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Abstract

We implemented an efficient, user-friendly and reliable computer-aid di-
agnosis system to help pathologist do breast cancer diagnosis faster, easier
and more accurate. The system can be divided into two parts: one front-end
web-page and the back-end program. Users, usually pathologist or commu-
nity doctors, can upload suspicious patient’s samples, which can be of ei-
ther histopathological images or mammogram and then a patient report will
be generated in a few seconds indicating whether the suspicious patient has
breast cancer with corresponding probability and whether the cancer is benign
or malignant with a probability. The back-end program is based on the state-
of-the-art technology, deep learning, specifically, ResNet to do classification
and Mask RCNN to do breast mass segmentation. Moreover, we fine-tune
the models by combining features of medical images and deep learning mod-
els. For classification task, our proposed fine-tuned model outperforms all
existing methods and achieves a 5% accuracy improvement from 84% to 89&,
for mass segmentation task, our work achieves a 5x speedup than previous
quickest work and outperforms it. Also, our front-end website shows a great
convenience for users even without coding experience and computer science
knowledge.
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1 Introduction

1.1 Motivation

Reviewing patient’s biological tissue samples by a pathologist is a conventional
method for many diseases diagnosis, especially for cancer such as breast cancer.
However, reviewing samples are laborious and time-intensive, which may delay
decision-making. The reviewing of pathology slides is a very complex task. Some-
times agreement in diagnosis for some forms of breast cancer can be as low as 48%
[M]. The difficulty in diseases diagnosis by pathologists is inevitable because the
pathologists need to review all slides per patient while each of slide is 10+ gigapix-
els when digitized at 40X magnification.

On the other hand, current automatic medical diagnosis attempts are not targeted
at pathologists with little artificial intelligence background. Pathologist may not
understand terms describing an Al or statistics an Al produces. There exists possi-
bility that pathologist cannot interpret a computer generated report very well. With
such limitation, cooperating with Al may instead delay decision-making. Therefore,
we will try to implement a complete automated breast cancer diagnosis system.

1.2 Background

Since AlphaGo showed the possibility that Al can beat human in real world tasks [2],
more and more people in universities or industries are interested in Al for medical
usage. The number of papers about Al diagnosis is growing exponentially.

1.2.1 Development of AI Classifier

The classification problem is an important component in the field of deep learning.
It is targeted on judging a new sample belongs to which predefined sample category,
according to a train set containing certain number of known samples. The classifi-
cation problem is also called supervised classification, since all samples in train set
are labeled, and all categories are predefined [3]. Classifier is one of the pattern
recognition applications.

The most widely applied Al classifier is spam email filter, which classify each email
into “regular” or “junk”. Generally speaking, each instance in the classification
problem will be transform into a computer analyzable vector, which is usually called
“features”. A feature can be an enumeration or a number.

Then the Naive Bayes classifier was proposed in 1950s. It is a group of simple clas-
sifiers derived from the Bayes’ Theorem, assuming that all features in the samples
are strongly independent. Since its publish, it has been widely researched. Things
turned out that it performed well for text classification, with number of occurrence
of words as features. It can do the aforementioned email classification task at a
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Figure 1: Al classification

relatively low computation amount compared to more recent algorithms while still
achieve acceptable accuracy [4]. With appropriate preprocessing, it is still competi-

tive.
prior x liklihood

posterior = -
evidence

1 n
Pr(Cy|F, .., Fn) = — Pr(Cy) > Pr(F|Cy)

=1

classify(fi, ..., fn) = argmax Pr(C = ¢) H Pr(F; = fi|C = ¢)

i=1

The Naive Bayes classifier can have different assumptions for the underlying dis-
tribution of features. For continuous variables, we can assume they are under the
classic Gaussian distribution. For text data, the standard assumption is multino-
mial distribution, where the number of occurrence of a word is taken into account.
A simplified version is Bernoulli distribution, which only consider whether a word
appears or not.

The Naive Bayes classifier is much more extensible than other algorithms. Number
of parameters it needs to learn is linear to number of features, therefore the training
time complexity is also linear. Moreover, the training process has a well close-formed
expression. For email classification problem, the number of parameters is merely the
number of unique words in all emails. This avoid the expensive linear approximation
many other classifiers use.

Later Support Vector Machine (SVM) was introduced by Vladimir Naumovich Vap-
nik and Alexey Yakovlevich Chervonenkis [5]. Given a train set, each sample is rep-
resented by a point the hyperspace. For SVM, samples are treated as p-dimensional
vectors; SVM assumes that we can separate these points with a (p-1)-dimensional
hyper plain. There may be may such hyper plain, and SVM will separate different
categories with a hyper plain with as large margin as possible. Thus, we will get the
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Figure 2: Support Vector Machine

hyper plain whose distance to nearest data points of two categories is maximized.
This is also why it was named “Support Vector” machine.

SVM is usually a linear classifier. However, with some tricks called “Kernel trick”,
SVM can also do nonlinear classification. The main idea is, by mapping the original
sample space to a higher dimensional space, the original non-linear separable set
may become separable.

1.2.2 Development of AT Object Detection

As the demand is rising for autonomous vehicles, intelligent monitoring and various
other applications, object detection is becoming a hot spot in the Al field. These sys-
tem need to not only recognize and classify the whole images, but also locating each
objects in images. We want to find faces or cars from a complex real-world image.
This makes object detection a hard task compared to the traditional classification.

The very first object detection algorithm was based on extracting features from the
images [6]. The core idea of this algorithm is simple. By finding correspondence
between the given reference and the input target object, we can detect a specific
object. It estimate the scale transformation and the rotation applied, and find the
matching features. It can also handle some level of occlusion.

Feature-based object detection requires the object has a unique texture pattern,
which reduces noise in feature matches. The performance is unlikely to be good
for large objects with a uniform color, such as a car. Plus, it is designed to find a
specific instance rather than a class of instances, i.e. to find the one car rather than
any cars. Unfortunately, these limitations restrict its usage.
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Viola-Jones object detection was later proposed in 2001 by Paul Viola and Michael
Jones [7]. It is the first algorithm that can process the image in real-time and
still gives satisfiable detection rate. While it is capable for multiple class object
detection, it was originally designed and mainly used for face detection. It uses
features extracted from sums of rectangular areas in the image, which is called harr
features. As for the face detection task, this algorithm find the similar features in all
faces, and then represents the image with an integral image. The summing process
can be done in constant time, so this algorithm is faster than its competitors. It
then uses a cascade architecture to assemble a strong classifier from many weak
classifiers. This architecture tolerates poor weak classifiers very well, which also
reduces its running time.

Viola-Jones algorithm was the first one that enables object detection in the consumer
technologies. Face detection functions on nowadays cameras are mainly based on
this algorithm. It however is still a feature based solution, so still has the same
drawback as other similar solutions. Its performance drops when detecting multiple
classes.

Then SVM classification was also introduced to this area by Navneet Dalal and Bill
Triggs to further improve performance [8]. With histograms of oriented gradients
(HOG) features, we can achieve a higher accuracy. This method extract HOG
descriptors from positive and negative samples, then train a linear SVM on these
descriptors. It then apply hard-negative mining on inputs, i.e. slide a window
through the image and compute the SVM at each window. Since SVM can give an
accuracy boost in classification task, it is not surprising that it will also give one in
object detection task.
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Figure 4: Viola-Jones Object Detection

1.2.3 Development of Deep Learning

Deep learning is a subset of machine learning. It is a family of feature learning
algorithms in the area of machine learning. Observation values can be represented
in various ways, such as a vector containing RGB values of each pixel, or more
abstractly a series of edges and areas [9]. It attempts to do highly abstract data
computation with multiple process layers which may contain a complicated structure
or non-linear mapping. In general, it is a boarder machine learning method, as it is
not specific to any task. There are multiple deep learning frameworks already widely
used, such as deep neural network, convolutional neural network and recursive neural
network. Deep learning has been widely used in applications, including computer
vision, natural language processing and bioinformatics, and achieves supreme results.

In 1989, Yann LeCun [I0] proposed the deep learning mode. Through it could
run, the computation cost was so large that the training took about three days.
The very first deep learning attempt therefore failed going into real application.
The trend of Al then shifted into Support Vector Machine. However, in 1992,
Schmidhuber [I1] proposed an effective algorithm to train neural networks. This
algorithm treats each layer in the network as an unsupervised, and then tune its
parameters with supervised back propagation algorithm. In experiment, it was
shown that this training method can indeed improve the train speed of supervised
learning.

The advantage of deep learning is that it uses effective unsupervised or Semi-
supervised feature learning and layered feature extraction instead of man-powered
feature extraction. The aim of feature learning is to seek for better representation
of data and to create better model to learn these representations from large-scale

11



unlabeled dataset. The representation is like development of real neural network,
and is based on the understanding of how information is processed and transmitted
in neural-like systems [12].

hidden layver 1  hidden layer 2 hidden layer 3

input layer

Figure 5: A deep neural network

The basis of deep learning is the distributed representation in machine learning.
“Distributed” means the assumption that the observation is resulted from inter-
action between different factors. Furthermore, deep learning assumes that such
interaction can be spliced into multiple layers, which means the multiple abstrac-
tion of the observed value. Different number of layers and different size of layers can
be used to represent different degree of abstraction. This idea of layered abstrac-
tion indicates that higher-level concepts are learned from lower-level concepts. This
structure is usually constructed with greedy algorithm, which helps the machine
to learn more significant features. Many deep learning methods are unsupervised
algorithms, which enables deep learning to be applied to unlabeled data. This is a
great advantage over other algorithms. The amount of available unlabeled data is
much larger than labeled ones; unlabeled data is also cheaper to acquire.

What even more encouraged researchers is General-Purpose computing on Graph-
ics Processing Units (GPGPU). The development of more powerful hardware and
increase in available data made deeper neural networks realizable. In 2009, Nvidia
stepped into the area of deep learning and started promoting its GPU. It was con-
firmed that the involvement of GPU can increase the training speed by more than
100 times. Since GPU is quite suitable for matrix/vector computation in deep learn-
ing algorithm, a GPU can reduce the time required from weeks to days.

Since the emerge of deep learning, it has become one part of the most advanced
systems in various areas, especially in computer vision and speed recognition. On

12
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standard verification datasets such as Cifar 10, experiments showed that deep learn-
ing can improve recognition accuracy. A deep learning method, convolution neural
network, processed about 10% to 20% checks in US. Due to the development of
deep learning, the year 2010 witnessed a bunch of the very first industrial speech
recognition products.

1.2.4 Development of Deep Learning for Medical Images

In the area of medical image proceeding, deep learning is becoming more and more
attractive. The recent development in deep learning has achieved a great leap.
Generally speaking, research on deep learning for medical images is mainly focused
on four aspects: structures detection, segmentation, labeling and captioning, and
computer aided detection or diagnosis.

Structure detection is one of the most important steps in medical image process.
Pathologists generally accomplish this task by recognizing some anatomical feature
in the image. Though the success of deep learning in this area mainly depends on
how many anatomical feature the algorithm can extract. The recent trend indicates
deep learning is mature enough to solve real world problems. Shin et al. [13] proved
deep learning in computer vision applicable for medical images. On top of this, they
detected multiple organs in a series of MRI images. Meanwhile, Roth et al. [I4]
presented a method to detect organ at certain body part. They trained their deep
neural network with 4298 images and achieved an error rate of 5.9

Segmentation is the process of dividing a digital image into many sub- images [15].
A segment is a set of pixels, and therefore is also called hyper pixel. The aim of
image segmentation is to simplify or alter the representation of the image so that

13
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Figure 7: Typical Segmentation

it becomes more easy to understand or analyze. Segmentation is usually used to
locate objects or edges in the image. More precisely, segmentation is a process to
label each pixel in the image, which makes pixels with the same label have a similar
visual feature, such as color, brightness or texture. Moeskops et al. [16] designed a
multiple-scale CNN for accurate tissue segmentation, using multiple patch sizes and
multiple convolution kernel sizes to gain multiple scale information of each pixel,
and achieved accuracy from 82% to 91%. Zhang et al. [I7] tested four CNN on the
task of brain tissue segmentation. Their experiment uses three convolution layers
and a fully connected layer, and proved CNN significantly better than traditional
methods.

Labeling and captioning is the most widely used way to describe contents in an
image. It is the classic classification problem in the area of medical images. Contin-
uous effort is being put in to ensure disease-specific auto labeling. Inspired by neural
networks for regular images, some research [18] [19] introduced RNN together with
latest advance in computer vision to caption chest radiographs in certain contexts.
The authors used image captions in public available dataset to train the CNN. To
avoid large error, many normalization techniques were applied. Then the network
was used to describe the situation of detected disease.

Computer aided detection or diagnosis involves finding or locating abnormalities and
suspicious area, and then alert clinicians. The main aim of computer aided detection
is to increase the detection rate of infected area and to decrease false negative due
to observer’s mistake. Though it is considered a mature area in medical images,
deep learning further improved performance in many applications and enabled some
design that was impossible in the past. Traditionally, computer detection requires

14



a preprocessed candidate region and manpower to extract features such as shape or
statistics in the region; inly after then the features can be feed into the classifier.
However, the advantage of feature learning is the core of the new developments. Deep
learning can learn the hierarchical features from the dataset independently instead
of depending handcrafted features specially targeted for certain area of knowledge.
It soon proved to be the most advanced technology. Ciompi et al. [20] trained CNN
with predefined OverFeat as feature extractor, and showed that CNN is feasible to
provide useful feature description in lung images. Gao et al. [21] trained the model
from the very beginning. They solved the overfitting problem by randomly cropping
or jittering the original image, and then feed the sub images into the model. Finally,
the model was able to classify patches into normal, fibrosis and other four abnormal
classes.

