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Abstract 

Due to the limitation of manually designing neural network architecture, Neural 

Architecture Search is proposed to algorithmically learn the suitable network 

architecture for machine learning tasks. This report will emphasize on two elements of 

this project, i.e. Neural Architecture Search and its application on BERT, an attention-

based neural network for natural language understanding. The latest experiment result 

shows that there is no redundancy in the input token embedding. 

 

 

Abbreviation 

AutoML – Automatic Machine Learning 

BERT – Bidirectional Encoder Representations from Transformers  

FLOPS – Floating Point Operations Per Second  

LSTM – Long Short-Term Memory 

NAS – Neural Architecture Search 

NLP – Natural Language Processing 

RNN – Recurrent Neural Network 
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1 Introduction 

To understand NAS, we are trying to experiment with the possibility of NAS on 

deep neural network. Existing research results mainly focus on the implementation of 

NAS on state-of-the-art neural network modules such as convolution, residual 

connection, which shows the best performance on image cognition problems. Thus, we 

decide to work on the less explored architectures of neural network. 

 

We have seen the rapid development and success of deep neural network on natural 

language processing problems. A new emerging architecture named Transformer caught 

all the attention in the natural language processing community. Considering the 

constraints of our resources, we decide to focus on BERT and its application on 

sentence pairs classification problems using GLUE dataset. The transformer 

mechanism utilities the correlation of pairs of words within the sentences to infer 

information about the contextual meaning of the sentences. 

 

We propose to apply NAS on BERT architecture and perform network 

compression on the architecture. We foresee that at the end we should be able to remove 

redundancy in the architecture and reduce the number of parameters in the network. We 

might also hope that the network would improve in accuracy, as network compression 

can be thought of as an action of regularization. 

 

2 Background Study 

2.1  Neural Architecture Search, and AutoML 

A family of methodologies that allows computers to automatically learn the better 

computational model to solve a specific task is called Automated Machine Learning. 

Intuitively it can perform architecture development just like a machine learning 

developer will do, but better at being data-driven.  

 

It is common to describe the problem of AutoML as a Combined Algorithm 

Selection and Hyperparameter optimization problem, dubbed as CASH [7]. In a CASH 

problem, we are trying to minimize the evaluation loss of the model trained on the 

training dataset, where the model is parametrized by the hyperparameters and the choice 

of algorithms. This equivalently captures the idea of finding the best solution to solve 

the existing problems, using machine learning. 
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Under AutoML we have three popular areas of study, namely hyperparameter 

optimization, meta-learning and neural architecture search.  

 

Hyperparameter optimization [1, Chapter 1], as its name suggests, focuses on 

searching for the best hyperparameters of a machine learning model to attain the best 

performance. Common hyperparameters of a model are learning rate, batch size, 

number of training epoch etc. While it is not the focus of our project, it is worth to 

mention that hyperparameter optimization overlaps a lot with NAS. We can think of the 

architecture of a network as one of the hyperparameters of the network.  

 

Meta-learning suggests using meta-data to lead the learning of our model. Meta-

data is the data we get from learning other models on different datasets. Across datasets 

and across machine learning models we can observe and calculate statistically what is 

the factors behind that leads to the success of some models and the failure of some other 

models. For example, if we know certain models will not perform well on some tasks, 

we can predict that they will not perform well on similar tasks. Meta-learning utilizes 

this idea and allows the computer to learn how to learn [1, Chapter 2]. For example, 

Auto-PyTorch Tabular do both NAS and hyperparameter optimization on tabular 

datasets and set up a benchmark called LCBench for learning curve prediction [2]. 

 

NAS covers all the methods that use automatic algorithms to design the 

architecture of a neural network. NAS algorithms can be categorized according to its 

search space, search strategy and performance estimation strategies [1, Chapter 3]. 

Inside the search space are all the candidate architectures for the task. At each iteration 

of the searching, we sample one architecture from the search space for evaluation of its 

performance, using the performance estimation strategy. The most intuitive way to 

estimate the performance of the architecture is to use a training dataset for training until 

convergence and perform evaluation on the unseen dataset as the estimated 

performance of the architecture. 

 

 Most of the time NAS procedures are computationally expensive due to the cost 

of performance estimation. Training cost of a deep neural network can be as expensive 

as up to a GPU day. The more architecture that we have evaluated on, the more 

information about the search space we have and the higher chance that we can evaluate 

on a suitable architecture that performs well on the given tasks. This situation makes 

NAS different from other machine learning algorithms, where in general we can 

monitor the learning progress of a neural network by looking at its validation results 
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and infer that whether the model is converging or overfitting. But in NAS the search 

will not overfit on sampling too many architectures. So we cannot adopt strategies such 

as early stopping in our searching process. This motivates the choices of better search 

strategies and better performance estimation strategies that do prediction on the 

performance of the architecture without training the architecture to convergence, to 

overcome the large cost deep neural network training. Searching strategies that could 

achieve efficiency by this idea includes Bayesian optimization and gradient-based 

algorithms.  

 

Fig. from [1, Chapter 3]. An illustration of NAS. 

2.1.1 Search Strategy  

Here we will describe the details of different searching strategies. The major 

classes of NAS algorithms according to the search strategies are searching by Bayesian 

optimization, reinforcement learning, genetic algorithms and gradient-based algorithms. 

 

Bayesian optimization is the method that allows us to predict a certain function 

without a full evaluation of the function [6]. This is very helpful to NAS, when 

especially the function of interest is the function of network performance, given the 

hyperparameters and architecture as the input of the function. Using Bayesian 

optimization is like exploring an unknown function, and in each iteration, Bayesian 

optimization will tell us what is the best point to evaluate on to get a more accurate 

estimation of the high points of the function. With the objective of finding the best 

architecture, Bayesian optimization will save us a lot of time from preventing 

evaluation on weak architectures, or architectures that will not bring us new information 

about the best architecture. 
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Fig. from [6]. Top: 3 blue points represent observed data point, which can be referred 

as the evaluated architectures in NAS. Dashed red lines represent the confidence 

intervals of the estimation of unobserved input. Bottom: Acquisition function suggests 

the next relevant points of sampling to get the most unknown information about the 

distribution. 

When we consider architecture searching as a task of reinforcement learning, the 

agent’s action will choose how to build the next architecture for evaluation. The 

evaluation results of the architecture become the reward of the agent. So, the 

reinforcement agent will use achieving the best network performance as its target to 

generate the best architecture according to the given data and tasks.  

 

Using genetic algorithms to produce the best architecture for a certain task is also 

popular as an intuitive method to perform NAS. In a population each individual is a 

candidate architecture, and through mutation process new architectures will be 

generated, for example, by picking the fittest parent and generate its offspring by 

applying mutation on its architecture [1, Chapter 3]. Each candidate is evaluated on the 

unseen dataset to get their own scores as a fitness function, so suitable genes of 

architecture that perform well on the tasks will survive in the population. 

