks for 10 epochs, 32 batch size, 5e-5 initial 

learning rate for Adam. 

 

 CoLA (mcc) RTE (accuracy) SST-2 (accuracy) 

reproduced performance 

(10 epochs) 
0.572 0.708 0.921 

reported performance 

[21] (3 epochs) 
0.521 0.664 0.935 

 Table 2. Showing evaluation results of fine-tuned bert-base-uncased on GLUE tasks. 

 

In TinyBERT two versions of the final distilled model are available, 4layer-312dim 

represents the smaller version that has 4 hidden layers, 312 hidden size, 1200 

feedforward size and 12 attention heads in a layer. 6layer-768dim represents the larger 

version that has 6 hidden layers, 768 hidden size, 3072 feedforward size and 12 

attention heads. 

 

We follow the data augmentation procedure given by TinyBERT using GloVe 

embedding and the pre-trained bert-base-uncased language model to generate 

augmented data. Fine-tuning of TinyBERT model is done on the augmented dataset. To 

obtain a fine-tuned TinyBERT model, we perform knowledge distillation from a fine-

tuned bert-base-uncased model to both general pre-trained 4layer-312dim and 6layer-

768dim. 
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 CoLA (mcc) RTE (accuracy) SST-2 (accuracy) 

reproduced 4layer-312dim 

TinyBERT performance 

(10, 10) 

0.426 0.667 0.917 

reported 4layer-312dim 

TinyBERT performance 

[28] (20, 3) 

0.441 0.666 0.926 

reproduced 6layer-768dim 

TinyBERT (10, 10) 
0.556 0.714 0.926 

reported 6layer-768dim 

TinyBERT performance 

[28] (20, 3) 

0.511 0.700 0.931 

Table 3. Showing evaluation results of distilled TinyBERT on GLUE tasks. Brackets at 

the end of first column (x,y) represent the model spent x epochs of training for 

intermediate layer distillation and spent y epochs of training for prediction layer 

distillation. 

 

From the above tables, it shows that our reproduced models perform similar to 

the reported behavior.  

6.2  Self-Knowledge Distillation 

 By experiment we concludes that self-knowledge distillation is better than 

knowledge distillation from large model to smaller model, for the reason described in 

Section 7.2.5. In this section we focus on describing the second experiment setup, which 

at the end becomes our main result of this project. 

6.2.1  Experiment Setup 

 In this experiment setup we require a lot less than the previous setup. We only need 

a fine-tuned model in any architecture size and apply self-distillation throughout the 

searching process. In this project we focus on using TinyBERT-4L as the architecture 

we interested in. A fine-tuned model of TinyBERT-4L on the GLUE dataset are open to 

public so it is easy to get both the student and the teacher model ready, and no fine-

tuning to downstream task from general pre-trained model is required in this setup. 

 

To facilitate the searching algorithm with stability and high performance, we 

design specific learning tricks to help with architecture searching. We control the 

amount of architecture parameters updated at each training step. We also control the 
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target architecture size so that the algorithm converges slowly and avoid early 

convergence. Throughout most of the experiment result we update 10% of the 

architecture parameter and set the final target architecture size as one of {10%, 30%, 

50%, 70%} of the original FLOPS. 

 

6.3  Experiment Results 

 For all the results we report in this section, each task measures the prediction 

performance using the metric as specified here. Matthew’s Correlation Coefficient is 

used for CoLA, F1 score is used for MRPC and QQP, both Pearson-Spearman 

correlations are used for STS-B, and the remaining tasks use accuracy as metric. 

6.3.1 Development Evaluation 

 In order to balance between computational efficiency and prediction performance, 

we analysis the tradeoff between them and find the best configuration which satisfies 

both of two requirements. 

 

 We study the tradeoff in the setup where we do not use data augmentation during 

fine-tune due to the limited GPU resources for this project. We observe that the best 

architecture size in consideration of prediction performance is at around 30% of the 

original architecture FLOPS, since beyond 30% the model would suffer from a larger 

drop of prediction performance. 