Due to the prosperity in research, more and more commercial attempts is being
conducted recently. Startups entering the medical Al area is increasing. From
2012 to 2016, investments in medical Al increases from 20 cases per year to 70
cases per year. More than 100 large companies are trying to apply deep learning
in order to decrease time to provide aids to patient and to automatically diagnosis
disease with medical images. IBM Watson Group is supporting a research to screen
cancer patients with an affordable procedure. They are trying to make deep learning
suitable for production. Other startups include SkinVision, Flatiron Health and

Entopsis [22].

1.3 Objective

Deep learning has a natural advantage in features learning, which means that it has
a potential to be applied to this problem mentioned above. Therefore, we will try
to implement a complete automated breast cancer diagnosis system. In this system,
we will train a deep learning program which can give advice to pathologists, even if
s/he do not know anything about Al

Deep Learning
Diagnosis

Figure 8: Our Diagnosis System

This project involves image classification, object detection and image caption to-
gether. It is designed to be able to perform mammogram analysis or pathology

15



analysis, and detect possible tumor location. A deliverable diagnosis and tumor
positioning report will be generated at the end which can help them make a more
accurate decision on diagnosis. The whole system will have the following function-

alities:
Not Cancer
. -.‘:‘d; -‘.-:
2 St -
T ¥ ?’:_.. : =
7{ Not Sure

Deep Learning

Diagnosis Pathology .. .
Analysis >
. Image Classification

Cancer

Not Cancer
Object detection

Figure 9: Workflow of Our Diagnosis System

. Perform mammogram analysis first

To determine if a tumor is benign or malignant, we will first require the pa-
tient’s magnification mammogram image. The deep learning program will try
to make a preliminary classification: cancer, not cancer, or not sure. More
detailed diagnosis should follow.

Detect possible tumor location if classified positive If the program categorizes
image as positive, it will further detect the exact existence of tumor. It will
point out the most suspicious regions in the image for pathologists’ reference.

Make a more confident judgment with pathology analysis If the program can-
not achieve a pre-defined certainty threshold, it will suggest a pathology anal-
ysis. As the pathology analysis can give more information, very likely the
program will approach the correct inference.

Generate human-readable report At the last, the program will describe its
output in an understandable way. The report will indicate all its findings.

In term one, our primary objective was to build an accurate breast cancer histopatho-
logical image classification model, the first computer diagnosis procedure in the
workflow. This is the entry point, and will be the most frequently used module in
the system.

In term two, our primary objective is to finish up the rest parts of the project, i.e. the
tumor detector and the report generator. The program will try to locate tumor cells
and tell the pathologist its suggestions. Since it will give more accurate information
about the sample, the accuracy may be lower in turn. For users’ reference, we plan
to explicitly show confidence level on the output reports.

16



2 Literature Review

2.1 Naive Bayes for Breast Cancer Diagnosis

Many attempts have been made to predict medical image classes since the emerging
and development of Artificial Intelligence. The work from [23] uses a traditional
Naive Bayes classifier for automated breast cancer diagnosis. This work is quite
valuable because it turned out that Artificial Intelligence is feasible for medical
diagnosis since simple classifier of Al, specially classifier in machine learning , can
also do a good job.

2.1.1 Thesis

In their thesis, the first step was preprocessing, just same with other image classifi-
cation tasks. Their original data was not of high quality and resolution, moreover,
there were many noisy pixels in the image. They used Gaussian filter to blur the
image and reduce the noise. Then they stretched the histogram to improve contrast.

The second step is segmentation of nuclei, since classification of tumor requires iden-
tifying nuclei in each cell. they implemented four clustering algorithm: competitive
neural network, fuzzy C-means, K-means and Gaussian mixture model. Then 42 fea-
tures were extracted from each segment. The features were selected by experienced
human pathologists.

Then the features were feed into classifiers. They trained a Naive Bayes classifier
which was using estimated kernel densities. 500 real medical images from 50 patients
formed the train dataset.

2.1.2 Results

The performance was measured with n-fold cross validation method.Their accuracy
rate was about 96% to 100%, which can be found in table [I] which indicated Al
in breast cancer diagnosis was quite promising for production. It showed that their
preprocessing procedure and data collecting procedure could assure accurate and
objective dataset.

KM FCM GMM CNN
Patients Accuracy 100.00% 96.00% 100.00% 98.00%
Image Accuracy  90.22%  85.78% 88.00%  89.56%

Table 1: Performance of Different Classifiers

17



2.2 SVM for Remote Breast Cancer Diagnosis

The work from George et al.[24] proposed a more advanced system than previous
work for breast cancer diagnosis. They proposed a fully automatic nuclei detection
and segmentation method. Then they developed the AI tumor classification sys-
tem. They proposed 12 features for research on the most effective model. At last,
they experimentally pushed their computer aided detection and diagnosis system
to production, connecting it to a remote medical platform. This web based service
was expected to provide an intelligent and convenient diagnosis for breast cancer
patients.

2.2.1 Method

Their first step was preprocessing. Since preprocessing is the most critical and
calculation-consuming factor in image processing, they shrank the image size from
2560x1920 to 640x480. Then contrast enhancement and edge sharpening was used to
manipulate the image. They used contrast limited adaptive histogram equalization
to enhance the quality of the image. CLAHE worked within each tile of the image
instead of the whole image, so that contrast was enhanced in each tile. The next
step is cell nuclei detection. They implemented a detector combining circle detection
and local maximum finder. In the images, there may exist some blood cells which
were unwanted noisy markers.

They used Fuzzy C-Means Clustering method to remove such cells. The noise free
image was then separated into individual objects with marker-controlled watershed
transform. They used some meaningful features to classify the image. They pro-
posed two textural features and ten shape features that could yield a good discrim-
ination ability. The features include boundary, smoothness, etc. Then the features
were feed into SVM. The workflow of SVM system is shown in figure

Cell Nuclei False Findings
Detection - Elimination

Preprocessing

Feature Cell Nuclei

Classification Exttaction Segmentation

Figure 10: Workflow of SVM System
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2.2.2 Results

The train set and test set was generated with ten-fold cross validation method. A
total of 3260 images were used in the experiment. The experiment result showed
that their method was still effective for bloody images or noisy images. However,
due to the extreme lack of data, their accuracy was capped at 82.6%. Some data set
still did not the training goal after 200 epochs. This paper illustrated some effective
ways to preprocess images, and proved that the performance converge is greatly
correlated to the size of train set.

2.3 Classification of Skin Cancer with DNN

With the development of deep learning and GPU calculation capacity, some most
recent research on medical deep learning discussed deep neural networks for classi-
fication of medical images, which is absolutely the most direct application of DNN
in medical field. The work [25] is one of the most classic and promising method to
do image classification for cancer diagnosis, specially, skin cancer.

2.3.1 Model Description

Instead of highly standardized images generated from specialized instrument such
as microscope, their classifier was mainly focused on classifying images from general
purpose photography instruments like smartphone. The variety of zooming, angle
and brightness brought new challenge to the task. They used data driven method
to overcome this difficulty — they increased the size of dataset to 1.41 million which
was impossible for standardized images. The number of images made classification
more robust to the variety in images. Compared to previous work that required
many preprocess, segmentation and feature extraction, they required no handmade
functions in the classification. Their model directly read the original image and
original pixels and perform an end to end training.

Their classification includes 2032 single diseases arranged in a tree structure. Three
root nodes represented benign, malignant and non-tumor lesions. It was given in
the bottom to top structure and therefore was very suitable for machine classifiers.

They utilized the GoogleNet Inception v3 CNN architecture [26], which was pre-
viously trained for 2014 ImageNet challenge, then transferred to the skin cancer
dataset with transfer learning technology. This is a deep CNN architecture which
achieved 93% accuracy in the challenge. They deleted the final classification layer,
and retrained the network with the skin cancer dataset, the detail of the structure
they used can be found in figure [11] and fine tune parameters of each layer. Dur-
ing the train process, they shrank size of each image to 299x299 pixels so that it
could fit with the input sized of the original Inception v3 network structure, and
used ImageNet to pre-train the image feature learning ability of the network. This
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Figure 11: Structure of Inception v3

process was called transferred learning, which could result in the best result with
given number of data.

2.3.2 Results

They trained the Convolution with back propagation algorithm. All layers in the
network was assign the same global learning rate. They used Tensorflow, a deep
learning framework by Google to train, validate and test their network. They tested
their network with two methods, using nine-fold cross validation. First, they used
three top-level nodes for classification, which classified each image into benign, ma-
lignant or non-tumor. In this task, CNN achieved 72.1+0.9% accuracy for each
patient. Two human dermatologists achieved 65.56% and 66.0% on a subset of
the test set. Second, they classified images into different medical care requirements.
CNN achieved 55.441.7% while two dermatologists achieved 55.0% and 53.3%. This
demonstrated the effectiveness of deep learning for cancer diagnosis. This method
is mainly bounded by data; if given enough data, it can be suitable for many other
image problems.

2.4 Deep Multi-instance Networks with Sparse Label As-
signment for Whole Mammogram Classification

This work[27] focused on the classification of mammogram, which has been demon-
strated to be an effective way for early detection and diagnosis. Traditional mam-
mogram classification requires extra annotations such as bounding box for detection
or mask ground truth for segmentation considering the high-resolution feature of
mammogram, however, these methods require training data to be annotated with
segmentation ground truths and bounding boxes which are hand-crafted features
and require expert domain knowledge and costly effort to obtain.

Considering all the points above, this work focuses on perform classification based
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on a raw whole mammogram, where each patch of a mammogram instance can be
treated as a pixel of the whole mammogram.
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Figure 12: The framework of whole mammogram classification.

2.4.1 Multiple Instance Learning Framework

Through the study of previous work, this work investigates three different schemes,
i.e., max pooling, label assignment, and sparsity, to perform deep MIL for the whole
mammogram classification task.

The framework for proposed deep MIL of mammogram classification is shown in
figure Firstly, the Otsu’s segmentation is used to remove the background and
then the mammogram is resized to 227x 227, secondly, the resized training data is fed
into the DNN model, typically, the AlexNet model [28] of MIL and the output of the
fine-tuned AlexNet will be the probability for the input mammogram as malignant
pixel-wise. Thirdly, the malignant probability of each instance in one patch will
be ranked. Finally, three kinds of losses will be calculated for the three different
schemes they investigate.

Max Pooling-Based Multi-instance Learning Unlike the general DNN clas-
sification task, whose output is simply the prediction class of input image. The
Multi-instance learning is this work regards input image as a patch and each pixel
of the image is corresponding instance. Therefore, the generated result of deep MIL
model will be © = (7(0,0); ---, "(row,cot) ), Where row, col is the value of row number and
column number of input 1mage and r; ; represents corresponding probability to be
malignant of pixel at position (4, 7).

According to the general assumption of multi-instance learning, if there exists an
instance that is positive in one patch, then the patch is positive. Therefore the

21



final cost function considering max-pooling should be the cross-entropy-based cost
function between the result of r’s max-pooling and the true label, and the cost
function can be therefore defined as:

N
1 A
Lmam—pooling - _N Zlog<p(yn|'[n7 0)) + §||9||2 (]‘)
n=1

where the first sum part is for calculating corresponding cross entropy, N is the
total number of mammograms, and A is the regularizer that controls the model
complexity and avoid overfitting.

However, this kind of cost function considers only the influence of the max malignant
pixel, which ignores other pixels’ information. Therefore, one scheme is obviously
not enough to gain a reliable result.

Label Assignment-Based Multi-instance Learning The biggest difference
between this kind of MIL and above one is that the label assignment-based method
assume that the first k largest malignant probabilities of model outputs should be
assigned with the same class label as that of whole mammogram, and the rest pixels
results should be labeled as negative in the label assignment-based MIL. Considering

two assumptions and transfer them into cross entropy symbols, the cost function can
be defined as:

N k m
1 A
Llabel—assign - _W(Z(Z log(p(yn|-[n,j9 0)) + Z lOg(p(y = O’In,j9 0)))) + §||0||2
n=1 j=1 j=k+1

(2)
One advantage of the label assignment-based MIL is that it makes use of all the
information of pixels to train the model.the optimization problem of label assign-
mentbased MIL is exactly a k-sparse problem for the positive data points, where
we expect the k largest corresponding label being 1 and others being 0. The dis-
advantage of label assignment-based MIL is that the estimation or tuning of the
hyperparameter k is hard and time-consuming. Thus, a relaxed assumption for the
MIL or an adaptive way to estimate the hyper-parameter k is preferred.

Sparse Multi-instance Learning The sparsity feature is found through the
analysis of the raw data: the mass typically comprises about 2mammogram on
average, which means that the mass region should be quite sparse in the whole
mammogram. Therefore, the author applies this feature and assumes that almost
all pixels label should be sparse, which indicates benign. Considering this feature
and all study above, the loss function of sparse MIL can be defined as:

N
1
spm“se: NZ lOg yn‘Inae))+uHrnH1+_H0H2 (3)
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We can see that the only difference between equation [3| and [1] is the L; constrains,
which makes probabilities sparse.