 

Gradient-based searching stands out to be one of the most efficient searching 

strategies. We can see from the above strategies that evaluation of the architecture is 

done for each iteration of searching, for example genetic algorithms have to train each 
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of the candidate architectures to convergence in order to calculate its fitness score. For 

larger architecture or larger dataset, the cost of training an architecture is huge, thus 

becomes the reason of inefficiency. In contrast, gradient-based methods enable us to 

learn the architecture during the training of the network. Extra learnable weights are 

attached to the network, which serves as probabilities of the possible architectures. If 

we are training to minimize the training loss and architecture loss at the same time, we 

could have the gradient of the architecture weights with respect to the losses and have 

the architecture weights trained together with the original weights of the network. For 

example, [3] has shown a differentiable searching algorithm to search for the width and 

depth of a ResNet [4], a convolutional neural network with residual connection. 

 

In our project, we decide to use a gradient-based searching strategy to perform 

NAS by the reason that it is more feasible to execute within a reasonable period of GPU 

hours.  

2.1.2 AutoML System 

To get a better understanding of the state-of-the-art AutoML methods, here we 

introduce a few of those that become successful in the community of AutoML. 

Essentially each of the following is a product of “easy to use” machine learning library 

that allows normal users with no expert knowledge about machine learning or about the 

data to perform machine learning tasks.  

 

Auto-Keras is the realization of NAS that uses Bayesian optimization to guide the 

network morphism [5]. For efficiency of the searching procedure, Auto-Keras perform 

Bayesian optimization that searches for architectures on CPU while in parallel it 

performs model training on GPU so that evaluation results are passed back to the 

Bayesian optimization searcher to update its estimation of the performance graph of the 

model. By the constraint of Bayesian optimization methods that the search space of 

parameters needs to be continuous, it is not applicable to NAS since network 

architectures are discrete. To tackle this problem Auto-Keras decided to use the edit 

distance of two architectures to lay the discrete architecture onto continuous dimensions. 

It means that two architectures are close to each other when it only takes a few numbers 

of morphing to transform one architecture into the other one. Finally, it is reasonable to 

see that Auto-Keras focuses on searching the architecture of a deep neural network since 

we expect that a deeper network creates flexibility for the architecture to be changed, 

and thus being more probable that we will see a good performance of deep neural 

network after architecture searching comparing to shallow machine learning models. 
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In contrast to searching for the best deep neural network architecture for a certain 

task, Auto-sklearn takes the traditional machine learning approach and put together an 

ensemble of weak learners as the resulting model for the given task [7]. The system 

performs meta-learning to initialize the prediction of its Bayesian optimization searcher 

as a warm-starting operation. While in each searching iteration the Bayesian optimizer 

will search for the best hyperparameter for the base learner, after evaluation the trained 

weak model is also saved and serve as a candidate to participate in the final ensemble 

of the model. In the end, the system will perform ensemble selection using a held-out 

set of data to produce the ensemble of models.  

 

2.2  Network Compression 

State-of-the-art deep neural networks have a large size of trainable parameters, and 

certainly leads to more computational operations and longer inference time is required. 

For systems that want to achieve real-time performance, this is the bottleneck that limits 

the representation power of the neural network. Under the study of network 

compression, there are methods that will decrease the number of weights in the model 

while maintaining the model performance. In the following, we will try to introduce 

some of the existing compression methods. 

2.2.1 Weights Quantization 

In modern use of neural networks, weights of the network are often represented as 

32-bits float point values for precision. Using parameter quantization we can reduce 

memory consumption by limiting the precision of weights down to 16-bits or 8-bits, 

while correspondingly providing up to 2x and 4x more memory space on the GPU. This 

is advantageous in the case that we need to train very deep neural networks, as one of 

the bottlenecks for increasing model complexity is the memory size of a GPU. At the 

extreme people have tried using binary numbers as the weights of the network, however 

in practice this often suffers from the significantly lowered accuracy of the resulting 

model [8]. 

2.2.2 Network Pruning 

Network pruning is perhaps the most famous approach to network compression, 

where the less informative and less impactful connections are removed from the 

network to save computation. Early approaches such as using the second-order gradient 

information of the loss function to deduce the contribution of neurons have shown 
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superior performance over the others in the early times [8]. Network pruning is always 

applicable to connections of feed-forward layers, which are common types of 

connections among all the neural networks. Similarly approaches such as imposing L1-

norm regularization can also be thought of as a kind of network pruning, since L1-norm 

regularization induces sparsity in the connection of the network. For the same reason 

we can say that network pruning has the same effect of regularization, which will limit 

the learning capacity of the network and avoid overfitting. 

2.2.3 Low-rank Approximation 

Aside from feed-forward layer, another common type of layer is convolution. 

Low-rank approximation allows us to split a big convolution filter into two smaller 

convolution filter, which reduces the number of learnable weights and the number of 

computational operations. Two famous examples of such kind are called spatial 

separable convolutions and depthwise separable convolutions [9]. Spatial separable 

convolution deals with the case where we want to factor a 2D convolution filter into 

two 1D convolution filter, thus the number of computations for a 𝑚 × 𝑛  matrix 

reduces from 𝑚𝑛 to 𝑚 + 𝑛. On the other hand, depthwise separable convolution is 

more power as it also deals with convolution across channels. It is common to see a 

network that adopts the use of 3D convolution filters. Depthwise separable convolution 

makes it possible to reduce computation by separating convolution into two parts, 

depthwise convolution and pointwise convolution. In depthwise convolution, we will 

be using 𝑘  filters to learn the spatial characteristic within the same channel, for 𝑘 

input channels. Using the output of depthwise convolution we perform the second step 

called pointwise convolution, which uses ℎ  1 × 1 × 𝑘  filters to learn the cross-

channel information and generate an output of ℎ  channels. We see that separable 

convolution is applicable to all shapes of convolution layers while being able to show 

a significant reduction in computational complexity.  

2.2.4 Knowledge Distillation 

If we look at a very deep neural network, we might ask ourselves how much each 

layer is contributing to the prediction results. When it is the case that some of the layers 

are redundant or even be no-op that does not learn any details of the data we will 

consider doing knowledge distillation. In the setup of knowledge distillation, we will 

transfer the knowledge of a trained teacher network to a smaller student network. It can 

be further separated into two types of distillation, the prediction layer distillation and 

intermediate layer distillation. In the prediction layer distillation, the final output of the 

smaller student network is trained with respect to the output of the teacher network. 
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This is based on the belief that the knowledge of the teacher is more informative than 

the data labels, which allows the student network to generalize well [10]. We can 

illustrate this by an example of MNIST, the recognition of handwritten digits. A typical 

MNIST classifier will have the final layer having softmax output, representing the 

probability of each class that the digit will belong to. To see how informative a teacher 

network output can be we can assume that upon taking a ‘2’ as the input, the teacher 

network will assign 𝑃(𝑥 is 2) = 0.95, 𝑃(𝑥 is 3) = 0.03, 𝑃(𝑥 is 7) = 0.02 and all the 

other classes as 0. These softmax outputs are referred as the “soft target” of the student 

network. From this distribution we can see that the teacher correctly predicts the input 

to its corresponding class, which provides the same information that the data label can 

give, while in extra is telling us that the digit ‘2’ is more similar to the digits ‘3’ and ‘7’ 

than the other digits. If the student network can also generate similar distribute of 

probability at its output layer, it is very likely that the student network has learnt the 

useful features from the input data that allows the model to make correct classification 

decision. If we extend the idea of knowledge distillation further into the output of the 

intermediate layers of the teacher network we have intermediate layer distillation. Each 

layer of the student network will be trained to match the intermediate layers’ output of 

the teacher network. Intuitively this is similar as we are trying to let one layer of the 

student network to mimic the operation of several layers of the teacher network. For 

example, in [11] this idea is referred as “Task-useful Knowledge Probe”, where the 

authors are performing task-specific fine-tuning of the language model BERT together 

with knowledge distillation to achieve network compression. 