 

Tasks 
  FLOPS 10% 30% 50% 70% 100% 

CoLA 
36.2 

(-27.2%) 

42.7 

(-14.1%) 

43.6 

(-12.3%) 

46.6 

(-6.2%) 
49.7 

MRPC 
86.6 

(-4.0%) 

89.2 

(-1.1%) 

88.5 

(-1.9%) 

89.3 

(-1.0%) 
90.2 

STS-B 
82.1/82.1 

(-5.1%/-4.9%) 

84.1/83.9 

(-2.8%/-2.8%) 

85.2/85.1 

(-1.5%/-1.4%) 

86.0/85.8 

(-0.6%/-0.6%) 
86.5/86.3 

Table 4. GLUE dev set result. Comparison between different size of searched 

architecture. Percentage change in performance is calculated with respect to the 

original architecture performance, i.e. 100% column in table 4. 
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Fig. Visualization of GLUE dev set result. Blue dashed horizontal line represents the 

performance of the original architecture. 

 

We also created an architecture search baseline by randomly initializing an 

architecture of the specific sizes of FLOPS. The comparison will show an advantage of 

our architecture searching algorithm above the random heuristic approach. 

 

   
  FLOPS 

Tasks 

10% 30% 50% 70% 

NAS Random NAS Random NAS Random NAS Random 

CoLA 36.2 21.5 42.7 32.4 43.6 41.5 46.6 46.9 

MRPC 86.6 78.9 89.2 78.4 88.5 81.8 89.3 90.0 

STS-B 82.1/82.1 17.3/17.5 84.1/83.9 42.9/41.2 85.2/85.1 70.6/69.9 86.0/85.8 70.9/70.3 

Table 5. GLUE dev set result by our searching method and random architecture. 

 

6.3.2 Test Evaluation 

 Naturally we would compare the searched architecture with the original 

architecture in term of prediction performance. With only 30% of the original 

computational cost we achieved a fast inference model with minor performance 

accuracy drop in many of the tasks in GLUE. FLOPS in the searched architecture rows 

are presented in a range, representing a set of searched architecture with similar FLOPS 

within this range. 

 

 To obtain the best result but limited by GPU resources we have, we fine-tuned 

architecture for CoLA, STS-B, MRPC and RTE on augmented data while fine-tuned 

the rest without data augmentation. 
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Models FLOPS (B) Speedup MNLI 

(-m/-mm) 

QQP QNLI SST-2 CoLA STS-B 

(Pear/Spea) 

MRPC RTE 

TinyBERT-4L [28] 1.239 1.0x 82.5/81.8 71.3 87.7 92.6 44.1 -/80.4 86.4 66.6 

30% TinyBERT-4L 

(Our main result) 
[0.375, 0.403] [3.0x, 3.3x] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4 

Percentage Change 

in Accuracy 
/ / -2.06%/-1.71% -0.56% -3.76% -0.86% -7.71% -2.24% -1.16% -7.81% 

Table 6. GLUE test set result scored by GLUE evaluation server. Comparison between 

searched 4-layer model and the original model. 

 

Models FLOPS (B) Speedup MNLI 

(-m/-mm) 

QQP QNLI SST-2 CoLA STS-B 

(Pear/Spea) 

MRPC RTE 

TinyBERT-6L [28] 11.100 1.0x 84.6/83.2 71.6 90.4 93.1 51.1 -/83.7 87.3 70.0 

30% TinyBERT-6L 

(Our main result) 
[3.348, 3.590] [3.1x, 3.3x] 83.7/83.0 71.8 89.5 93.0 46.1 84.2/83.3 86.9 63.6 

Percentage Change 

in Accuracy 
/ / -1.06%/-0.24% +0.28% -1.00% -0.11% -9.78% -0.48% -0.46% -9.14% 

Table 7. GLUE test set result scored by GLUE evaluation server. Comparison between 

searched 6-layer model and the original model. 

 

Models FLOPS (B) Speedup MNLI 

(-m/-mm) 

QQP QNLI SST-2 CoLA STS-B 

(Pear/Spea) 

MRPC RTE 

Reproduced Bertbase-

12L [28] 
22.199 1.0x 84.0/83.2 70.7 91.1 92.7 55.3 84.2/82.5 86.6 65.5 

30% Bertbase-12L 

(Our main result) 
[6.697, 9.471] [2.3x, 3.3x] 83.6/83.1 71.6 91.1 91.9 49.9 82.9/81.5 86.5 65.2 

Percentage Change in 

Accuracy 
/ / -0.48%/-0.12% 1.27% 0.00% -0.86% -9.76% -1.54%/-1.21% -0.12% -0.46% 

Table 8. GLUE test set result scored by GLUE evaluation server. Comparison between 

searched 6-layer model and the original model. 
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6.3.3 Baseline Comparison 

 

Besides comparing with the original large model, we also compare with existing 

small model of BERT architecture and we achieved overall better performance than the 

existing BERT model produced by [25]. 