The advantage of sparse MIL is that, firstly, this kind of learning convert the label
assignment-based MIL to simple L; constrain, which is easier to do calculation than
cross entropy, the second advantage is that this method can be regarded as a trade-
off between max pooling-based MILL (slack assumption) and label assignment-based
MIL (hard assumption).

2.4.2 Results

The proposed model is validated on the mammographic mass classification dataset,
[Nbreast dataset [28] instead of another frequently used mammograms datasets,
DDSM dataset [29]. And the validation is performed using 5-fold cross validation
method. Also, common data augmentation skills such as rotation, flip and adding
noise are used.

The result is compared with other related works, such as pretrained CNN, which uses
three CNN models to do ROI detection, ROI segmentation and ROI classification
respectively. From the results paper claimed, The max pooling-based deep MIL
obtains better performance than the pretrained CNN. This shows the superiority
of end-to-end trained deep MIL for whole mammogram classification, which is also
available for our research. According to the accuracy metric, the sparse deep MIL is
better than the label assignment-based MIL, which is better than the max pooling-
based MIL.

The visualization result for this work is shown in figure we can see that the
model can not only learns the classification of the whole mammogram, but also the
rough region segmentation by the different probabilities of different pixels. This,
therefore shows the potential application which may be used to do rough annotation
automatically.

2.5 Multi-scale mass segmentation for mammograms via cas-
caded random forests

This work [30] is highly related to our project, they propose a novel approach for

detecting and segmenting breast masses in mammography based on multi-scale mor-

phological filtering and a self-adaptive cascade of random forests, which are the

knowledge of machine learning. In this section, we will briefly cover the methods
they use and the results they get using the same dataset in our project.

2.5.1 Methods

A system for breast masses detection and segmentation can be explained in the
Figure. [14]
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Figure 13: The visualization of predicted malignant probabilities for instances/patches
in four preprocessed mammograms. The first row is the resized mammogram. The red
rectangle boxes are mass regions from the annotations on the dataset. The color images
from the second row to the last row are the predicted malignant probability from logis-
tic regression layer for (a) to (d) respectively, which are the malignant probabilities of
patches/instances. Max pooling-based, label assignment-based, sparse deep MIL are in
the second row, third row, fourth row respectively.
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Figure 14: The diagram of the proposed mammographic CAD system
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Firstly, a preprocess method, which is used in our project and elucidated in sec-
tion [£.1.2] is performed. secondly, a multi-scale oversegmentation is applied to
generate mass region candidates, which is corresponding to the Region Proposal
Network in our project.In this stage, multi-scale grayscale morphological filtering
(MGMF) and simple linear iterative clustering (SLIC) are used to extract and seg-
ment elements within the size range of breast masses at multiple scales.Finally, They
use a cascaded ensemble learning approach as the base classifier to classify the region
candidates generated by the previous stage.

2.5.2 Results

One example of the clustering segmentation result can be found in Figure [4.1.2
And before introducing the classification evaluation result, some terms they used
must be specified in advance.

Definition of positive and negative masks Different with the definition in
traditional object detection/segmentation tasks, The masks are labelled as positive
or negative considering if their overlapping ratios (OR) with the ground truth pass
a certain threshold (ORT). The ORT is 0.5 for our used dataset, DDSM considering
the fact that it does not include precise annotations of masses compared with other
mammogram dataset such as INbreast [31]. The Figure |15 shows some ”positive”
masks used in the experiment.

Lesion segmentation examples from INbreast
da # " ‘ 5 E A . .

- ! ol
Lesion segmentation examples fro

)

Figure 15: Segmentation examples of the lesions in INbreast and DDSM. The black lines
represent the segmentation of our method, and the red lines are the ground truth.

False Positive Per Image(FPPI) The FPPI is defined as the number of masks
labeled as false positive per image, the higher the value is, the user will be harder
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to figure out the truth box. A performance comparison between this work and

Method  Mean SensitiveQFPPI

This work 0.77@3.93
[32] 0.75@4.8,0.7@4
[33] 0.70@8

Table 2: Comparison between this method and other works.
previous approaches is shown in Table [2l We can see that this method demonstrates

competitive performance in both locating and segmenting the masses that compares
favorably to the state-of-the-art.
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3 Technical Support and Preliminary Study

3.1 Breast Cancer Diagnosis

In this section, we will discuss about the medical background we studied for this
project. Topics covered include histopathological image, mammography image,
pathophysiology and current diagnosis method of breast cancer.

3.1.1 Histopathological Image

Microscopic biopsy image is the standard tool for pathologists to diagnose breast
cancer. Pathologists will inspect the size, shape, structure of cells and tissue and
try to find some specific dangerous features in the image. Some signal used in this
procedure include how each cell looks like, how each nuclei looks like and how the
tissue looks like. Figure |16|[34] is a sample from the database.

Figure 16: Sample of Histopathological Image

Shape and size of the cells Observations show that cells in a piece of tissue
usually do not derivate too much from the average overall size and shape. However,
a cancerous cell will lose its normal appearance, being either bigger or smaller than
other cells. Well-functioning cells have even shapes and structures. On the other
hand, cancer cells hardly function in a meaningful way, often with their shapes
uneven.

Size and shape of the cell’s nucleus Cancer cells often do not have a nucleus

with normal size or shape. On the contrary to healthy nucleus, cancer nucleus is
less likely to be located at the center of the cell. The cancer cell tends to have an
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appearance like an omelet, where the nucleus is the yolk. The nuclei of it is also
bigger and darker compared with that of a normal cell.

Distribution of the cells in tissue Besides things inside each cell, the function-
ality of tissue also depends on how cells are distributed and arranged. If the number
of healthy cells is reduced, the overall texture and even color will also change accord-
ingly, which leads to the shape and morphology features pathologists can directly
observe from the tissue. This is more significant in diagnosis.

3.1.2 Mammography Image

Mammography image is another standard tool for pathologists to diagnose breast
cancer. It uses low-energy x-ray system to image the inner side of the breasts. It
enables pathologists to have a closer look to the structure of small breast cells, and
especially to find abnormal tissue growths or micro calcifications. Since it is non-
invasive, it is more convenient than a biopsy procedure which will obtain actual
tissue from specious area. A sample mammography image is demonstrated in figure

17

Figure 17: Sample of Histopathological Image

3.1.3 Pathophysiology

We investigated the pathophysiology explanation of breast cancer. This will help
us understand features in the images, and help us develop a system more specific to
our task.
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Cancer is immune defense failure The immune system normally seeks out
cancer cells and cells with damaged DNA and destroys them. Breast cancer may be
a result of failure of such an effective immune defense and surveillance.

Cancer involved stromal cells and epithelial cells These are several signaling
systems of growth factors and other mediators that interact between stromal cells
and epithelial cells. Disrupting these may lead to breast cancer as well.

Risk factors of cancer vary
1. Age: The risk of developing breast cancer increases with age.

2. Personal history: A personal history of breast cancer is also a significant risk
factor for the development of a second ipsilateral or contralateral breast cancer.

3. Breast pathology: Proliferative breast disease is associated with an increased
risk of breast cancer.

4. Family history: A woman'’s risk of breast cancer is increased if she has a family
history of the disease.

Lifestyle contributes to cancer

1. Alcohol consumption: Alcohol consumption has been associated with increased
breast cancer risk that is statistically significant.

2. Physical activity: It has been observed that frequent physical activity can
lower the risk of breast cancer.

3. Obesity: Obesity, specifically in postmenopausal women, has also been shown
to increase a woman’s risk of breast cancer.

4. Radiation: Radiation exposure from various sources including medical treat-
ment and nuclear explosion will increase the risk of breast cancer by a slight
amount.

3.1.4 Current Diagnosis Methods

We also studied the current standard diagnosis method of breast cancer. This will
equip us with the knowledge about how to simplify the traditional diagnosis process.

Breast cancer screening Breast cancer screening is defined as the medical screen-
ing process among women appear to be healthy for early symptoms of breast cancer
[35]. It is proposed in the will to diagnose It is widely believed that early detection
will improve patients lone-term survival rate.
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Microscopic analysis of a biopsy by pathologists If the screening result is
inconclusive, the doctor may require a microscopic analysis. The doctor will sample
the fluid in the lump to do a further diagnosis. This procedure involves needle
aspiration. If the fluid is clear, it is highly likely that the patient is healthy; however,
if there exist bloody fluid, a more detailed microscope inspect will be needed and it
is possible that the lump is affected [36].

This method is the most widely employed procedure. However, it is also laborious
and time consuming. The probability of misdiagnoses is high because there can
be too many variations in the process. Considering the incredible amount of data
involved, it is a huge work.

3.2 Image Processing

Preprocessing is an important step in the process. The phrase ”garbage in, garbage
out” is particularly applicable to our project. Though the image gathering methods
are often strictly controlled for our dataset (i.e. same microscope), the original data
still have different attributes such as brightness, contrast and saturation. Analyzing
data that has not been carefully normalized can produce misleading results. Thus,
the representation and quality of input data should be assured before training.

3.2.1 Feature Detection

Feature detection is a concept in the area of computer vision and image processing.
It means use computer to extract information from image and to decide if each pixel
of the image belongs to a feature or not. A sample of feature detection is illustrated
in figure

Up till now there is no universal definition of “useful” or “accurate” features. The
precise choice of features usually depends on the problem or specific application.
It is a primary computation of many computer image analysis algorithms, in other
words, the start point of them. It checks each pixel to determine if a feature can be
extracted from that pixel. Therefore, whether an algorithm can succeed sometimes
is determined by the features it defines and uses. There are many feature detection
algorithms developed to meet different kinds of requirements. Features they extract
vary; their computation complexity and repeatability also differs. Some most pop-
ular shape features include perimeter, area, compactness and smoothness. Textual
features such as grey scale are also used. There are no general rules for choosing
features — we can only choose by experience and experiment, which adds difficulty
to image classification tasks.

Fortunately, the idea of Neural Networks saves us from the work. They are designed
to require little preprocessing — All the works is done automatically be the program.
This ability of learning the features is the first reason why people invented Neural
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Figure 18: Points Detected in Sample

Networks. However, we still need some slight amends to ensure things will not go
wrong.

3.2.2 Data Augmentation

There is another thing to note: data augmentation. In deep learning, to avoid the
well-known overfitting problem, we usually need to feed enough data into the model.
Therefore, the amount of available data sometimes is the most critical issue for deep
learning. The problem is high quality data is expensive and limited. One method to
overcome the shortage of data is data augmentation. We need to perform geometric
transformation on the original dataset, change pixel positions of the image while
keep the original features.

To—1l~T

Figure 19: Demonstration of Data Augmentation

Data augmentation is very likely to improve accuracy since the model can see more
samples. The exact amount depends, though. There are many ways to augment
the dataset. Adding noise is an intuitive approach. More generally we have simple
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transformations. For sparse holes in the dataset, we can perform dimensional reduc-
tion. Several more complicated ways include combinations of rotation, translation,
rescaling, flipping, shearing, and stretching.

3.2.3 OpenCV

Open Source Computer Vision Library (OpenCV) is an open source library dedi-
cated to the field of machine learning and computer vision. It was built with the
idea to provide a reusable common infrastructure for computer vision applications,
and to encourage the use of machine learning in real products. The library was
originally proposed by the CPU company Intel, and was later maintained by other

organizations.

OpenCV

Figure 20: Logo of OpenCV

There are more than 2500 optimized algorithm included in this library. This includes
both traditional and most advanced machine learning algorithms. This brings us
convenience in developing our deep Neural Network.

OpenCV support programming languages from C, C++ to Java and Python. The
main focus of it is to improve computational efficiency and therefore to enable inter-
active applications that can respond quickly to changing inputs. It has a backend
optimized with C/C++, and can take the full advantage of multicore processors. It
can also utilize hardware acceleration provided by different platform.

3.3 Convolution Neural Network

Most importantly, we searched for the latest technology and tools in the field of
deep learning. With these knowledge, we will try to build a more advanced deep
learning program.

In machine learning, convolutional neural network is a type of feed-forward neural
network. It is inspired by biological processes in animal vision system [37]. Various
projects have applied convolutional neural network in analyzing visual imagery. In
recent years, Convolutional Neural Network has become the state-of-art in image
recognition problems, beating different competitors. It has been observed from
existing papers [38] [39] that CNN is feasible to do microscopic and macroscopic
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image classification tasks, and is possible to surpass other classifiers. It is now
believed to be the first choice for image classification type tasks.

Just like other Neural Networks, CNN consists of an input layer, multiple hidden
layers and an output layer. A notable feature of CNN is that it assumes inputs
are pictures. In this way, it can do some more specialized optimization. In con-
volution layers, the neurons will only connect to a limited region of the previous
layer. This reduced computation complexity, and enables CNN to make full use of
the 2D structure of the input data. Therefore, compared to other deep learning
architecture, CNN can often lead to better result in image or speed recognition.

Figure 21: Illustration of Convolution

CNNs use less preprocessing than other image classifiers. This feature learning
property reduces requirement of prior knowledge and hence human effort, making
CNN an attractive architecture.