 

 

Fig. Example illustrating intermediate layer distillation, red arrows represent that the 

student is training w.r.t the output of intermediate layers of the teacher network, the 

same color of the layer blocks represent that they have a similar function for 

processing the input. 
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There are also cases where the student network is deeper than the teacher network 

but thinner [12]. This will allow the student network to perform a richer feature 

extraction process, while still being better than the teacher model by having shorter 

inference time and smaller model size. 

 

While there are a variety of techniques to do network compression, a rule of thumb 

is that we should not sacrifice too much of the performance of the network for efficiency, 

unless under the situation where memory efficiency or computation efficiency is more 

important than the accuracy of the model. Network compression can not only reduce 

the resource required to build and use a deep neural network, it also enables us to train 

a deeper neural network and gain more learning capacity.  

 

2.3  Natural Language Processing 

 Natural language processing concerns with all the machine learning algorithms 

that allow computers to understand and extract useful information from sentences of 

the same language. This area is getting most of the attention of the machine learning 

community, with its advancement in architecture that it brings to the study of machine 

learning. In the old days, the common approach is to use a recurrent network to capture 

contextual information from a sequence of words. Notice that in NLP we need models 

that could handle sequence to sequence operation. By design, popular layer choices in 

other problems such as convolution will not work for NLP problems since information 

of a sentence is not positional invariant property. The order of word appearance will 

affect the meaning of the word. For example, for sentiment analysis problem such as 

customer review analysis, “Although I like the product, but the delivery is too late.” 

and “Although the delivery is too late, but I like the product.” will have different scores 

of positiveness, where the first one is more negative than the second one. By this we 

see that using convolution operation will not help much in problems of NLP. Instead, 

there are other kinds of neural networks that are more suitable for NLP. 

 2.3.1 Recurrent Neural Network, LSTM 

Recurrent neural network has first been used to tackle NLP problems. Due to its 

cyclic connection between current states and previous states, RNN can model 

sequential information flow and have been successfully used for sequence labelling and 

sequence prediction tasks [13]. RNN is a sequence to sequence model, that it inputs in 

a sequence of data input and outputs a sequence of hidden representation. At the 

segment of input data, RNN will take the combination of the internal output of the 
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previous layer and the data to generate its output. The internal output acts as an internal 

memory of RNN, which allows the network to remember useful information that is 

encountered while taking in the previous segment of the input data. Sometimes the 

internal outputs will be referred as the hidden states of the RNN. 

 

Fig. from [14]. An illustration of the computational graph of RNN. ℎ𝑖 represents the 

internal output (hidden states) of the RNN at time 𝑖 after manipulating the input 𝑥𝑖−1 

and ℎ𝑖−1. 𝑦𝑖 are the outputs of the RNN at time i. 

 

 One limitation of the vanilla RNN is that it can only consider sequential 

information flow in one direction. This leads to an improved version of RNN called 

Bidirectional RNN, where essentially it is two vanilla RNN that one takes the input 

sequence from head to tail while the other one takes the input sequence from tail to 

head. The i-th output of the two RNN is the combination of the i-th output of each of 

the RNN.  

 

 Another problem is that it is difficult for vanilla RNN to represent the long-term 

dependencies within the sequence in practice. To further expand the representation 

power of RNN, the popular and practical solution of RNN type network is the Long 

Short-term Memory network, introduced back in 1997 [15]. In LSTM, it has expanded 

the mechanism of the internal states of RNN. There are several gates around the hidden 

states to allow LSTM to decide what to remember and what to forget in its internal 

memory. The input gate unit is to protect the memory content and allows the network 

to decide what information is allowed to manipulate the hidden states. The output gate 

unit is to control what content to flow out of the hidden states, and irrelevant memory 

contents will not be received by the neurons outside. Finally, the forget gate decides 

whether to accept the hidden state from the previous layer or not, depending on the 

current input and current internal state. Such a mechanism allows LSTM to model long-
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range dependencies and learn useful information out of the sequential data input. 

 

 

Fig. from [16]. An overview of LSTM. The non-linearities in the connection of gates 

expanded the learning capacity of the memory mechanism. 

 

 2.3.2 Transformer 

 Right now, when we talk about the state-of-the-art model for modelling sequence 

many people would refer to a better design of architecture called self-attention 

mechanism. Transformer is the sequence transduction model that only uses self-

attention mechanism, dispensing with recurrence and convolutions entirely [17]. To 

understand self-attention, we can assume that within a sequence each word is probably 

related to each other word. Self-attention tries to capture all pairs of relationship 

between the word tokens within the sequence. We say that a token i is attended to the 

other token j when the attention score of the i,j position is large. For a better 

understanding, we look at the following figure and explain how we do computation 

from the input of the attention layer to the output of the same layer. 
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Fig. from [17]. On the right side is the illustration of a self-attention layer. On the left 

side is the illustration of the attention mechanism. 

 

 Generally, the self-attention layer takes in three sequences of input, namely the 

query sequence (Q), the key sequence (K) and the value sequence (V), where the key 

and value sequences come in pair and describe a certain value of a key. Each of the 

input is linearly transformed into sequences of the head size, where the head size is the 

size of a hidden representation within the self-attention mechanism. Within the scaled 

dot-product attention computation, each query position will be attended to each key 

position. A high value will be yield in this step if this query has related semantic 

information with the specific key, which is further passed through a softmax to generate 

probability weight. With this attention weight, it is used to weight the values of the 

corresponding keys and summed up as the output for this query. In practice, the 

attention computation of all tokens in the query is done by matrix multiplication for 

computational efficiency. So, in forward through the self-attention mechanism, only 

two matrix multiplication is required, as shown on the left of the figure above. This is 

significantly important to sequence transduction process since we want to allow long-

range dependencies within the sequence. The operation required between temporal 

sequence unit is bounded by the operation stated on the left of the figure, which shows 

that we ensure a constant path length for the temporal information flow [17]. Unlike 

the situation in RNN where the path length of temporal information flow can grow in 

𝑂(𝑛), depending on how far away the locations of the two information is within the 

sequence. 
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Table from [17]. Comparison of self-attention with recurrent layer and convolutional 

layer. n is the sequence length, d is the representation dimension, k is the kernel size 

of convolutions and r is the size of neighbourhood in restricted self-attention (masked 

self-attention). Showing that self-attention is more parallelizable and has a constant 

path length of long-range dependencies.  

 

Fig. from [18]. An example of the attention mechanism used in the decoder of 

Transformer. The query will match with all the related keys in the input sequence. In 

this case, attention is masked and is limited to the word tokens at earlier locations. 

 

In practice, we can assign different kinds of input to query, key and value for different 

desired behaviour of the attention. In the Transformer architecture, it adopts the 

encoder-decoder structure and uses self-attention differently in the encoder and the 

decoder. The following figure will illustrate the architecture of Transformer.
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Fig. from [17]. The architecture of Transformer. On the left is the encoder stack, on 

the right is the decoder stack. 