 

Models FLOPS (B) MNLI 

(-m/-mm) 

QQP QNLI SST-2 CoLA STS-B 

(Pear/Spea) 

MRPC RTE 

BERT-Mini [25] 0.873 74.8/74.3 66.4 84.1 85.9 0.0 75.4/73.3 81.1 57.9 

30% TinyBERT-4L 

(Our main result) 
[0.375, 0.403] 80.8/80.4 70.9 84.4 91.8 40.7 79.9/78.6 85.4 61.4 

Percentage Change 

in Accuracy 
/ +8.02%/+8.21% +6.78% +0.36% +6.87% +inf +5.97% +5.30% +6.04% 

Table 9. GLUE test set result scored by GLUE evaluation server. Comparison between 

searched model and existing baseline models. 

 

Another baseline result provided by [37], which prunes BERT architecture via 

iterative magnitude pruning. We show that we achieved overall better performance 

than unstructured pruning. 
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Table 10. GLUE dev set result comparison between our result and Iterative 

Magnitude Pruning (IMP) [37]. Difference highlighted in green are out-performing 

architecture with smaller size. 

7  Analysis & Discussion 

7.1  Verification of Methodology on MNIST 

 To analysis our architecture searching method (Section 5.1) and verify that the 

searching method can correctly choose dimensions of hidden representation that is 

useful for prediction, we have setup a simpler learning problem on MNIST dataset. The 

neural network we use is a simple feed-forward classifier composed with 3 linear layers 

and ReLU activation in between. We design the architecture parameter 𝛼 at the input 

dimension of the first layer such that it allows the architecture parameter to choose 

which dimension of the input image is kept. In order to show the significance of the 

effectiveness of our searching method, aside from the images of MNIST we also feed 

noise data from gaussian distribution as input to the first layer. 

 

 Here is the detailed description of the model we interested in. 

 

Sequential( 

(0): Linear(in_features=1568, out_features=128, bias=True) 

(1): ReLU() 

(2): Linear(in_features=128, out_features=64, bias=True) 

(3): ReLU() 

(4): Linear(in_features=64, out_features=10, bias=True) 

(5): LogSoftmax(dim=1) 

) 

  

Dataset MNLI 

(-m) 

QQP QNLI SST-2 CoLA STS-B 

(Pearson) 

MRPC RTE Avg 

Ratio 28.3% 28.3% 39.9% 28.6% 28.9% 31.5% 29.2% 28.2%  

30% Bertbase-12L 84.2 90.3 91.7 92.3 58.3 88.8 85.3 69.7 82.6 

Ratio 30% 10% 30% 40% 50% 50% 50% 40%  

IMP [37] 82.6 90.0 88.9 91.9 53.8 88.2 84.9 66.0 80.8 

Difference +1.6 +0.3 +2.8 +0.4 +4.5 +0.6 +0.4 +3.7 +1.8 
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Fig. Design diagram of the learning problem. 𝑥𝑖 represents the image data from 

MNIST while 𝑁𝑖 represents noise. We expect the architecture parameter to prune all 

the noise input and only keep dimensions of the MNIST images. 

 

We randomly initialize the weight of the linear layers. Training of architecture 

parameters and linear layers’ parameters is done simultaneously. 15 epochs of the 

training data are used. 

Observe that this model takes in 1568-dimensional input, where the first 784 of 

them refers to the MNIST images and the later 784 of them refers to the noise. 

 

Accuracy Target Input Size Ratio Resulting Input Size Ratio Result Split 

0.758 0.01 0.012 [20, 0] 

0.937 0.04 0.040 [63, 0] 

0.952 0.05 0.050 [78, 0] 

0.970 0.10 0.100 [154, 3] 

0.976 0.30 0.265 [336, 79] 

0.977 0.50 0.452 [453, 255] 

0.975 0.75 0.703 [588, 514] 

0.976 1.0 0.951 [726, 765] 

Table 8. Searching results on validation set of the 3-layer model. Highlighted row 

represents the breakpoint of accuracy drop. Result split column shows the number of 

activated dimensions at the first half and the second half of the input. 