3.3.1 Input Layer

This is the first layer of the network. It received non-linear input data and prepare
data to be fed into convolutional layers after it. Some simple transformation such as
normalization can be applied in this layer. It produces the initial feature maps. In
our experiment, the input is an image, and the network is parameterized according
to the image width, height and depth.

3.3.2 Convolutional Layer

The convolution layer takes data from previous layers and a group of trainable filters
as input. A filter is just a neuron connected to a limited area of the previous layer.
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Each filter will produce a feature map in the output. In the convolution layer, filter
will do convolutional computation on local input data. The data window will keep
sliding after filter finishes the local computation, until it finishes all data from the
previous layer. A sample is illustrated in figure

While the input data may have a large size, the filter will only compute the con-
volution on a partial data window, which is called local perception mechanism in
CNN. It is a simulation of animal focusing on a specific object. Meanwhile, as the
data window slides and the input data changes, the filter weight is fixed during
this iteration; in other words, focusing on different area will not change the way an
animal see the world. This is the weight sharing concept in CNN.

Figure 22: Convolution Layer

3.3.3 Residual Layer

The idea of stacking up more layers is not new, but it became attracting only
recently, as a result of the rapid development of Graphic Processing Units. GPUs
can perform high computational intensive tasks at pretty low cost, thanks to their
parallel architecture. However, as the depth of the network increase, the accuracy
may not proportionally increase.

Moreover, deeper networks will face the vanishing gradient problem. The problem
becomes more serious when the network is going deeper. The hidden layer near
the output layer will update its weight normally, but the layers in the front of the
network can only update their weights very slowly, which makes the weights almost
unchanged after training. It makes the first several hidden layers merely a forward
layer that do a same mapping for all inputs. The deep network is now just equivalent
to a shallow network with the last several layers.
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He et al. [40] presented a residual learning framework to ease the training of net-
works that are substantially deeper than those used previously in 2015. They ex-
plicitly reformulated the layers as learning residual functions with reference to the
layer inputs, instead of learning unreferenced functions. There is empirical evidence
showing that these residual networks are easier to optimize, and can gain accuracy
from considerably increased depth. On the ImageNet dataset, He evaluated residual
nets and achieved 3.57% error on the ImageNet test set. This result won the 1st
place on the ILSVRC 2015 classification task.

If multiple non-linear layers can be approximated by a function, we can also represent
the residual of this hidden layer as a function. Suppose a hidden layer is H(z) —z —
F(z), we can intuitively have

Then we can have the residual block. The output of the residual block is the sum
of the output of multiple cascade convolutional layers and the input element itself,
activated by an activation function where we choose ReL.U.

X

L
weight layer

FG) | ReLU
L4

weight layer

F(x)+x

Figure 23: A Simplified Residual Block

The residual network has some nice features. It is thin, having the number of
parameters under control. There is layered structure which can ensure the feature
expression ability of the network. It can perform subsampling without pooling layers,
and therefore improved the efficiency of back propagation.

For actual usage, the number of convolutional layers wrapped by a residual block
may depends on scenario.
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3.3.4 Dropout

From experience, overfitting is a common problem in deep neural network. Due to
that large amount of trainable parameters in CNN, the model may simply memorize
all train data without figuring out the internal regulation in the dataset, and cannot
be generalized to new data, which leads to high accuracy on train set but low
accuracy on test set.

Dropout refers to the method that temporarily disable some neural network unit at
some certain probability during the train process of CNN. The discard is temporary,
and its weight is preserved. For random gradient decline, since units are randomly
disabled, the training is actually on different networks for each mini-batch. It forces
one neuron to work with other randomly selected neurons, forces “free riders” to be
trained equally, and hence decreased the correlation among neurons. In this way,
we are actually training 2" models for a neural network with n nodes, while keeping
the number of parameters unchanged. In other words, we are training more models
with the same computation complexity. This results in a visible improvement in the
generalization ability of the network.

3.3.5 Pooling Layer

The pooling layers are used to perform subsampling. The size of its output will
be reduces, but the depth will keep unchanged. It will reduce the amount of data
and the number of parameters in the model. During the training process, it can
therefore lower the computation complexity and avoid overfitting. The polling layer
uses the same sliding window mechanism as convolution layers, and is defined as

y= loca%niji'i)rfdow(m)

In our model, there will be a pooling layer after each convolution layer, so their
activity is strictly determined by convolution layers.

3.3.6 Activation Layer

Activation layers are introduced for adding non-liner classification ability to neural
networks. Though it is logically just a function, usually we regard it as a layer. In
our model, we use Rectified Linear Unit (ReLU) as the activation function. It is a
commonly used one for CNN. The ReLLU function is defined as

f(z) = max(0, x)

As shown in graph [24] the activation function ReLU that we used is just a threshold
at zero. It is proved to be a better simulation of animal brains [41]. For particle
usage, it simplifies the computation required.
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Figure 24: ReLLU

3.3.7 Fully Connected Layer

The fully connected layer has connection to all neutrons of the previous layer. We
have only one fully connected layer. It is used at the end of the network to produce
final prediction results.

3.3.8 Tensorflow

In our project, we use Tensorflow. It is also an open source software library. By
using data flow graphs, it is capable for large scale numerical computation, one of
which is machine learning. Besides fast speed, it also supports various high-level
APIs for machine learning programs [42).

TensorFlow

Figure 25: Logo of TensorFlow

Tensorflow supports platforms with or without GPU, from mobile, desktop to clus-
ters. With limited overhead, Tensorflow + Python environment provides a much
clearer program: we describe the data flow diagram with Python, benefiting from
the conciseness of this language; then Tensorflow will execute the diagram with a
C++ or CUDA backend, making full use of the computer hardware.
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Tensorflow introduces two new concepts: Tensor, and data flow graph. Data flow
graph is a graph whose nodes are Tensors. Tensors are actually matrixes; however,
they can be connected to from a data flow graph. The matrix together with the
relations defines a Tensor. The word “flow” means that data will flow from one
node to another, and the computation occurs in the transition. This gives us a very
good simulation of CNNs: they both are graphs, and both incur computation during
transitions.

We are using Tensorflow 1.3.0, which was the latest version available at the time we
start to develop our project.

3.3.9 Comparing Tensorflow with Other Tools

Generally speaking, Tensorflow is more friendly to beginners than other tools like
Caffe. This partly results from Google, the author of Tensorflow. Most other tools
are supported by university academics, while Tensorflow is supported by a com-
mercial company. This results in difference in available documents, tutorials and
communities. Developing with Tensorflow is generally more comfortable.

Though tools built for academics can provide a more detailed control over the model,
this feature is mostly not required for implementing a model that has already been
tested for many times. On the other hand, Tensorflow is more high-level, providing
conciseness in development.

Developer can use Tensorboard, the bundled debug tool along with Tensorflow, to
monitor real time statistics of the diagram. Considering Googles’ experience in user
interfaces, debugging Tensorflow models is much more convenience than debugging
Caffe models.

Moreover, as Google is a commercial company, Tensorflow is designed for production
usage at the very beginning. We can easily export the model trained by Tensorflow
and set up a RESTful query server in a couple of lines. As our project is a medical
project, we should expect users may not have much Machine Learning background.
The ease in pushing experiment results to production is an advantage.

3.4 Regional Convolution Neural Network

Regional Convolution Neural Network is one of the most popular application of
CNN, which is to solve object detection and segmentation problem,in a word, once
an image is given, the model should be able to detect instances of semantic objects
of a certain class (such as benign mass and malignant mass in our project). The
key of the Reginal Convolution Neural Network is that feature matters, which
means that the feature of image calculated by CNN can be applied to many tasks
with a high performance. Usually, the procedure of objection detection in region-
based CNN [43] usually includes several parts, Region proposals generation, feature
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extraction, proposal classification and bounding box regression. Each part achieved
a great breakthrough in recent years and the specification is illustrated in Table 3| the
details of each part will be covered one by one.

Part Functionality Input Output
Region Proposals | Generate possible | The whole image | A list indicating pos-
Generation area including objects | (1024,1024,3) sible areas (Number
we need to detect of proposals,4)
Feature Extraction Generate a feature | the whole image | Corresponding fea-
map of image (1024,1024,3) ture maps (H,W,N),
the size depends on
the architecture of
base model
Classification and Re- | Detect  the  class | Proposals generated | Predicted label and
gression of  proposal and | from part Region | suggested regression
suggested regression | Proposals Generation | value.
value
Mask Generation Generate the pre- | Proposals generated | Corresponding masks
dicted mask for each | from part Region | with binary type
ROI Proposals Generation

Table 3: A summary of the functionality of each part in Regional Convolution Neural
Network

3.4.1 Region Proposals Generation

Region proposals generation is the first step for object detection and is for generating
multiple proposals for following classification, where proposals mean ”possible” area
of target object. Two commonly used methods will be introduced.

Selective Search In an object recognition program, it is impossible to distinguish
different classes with a single strategy. We need to take into consideration the
diversity of different objects. For example, a car consists of a body and tires, but
these two part may have very different texture or color. Therefore, the hierarchical
nature of object definitions will be important in the design of a good algorithm.

Selective search was proposed in 2011 [44] to find region proposals in an image. The
key idea in it is called “multiscale”. Firstly, it can capture all scales. exhaustive
selective changes the window size to do so, and selective search also cannot avoid
this issue. However, with image segmentation and a hierarchical algorithm, selective
search effectively relieve this problem. Secondly, it can handle diversification in the
images. It uses color, texture, size and various other strategy to merge regions found
in the first step. And more preferably, it is fast to compute.

For the region search step, this algorithm does not resize the image or the window.
Instead, it utilizes an image segmentation method by Felzenszwalb, Pedro F and
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Huttenlocher, Daniel P [45] to compute the regions in the image, compute the
similarity between each pair of regions, merge the most similar two regions, and
iterates through this process until the whole image is merged into a large region.
Then it assigns a score to each region, and extract the top-k ranking subset.

To deal with the diversification problem, this method introduces two strategies. The
first one is color space diversification, and the second one is similarity computation
diversification. Color space diversification applies eight different ways to generate
the raw region in the region search step. Similarity diversification is achieved by
four different ways to merge similar regions.

At the publish time, this algorithm was used together with the traditional feature
based SVM object detection model. It proved to have good accuracy.

Region Proposal Network(RPN) The idea of RPN is proposed in [46] because
traditional method, selective search is too time-consuming and has become the bot-
tleneck that limits the development of real-time object detection.

A Region Proposal Network (RPN) takes an image as input and outputs a set of
rectangular object proposals, each with an objectness score. Firstly, the image will
be the input of one base model, which shares weights with other part’s networks, the
base model will output a corresponding feature maps.Then, one sliding window
of size 3 x 3 will scan the whole feature maps, at each sliding window location,
corresponding region proposals in the feature maps will be fed into RPN, which is
actually two sibling 1 x 1 convolutional layers followed by two sibling fully-connected
layer, a box-regression layer(reg) and a box-classification layer(cls). The proposals
here are also called Anchors. The mini-network is illustrated at a single sliding
window position in Figure [26]

3.4.2 Feature extraction

Feature extraction is the key reason for a successful RCNN because the features
extracted in this part will be used and weight-shared in most procedures. Also,
the difference of this part is only the difference of base model, in our project, we
use ResNet illustrated in Section as our base model. The feature maps are
usually obtained using the original base model excluding its last fully connected
layers so that keeping previous convolution layers only. Usually, the feature map is
the representation of whole image while in other parts, such as Classification and
Regression, we only consider the features inside any valid region of interest, and
also the CNN requires a fixed input size, which means that we need some tricks to
enable converting the features inside any valid region of interest into a small feature
map with a fixed spatial extent of H x W.

ROI pooling The region of interest (ROI) pooling layer is for solving the problem
we mentioned above, Rol max pooling works by dividing the A x w Rol window
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Figure 26: Region Proposal Network (RPN)

(ROT’s corresponding area in feature maps) into an H x W grid of sub-windows of
approximate size h/H x w/W and then max-pooling the values in each sub-window
into the corresponding output grid cell. Pooling is applied independently to each
feature map channel, as in standard max pooling.

RolIAlign ROI pooling firstly quantizes a floating-number Rol to the discrete
granularity of the feature map while quantization is robust to small translations, it
has a large negative effect on predicting pixel-accurate masks.

To overcome the deficiency of ROI pooling,RolAlign layer is proposed in [47] that
removes the harsh quantization of RolPool, properly aligning the extracted features
with the input. The proposed change is simple: avoid any quantization of the Rol
boundaries or bins (i.e., use x/16 instead of [x/16]). Use bilinear interpolation to
compute the exact values of the input features at four regularly sampled locations
in each Rol bin, and aggregate the result (using max or average), see Figure 27| for
details.

3.4.3 Classification and Regression

Classification and Regression is for the classification of proposals generated in Region
Proposals Generation part and the suggested regression of the proposals including
shift and scale.
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__________

Figure 27: The dashed grid represents a feature map, the solid lines an Rol (with 2x2
bins in this example), and the dots the 4 sampling points in each bin. RolAlign computes
the value of each sampling point by bilinear interpolation from the nearby grid points on
the feature map. No quantization is performed on any coordinates involved in the Rol,
its bins, or the sampling points.