  

The encoder-decoder structure generally can be understood as the encoder takes 

the original input and learn a representation of the input sequence, and the decoder 

generates a sequence of output according to the learned representation of the data from 

encoder and the previously outputted sequence tokens by itself. 

 

 The encoder of Transformer will take the input of data word sequence, such as 

sentence or pairs of sentences, and use learned embedding to convert the input tokens 

into embedding token sequence. Notice that positional encoding is added to the 

embedding sequence because from the design of attention mechanism we know that 

there is no ordering information during the calculation of attention. When positional 

encoding information is added to the embedding tokens ordering information is kept 

within the embedding token, so the network has the chance to refer to the ordering 

information during attention. For self-attention in the encoder, the input embedding 

sequence is used as query, key and value inputs equally, to let the network to learn the 

contextual knowledge of the given sequence and generate the encoded representation 
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of the input sequence. After self-attention we have a feed-forward layer, to generate the 

output of one encoder layer. For self-attention in the decoder, they serve different 

purposes as those in the encoder. At each step of decoding, the decoder is only allowed 

to look at the full encoded representation and the previously decoded output tokens. 

That is why a masked self-attention layer is used in the lower half of the decoder, to 

ensure that there is no leftward information flow during decoding and preserve auto-

regressive nature of the decoding process. There is one more type of self-attention in 

the decoder, referred as the “encoder-decoder attention”, that it takes the encoded 

representation of the corresponding encoder as the memory keys and values. The query 

is given by the output of the previous masked attention, which is essentially the output 

of the previous layer of the decoder stack. This serves the purpose that we want the 

decoded sequence to consider all the information we have from the whole sequence, by 

taking in the representation learned by the encoder. Notice that across each layer of 

operation there is a residual connection, which allows gradient to propagate further and 

allows Transformer to stack more encoder-decoder structure while still being able to 

train well. 

2.3.3 Language Modelling: ELMo, GPT, BERT 

 To handle NLP tasks, we want our model to understand the syntax and semantics 

of the language in order to learn useful information from sentence input. State-of-the-

art projects use large text corpus to perform unsupervised pre-training of the model. 

Generally, language modelling requires the model to be capable of predicting future 

tokens or missing tokens of the sentence, which is kind of a behaviour of understanding 

the language. The following paragraphs will introduce three well-known methods of 

language modelling. 

 

 First, we have a language model that uses bidirectional LSTM to generate its 

contextualized word representations, famously known as ELMo [19]. The 

representations learnt by ELMo are contextualized in the sense that the same word 

appearing in different locations could have different learnt representation. Bidirectional 

language model essentially uses a forward LSTM and a backward LSTM to generate 

the representation and jointly maximize the log likelihood of both two of the outputs 

given the history of the sequence, where for a sentence 𝑡, 𝑡1, … , 𝑡𝑘−1 is the history of 

the forward LSTM and 𝑡𝑘+1, … , 𝑡𝑁  is the history of the backward LSTM when 

computing the probability of 𝑡𝑘. We can train a deep bidirectional LSTM by taking the 

output of each LSTM as the input of the upper layer LSTM, which allows the model to 

learn a deeper representation of the input sequence. ELMo builds on top of deep 

bidirectional language models by learning the task-specific weighting of the 
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intermediate layer representations in a stack of bidirectional language models. ELMo 

puts together all the weighted representation of the token and generates its own 

representation, and these richer representations can be used as extra inputs to other 

supervised models solving downstream NLP tasks, where this is referred as a feature-

based approach. 

 

 

Fig. from [18]. An illustration of bidirectional LSTM used in ELMo. ℎ1, ℎ2 in the 

middle represents the intermediate layer representations of the stack of LSTMs. 

 

 Second, we have an attention mechanism based approach that uses the decoder of 

Transformer to perform language modelling, which is famously known as GPT [20]. 

GPT performs its unsupervised generative pre-training on large text corpus by a forward 

language modelling objective, by using a stack of decoders of the Transformer and 

masking out the future attentions to simulate forward predictions. At the last layer of 

the decoders, a softmax layer is used to model the probability distribution of the target 

tokens we want to predict. After pre-training, according to the downstream task we want 

to solve we perform supervised fine-tuning of the parameters with respect to the target, 

and depending on the structure of the downstream tasks we will need to use the output 

of the decoder differently, where usually the final layer would be a linear connection. 

During the fine-tuning process, GPT continues unsupervised language modelling as an 

auxiliary objective, which can improve the generalization of the supervised model and 

accelerate convergence [20]. 

 

 At last, we would like to introduce BERT [21], which uses a stack of encoders of 

the Transformer to build a deep bidirectional language model. Bidirectional understand 
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of the sentence is done by the attention mechanism. During unsupervised pre-training, 

two objectives are used to perform language modelling, i.e. the masked language 

modelling (Masked LM) and next sentence prediction (NSP). At each iteration of pre-

training, a percentage of input tokens are chosen at random to either be masked by 80% 

probability, or be replaced with a random token by 10% probability or be unchanged 

by 10% probability, and BERT is required to perform predictions of the original token 

on these chosen locations as to perform language modelling. At the same time, the given 

masked sentences come in pairs and BERT is required to predict the relationship of the 

two sentences, whether the given sentence B is the next sentence of sentence A as a 

binary classification task. The combined pre-training methods of BERT allows the 

model to utilize the language information given by surrounding tokens, and understand 

language structure across sentences, which is useful for some downstream tasks such 

as Question-Answering. After pre-training, we perform downstream tasks fine-tuning 

on the BERT model using the same pre-trained model parameters for initialization. It is 

reported that the fine-tuning procedure is way less expensive than the pre-training 

procedure [21], and in fact it is obvious by the difference of sizes of the dataset used. 

 

Fig. from [21]. Overall pre-training and fine-tuning procedures for BERT. 

Unsupervised pre-training is shown on the left, where two tasks are simultaneously 

used to train the model. Supervised fine-tuning is shown on the right, depending on 

the task specification we use the output of the BERT encoder differently. 

 

 As we know from our previous discussion about Transformer, the ordering 

information of tokens will be lost during attention. BERT uses a combination of token 

embedding (word representation), segment embedding (whether the token belongs to 

sentence A or B) and position embedding (index of the token position) as the input to 

the BERT model. 
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Fig. from [21]. An illustration of how the input embedding is produced. 

 

 We can summarize their differences in the following table. 

 

 ELMo GPT BERT 

Language modelling 

mechanism 

LSTM Attention, decoder 

of Transformer 

Attention, encoder 

of Transformer 

Language modelling 

direction 

Bidirectional Unidirectional Bidirectional 

Downstream task 

approach 

Feature-based, 

combining with 

other models 

Fine-tuning Fine-tuning 

Table. Comparison between ELMo, GPT, BERT. 

 

2.3.4 Tokenization 

Tokenization of words is an important procedure to preprocess the input before 

feeding it into any language model. Since a word can appear in a different form while 

carrying similar meaning, for example in English the word “walk”, “walks”, “walking” 

and “walked” all refer to the action of moving around but with different time scenario. 

In this case, we want the model to understand these words as having a similar meaning, 

where then we need similar encoding of these words as tokens.  