 

By observing the results at the column of result split, we see that our searching 

algorithm successfully removed the dimensions containing noisy data input, as the 

target input size reduces eventually the searching algorithm converges to architecture 
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where the majority of input is the image data while pruning away the noise. 

 

At the same time, we would also like to investigate the performance of our 

searching algorithm on deeper neural network. We decided to run our searching 

algorithm on a similar neural network, but configurated with more hidden layers. Here 

are the details of the 11-layer version. 

Sequential( 

  (0): Linear(in_features=1568, out_features=119, bias=True) 

  (1): ReLU() 

  (2): Linear(in_features=119, out_features=95, bias=True) 

  (3): ReLU() 

  (4): Linear(in_features=95, out_features=76, bias=True) 

  (5): ReLU() 

  (6): Linear(in_features=76, out_features=61, bias=True) 

  (7): ReLU() 

  (8): Linear(in_features=61, out_features=48, bias=True) 

  (9): ReLU() 

  (10): Linear(in_features=48, out_features=39, bias=True) 

  (11): ReLU() 

  (12): Linear(in_features=39, out_features=31, bias=True) 

  (13): ReLU() 

  (14): Linear(in_features=31, out_features=25, bias=True) 

  (15): ReLU() 

  (16): Linear(in_features=25, out_features=20, bias=True) 

  (17): ReLU() 

  (18): Linear(in_features=20, out_features=16, bias=True) 

  (19): ReLU() 

  (20): Linear(in_features=16, out_features=10, bias=True) 

  (21): LogSoftmax(dim=1) 

) 

 

The same experiment is ran on choosing the dimensions of the input. 20 epochs of 

the training samples are used for training. 

  



51 

 

Accuracy Target Input Size Ratio Resulting Input Size Ratio Result Split 

0.113 0.01 0.010 [16, 0] 

0.794 0.04 0.036 [51, 7] 

0.834 0.05 0.046 [69, 4] 

0.916 0.10 0.100 [125, 32] 

0.946 0.30 0.262 [288, 124] 

0.960 0.50 0.456 [429, 287] 

0.964 0.75 0.701 [539, 561] 

0.940 1.0 0.963 [732, 778] 

Table 10. Searching results on validation set of the 11-layer model. 

 

We observe that our searching algorithm performs worse on deeper model, by 

comparing the highlighted row between the two tables we see that on deeper model 

more noise dimensions are kept which is harmful to the prediction performance. At the 

same time, we also observe that a deeper model does not perform better on the 

validation set, suggesting that the model overfits with the training data. 

 

As a conclusion we know that our searching algorithm works well on models with 

small numbers of hidden layer, while not as good when dealing with deeper neural 

network. 

 

7.2  Search Space 

Fig. Annotated parts of the search space.  
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Throughout this project we give names to the specific part of the architecture for 

discussion. The blue part, which is the input dimension of each BERT layer, will be 

referred as the embedding input (embedding). The green part, which is the output 

dimension of the linear layer that learns representation of QKV vectors, will be referred 

as the QKV hidden dimension (QKV). The orange part, which is the intermediate 

dimension of the feed-forward layer, will be referred as the feed-forward intermediate 

dimension (FF). 

 

To understand the search space, we first analysis the distribution of FLOPS over 

the BERT architecture. We use TinyBERT 4L as the architecture we discuss over. 

 

Fig. Distribution of FLOPS in TinyBERT 4L. 

 

 Notice that Feed-Forward layers contributes to most of the FLOPS in the network, 

due to that fact that BERT model uses two linear layers with large intermediate 

dimension (1024 in TinyBERT 4L) as the feed-forward layer. This suggests that 

network compression is most efficient if we try to prune the intermediate connection 

within the feed-forward layer. 

 

 To cover all computations within the architecture, we propose two methods for the 

NAS algorithm to manipulate with the search region. First we can give freedom to the 

NAS algorithm on deciding the size of each dimension of the searchable embedding, 

QKV and FF. On the other hand, we can restrict the freedom of the NAS algorithm and 

consider the region covered by QKV as multiple heads, and each head is pruned as a 

whole, instead of being reduced in dimensionality. 