]

2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

Figure 28: RCNN overview. the system (1) takes an input image, (2) extracts around
2000 bottom-up region proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each region using class-specific
linear SVMs

42



SVM Calssifier SVM is the classic method for classification. This method is
applied in [43] for the classification of proposals behind the Feature Extraction part,
the overview of the system can be found in Figure 28, where the fourth step is the
SVM classifiers using features of proposals as input.

Fully Conected Layer classifies In [46], SVM classifier is substituted by a fully
connected layer connecting the feature maps directly, the fully connected layer regard
the feature maps as input and output a class-specific array indicating the confidence
of each class using softmax.

Bouding Box Regression The proposals generated in Region Proposals Gener-
ation Part cannot be the final object location result and a bounding box regression
stage can be applied to improve localization performance. The regression method
also adopts fully connected layer method, which is similar to its classifier and ac-
tually the two layers use same feature maps as input. The architecture overview is

illustrated in Figure
1= Outputs: bbhox
1= Deep . softmax regressor
mConvNet i

Rol FC FC
pooling
layer FCs
Rol feature
feature map vector For each Rol

Figure 29: Fast R-CNN architecture.The network has two output vectors per Rol: softmax
probabilities and per-class bounding-box regression offsets

3.4.4 Mask Generation

A mask has a KHW dimensional output for each Rol, which encodes K binary
masks of resolution H x W, one for each of the K classes. The architecture for mask
generation is a series of convolution layers connecting the feature maps directly, and
can be regarded as another branch of classification layer.

3.5 User Interface

One primary goal of our project is to provide a convenient interface for doctors
without deep learning background. A web portal will be more friendly to end users.
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In this section, we will discuss the technologies to build a modern web application
that requires no prior training to use.

3.5.1 Web Application

Web application(Webapp) is a kind of application that uses browser as the client
program that handles the user interface and all client-side logic. This concept is
used widely in nowadays services, such as webmail, online store and online instant
messaging.

This kind of application requires no installation of an extra client software, and can
be easily ported to different platforms. Once written, the program requires only
slight capability changes to work on multiple browsers. For users that do not know
how to or simply do not want to install softwares, webapp provides a simple solution.

The other advantage of webapp is that it can update the content of the program
dynamically. The webapp can asynchronously load resources from server and react
to users’ input responsively. This provide us the opportunity to use the browser as
merely an input collector, and process the actual data at the server. For computation
intensive tasks that denends on user input, this provides good load balance between
client and server.

3.5.2 Node.js

Node.js is a cross-platform javascript runtime for servers based on Chrome V8 engine.
It utilizes an event-driven non-blocking model, making it light and efficient. It can
optimize the transport of programs, and thus is usually used for data intensive
program.

Figure 30: Logo of Node.js

Node.js has most of its core module written in javascript. Before node.js, javascript
is mainly used as a client side language for programs run inside browsers, and is
not considered as a language for complex tasks. The creation of node.js enables
javascript on server. It has various built-in moudles that can be used as a standalone
server without Apache or IIS. Therefore, node.js dramatically reduces the learning
cost to switch between languages for developers.
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Node.js runtime provides a simple and concise application interface to communicate
with. It is easy to develop a javascript object notation(JSON) interface with it,
since it supports JSON natively as a language feature.
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4 Method

4.1 Histopathological Image Classification

This is what we have done in term one. We used the BreakHis dataset to train
our ResNet convolutional neural network. The following sections will introduce the
design of this model.

4.1.1 Dataset

For our project, we are using the Breast Cancer Histopathological Image Classifi-
cation (BreakHis) dataset. It is composed of 9,109 breast tumor tissue microscopic
images. The researchers collected samples from 82 patients, and used different mag-
nifying factors (40x, 100x, 200x, and 400x) to process them [40]. The statistics of
samples are illustrated in table

Class 40x  100x 200x 400x
Benign 625 644 623 588
Malignant 1370 1437 1390 1232
Total 1995 2081 2013 1820

Table 4: Distribution of Images

The samples are stained with hematoxylin and eosin. The author of the dataset uses
breast tissue biopsy slides to generate these samples. Pathologists from the P&D lab
labeled them. The breast tumor specimens were asses by Immune histochemistry.
The biopsy procedure was Surgical Open Biopsy.

An Olympus BX-50 system microscope was used to capture the images. As afore-
mentioned, they captured image under four magnification factor, 40x, 10x 200x and
400x. The raw image was stored into the dataset without any normalization of color
standardization to avoid loss of information and complexity in analysis. The images
were in Portable Network Graphics (PNG) format, in 3-channel RGB, 8-bit depth.
A sample was demonstrated in figure

4.1.2 Preprocess

In this section, we will discuss how we manipulate the image before feeding it into the
model. We proposed different methods, and would compare them in experiments.

Data Augmentation Since we are training a deep learning neural network, the
amount of train data is a critical problem. The size of the original dataset, 9109,
is relatively small for our model, and is therefore very likely to cause overfitting.
Summarizing the methods used in past works [41], we can propose multiple ways to
extend the dataset systematically.
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Figure 31: Same Tumor under Different Magnification

We do not propose any color standardization since all images have the same color
pattern, i.e. pink or purple. This is due to the stain method applied to tissue
samples. The data augmentation methods we propose include only geometric trans-
formation. They include:

1. rotations: random with angle
2. translations: random with shift
3. flipping: true or false

4. shearing: random with angle

5. stretching: random with stretch factor between 1/1.3 and 1.3

Figure 32: Examples of Data Augmentation

Sliding Window Crop It is hard to process the high-resolution images since
applying deep learning algorithms on larger image sizes will tend to make the model
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architecture more complicated. The model will usually have more layers, more
parameters which increase the complexity dramatically. Training and tuning the
model may be very costly in such case.

One way to solve this problem is sliding window crop. Set a window of size nxn,
slide through the image at step = 0.5n, and then crop [42].
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Figure 33: Examples of Sliding Window Crop

Overlaps between crops are deliberately designed to avoid damaging the structure
information too much. The number of total crops is given by the following formula:

IMGWIDTH < 9 % IMGHEIGHT
n n

#(crop) =2 x

Random Crop Another way to solve the aforementioned oversized problem is

random crop. Set a window of size nxn, do random crop instead of sliding. This is
similar to the previous method.

The number of total crops is not fixed. However, a higher number of crops will give
more information. There will be no limit on how the random selector crop: it may
or may not capture the most important features.

For benign samples, there will be no problem. However, for malignant samples, we
cannot make sure tumor exist in every crop. Crops extracted from malignant images

may actually contains no tumor and should be classifies as benign. This introduces
noise in train data.

The gain, on the other hand, is we keep the size of network small. This benefits
in various ways: less computation complexity, less logic complication, and most
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Figure 34: Examples of Random Crop

importantly, it reduces chance of overfitting by limiting the parameters of the model
to a reasonable amount.

Resizing There always exists the method of simply shrinking the image. To avoid
moiré after resizing, we will resample the image using pixel area relation. This is
the best image interpolation method for decimation since it tends to give a clearer
image. This makes the high-resolution image generation pointless, however.

Whitening Whitening is the one of the standard preprocess methods for machine
learning. The main idea is to remove extra information dimensions in the image.
First, we represent the input dataset as

{z1,..., 20}

Then we computes the covariance matrix of x

1 m
E:—g zixl
m -
i=1

Therefore, we can have
Tyor = Ul

where U is the eigenvector of .

This process maps x into a new space that eliminates the correlation between fea-

tures. Then we can have
Lrot

T pPCAwhite =

5
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Figure 35: Before and After Whitening

which normalizes the dataset [4§].

After whitening, the new image satisfies two properties: features are less correlated,
and features have the same variance. This will significantly accelerate the training
process.

Contrast Limited AHE Contrast-Limited Adaptive Histogram Equalization (CLAHE)
can improve local contrast without damaging the image too much. Consider an im-

age whose pixel values are limited to a specific range, it would be better to have

the values distributed in all regions of the channel. This will usually improve the
contrast of the image. Therefore, we need further scatter pixels clustered in the
“brighter” regions.

Adaptive Histogram Equalization (AHE) will do this work. However, it sometimes
will cause loss of information due to over exposing some region that is already bright.
This is because the image is not perfectly limited in a small region of the channel.
To solve this problem, we can use CLAHE [49]. The image is divided into tiles, and
each tile can perform AHE on its own. For a tile, the brightness across this small
area is more likely to be confined. In this way, the image will be clearer.

Figure 36: Before and After CLAHE
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Generally speaking, CLAHE is more important than whitening for deep neural net-
works since the network can learn how to whiten images itself without manually
specify it should do it.

4.1.3 Model Construction

In this section, a detailed description of our normal model architecture will be given.
To understand the construction easier, an visualization version is shown in Figure
left, the format of the text in the box represents kernel size and output channel
number of the box’s corresponding layer.

Firstly, we considered the input tensor I with size (N, H, W, 3), where N, H, W are
number of batch, image height, image width respectively, which are specified as a
hyper-parameters and 3 indicates that the image has 3-channel(RGB). When we
feed the input tensor into our model, two conventional convolution layers and one

maximum pooling will firstly be passed through. The output tensor size will become
(N,H/2,W/2,16).

The output tensor will be transformed into Residual Network, one box of the Resid-
ual Network part in Figure [41|is actually one residual block which is introduced in
section [3.3.3] When the dimensions increase, the layer is performed with a stride
of 2 so that the feature maps size is half. Therefore, the tensor size will undergo
a transformation: (N, H/2,W/2,16) — (N, H/4,W/4,32) — (N, H/8,W/8,64) —
(N,H/16,W/16,128) — (N, H/32,W /32, 256)

After passing through all residual blocks, a average pooling layer of will be in-
serted, making the tensor size changed from (N, H/32,W/32,256) to (N, 1,1,256)
Then, a fully-connected layer which indicates the prediction labels (binary classifi-
cation tasks: malignant or benign) will be deployed so that the final tensor shape is
(N, 1,1,2).

4.1.4 Model Evaluation

In the previous part, we introduced kinds of methods to do image preprocess, im-
age segmentation and model construction. In this part, we will compare different
methods and parameters together and compete with the past paper result using the
same dataset to see whether our model is optimized enough.

Following the experimental protocol proposed in [50], we used cross-validation method [51]
to do evaluation, the dataset was split so that patients used to build the training

set (75% patients) are not used for the testing set (25% patients) to guarantee that

our model can generalize to those patients not in the dataset, the results presented

in this work are the average of four trials with the selected results after converging

and a suitable early stop.

Training protocol used here is the purely supervised type, the Stochastic Gradient
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Descent (SGD) method [52], with backpropagation to compute gradients was used
to update the network’s parameters. All fixed hyper-parameters of training are given
in the Implementation section.

The ResNet model were trained on a NVIDIA Tesla K40m GPU [53] using the
Tensorflow framework. Training took about 5 hours for the 256 x256 input size and
10 hours for the 512x512, which is corresponding to a much more complex training
set.

When we discuss the results of medical images, there are three ways to report the
results in our report: batch level, image level and patient level.

Batch level can be understood by batch-wise, the unit is simply each input we fit
into the neuron network. The recognition error at the image level can be calculated
by:

Neorrect

Nall

a.

Image Recognition Accuracy =

Where Nioprect is the number of cancer images which is correctly classified, and
N1 1s the number of cancer images in the test dataset.

Patient level is a little different, each patient score is defined as:

N,

Patient Score = _correct-in-p
Np
Where Ncorrect—in—p is the number of cancer images of Patient P which is correctly

classified, IV, is the number of cancer images of Patient P. Then the global patient
error is calculated by:

> Patient Score
Total Number of Patients

Patient Error = 1 —

Besides basic error results, we also calculated confusion matrix, precision, recall and
F1 score [54] on either/both image level or/and patient level. Precision, recall and
F1 score are defined as:

True Positive

Precision =
True Positive + False Negative

True Positive

Recall =
cea True Negative 4 False Negative

2 x Precision x Recall
F1 score =

Precision + Recall

Also, we use Area under the curve (AUC) [55] to measure the performance of differ-
ent models, the AUC of a classifier is equal to the probability that the classifier will
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rank a randomly chosen positive example higher than a randomly chosen negative
example, i.e.
AUC = P(score(z+) > score(x—))

Because there are millions of parameters and hundreds of hyper-parameters, there-
fore which parameters need to be tuned among the test should be considered care-
fully. Through our study on both medical and deep learning field, we selected three
major hyper-parameters (directions) to do our test: Preprocess method, model ar-
chitecture and image segmentation method.

For each hyper-parameter, we tested kinds of values or situations based on our guess
and motivation, so each block below will contain several sub-blocks to explain each
guess and its corresponding results in detail.
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4.2 Mammogram Tumor Detection

We continue to develop the rest parts of our project in term two. We used the
Digital Database for Screening Mammography(DDSM) to train our Mask-RCNN
convolutional neural network. The following sections will introduce the design of
this model.

4.2.1 Dataset

For our project, we are using the Digital Database for Screening Mammography
(DDSM) [29] as our train dataset. It is specially designed for usage by image analy-
sis researchers. It was a collaborative project by the Massachusetts General Hospital,
the University of South Florida, and Sandia National Laboratories. There are ap-
proximately 2500 cases in this database, each of which includes a MLO view and
a CC view of two breasts, together with some meta information. The statistics of
samples are illustrated in table

Class Count

Benign 870
Malignant 914
Normal 695
Total 2479

Table 5: Distribution of Images

The meta information associated with a image includes age at time of study, keyword
description of abnormalities, scanner resolution, etc. Images with suspicious area
are linked with an extra file representing the boundary and types of the region. This
provides data for training a more sophisticated object detection algorithm.