 

WordPiece [22] is one of the tokenization algorithms, where it initializes its 

vocabulary starting with every character present in the corpus. By merging two of its 

vocabulary according to the likelihood of subwords of the corpus, it progressively 

generates new word units until a predefined limit of word units is reached. This allows 

the vocabulary to capture all the frequently occurring sub word tokens in the corpus. 
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2.3.5 GLUE 

To allow experiment with a language model, we need a benchmark to compare the 

performance of different architectures. General Language Understanding Evaluation 

benchmark [23] (GLUE) is the set 9 of tasks and dataset that combines a diverse range 

of existing language understanding tasks. At the following paragraphs, we will describe 

three of the tasks that are of small, medium and large size of corpus respectively. 

 

CoLA is a relatively small dataset consisting of English sentences, designed for 

the acceptability judgment of the grammatical correctness of the sentence. Matthews 

correlation coefficient (mcc) is used as the evaluation metric, which evaluates binary 

classification performance on an unbalanced dataset. 

 

SST-2 is the medium-sized dataset consisting of movie reviews. The 

corresponding task is to predict the sentiment of the sentence, whether it is positive or 

negative. 

 

RTE is the large-sized dataset consisting of textual entailment. Binary 

classification is done on RTE to distinguish the sentence pairs as entailment or not 

entailment. 

 

The remaining tasks also cover a broad range benchmark on language 

understanding ability.  

 

MRPC is a corpus of sentence pairs from online news sources and annotated for 

whether the sentences in the pair are semantically equivalent. 

 

QQP is a collection of question sentence pairs from Quora, a community question-

answering website, and the corresponding task is to determine whether the pair is 

semantically equivalent. 

 

STS-B is a collection of sentence pairs form news headlines and annotated by 

human with a similarity score from 1 to 5, the corresponding task requires to predict 

the similarity scores. 

 

MNLI is a crowd-sourced collection of sentence pairs, annotated according to 

textual entailment of the pairs. Labels are either entailment, contradiction or neutral. 
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QNLI is a dataset for question-answering training. The dataset consists of 

question-answer pairs, where the corresponding task is to predict whether the given 

answer sentence is the correct answer to the question sentence. 

 

WNLI consists of sentence pairs where the first sentence contains a pronoun and 

the second sentence has the pronoun substituted with other possible referents. The 

corresponding task is to predict whether the sentence with the pronoun substituted is 

entailed by the original sentence with the correct substitution. 

  

3 Problem Statement 

In our project, we propose that there exist redundancies in the pre-trained BERT 

model. During fine-tuning, these redundancies are learnt to be omitted and useful 

connections are learnt to perform the downstream tasks well. To efficiently use the pre-

trained model to solve downstream tasks, we would like to use Neural Architecture 

Search methods to search for the best sub-network architecture of the pre-trained model 

during the fine-tuning stage of BERT. 

 

 We will be using BERT for Natural Language Understanding tasks. These 

downstream tasks are taken out from the GLUE dataset. The objective of our problem 

is to find a minimal set of connections in the fine-tuned BERT model that has the 

minimal performance drop comparing to the original fine-tuned model.  

 

4 Related Works 

 In the works of this project, we have referenced to several of the following existing 

methods that work with NAS and network compression of BERT. 

 4.1  DARTS 

 Differentiable architecture search (DARTS) [24] perform its architecture search 

by formulating a continuous relaxation of the architecture representation. DARTS is a 

cell-based approach to architecture searching, meaning that it targets to find the best 

cell architecture and the final network architecture is a stack of the searched cell. For 

example, when DARTS searches for convolutional cells on CIFAR-10, two types of 

cells are searched including the normal cell that maintains the same size for the input 

and output dimensions and the reduction cell that is used to reduce the output dimension 
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to be smaller than the input dimension. 

 

 DARTS formulate its searching as a bilevel optimization problem, which uses 𝛼 

as an upper-level architecture variable and 𝑤  as the lower-level model parameters 

variable: (by [24, equations (3), (4)]) 

min
𝛼

 ℒ𝑣𝑎𝑙(𝑤∗(𝛼), 𝛼) 
(1) 

s. t. 𝑤∗(𝛼) = argmin𝑤 ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) (2) 

 

 To solve the above optimization, we need a solution to (2)  for solving (1) . 

However, in practice solving (2) requires large amount of computation and it becomes 

expensive to solve (1). DARTS is the algorithm that approximate the gradient of the 

target function in (1) without solving (2). 

 

 

Fig. from [24]. Algorithm of DARTS. 

  

From the above definition we see that DARTS iterate between optimizing (1) 

and (2) alternatively using gradient descent. The overall idea is to use 

𝑤 − 𝜉∇𝑤ℒ𝑡𝑟𝑎𝑖𝑛(𝑤, 𝛼) as an approximation to 𝑤∗(𝛼), the solution of (2). This term 

is obtained by performing one step of training of the network parameters 𝑤 under the 

current 𝛼 . By this approach, we have an efficient searching algorithm that can 

approximately solve the bilevel optimization problem stated above. 

 

 To model the continuous search space using 𝛼, within a cell we learn a set of 𝛼 

that models the probability of each candidate operations on each edge using softmax. 

The set of candidate operations defines the discrete search space of the architecture, for 

example convolution, max pooling and zero operation of different dimensions forms a 

set of candidate operations. 
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Fig. from [24]. An overview of DARTS. (a) shows that the operation on each edge is 

initially unknown. (b) shows that a continuous relaxation of the discrete search space 

is done by allowing a mixture of the operations happening on each edge. (c) by 

learning the set of 𝛼 we can tell which operation is the most important on each edge. 

(d) the final architecture is determined by the operation of maximal probability. 

 4.2  TAS 

 Transformable architecture search [2] (TAS) is another differentiable architecture 

searching algorithm, which searches for the best width and depth of the network 

efficiently. TAS achieve differentiable searching by modelling the probability of 

choices of architecture as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼) . TAS also adopts the idea of sampling the 

options of architecture at each training step, to avoid traversing all the paths of possible 

architectures for a more efficient searching [26]. In order for sampling to be 

differentiable, [26] uses the Gumbel-softmax trick to turn categorical sampling into a 

differentiable procedure of sampling. The sampled k-dimensional vector 𝑦 is given by 

the equation ([27, equation (2)]) 

 

𝑦𝑖 =
exp ((log(𝜋𝑖) + 𝑔𝑖)/𝜏)

∑ exp ((log(𝜋𝑖) + 𝑔𝑗)/𝜏)𝑘
𝑗=1

, for 𝑖 = 1, … , 𝑘 

 

, where 𝜋 is the class probabilities and 𝑔 ~ Gumbel(0, 1). This Gumbel-softmax will 

behave like one-hot sampling when 𝜏 approaches 0, and similarly it will behave like 

uniform sampling when 𝜏  approaches ∞ . The class probability 𝜋  is 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼) 

in TAS. 

 

 For example, when searching for the width of a convolutional neural network, TAS 

sampled two architectures of different width in one layer and weight their output 



26 

 

cross-entropy classification loss computational cost loss 

according to the class probabilities. To deal with the difference in dimension of the 

sampled width choices, TAS perform a channel-wise interpolation which transformer 

the smaller width output to the same size as the larger width output so as to do weight 

sum of their output. The implementation of channel-wise interpolation can be 

considered as expanding the smaller dimensional output with the mean values of 

neighbour dimensions output.  