 

24%

15%61%

Distribution of FLOPS in TinyBERT 4L

Embedding to QKV QKV Self-attention Feed-Forward
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7.2.1  Input Embedding Pruning 

 By experiment we have shown evidence that the input embedding dimension is 

crucial towards the model performance. Intuitively the input embedding serves as the 

input signal to the layer. Partial information given to each layer would be 

disadvantageous compared to a fully informed layer. 

 

 Experiments shows that keeping all the input embedding not pruned will allow the 

NAS algorithm to arrive at a better architecture. 

 

Fig. Experiment results on removing embedding dimension search. 

 

From the above figures, we can see that searching only on QKV and FF 

outperforms searching that includes embedding. It suggests that all the dimensions of 

the input embedding are informative in performing the downstream task. There is little 

redundancy in the input embedding.  
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7.2.2  QKV Dimension Pruning / Multi-Head Pruning 

 Essentially QKV dimension pruning and multi-head pruning covers the same 

ground of FLOPS contribution in the model. They only differ in the configuration of 

the architecture variables alpha. In QKV dimension pruning each dimension in the 

query, key and value vectors is assigned with one variable. In multi-head pruning each 

head is assigned with one variable. We can see that QKV dimension pruning has more 

flexibility and freedom when compared with multi-head pruning. When we study the 

difference between these two approaches, we are also understanding whether this 

architecture searching algorithm flavours a more constrained or less constrained 

architecture variables. In multi-head pruning you can think of the constraints as 

requiring the QKV dimension alphas to share the same value if they are within the same 

head. 

 

We can inspect the effect of computation efficiency gain after pruning the QKV 

hidden dimension. We shall see that pruning part of the dimensions of each query, key, 

value vectors would decrease the number of computations required during self-attention. 

However, when we compare QKV dimension pruning with multi-head pruning, we can 

realize that the result of multi-head pruning is more efficient than QKV pruning. As 

long as certain QKV dimension remains active in the searched architecture, we might 

end up doing matrix multiplication in lower dimension and the number of matrix 

multiplication carried out by the self-attention layer remains unchanged. On the other 

hand, architectures found by multi-head pruning directly reduce the number of matrix 

multiplication, since each head represents at least one matrix multiplication when 

calculating attentions. Even on the same value of FLOPS in the searched architecture, 

the final model that is produced through multi-head pruning will be more efficient on 

GPU than the one that is produced through QKV dimension pruning. 

 

 On the aspect of empirical error, through experiment we have shown that the two 

pruning methods show similar strengths and performance varies over different dataset. 

We could not conclude which one is better. Further studies can be done on the 

comparison between  

 

 For these two reasons we have decided to adopt multi-head pruning as our final 

strategy. 
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Fig. Experiment results on comparing QKV pruning and multi-head pruning. 

7.2.3  Feed-Forward Intermediate Dimension Pruning 

 This search space contributes most of the computation because in BERT model we 

use a large intermediate hidden size between the two linear layers that form the feed-

forward layer. For example in TinyBERT 4L, the intermediate hidden size of the two 

linear layers is almost four times the hidden size of the model. Reducing on the 

intermediate size can greatly affect the computational cost since we would end up doing 

matrix multiplication that is smaller in dimension, and especially the intermediate size 

affect both two linear layers. 

 

 We do not consider removing this region from our search region because it 

contributes to 61% of the total FLOPS in the original architecture, referring to figure in 

Section 6.1. 
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7.3  Search Objective 

 In our searching algorithm we use gradient descent learning to search for the 

architecture parameter that minimizes the search objective. We try to mix different loss 

functions to see which helps the searching algorithm to find an architecture that 

performs well on the downstream task. In the rest of this section we introduce a several 

kinds of possible searching objective and compare the results. 

7.3.1  Empirical Error Loss via Cross Entropy 

 Since predicting the classification label is our final goal of the model generated by 

the searching algorithm, we want to incorporate classification learning during 

architecture searching as well. By adding cross entropy loss according to the model 

classification layer and the data label we allow the searching algorithm to look for an 

architecture that have the ability to classify the data. 

7.3.2  Two Stage Distillation 

 In the setup of TinyBERT, [28] uses two stage distillation in their compression 

algorithm, i.e. knowledge distillation is separated into two parts. First we transfer the 

knowledge of the intermediate output of the layers of the teacher model to the specific 

layer of the student model. Next we transfer the knowledge prediction output logits of 

the teacher model to the prediction layer of the student model. 