This dataset consists of images from different kind of scanners including DBA,
HOWTEK and LUMYSIS. The resolution varies from 42 microns to 50 microns.
This adds extra complexity to data normalization. The properties of the images
are slightly different from each other. Fortunately, the content of images are of the
same pattern and is capable for analysis. A example is show below, where it can
been seen that each image carries a different size.

4.2.2 Preprocess
Unfortunately, the DDSM dataset was made 20 years ago. It is using a data format

that modern softwares do not recognize. The preprocessing step requires extra care.

LJPEG The dataset compresses images with Lossless JPEG(LJPEG) format which
is developed by Stanford University. It perform best for gray scale images such as
mammogram slides. Since the scanner used to generate these images were set a
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Figure 37: Sample from DDSM dataset

resolution between 42 to 100 microns, the files are very large. After decompressing,
the expected output file usually has a four times larger size. However, this format
not a widely supported.

Chain Code Boundaries of suspicious regions are represented by chain codes.
The chain code uses one digit to specify the relative position of the next pixel in the
boundary. Given a starting point, simply move the cursor up, down, left or right
to draw a circle on the image, and the circle will be the boundary. The numbers to
the direction correlation can be illustrated as in figure [6]

X—
Y701
¢6'2

51413

Table 6: Chain Code Direction

Contrast Limited AHE Similar to term 1, we also use Contrast-Limited Adap-
tive Histogram Equalization (CLAHE) to improve the quality of images. The detail
of the algorithm is illustrated in section |4.1.2

Image Augmentation Commonly used image augmentation methods are adopted
in our project, including left-flip and right-flip. Rotation is not used considering the
property of mammogram: all mammograms we used to train and test are left-view
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or right-view, we do not hope to break this property. But rotation is still a good
point to have a try.

4.2.3 Model Construction

Similar with section [£.1.3] this section is a detailed description on how our model
works. The input tensor, firstly, is a preprocessed image including resizing, padding
and cropping and the shape of the input tensor is (2048, 2048, 3) to maximize the
use of image information.

Firstly, the input tensor is fed into a base model, ResNet101 in our case, and the
returned tensor are actually the feature maps of image, then the feature maps wil
used as input in other models including RPN, Classification and Mask Generation.
All of the functionality of these models are introduced in Section

RPN RPN (Section is the first network using feature maps as input because
all other networks need proposals as input, which is the output of RPN. RPN gen-
erates a set of ROIs (still in the format of tensor) with shape (Ngoy, 4), where Ngroy
represents the number of predicted region proposals. Typically, the RPN outputs
some "valid” anchors calculated from:

e anchor location (4; = (z,y)) indicates the middle point location of anchor.

e anchor scale(A;) indicates the scale of the anchor, there are 5 options eg.(32x
32,64 x 64,128 x 128,256 x 256,512 x 512).

e anchor ratio(A, = (r;,,)) indicates the length:width ratio of the anchor,
there are 3 options eg.(1:1,1:2,2:1)

e anchor class(A,.) indicates whether the anchor is background or not.

e anchor regression(A4,., = (reg,,regy, regw,regy)) indicates the regression
value calculated, where reg,,reg, indicate the shift value of anchor location
Ay and reg,,, regy indicate the shift value of anchor scale.

Finally, anchors whose class are not background after regression are the final pre-
dicted proposals and are regarded as input of following networks.

ROIAlign ROIAlign is the middle network to process the proposals generated
by RPN and the effect of ROIAlign is for getting the corresponding areas in fea-
ture maps (from backbone model) of proposals (from RPN), the method details are
explained in Section [3.4.2] Colloquially speaking, ROIAlign provides a bridge con-
necting RPN which outputs proposals in image and following fully connected layers
which require feature maps of images.
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Fully Connected Layers and Mask Generation Layer both fully connected
layers and mask generation layer require feature maps generated by ROIAlign as
input. Fully connected layer outputs two informations, proposal’s classification and
regression strategy. The mask generation layer is actually a CNN whose output
is class-specific binary masks of same resolution with proposals. The relationship
between ROIAlign and following layers is illustrated in Figure |38 Therefore, the
final results will contain two elements: the one is the class label for the mask and
another one is its corresponding masks in raw image.

4 v Faster RCNN | d Faster R-CNN
_1/7 // w/ ResNet [19] ! ..’.,’/' wi FPN [27]
P . oY —_— ;‘\__-,-:._.- = = » class i ey ] - - = class
Rol || %1024 <2048 2048 b Rarll %2 > 1024 [J 024 | be
14x14) | |28x28 28x28
Rol || %256 |x4 || x256 X80

mask

Figure 38: The overview architecture of fully connected layers and mask generation layer
and the relationship with ROIAlign

4.2.4 Loss Function

This work is a multi-stage work which contains multiple sub-stacks including RPN, ROIAlign
and so on. Therefore the loss function should be treated carefully because accumu-

lated loss has a critical influence on this kind of work. Typically, we proposed a

new loss function for bounding box regression, which has an good influence

on the result. The loss of different part will also be covered one by one.

RPN loss includes two parts, classification loss (whether the predicted box is positive
or not) and regression loss. The loss function for an anchor is defined as:

L(p7 t) = Lclass (p; p/) + Ap/LTeg (t, t/) (4)

Here, p is the predicted probability of this anchor being an object. p’ is the ground
truth label and 1 if the anchor is positive and 0 if negative. t is a vector represent-
ing the 4 parameterized coordinates of the predicted bounding box, and ¢’ is the
corresponding parameterized coordinates of one positive anchor. The classification
loss Leass 18 a log loss over two classes. For regression loss L,.,, smooth L; is used
so that L,.,(t,t') = R(t —t') where R is the robust loss function.

In [47], the parametrizations of t is adopted by:
te = (z —a)/w',t, = (y — ) /1 tw = log(w/w'), tn = log(h, 1) (5)
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where x,y,w,h denote the box’s center coordinates and its width and height. Vari-
ables 2’ is for the ground truth box respectively (likewise for y,w,h). Our new
parametrizations is similar with former one:

’_ ’_ .
maz(@g—20,73723)  therwise

. {O, ifint(xzy > xo) + int(zy > x3) =1

where g, x3 is the first and last x value from left-up to right-bottom. The loss
function is changed due to fit with the postive dicision method(Overlapping Ratio).

4.2.5 Model Evaluation

This task is actually a object detection task, a commonly used evaluation method
specified in [55] is used.

Overlapping Ratios and Intersection of Union Firstly, the concept of Quver-

lapping Ratios(OR) is proposed. It should be noticed that we do not adopt a

commonly index , Intersection of Union(IOU) to define whether one proposal is

positive or negative when do evaluation. IOU is only used to define positive or

negative samples when training. IOU takes the set A of proposed object pixels and
the set of true object pixels B and calculates:

ANB

IoU(A, B) = 6

oU(A,B) = 7 (6)

Commonly, ToU > 0.5 means that it was a hit, otherwise it was a fail. Also, consid-

ering the property of our cases, which are medical rumor detection. Therefore, AN B

is much important, another evaluation value is proposed by us: Quverlapping Ra-
tios(OR),which is calculated by:

OR(A B) = 2 A B (7)

Usually, higher IOU and OR stands for a more accurate prediction of proposal.

Mean Average Precision and False Positive Per Image For each class, one
can calculate the

e True Positive TP(c): a proposal was made for class ¢ and there actually was
an object of class ¢

e False Positive FP(c): a proposal was made for class ¢, but there is no object
of class c.

TP(c)

e Average Precision for class c: TROTFPO

e False Positive Per Image(FPPI) is the average number of false positive
samples per image.
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Then, the mAP (mean average precision),which is used to do the final evaluation,is

calculated by:
#TP(c)
AP = 8
" |classes] Z #TP(c)+ #FP(c) (®)

cEclasses

Usually, higher mAP and lower FPPI indicates better performance of detection
model.

Mean Sensitive Sensitive is defined as:

Number of succefully predicted truth box
Number of truth box

Sensitive = 9)
MeanSensitive is the average sensitive among all images’ sensitive. According to
the definition, it is clearly that mean sensitive, especially in medical field, is highly
important: when the value of mean sensitive is approximately 1.0, it means that
almost all breast mass are found by the model, which is pretty valuable.
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4.3 User Interface

At last, we designed a user interface for doctors. It has a web portal, and can
generate human-readable reports for users with little prior knowledge about the
inner design of the system. The following sections will discuss the design of the user
interface.

4.3.1 Report Generator

The report generator will get diagnosis result from our model, and then make a
human readable report. It should display the confidence level on the report for
users to further decide if more check should be performed. The report will consist
of an image showing suspected tumor location and a short text suggestion.

4.3.2 Web Front end

The web front end will accept image file input from users and display the detection
result. The user should be able to select an image from the hard drive and upload the
file with ease. The web page will perform basic file validation before really uploading
it to server. Since the image tends to be very large, and it takes sometime for server
to process an image, a progress bar indicating which step the image is in will be
helpful for users. A simple authentication is possible to be added, but may not be
required if the server is in local network.

4.4 Workflow

To develop a more accurate model, we have the following development workflow cycle
in figure The cycle includes five elements: design, implement, train, validate and
test.

After we implement a model, we will train it. Validation will be performed occasion-
ally. If the validation result is not satisfying, we will cut off the training and attempt
to find out the reason. After the train accuracy converges, we will do a thorough
test of the model and compute some quantitative measurement to determine if our
design works well. We will try to analyze the factors that affect the performance,
and perform incremental modifications accordingly.
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Figure 39: Development Workflow

5 Implementation

In this section, we will briefly demonstrate how we implement the aforementioned
ideas about our diagnosis system. The main language we used to build the model
is python, but we also uses bash scripts or javascript to provide utility functions.

5.1 Histopathological Image Classification

Applying and combining methodologies we mentioned above, we have successfully
implemented a ResNet model, and trained it with preprocessed BreakHis dataset,
which has also been introduced before. In this part, we will divide our implementa-
tion to several parts according to code logic and introduce details of each part one
by one. Also, we will explain and show our assigned parameters in this section.

5.1.1 Data Loader and Preprocess

This part is about the implementation of loading data and preprocessing images to
fit them into ResNet model.

Data Loader There are kinds of diseases such as mucinous carcinoma and adeno-
sis in original dataset. Fach disease is divided into two classes, benign and malignant,
and has a file to record paths and image numbers of it.

SO0B/mucinous_carcinoma/SOB_M_MC_14-18842/200X : 16
SO0B/mucinous_carcinoma/SOB_M_MC_14-18842/400X : 9
SO0B/mucinous_carcinoma/SOB_M_MC_14-18842/100X : 22
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SO0B/mucinous_carcinoma/S0B_M_MC_14-18842/40X : 15

SOB/mucinous_carcinoma/S0B_M_MC_14-13418DE/200X : 14
SO0B/mucinous_carcinoma/S0B_M_MC_14-13418DE/400X : 11
SO0B/mucinous_carcinoma/S0B_M_MC_14-13418DE/100X : 15
SO0B/mucinous_carcinoma/S0OB_M_MC_14-13418DE/40X : 15
SO0B/mucinous_carcinoma/S0B_M_MC_14-18842D/200X : 16

To read all files recording the path of each disease, we use regex in python and store
all image paths in a list shuffled_walk.

shuffled _walk = []
regex = re.compile(pattern)
for dirname, _, filenames in os.walk(data_set_dir):
if regex.match(dirname):
metainfo = regex.match(dirname).group (...)

shuffled _walk .append (metainfo)
print (shuffled_walk)

To divide data into train dataset and test dataset, and keep them unchanged on
accuracy test of different model, we simply use remainder of shuffled_walk ’s index
to divide the data.

il = [ i for i in range(len(shuffled walk)) if i%4 = 0]
i2 = [ i for i in range(len(shuffled_walk)) if i%4 != 0]
index = il + i2

tmp = shuffled_walk

shuffled _walk = []

for i in range(len(tmp)):

shuffled _walk .append (tmp[index [i]])

Image Slicing After storing image paths, we need to do image segmentation to
fit image with proper size into our DNN model. As mentioned above, we use three
kinds of strategies to do image segmentation: sliding window crop, random crop and
resizing, which have been introduced before.

def resizing (image,sub_slides):
image_shape = np.shape(image)
indexes = np.random. choice (image_shape[l] — image_shape[0], 50)
for i in indexes:
sub_slides .append (image [: , i:i+HMGHEIGHT])
return sub _slides

def sliding_window_crop (image, sub_slides):

image_shape = np.shape(image)
col_step = int(compute_slide_step)
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row_step = int(compute_slide_step)

for col in range(0, image_shape[0] - IMGWIDTH + 1,col_step ):
for row in range(0, image_shape[l] —IMGHEIGHT + 1,row_step ):
sub_slides .append(np.array (crop))

return sub_slides

def random_crop (image,sub_slides):
image_shape = np.shape(image)
x = np.random. choice (image_shape [0] ~IMG_HEIGHT,100)
y = np.random. choice (image_shape[1] ~IMG-WIDTH,100)
for i in range(100):
sub_slides .append(np.array (crop))
return sub_slides

Preprocess After slicing images into patches, we implemented different preprocess
methods to test whether is suitable for histopathological image, which has been
introduced before.

def whitening_image (image_np ):
for i in range(np.shape(image np)[0]):
mean = np.mean(image-np[i])
std = np.max([np.std (imagenp[i]), 1.0 /
np. sqrt (IMG_HEIGHT*IMG _WIDTH+IMG DEPTH) | )
image np[i] = (image.np[i] — mean) / std
return image_np

def subtract_gaussian_smooth_image and CLAHE (image np ):

for i in range(np.shape(image np)[0]):
blur = cv2.GaussianBlur (...)
clahe_input = cv2.cvtColor(imagenp[i] — blur, cv2.COLORBGR2YUV)
clahe = cv2.createCLAHE (clipLimit=2.0, tileGridSize=(8, 8))
clahe_input [:, :, 0] = clahe.apply(clahe_input[:, :, 0])
image.np[i] = cv2.cvtColor (clahe_input , c¢v2.COLOR.YUV2BGR)

return image_np

def CLAHE_image(image_np ):

for i in range(np.shape(image_np)[0]):
clahe_input = cv2.cvtColor(image np[i], cv2.COLORBGR2YUV)
clahe = cv2.createCLAHE (clipLimit=2.0, tileGridSize=(8, 8))
clahe_input [:, :, 0] = clahe.apply(clahe_input[:, :, 0])
image np[i] = cv2.cvtColor(clahe_input , c¢v2.COLORYUV2BGR)
return image_np

def past_pre(image np):
mean = np.mean(image np , axis=0)
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5.1.2 Model

Our model is not implemented in a single inference function, but we implement
functions for different usage. The parameters and outputs of each function are
explained and shown in Appendix.