 

 

Fig. from [25]. An illustration of the procedure of searching for the width of a 

convolutional neural network using TAS. At each layer, 2 choices of the number of 

channels are sampled and the architecture for one forward step is determined after all 

the sampling. 

 

 In TAS, the training set of data is used to train the pruned network’s weights and 

the validation set of data is used to train the architecture parameters 𝛼.  TAS has 

combined two searching objectives for 𝛼, i.e. the cross-entropy classification loss of 

the network and the penalty for computation cost. The loss of validation that is used to 

update 𝛼 is given by the following equations [25, equations (7),(8)]: 

 

ℒ𝑣𝑎𝑙 = − log (
exp(𝑧𝑦)

∑ exp(𝑧𝑗)
|𝑧|
𝑗=1

) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 

 

 

ℒ𝑐𝑜𝑠𝑡 = {
log (𝔼𝑐𝑜𝑠𝑡(𝔸))

0 
−log (𝔼𝑐𝑜𝑠𝑡(𝔸))

 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) > (1 + 𝑡) × 𝑅 

when (1 − 𝑡) × 𝑅 < 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

 

, where 𝔸  represents the architecture parameters modelled by 𝛼 , 𝔼𝑐𝑜𝑠𝑡(𝔸)  is the 

expected computation cost of the possible architectures and 𝐹𝑐𝑜𝑠𝑡(𝔸) is the actual cost 

of the sampled architecture. Here we are using the target R as a parameter to control the 
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network to converge at having R computation cost, and we use 𝑡 ∈ [0,1] to model the 

tolerance of efficiency of the model.  

 

 When the optimal architecture is found, TAS performs knowledge distillation from 

the unpruned network to the searched architecture. 

 

 4.3  AdaBERT 

 AdaBERT [11] inherit the work of DARTS [24] and implements neural 

architecture search to find a convolutional-based architecture cell that performs similar 

to a fine-tuned BERT by knowledge distillation. In the search space of AdaBERT 

operations like convolution, pooling, skip connection and zero operation are possible. 

As similar to DARTS, each operation is allowed to take two inputs within the cell and 

provide one output. To achieve knowledge distillation, the searching objective of the 

architecture is to learn generating the intermediate layer output of the teacher BERT 

model with the searched architecture. The resulting architecture would be a stack of the 

searched cells, composed of only the operations in the search space, without attention 

operation of BERT. AdaBERT uses downstream tasks from GLUE for knowledge 

distillation and architecture searching. 

 

 The results of AdaBERT is promising, showing the advantage of inference 

speedup of the searched architecture and significant compression ratio of the network. 

This implies the computational efficiency of convolutional operations over attention 

mechanism.  
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Fig. from [11]. The searched cells for different downstream tasks from GLUE. 

 4.4  TinyBERT 

TinyBERT [28] provides a solid demonstration of network compression by 

knowledge distillation on the BERT model. BERT as the encoder of the Transformer 

has several intermediate operations before the output layer. TinyBERT looks into the 

details of BERT operations and performs knowledge distillation of transformer layers 

by comparing the attention matrices and the hidden states, while also distillate the 

embedding layer and the prediction layer of BERT. Attention matrices distillation is 

motivated by the fact that self-attention of BERT can capture rich linguistic knowledge 

[29], and that would be important for natural language understanding. 

        

Knowledge distillation is performed first on the pre-trained model, using the large 

text corpus that is used to train the original general model and this is referred as General 

Distillation. Knowledge distillation is also performed using the downstream task 

augmented training set, which is referred as Task-specific Distillation. So, we need to 

prepare two teacher models for a downstream task, one being the pre-trained general 

BERT model and one being the fine-tuned BERT model. 
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Fig. from [28]. An illustration of how the attention matrices and hidden states are 

used to perform knowledge distillation. 

 

 

Fig. from [28]. An overview of TinyBERT learning. 

 

 Notice that data augmentation in TinyBERT uses the language model BERT and 

a pre-trained embedding GloVe to generate new training data. Given a sequence of 

words, we can generate a similar sentence as follows. First, we choose which and how 

much of the words to replace. If the chosen word is a single-piece word, BERT is used 

by taking the sentence and mask out the target word to feed it into BERT, where the 

predictions of BERT is used as candidate words to replace the chosen word. If the 

chosen word is a multi-piece word, GloVe embedding is used to retrieve the most 

similar words for replacement. 

 

 GloVe is the embedding representation of words where training is performed on 

aggregated global word-word co-occurrence statistics from a corpus. 
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5 Experiment  

 5.1 Experiment Setup 

 In our experiment we inherit the setup and results of TinyBERT and extend the 

project by applying NAS for network pruning during the fine-tuning stage of TinyBERT. 

We will expand the code for task-specific distillation in TinyBERT and add new 

functionality to perform pruning on the representation of input embedding, qkv hidden 

representation, feed-forward intermediate representation and the multi-head attentions 

of each layer. 

 

 For task-specific distillation, we need a teacher model that is fine-tuned on specific 

downstream task. In our setup, we use bert-base-uncased pre-trained model from 

HuggingFace’s implementation [30] and perform fine-tuning on all the tasks on GLUE 

to obtain the teacher models for task-specific distillations. Bert-base-uncased is the 

implementation of BERT that has 12 hidden layers, 768 hidden representation size, 

performing 12 heads attention, 3072 feedforward size and has 110 million parameters. 

Bert-base-uncased is pre-trained on all lower-case English corpus. We will be using the 

teacher models as baseline performance of any fine-tuned models. In our experiment 

we will focus on three tasks from GLUE, each represents a small, medium and large-

sized dataset respectively. To obtain a fine-tuned BERT model, we trained the pre-

trained model for the following three tasks for 10 epochs, 32 batch size, 5e-5 initial 

learning rate for Adam. 

 

 CoLA (mcc) RTE (accuracy) SST-2 (accuracy) 

reproduced performance 

(10 epochs) 
0.572 0.708 0.921 

reported performance 

[21] (3 epochs) 
0.521 0.664 0.935 

 Table. Showing evaluation results of fine-tuned bert-base-uncased on GLUE tasks. 

 

In TinyBERT two versions of the final distilled model are available, 4layer-312dim 

represents the smaller version that has 4 hidden layers, 312 hidden size, 1200 

feedforward size and 12 attention heads in a layer. 6layer-768dim represents the larger 

version that has 6 hidden layers, 768 hidden size, 3072 feedforward size and 12 

attention heads. 
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We follow the data augmentation procedure given by TinyBERT using GloVe 

embedding and the pre-trained bert-base-uncased language model to generate 

augmented data. Fine-tuning of TinyBERT model is done on the augmented dataset. To 

obtain a fine-tuned TinyBERT model, we perform knowledge distillation from a fine-

tuned bert-base-uncased model to both general pre-trained 4layer-312dim and 6layer-

768dim. 

 

 CoLA (mcc) RTE (accuracy) SST-2 (accuracy) 

reproduced 4layer-312dim 

TinyBERT performance 

(10, 10) 

0.426 0.667 0.917 

reported 4layer-312dim 

TinyBERT performance 

[28] (20, 3) 

0.441 0.666 0.926 

reproduced 6layer-768dim 

TinyBERT (10, 10) 
0.556 0.714 0.926 

reported 6layer-768dim 

TinyBERT performance 

[28] (20, 3) 

0.511 0.700 0.931 

Table. Showing evaluation results of distilled TinyBERT on GLUE tasks. Brackets at 

the end of first column (x,y) represent the model spent x epochs of training for 

intermediate layer distillation and spent y epochs of training for prediction layer 

distillation. 