 

 To apply two stage distillation in our architecture search algorithm, we use 

distillation loss as the search objective of the architecture parameters. This allows the 

algorithm to learn an architecture that performs similar to the original model. The 

original fine-tuned model, i.e. a model that is already trained on certain downstream 

task, serves as a teacher model. At the same time we use the same model as the student 

model. During the searching procedure, the architecture of the student model keeps 

shrinking, and thus to keep the performance of the student model we use distillation 

loss to learn a sub-architecture that minimizes the damage done to the student model. 

The network parameters are also fine-tuned in the process of searching, towards the 

same distillation loss. 

7.3.3  Intermediate Distillation Loss 

 The objective loss is calculated according to two parts, the mean squared error 

between the student’s outputted attention matrix and the teacher’s outputted attention 
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matrix, and the mean squared error between the student’s outputted layer-wise hidden 

representation and the teacher hidden representation. The learning target of the student 

layer is chosen in the way that we are evenly picking up the hidden representation of 

the teacher layers, because the teacher model has more hidden layers than the student 

model.  

 

 By experiment we have shown that using only intermediate distillation loss as the 

searching target cannot learn an architecture that performs well. 

7.3.4  Prediction Distillation 

 Prediction distillation allows the student model to focus on outputting the 

prediction of the teacher model. This has a similar effect with empirical error loss by 

cross entropy but differ in the way that the teacher model prediction output contains the 

prediction distribution which prevails extra information that the teacher model had 

learnt. 

  

 By experiment we know that using only prediction distillation loss as the searching 

target is comparable with two stage distillation and empirical error loss, which suggest 

that the major contribution in two stage distillation is by prediction distillation, i.e. the 

second stage. 

 

7.3.5  Why Self-Distillation? 

 Before comparing the effectiveness between knowledge distillation from larger 

model to smaller model and self-distillation for searching, we state the difficulty of 

evaluating their effectiveness in the following sense. Since we are only able to access 

the fine-tuned models of TinyBERT, we do not have the access to the teacher model 

that they used for knowledge distillation. If we continue architecture searching using 

another teacher model that we reproduce (e.g. Bert-base-uncased by Hugging), we will 

end up doing incorrect knowledge distillation because the student model will 

experience inconsistent teacher knowledge from its previous fine-tuning stages during 

searching. 

 

 On the other hand, self-distillation avoids this issue because we can easily 

inference the hidden representation of the original student model as the teacher 

knowledge. This also makes our method more applicable in many scenarios, as long as 

we have a fine-tuned model ready to be pruned. 
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 By experiments we know that architecture found by self-distillation is better than 

architecture found by knowledge distillation with inconsistent teacher model. 

7.3.6  Conclusion of Search Objective 

 At this point we can acknowledge the importance of prediction distillation, i.e. to 

transfer the ability of prediction to student sub-architecture. This is more effective 

compared to cross entropy loss by the advantage that knowledge distillation can bring. 

However, we cannot conclude whether self-distillation is better than traditional 

knowledge distillation or not and this is a potential future direction of study. 

 

7.4  Target Search Size Scheduling 

We observe that the learning curve of alpha architecture parameters has an 

influence on the performance of the resulting architecture. A smooth learning curve 

towards a smaller architecture is better than a non-smooth learning curve which directly 

arrives at the desired architecture size. The insight comes from the observation that 

without scheduling over the target size, our searching algorithm can easily and quickly 

converge to the target size, without considering all of the data samples. This is a sign 

of the algorithm converging to a local minimum of the best architecture by just 

considering one batch of samples, while the deactivated alphas most likely would not 

be reactivated after the first drop of architecture size due to the convergence of 

architecture flop loss. 

 

 

Fig. Left: A learning curve example of early converged harmful small 

architecture, at the start of two stage distillation search. Right: A learning curve 

example of scheduled searching by addictive scheduling. 
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We further experimented with two kinds of scheduling scheme which search for 

the target size ratio 𝑅 in 𝑠 global steps of training: the addictive scheduling where 

the update rule is given by 𝑟𝑡+1 = 𝑟𝑡 + 𝑐  and 𝑐 =
1−𝑅

𝑠
 , and the multiplicative 

scheduling is given by 𝑟𝑡+1 = 𝑚𝑟𝑡  for some choices of 𝑚 , e.g. 𝑚 = 10
log(𝑅)

𝑠  . For 

both cases we require 𝑟1 = 1 and 𝑟𝑠 = 𝑅. 