5.1.3 Train and Validation

As usually used in DNN, a model is trained by firstly feeding it input and gener-
ates the output (prediction) for comparison with the label of input. This kind of
comparison is done by calculating the loss. We used cross entropy to represent loss
function [56].

def loss(self, logits, labels):
labels = tf.cast(labels, tf.int64)

cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits (...

cross_entropy_mean = tf.reduce_mean(cross_entropy)
return cross_entropy_-mean

5.1.4 Hyper Parameters

In this section, we will briefly explain the parameters related to research results we
used and its assigned value.

e learning rate: 0.001, initial leaning rate.

e learning rate decay factor: 0.5, how much to decay the learning rate each time.
e decay_step_0: 500, the first step to decay the learning rate.

e decay_step_1: 2000, the second step to decay the learning rate.

e weight decay: 0.0002, weight decay for L2 regularization.

e train batch size: 64

e dropout proportion: 0.5

e train steps: 3000

e regularizer: L2 regularizer, a process of introducing additional information to
reduce overfitting.

5.2 Mammogram Tumor Detection

As stated above, we implemented a Mask-RCNN model with tensorflow, and trained
it with the preprocessed DDSM dataset. Again, we will introduce our program
architecture from different aspects.
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5.2.1 Data Loader and Preprocess

Data Loader Each image in the DDSM dataset is about 10 MB large and the
whole dataset is about 80GB large. Handling such amount of data at once is very
likely to cause data corruption. Therefore this dataset is divided into 2GB “vol-
umes”. Each volume can be labeled by normal, benign or cancer.

normal_01 111 5.8 GB DBA 16bit 42 microns
normal_02 117 6.6 GB DBA 16bit 42 microns
normal_03 38 GB DBA 16bit 42 microns
normal_04 57 GB DBA 16bit 42 microns
normal_05 47 GB DBA 16bit 42 microns
normal_06 60 GB DBA 16bit 42 microns
normal_07 78 GB HOWTEK 12bit 43.5 microns
normal_08 27 GB HOWTEK 12bit 43.5 microns

N OGO
0N T WER -

File Format Conversion The original image file is in LJPEG format which is
not common to modern tools. Before we feed these images into the model, we need
to convert them. Fach converted PNG file is about 30 MB, so we must perform
the conversion batch by batch to avoid running out of temporary storage. This is
generally done in a bash script. The procedure is generally

1. create a large enough temp storage

2. wget ftp://figment.csee.usf.edu/pub/DDSM/cases$1 and save it to temp stor-
age

3. convert the downloaded LJPEG to PNG
4. save all metadata and the converted PNG

5. clear temp storage

Metadata Parser Then we need to parse the metadata file and convert the
boundary chain code to a machine readable format such as a Python array. Firstly,
we build up regular expressions to match certain metadata entries. Then we iterate
through the metadata file and extract matchings, and store these matchings into a
dictionary for later use.

def read_case(case_dir_path):

with open(glob.glob(case_dir_path + ’*.ics’)[0]) as f:
f.readline ().strip ()
for line in f:
extract information with regex_dict[key].match(line)

for key in [’left_cc’, ’left_mlo’, ’right_cc’, ’right_mlo’]:
ret [key] = cv2.imread (png file name)
if ret| metainfo’|[key.upper()][2] = ’'OVERLAY:
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ret [key+’ _overlay’| = read_overlay (overlay file name)
return ret

Boundary Parser As for the boundary, we simply simulate the movement of the
cursor as in the specification. We use a variable to represent the current position of
the cursor.

def parse_boundary(str):

chain_code = str.split(’-7)

chain_code = list (map(int, chain_code[: —1]))
x = [chain_code [0]]

y = [chain_code [1]]

chain_code = chain_code [2:]

for movement in chain_code:
if movement — 0:
x.append (x[—1])
y.append(y[—1] — 1)
elif movement — 1:

else:
raise ’'unrecognized-chain-code’

return x, y

Preprocess and Cache After all these parsing steps, we apply the same prepro-
cess methods as in section to durther improve the quality of the image. To
further shorten the train time, we also cached preprocessed images.

image = self.path_load (case| left_cc’])
image = self.CLAHE image(image)
np.save(case_dir_path+’/’+’left _image .npy’ ,image)

5.2.2 Model Construction

Overall Structure As stated before, our model is inspired by Mask RCNN intro-
duced in 2017 [47]. The framework is quite similar to the Faster RCNN one, in the
way that it replaced the ROI Pooling layer with the ROI Align layer, and adds a new
parallel Fully Convolution Network to retrieve the mask information. The number
of tasks has changed from two (classification + regression) to three(classification
+ regression + segmentation). The overall structure of our model is illustrated as
follows:
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Figure 40: Structure Mammogram Tumor Detection Model

The Faster RCNN base structure is easy to train, and the added FCN is a small-
scale network, so Mask RCNN will not be difficult to use. As shown in the figure,
Mask RCNN adopts the two step method introduced by Faster RCNN, it find the
regional proposals first, and secondly find the classification, box offset and binary
mask.

Base Model In our model, we firstly feed preprocessed image into the base model.
These images are normalized to size 2048 x 2048 x 3 for consistency. We use is
ResNet101 in our project as the base model. The detailed implementation logic is
shown as follows.

def resnet (input_image):

4

KL. ZeroPadding2D ((3, 3))

KL.Conv2D (64, (7, 7), strides=(2, 2))

BatchNorm ()

KL. Activation(’relu’)

KL.MaxPooling2D ((3, 3), strides=(2, 2), padding="same”)
# 2

conv_block (3, [64, 64, 256], strides=(1, 1))
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identity_block (3, [64, 64, 256])
identity_block (3, [64, 64, 256])
# 8

conv_block (3, [128, 128, 512])
identity_block (3, [128, 128, 512])
identity_block (3, [128, 128, 512])
identity_block (3, [128, 128, 512])
return

where the layer constructors have parameter signature of

def identity_block (kernel_size, filters , use_bias=True):

def conv_block(kernel_size , filters , strides=(2, 2),
use_bias=True):

Regional Proposal Network We will omit the final output layers of ResNet,
and export the feature map. A regional proposal network will take the feature map
as input and find the proposals. The detailed implementation logic is shown as
follows.

def region_proposal network (inputs):
# trim to top anchors by score

pre_nms_limit = min(6000, anchors.shape[0])

ix = tf.nn.top_k(scores, pre.nms_limit, sorted=True).indices

scores = utils.batch_slice ([scores, ix], ...)

deltas = utils.batch_slice ([scores, ix], ...)

anchors = utils.batch_slice ([scores, ix], ...)

boxes = utils.batch_slice ([anchors, deltas],
apply_box_deltas_graph , ...)

boxes = utils.batch_slice(boxes, clip_boxes_graph 6 ...)

normalized _boxes = boxes / np.array ([[h, w, h, w]])

proposals = utils.batch_slice ([normalized_boxes, scores],

non_max_suppression, ...)

return proposals

where the helper functions have the parameter signature of

def apply_box_deltas_graph (boxes, deltas):
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def clip_boxes_graph (boxes, window):

def non_max_suppression(normalized_boxes, scores):

ROI Align Layer The proposals will then be feed into the ROI Align layer. It
takes the proposal as input, and extract features from each regions. It is a more
advanced version of the ROI Pooling layer. The detailed implementation logic is
shown as follows.

def roi_align_layer (inputs):

roi_level = log2(sqrt(h * w) / (224.0 / sqrt(image_area)))
roi_level = min(5, max(2, 4 + round(roi_level) as int32))
roi_level = squeeze(roi_level , 2)

for i, level in [2...6]:

box_indices = arg(roi_level = level)
box_to_level .append(box_indices)
box_indices = tf.stop_gradient(box_indices)

pooled .append (tf.image.crop_and_resize (apply ROI pooling))

sorting_tensor = box_to_level[:, 0] % 100000 + box_to_level [:,

pooled = tf.gather(pooled, top_k of sorting_tensor)
return pooled

where the utility log2 is simply

def log2(x):
return tf.log(x) / tf.log(2.0)

Classification and Bounding Box The output of ROI Align layer is expected to
have a shape of Nroyr x14x14x80. A final Resnet will be then used to find bounding
box regression and classification. Since we have already implemented Resnet, we can
simply use the same logic structure.

Mask The output of ROI Align layer is also used by another fully convolutional
network to further find the binary mask of the object. In out project, we use
Feature Pyramid Network to find the mask. It is specially optimized for small
object detection, and hence is quite suitable for our project since there usually will
not be many tumor cells. The detailed implementation logic is shown as follows.
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def
KL
KL
KL

feature_pyramid_network (inputs):
.TimeDistributed (KL.Conv2D (256, (3, 3), ...))
.TimeDistributed (BatchNorm ( axis=3))
.Activation('relu’)

..(repeat)

KL
KL

.TimeDistributed (KL. Conv2DTranspose (256, (2, 2), strides=2, activation="re
.TimeDistributed (KL.Conv2D (3, (1, 1), strides=1, activation="sigmoid”))

5.2.3 Train and Validation

During train, the model defines a multi-task loss function

L= Lclassification + Lboa: + Lmask

to fully express loss in the whole process. Legssification @0d Lyo, are the same as
the ones in Faster RCNN. L, utilizes the new ROI mask branch output, and has
changed from single pixel softmax to single pixel sigmoid.

The

def
lo

detailed implementation logic of each loss function is shown as follows.

classification_loss (inputs):
ss = tf.nn.sparse_softmax_cross_entropy_with_logits(

labels=target_labels ,
logits=logits

)

lo
lo

ss = loss * active
ss = tf.reduce_sum(loss) / tf.reduce_sum(active)

return loss

def
lo
lo

box_loss (inputs ):
ss = K.switch(size of target_bbox > 0, smooth_11_loss (...))
ss = K.mean(loss)

return loss

def
lo
lo

mask_loss (inputs ):
ss = K.switch(size of Oy_true > 0, K.binary_crossentropy (...))
ss = K.mean(loss)

5.2.4 Hyper Parameter

The

hyper parameter set in Mask RCNN has an identical definition of that of Faster

RCNN. In our project, we tweaked some parameters to get a better result. The
following list explains the definition of some critical parameters and the value we
chose.
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e STEPS_PER_EPOCH = 1000: Number of training steps per epoch
e VALIDATION_STEPS = 50: Number of validation steps to run at each epoch

e BACKBONE_STRIDES = [4, 8, 16, 32, 64]: The strides of each layer of the FPN
Pyramid

e RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512): Length of square anchor

e RPN_ANCHOR_RATIOS = [0.5, 1, 2]: Ratios of anchors at each cell

e RPN_ANCHOR_STRIDE = 1: Anchors are created for each cell in the feature map
e RPN_NMS_THRESHOLD = 0.7: Non-max suppression threshold

e RPN_TRAIN_ANCHORS_PER_IMAGE = 256: Number of anchors per image

e POST_NMS_ROIS_TRAINING = 2000: ROIs kept after non-maximum supression
e ROI_POSITIVE_RATIO = 0.33: Percent of positive ROIs used for training

e POOL_SIZE = 7: Pooled ROIs

e MASK_POOL_SIZE = 14

e MASK_SHAPE = [28, 28]

e LEARNING_RATE = 0.001: Learning rate

e WEIGHT_DECAY = 0.0001: Weight decay regularization

5.3 User Interface

In our design, the system will have a user interface that enables general users to fully
understand the output of the model. Therefore, we implemented a report generator
together with a web front end.