 

From the above tables, it shows that our reproduced models perform similar to 

the reported behaviour. For our project, we will only use the reproduced models for 

development and testing, as well as establishing results of our pruning method.  

5.2 Experiment Procedure 

We follow the procedure below throughout the experiment to obtain the results. 

Notice that during distillation we perform architecture search at the same time, similarly 

as the DARTS algorithm (refer to 4.1). For distillation, we always use fine-tuned bert-

base-uncased model of the specific task as the teacher model. We would record the 

intermediate models only during prediction layer distillation, and only when the model 

performs better than the previous best model on the evaluation set. Each of the 

following steps is trained on 10 epochs of the training data. 
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cross-entropy classification loss computation cost loss 

1. Use 2nd_General_TinyBERT_4L_312D as student model, perform intermediate 

layer distillation and architecture search. 

2. Inherit the resulting model of 1. as the student model, perform prediction layer 

distillation and architecture search. 

3. Inherit the resulting model of 2. as the searched architecture, extract the 

architecture to initialize 2nd_General_TinyBERT_4L_312D as student model, 

and perform intermediate layer distillation. 

4. Inherit the resulting model of 3. as student model and perform prediction layer 

distillation. 

5. The final resulting model is obtained by the output of 4., evaluated on the 

evaluation set. 

 5.3 Search Objective 

The objective of our NAS algorithm is to maximize network efficiency. In 

particular, to model the network efficiency, we propose to calculate the floating point 

operations per second (FLOPS) to represent the network efficiency. At the further 

development of the project, we can change the objective to other measures of the 

network efficiency, such as the inference time or the network parameter size. 

 

To facilitate the minimization of architecture FLOPS, we adopt a similar 

approach like [25] and formulate the objective loss function as follows: 

 

ℒ𝑎𝑟𝑐ℎ = − log (
exp(𝑧𝑦)

∑ exp(𝑧𝑗)|𝑧|
𝑗=1

) + 𝜆𝑐𝑜𝑠𝑡ℒ𝑐𝑜𝑠𝑡 

 

(3) 

 

ℒ𝑐𝑜𝑠𝑡 = {
log (𝔼𝑐𝑜𝑠𝑡(𝔸))

0 
−log (𝔼𝑐𝑜𝑠𝑡(𝔸))

 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) > (1 + 𝑡) × 𝑅 

when (1 − 𝑡) × 𝑅 < 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

when 𝐹𝑐𝑜𝑠𝑡(𝔸) < (1 + 𝑡) × 𝑅 

(4) 

 

ℒ𝑎𝑟𝑐ℎ represents the loss function value of the architecture variables and is used 

to train the architecture variables only. ℒ𝑎𝑟𝑐ℎ consists of two parts, the first part is the 

cross-entropy classification loss with respect to the data labels, which trains the 

architecture to prune away the connections that do not contribute to the task 

performance. The second part is the weighted ℒ𝑐𝑜𝑠𝑡, where ℒ𝑐𝑜𝑠𝑡 models the network 

efficiency and train the architecture variables to approach a target 𝑅 within a range of 

tolerance. The target 𝑅 is usually determined by a portion of the maximum FLOPS of 
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the architecture, which is the unpruned architecture FLOPS. According to different 

searching methods we would have a different formulation of 𝔼𝑐𝑜𝑠𝑡(𝔸), the expected 

FLOPS of the architecture. 

 5.4 Search Space 

In our NAS problem, we want to search for the best pruning of the BERT model. 

The search space is all the possible sub-network of the original BERT. Since we are 

extending the work of TinyBERT, our super net would at most be in the shape of the 

distilled model. We currently are using 4layer-312dim for the experiment since the 

smaller version requires less training time. The results of the experiment will be 

repeated on 6layer-768dim for comparison. 

 

Within the BERT architecture, there are several parts that we consider as the 

candidates to be pruned. 

 

First, we consider reducing the hidden representation size. In the original BERT 

architecture, a fixed hidden size is used throughout all the layers so that within one layer 

of the encoder of the Transformer each token is represented with the same hidden size. 

We investigate bottom-up to see which operations allow reduction of hidden 

representation size. The following illustrations are adapted from [17]. 

 

 

Fig. An overview of a hidden layer of BERT, read from left to right. Red and blue lines 

represent what are the inner operations of the concerned layer. 

 

 On the leftmost, we have a hidden layer of BERT. We suggest that we can search 

for the hidden representation size of the multi-head attention layer since [31] have 

shown that there are redundancies among the multiple heads in each layer of BERT. To 
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understand where the hidden size flexibility is, we take a look at the multi-head 

attention layer and scaled dot-product attention individually. 

 5.4.1 Input Embedding 

Fig. [𝑥, 𝑦] represents a linear transformation of a vector from x dimensions to y 

dimensions. 

 

(𝑒𝑣 , 𝑒𝑘, 𝑒𝑞)  In the original setup, the linear transformation before scaled dot-

product attention takes the sentence token embedding as inputs. In this case 𝑒𝑣 = 𝑒𝑘 =

𝑒𝑞 =  the representation size of a token embedding, which is often referred as the 

hidden representation size or the hidden size of a BERT model. We can search on how 

much of the hidden representation is required as input to this linear transformation to 

gain enough information for specific downstream tasks, and we refer to this as 

searching on the dimensions of the input embedding. 

5.4.2 QKV Hidden Representation 

(ℎ𝑣 , ℎ𝑘 , ℎ𝑞)  Constrained by the nature of the matrix multiplication operation 

within the attention mechanism, we require ℎ𝑞 = ℎ𝑘 . By the definition of BERT 

attention, the output of the attention matrix is precisely ([17], equation (1)) 

 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 

[𝑒𝑞, ℎ𝑞] 

[𝑒𝑘, ℎ𝑘] 

[𝑒𝑣 , ℎ𝑣] 

[ℎ𝑣 , ℎ] 
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Fig. (𝑥1, 𝑥2) × (𝑦1, 𝑦2) → (𝑜1, 𝑜2) represents a matrix multiplication 𝑂 = 𝑋𝑌, 

where 𝑋 ∈ ℝ𝑥1×𝑥2 and 𝑌 ∈ ℝ𝑦1×𝑦2. 𝑠 represents the maximum sentence length. 

 

 We can search on the dimensions of ℎ𝑣, ℎ𝑘, ℎ𝑞 constrained by ℎ𝑞 = ℎ𝑘. We will 

refer to this as searching on the qkv hidden representation. 

 

At the top layer of multi-head attention, we have a linear transformation [ℎ𝑣 , ℎ]. 

The output size of this transformation is fixed to be the hidden size of the network 

because its output will be added with the residual connection from before the attention 

layer. 

Fig. Red arrow shows the residual connection in concern. The same hidden size h 

must be maintained at the output of the multi-head attention layer. 

(𝑠, ℎ𝑞) × (ℎ𝑘 , 𝑠) → (𝑠, 𝑠) 

(𝑠, 𝑠) × (𝑠, ℎ𝑣) → (𝑠, ℎ𝑣) 

 

ℎ 

ℎ 



36 

 

5.4.3 Feed Forward Intermediate Representation 

Fig. An illustration of the feed-forward layer of the encoder of the Transformer. 