 

Multiplicative Average Performance (5 runs) Standard Deviation 

CoLA 0.422 0.0211 

SST-2 0.916 0.0040 

   

Additive Average Performance (5 runs) Standard Deviation 

CoLA 0.414 0.0117 

SST-2 0.918 0.0033 

Table 11. Experiment results of multiplicative and additive scheduling. 

 

 For our project we adopted the additive scheduling, which has less standard 

deviation and is a more stable choice for architecture searching. 

 

7.5  Architecture Parameter Control 

With scheduled target architecture size, we need to further control the learning of 

alpha parameters. We propose this method of controlling the update of alpha parameters 

by only backpropagating the gradient of large magnitude, which ideally represents the 

gradient that carries the most information and has the most influence towards the final 

goal of searching. For TinyBERT 4L, we control the backpropagation algorithm so that 

gradients from the top 10% in terms of magnitude can be used to update the 

corresponding alpha parameter value, while the rest of the gradients are removed and 

no updates would be done to their corresponding alpha value. 

 

This amount of allowed gradient update is a heuristic and the best value depends 

on the size of the original architecture. As long as the algorithm converges to the desired 

architecture size then the chosen ratio of gradient update is suitable for the algorithm 

combined with the architecture. By experiment we expect that models that have larger 

architecture size would require a larger amount of allowed gradient update. 

 



60 

 

By experiment we have shown that these controlling tricks would lead us to a 

better architecture when comparing the setup without controlling tricks. Removing 

control over the update of the gradient backpropagation will lead to instability of the 

searching algorithm. 

 

 

Fig. Performance comparison between different control setup. 

 

 To understand the behavior of this altered gradient descent algorithm, where only 

the top-10% magnitude partial derivatives are backpropagated, we review the theory of 

gradient descent: 

 

Fig. Descent direction for unconstrainted optimization problem, from [38].  

  

 We further verify that masking some dimensions of the gradient ∇𝑓(�̅�) ∈ ℝ𝑛, i.e. 

−∇𝑓(�̅�)′ = 𝑀𝑎𝑠𝑘𝑖𝑛𝑔(−∇𝑓(�̅�))  is still a descent direction of 𝑓  at �̅� . Suppose the 

index set 𝑆 contains the index where ∇𝑓(�̅�)𝑖
′ = 0 ∀𝑖 ∈ 𝑆, then 

∇𝑓(�̅�)𝑇(−∇𝑓(�̅�)′) = − ∑ ∇𝑓(�̅�)𝑖
2

𝑛

𝑖∉𝑆

≤ 0 

, and equality holds when ∇𝑓(�̅�) = 0 the zero vector, i.e. when the gradient descent 

algorithm converges. Thus, we have shown that −∇𝑓(�̅�)′ is a descent direction of the 

loss function. 
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7.6  Data Augmentation in Architecture Search 

 As stated in Section 5 we use augmented data to fine-tune the searched architecture, 

but augmented data is not used during architecture search since it might lead to 

instability of the searching algorithm. We have observed that our architecture searching 

algorithm is unstable when the number of training step is too large, e.g. when searching 

on augmented dataset. At some point our searching algorithm will early converge to an 

architecture that is larger than the expected architecture size. In consideration of 

implementation we would like to avoid searching for the architecture on augmented 

dataset. Future work is necessary on investigating why this happens only when 

searching on larger datasets, and also whether searching on smallest enough number of 

samples would be enough for our searching algorithm. 

 

 

Fig. Dev set result by searching on augmented data in 1 epoch. For some task it fails 

to converge to the target architecture size. In difficult task such as CoLA data 

augmentation helps with searching for a better architecture. 

 

7.7  Performance-FLOPS Plot Analysis 

 Observe from the figures in 6.4.1 that our major resulting models in different sizes 

forms a straight line on x-axis log plot, which suggests that prediction performance and 

computational FLOPS are in the log relationship. This means that if we want to have a 

slight increase in the prediction performance most likely we need to double the 

computational FLOPS, i.e. double the architecture size. Meanwhile we can compare 

two methods by looking at the slope in the log plot. In the context of network 

compression, a method with a smaller slope in the log plot suggests that it has a smaller 

performance drop than those with a higher slope. 