 

At the top layer of the encoder, we have a feed-forward layer consists of two linear 

transformations. We can search for the intermediate representation. 

5.4.4 Multi-heads Pruning 

 Motivated by [31], we would like to reproduce the result of [31] using our 

differentiable NAS method. It has been shown that across the multiple heads, only 

several of them at each layer are responsible for the performance on the downstream 

task. In [31] the experiment covers the setup of manually choosing one head to be 

removed from the model and manually choosing only one head to remain in each layer. 

While the combination of important heads is yet to be observed by the experiment. We 

suggest investigating whether our searching methods could find the suitable 

combination of heads in each layer. 
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Fig. Observe that the output of each attention head is combined in the above circled 

layer. Pruning the multi-heads will prune away part of the linear transformation at 

the top as well. 

5.5 Search Method 

 To facilitate differentiable architecture searching similar to [24] and [25], we need 

to design how to generate the architecture from the architecture variable 𝛼 . The 

following method will describe how to model 𝛼  to perform searching on the 

representation dimensions (5.4.1, 5.4.2, 5.4.3). An alternative method is proposed to 

search for multi-heads pruning (5.4.4). 

 

5.5.1 Search Method for Representation Dimension 

 In this method, we use the architecture variable 𝛼  to generate the mask by 

sigmoid(𝛼). Since we want to simulate the mask with sigmoid(𝛼), we want 𝛼 to be 

outside of the range [−5, 5] so that the mask would contain {0, 1} values. We do some 

trick to make sure that the gradient arriving at 𝛼 would make a large enough step to 

jump across -5 and 5, by rescaling the gradient arriving at 𝛼. 
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Fig. from Wikipedia. Sigmoid function. 

  

Algorithm: Search Method for Representation Dimension 

Initialize 𝛼 to a constant value 5, since sigmoid(5) ≈ 1. 

Initialize encoder weights 𝑤 from pre-trained model. 

For each forward pass: 

1. Generate mask by sigmoid(𝛼). 

2. Mask the corresponding representation during forwarding of the encoder. 

3. Backpropagate the cross-entropy loss w.r.t labels and FLOPS loss to learn 𝛼. 

Choose the dimensions according to the activated α, i.e. sigmoid(𝛼) > 0.01 

 

 

5.5.2 Multi-head Pruning Method 

 We need to model the importance of each head using 𝛼. We propose a similar 

approach like DARTS and weight the output of each head by 𝛼 using softmax: 

 

�̅�(𝑥) = ∑
exp(𝛼ℎ)

∑ exp(𝛼ℎ′)ℎ′∈ℋ
𝑜ℎ(𝑥)

ℎ∈ℋ

 (5) 

 

, where ℋ is the set of all heads within the same layer, 𝛼ℎ is the architecture variable 

of head ℎ, 𝑜ℎ(𝑥) is the output of head ℎ and �̅�(𝑥) is the weighted output of all the 

heads. 

 

  

https://en.wikipedia.org/wiki/Sigmoid_function
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Algorithm: Search Method for Multi-head Pruning 

Initialize 𝛼 from Normal(0, 0.01). 

Initialize encoder weights 𝑤 from pre-trained model. 

for each forward pass: 

1. Generate attention heads weighted output according to equation (5). 

2. Backpropagate the cross-entropy loss w.r.t labels and FLOPS loss to learn 𝛼. 

Choose the heads according to the top-n 𝛼. 

 

5.6 Search Results 

 5.6.1 Input Embedding Pruning 

 By the results of the experiment, we realize that it is difficult to tune the 

hyperparameter of our search to get the desired searching result. The search often results 

in using all the dimensions of the input embedding or using the minimum size of the 

input embedding. The following scenarios are the possible reason behind the results: 

 

1. FLOPS weight of searching is too small and ℒ𝑎𝑟𝑐ℎ is dominated by the cross-

entropy classification loss, so the model would want full information from the 

input embedding.  

2. FLOPS weight of searching is too large and ℒ𝑎𝑟𝑐ℎ  is dominated by the 

FLOPS loss, so the model would like to use the minimal number of dimensions 

to reduce network FLOPS. 

 

At the same time through experiments, we realize even when the FLOPS weight 

is 0, i.e. network efficiency is not the training target of the searcher, the searching result 

would not use all the input embedding dimensions. 

 

The experiment results are listed in the tables below. 

 

TinyBERT distilled model for comparison 

 CoLA (mcc) RTE (accuracy) SST-2 (accuracy) 

reproduced 4layer-312dim 

TinyBERT performance 

(10, 10) 

0.426 0.667 0.917 
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Searching without FLOPS loss 

Task Evaluation Result at Global 

Step 

Search Result 

Size Ratio  

CoLA 0.236 mcc (decreased by 0.19) 699 0.406 

RTE 0.621 acc (-6.89%) 199 0.456 

SST-2 0.894 acc (-2.50%) 17499 0.455 

 

Searching with FLOPS loss 

Task Evaluation Result at 

Global 

Step 

Search 

Target 

Size Ratio 

Search 

Result 

Size Ratio 

CoLA 0.267 mcc (decreased by 0.159) 2349 0.5 0.654 

CoLA 0.289 mcc (decreased by 0.137) 99 0.75 0.828 

CoLA 0.355 mcc (decreased by 0.071) 1249 1.0 0.974 

RTE 0.646 acc (-3.14%) 49 0.5 0.663 

RTE 0.646 acc (-3.14%) 149 0.75 0.825 

RTE 0.653 acc (-2.09%) 499 1.0 0.975 

SST-2 0.905 acc (-1.30%) 17499 0.5 0.662 

SST-2 0.906 acc (-1.19%) 15549 0.75 0.852 

SST-2 0.909 acc (-0.872%) 749 1.0 0.974 

 

 Search target size ratio is representing 𝑟 in 𝑟𝑀 = 𝑅, where 𝑅 is the target in 

equation (4)  (Section 5.3) and 𝑀  is the maximum embedding size limit of the 

architecture. In this experiment 𝑀 = 312. Search result size ratio represents the size 

of the resulting architecture, because by equation (4) the FLOPS loss would only train 

the architecture to approach the target size within a tolerance range. Change in 

performance is quoted in brackets, comparing to the distilled model without pruning. 

The results are incomplete since the training of SST-2 takes a longer time, and 

experiment have not completed yet for SST-2. 

 

From the results above we see that the performance drop is significant even when 

the search result size ratio approaches to 1.0, i.e. no pruning. It suggests that all the 

dimensions of the input embedding are informative in performing the downstream task. 

There is little redundancy in the input token embedding. However, we see that the 

performance drop on SST-2 is minimal, which suggests that pruning the dimension of 

input embedding for downstream tasks of a large dataset will do less damage to the 

performance as compared with pruning on smaller datasets. 
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6 Future Direction 

 At the time of writing the report, we have not yet experimented on pruning of the 

qkv hidden representation (Section 5.4.2) and the feedforward intermediate layer 

representation (Section 5.4.3). But we have a higher expectation on the pruning of 

attention multiple heads (Section 5.4.4), based on the finding of [31]. 
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