 

7.8  Keep Weights from Searching 

 During architecture search both the architecture parameters and the BERT model 
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parameters are trained at the same time, for the original model to adapt to the new 

architecture. Intuitively we would like to see if keeping the trained BERT model 

parameters for fine-tuning is helpful or not. 

 

 By experiment we know that keeping weights from searching procedure will hurt 

the performance of fine-tuned model. The main difference between keeping and not 

keeping the weight from searching is that the sub-architecture is fine-tuned on different 

initialization of network parameters. To explain why not keeping the weights is better, 

we need to focus on the fact that the objective of our architecture searching is to get as 

close to the original model as possible. During the searching procedure, the network 

weights of the BERT model might walk far away from the original values to fit with 

the varying architecture. Initializing the BERT weights from original model can be a 

good starting point because the original model is already fine-tuned, and it is closest to 

the searching objective, i.e. minimizing distillation loss. At this point of writing we also 

reflect whether fixing the BERT weights during searching would be beneficial or not. 

This can be future direction of investigation.  

 

7.9  FLOPS Weight Sensitivity Analysis 

 Recall equation (3) in section 5.2: 

ℒ𝑎𝑟𝑐ℎ = MSE(𝑜𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑜𝑡𝑒𝑎𝑐ℎ𝑒𝑟) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 (3) 

, where we can recognize 𝜆𝑐𝑜𝑠𝑡 as the FLOPS weight. We further experiment with the 

different values of the FLOPS weight. 

CoLA: FLOPS Weight 0.01 0.1 1 10 100 

AVG (3 runs) 0.4063 0.4221 0.4338 0.4126 0.4060 

STD. DEV 0.0074 0.0223 0.0134 0.0225 0.0145 

      

SST-2: FLOPS Weight 0.01 0.1 1 10 100 

AVG (3 runs) 0.916284 0.916284 0.916284 0.916667 0.916667 

STD. DEV 0.00716 0.00459 0.00229 0.00132 0.00331 

Table 12. Experiment results of different FLOPS weight averaged over 3 runs. 

 

 By the experiment results we see that 𝜆𝑐𝑜𝑠𝑡 = 1  performs the best on CoLA, 

while other values for SST-2 performs comparably. For the universal choice of 𝜆𝑐𝑜𝑠𝑡 

for all tasks, we choose 𝜆𝑐𝑜𝑠𝑡 = 1. 

  

 At the same time, we observe that the searching algorithm early converges to larger 
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architecture size than the target size, when searching on large tasks (e.g. SST-2) with 

small FLOPS weight (e.g. 0.01). This can be explained by the fact that the gradient 

propagated back to the alpha variables is not strong enough when FLOPS weight is too 

small. 
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8  Conclusion 

 At the time of writing this report, we do not have the results on QQP and MNLI 

yet due to the large size of these dataset. An updated version of this report with these 

results will be available soon.  

 

 Through the result of this project we can see that the redundancy is high in the 

TinyBERT 4L architecture when fine-tuned for tasks including MRPC, STS-B and SST-

2. While for the remaining tasks searching for a sub-architecture from TinyBERT 4L 

seems to make severe damage to the prediction performance. This also suggests that 

the ability of compression not only depends on the original architecture but also on the 

nature and difficulty of the downstream task. By observation we suggest that model 

fine-tuned on larger datasets like MNLI and QQP are more tolerant to network 

compression, thus more data samples can eventually lead to more efficiently 

computable neural network model. 

 

 A potential future direction of this project is to understand the tolerance of 

compression on different size of the original architecture. In this report we mainly focus 

on pruning TinyBERT 4L (1.239 B FLOPS), while other variants of BERT such as 

TinyBERT 6L (11.10 B FLOPS) and Bert-base (22.20 B FLOPS) are up to 20x larger 

and we would like to understand whether larger architecture is more tolerant to pruning 

or not. Using similar idea from Section 7.6 we can understand the difference between 

these architectures of different sizes, even though they do not end up having the same 

size on the compressed model. 

 

 We hope that the discovery of this report is insight for the continuing study on 

network compression over neural network architectures, especially state-of-the-art self-

attention based deep neural networks where computational complexity is growing faster 

than ever. 

  

 Here I would also like to mention that this work is impossible without the help 

from Haoli BAI, Prof. Michael Lyu and Edward Yau. Thank you everyone for the 

advices to this project. 
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