5.3.1 Report Generator

The report generator will take in the original file, the masks and confidence levels.
Then it will apply the given mask to the image, display bounding boxes and add
comments to each of the masks. Different kind of regions will be marked with
different colors. The detailed implementation logic is shown as follows.

def generate_report (inputs):
for each region:
bounding_box = rectangle (...)
figure.add_patch (bounding_box)

label = class_names [...]
comment = ”"{}-{:.3f}” . format(label, score)
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figure . text (comment)

image [:, :] = np.where(

mask =— 1,

image [:, :] % color for this kind of region,
image [:, ]

)

mask = polygon (...)

figure .add_patch(bounding_box)
return figure

5.3.2 Application Interface

We have a web portal for end users, so an application interface was developed for
communication between browsers and the server. User input includes username
and password for accessing our GPU cluster and the image file. The application
interface should be robust to incorrect inputs, such as invalid credentials or invalid
image file. Since the process will take some time, this application interface will not
response immediately. Fortunately, a typical diagnosis will be done in two minutes,
so a fully synchronized interface is not required. Hence, we implemented a simple
HTTP POST interface.

The detailed implementation logic is shown as follows:

Connection: keep-alive
Content-Type: multipart/form-data; boundary=----WebKitFormBoundary. ..

—————— WebKitFormBoundary. ..
Content-Disposition: form-data; name="username"

username
—————— WebKitFormBoundary. ..
Content-Disposition: form-data; name='"password"

password
—————— WebKitFormBoundary. ..

Content-Disposition: form-data; name="file"; filename="mammography-sample.png"
Content-Type: image/png

—————— WebKitFormBoundary...--
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5.3.3 Web Front end

To work with the aforementioned application interface, we have a simple web page
for general users to input the required form fields. The portal will provide a preview
of the image file to be uploaded before initiating a request. The detailed implemen-
tation logic is shown as follows:

const pnglnput = <input

type="file"

name="file"

accept="image/x-png"

required="true"

onchange={() => preview.src = URL.createObjectURL(...))}
/>;

Since the diagnosis will take sometime, there should be a notice to let the user
know the time s/he needs to wait. We also added progress bars showing the current
diagnosis step. The detailed implementation logic is shown as follows:

const reportProgress = <progress></progress>;
central.addEventListener (’report-progress’, ({ detail: { loaded } }) => {
reportProgress.value = loaded;

1)

Once the process is finished, the user can get the generated report of his/her submis-
sion. The webpage should be automatically scrolled if the report cannot be displayed
in the current view. The detailed implementation logic is shown as follows:

const outcome = <img style="max-width: 100%;"></img>;
central.addEventListener (’report-load’, ({ detail }) => {
outcome.src = URL.createObjectURL(detail);

B

outcome.onload = () => outcome.scrollIntoView();
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6 Results and Analysis

In the previous part, we introduced our overall implementations in different aspects,
data 10, model construction and evaluation. In this part, we will divide and discuss
our final year project’s results into three parts, histopathological image classification
task, mammogram tumor detection task and breast cancer diagnosis-aided system.

6.1 Histopathological Image Classification Results

In this part, we will compare different methods and parameters together and compete
with past paper results using the same dataset to see whether our model is optimized
enough.

Following the experimental protocol proposed in [50], we used cross-validation method [51]
to do evaluation, the dataset was split so that patients used to build the training

set (75% patients) are not used for the testing set (25% patients) to guarantee that

our model can generalize to those patients not in the dataset, the results presented

in this work are the average of four trials with the selected results after converging

and a suitable early stop.

Training protocol used here is the purely supervised type, the Stochastic Gradient
Descent (SGD) method [52], with back-propagation to compute gradients was used
to update the network’s parameters. All fixed hyper-parameters of training are given
in the Implementation section.

The ResNet model were trained on a NVIDIA Tesla K40m GPU [53] using the
Tensorflow framework [42]. Training took about 5 hours for the 256 x 256 input
size and 10 hours for the 512 x 512 with the hyper parameters specified in 77, which
is corresponding to a much more complex training set.

Because there are millions of parameters and hundreds of hyper-parameters, there-
fore which parameters need to be tuned among the test should be considered care-
fully. Through our study on both medical and deep learning field, we selected three
major hyper-parameters (directions) to do our test: Preprocess method, model ar-
chitecture and image segmentation method.

For each hyper-parameter, we tested kinds of values or situations based on our guess
and motivation, so each block below will contain several sub-blocks to explain each
guess and its corresponding results in detail.

6.1.1 Results of Different Image Preprocess Methods

Preprocess is one of the most important part in image classification, especially in
histopathological image classification, which can be concluded in previous literature
review of section 2] According to the previous section, we have introduced different
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kinds of preprocess method and showed the code, in this part, we will test different
preprocess method by keeping other parameters same.

Typically, the model architecture of all cases in this part is normal model architecture
(left,figure and all inputs are segmented by different functions with size 256 x 256.
Figure 5.4 and 5.5 show the preprocess results of one given image to offer reader an
intuitive feeling. Tables in the section [§, appendix, report the results of different
preprocess methods in both batch level and image level in detail respectively, while
table [7]is a rough comparison among different preprocess methods.

From the table[7], we can find that different preprocess method has a huge influence
on the results, typically, CLAHE shows a best performance on the higher magni-
fication, where it shows that it is able to achieve an accuracy of about 5% better
than the results of raw input. However, CLAHE won’t work when the magnification
factor is 40x while whiten operation can help model to overcome this problem.

6.1.2 Results of Different Model Architecture

Model architecture is also one of the features we selected to test the result and
it is usually the most critical part in DNN. Previous section has introduced the
basic structure of residual block, in this part, we will evaluate the results of slightly
different model architectures, which are all based on residual blocks.

Tested architectures follow the form in Figure [41] the detail can be found in Table
These networks’ inputs are segmented by Resizing and preprocessed by method
CLAHE with size 256 x 256.

Normal Model Architecture Our normal model architecture is shown on Fig-
ure [41] The first layer is a convolution layer with 7 x 7 kernel size , followed by a
3 x 3 convolution and a 2 x 2 max pooling layer with stride 2, to reduce the input size
of following residual network. Then we use a stack of NumOfSize x NumO{Blocks
residual blocks with 3 x 3 convolution on the feature maps of sizes 128,64,32,16,8
respectively. NumOfSize represents the number of sizes, and the value is 5 in this
model. NumOfBlocks is one of the hyper-parameters we can set, the value is also 5
in this model. Table in the Appendix section [8 shows the results of normal model
and the analysis of the result will be discussed later while we will focus on the
comparison with this base model in this section.

First Convolution with Kernel Size 3 x3 In our medical research, our current
goal is to classify the tumor. However, there are four kinds of magnification factors
in our dataset, which means that tumor in different images may have different sizes,
for example, tumor in 40x image is much smaller than 400x image.

According to table in the Appendix section [§ we have mentioned last part, the
model gained a nice accuracy on both 400x and 200x images, but is not so exciting
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Figure 41: Five network architectures adopted in experiments. Each box indicates one
layer and different Residual blocks/layers and different feature map sizes are labeled with
different background colors. The ’/2’ symbol increases dimensions and implements a down-
sampling operation. Left: The standard normal architecture we employed in most cases
as a baseline model. Middle-Left: The number of feature maps is doubled in all layers.
Middle:The head of the model increases one pooling layer to do extra down-sampling.
Middle-Right: The kernel size of convolution layers in the head is changed to 3 x 3
instead of 7 x 7. Right: The max pooling layer after convolution layers is substituted
with changing the stride of convolution layer to 2 to do down-sampling.
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image level

batch level

mag'niﬁc preprocess method best accurac accurac
ation aggregation = F1 score (%) z AUC (%)
- Hind y (%) y (%)

raw vote 81.95 86.85 80.03 80.68

Gaussian, CLAHE exist 68.42 80.37 65.09 68.89

CLAHE, whiten vote 87.03 91.05 86.17 82.80

40% CLAHE exist 81.20 89.59 82.93 82.19

whiten, CLAHE average 86.28 90.48 85.84 80.97

whiten vote 86.64 90.96 85.82 78.65

demean vote/average 79.51 85.64 79.42 82.41

raw exist3 78.64 85.58 79.09 79.42

Gaussian, CLAHE vote 69.12 80.41 69.28 70.39

CLAHE, whiten exist3 81.69 87.50 81.44 79.42

100x CLAHE exist3 84.74 89.39 83.37 76.98

whiten, CLAHE vote 82.23 87.76 81.42 82.23

whiten vote 83.12 88.25 82.32 82.19

demean exist3 79.89 86.10 79.01 81.54

raw vote/average 88.87 92.13 87.74 88.36

Gaussian, CLAHE average 77.19 83.83 75.90 81.52

CLAHE, whiten vote 85.77 90.15 84.96 85.41

200x CLAHE vote 88.87 92.87 88.33 85.02

whiten, CLAHE vote/average 85.22 89.79 84.65 87.63

whiten average 85.22 89.73 84.31 86.22

demean vote/average 84.67 89.45 83.91 82.62

raw exist 82.99 88.22 81.09 85.73

Gaussian, CLAHE vote 80.37 85.64 78.26 82.15

CLAHE, whiten exist3 80.56 86.73 80.15 82.05

400x CLAHE exist3 86.73 90.62 86.15 82.61

whiten, CLAHE vote 82.80 87.99 81.75 83.38

whiten vote/average 81.31 87.01 80.49 83.11

demean exist 84.67 89.24 82.96 82.97

Table 7: Overall results using different preprocess methods
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Layer Output N 1 3%3 | Stride | Block number | Feature map ) |
orma ools
name size conv | conv changed doubled P
77,
256256 L Bl 7x7, 16
16 16 | stride ’
conv00 x 2
256256 3x3,16 3x3,16 3%3.32 3x3, 16
2x2 NA
128x128| oM 2x2 max pool, stride 2
pool, stride 2
128x128 3x3,16
X X
conv0l x 1Rexl28 NA 5 23 506 l
x2 max pool,
64x64
stride 2
3x3 16 3x3 32
convl x | 128x128 (g : ; ig) x5 (3 x 3 16) (3 x 3 32) NA
X 4 X5
(3 x 3 32) (3 x 3 64) (3 X 3 16)
conv2 x | 64x64 | (3% 3)xs | \3x3 32/ | \3x3 64/ | 3x3 16
- x4 da X 4 X5 X 5
3x3 64 3x3 128 I3 32
convdx | 32x32 | (3X3 x5 (Gx3 e |Gx3 128)| Gx3 32)
3x3 64 X5 x5 x5
3x3 128 3x3 256 3x3 64
conva % | T6%16 (g z g igg) i (3 x 3 128) (3 x 3 256) 3 %3 64)
x7 x5 X 5
3x3 256\ |(3x3 512\|(3x3 128
convs x | 8x8 | (3%3 20%)xs (3x3 236) |Gx3 512)|Gx3 128)
- 3x3 256 X 5 x5 x5
2% 1 average pool, fc, softmax

Table 8: Detailed architectures of evaluated models, building blocks are shown in brackets
with the numbers of blocks stacked. Down-sampling is performed by convl_1, conv2_1,
conv3_1, conv4_1, and conv5_1 with a stride of 2.
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on smaller magnification factors such as 40x, we doubted that it was due to the
small tumor so that 7x7 first convolution is too big to catch the local feature of
small tumor. Therefore, we tried to reduce the 7x7 to 3x3 of the first convolution’s
kernel, and detected its performance on small magnification factor.

Figure middle-right shows the basic structure of this model and Table [16| indi-
cates the performance of this model, surprisingly, we found that 3x3 convolution
model gains a better batch level accuracy on bigger magnification factor and a bet-
ter AUC on all factors. We think the reason may be that local feature of tumor is
always smaller than 7x7, no matter what the magnification factor is. Therefore,
smaller first convolution layer’s kernel size can gain a better result in tumor classifi-
cation tasks, which is different from the ResNet used in normal image classification
problems [40].

First Convolution with Stride 2 We perform down-sampling by pool layers in
normal model, in this model, we changed the stride of the first convolution from
1 to 2 and discarded the pool layer before residual blocks, which is similar with
the model architecture in [40], this work is motivated to evaluate the influence of
convolution layer and pooling layer we added before residual blocks.

The model structure is briefly shown in Fig right, and the detailed results is in
Table[I7] The main discovery from Table[I7)is that no matter what the magnification
is, the best aggregation method is always vote or average, which are the most valid
methods. At the same time, stride 2 shows a almost wonderful results comparing
with normal model, which means that stride is usually better than pool layer when
doing down-sampling.

Model with Feature Map Doubled This model is easy to understand, which is
simply double the feature maps comparing with the normal model structure, the idea
is inspired by [57], which claims that wider ResNet is helpful for image classification.
Therefore, we want to know whether it works on histopathological images or not.

The model structure diagram is shown in Figure 41 middle-lfet, and the detailed
result can be found in Table [I§] we can see that doubled feature maps can in
deed increase the study capacity of model because almost all magnification’s AUC
increase, which is like 3x3 convolution model. Typically, sum becomes a pretty
good aggregation method in this model.

Model with Two Pooling Layers Before Resnet Our model faces a serious
over-fitting problem, which will be introduced in detail in the following section [6.1.4]
This model, with 2 pool layers before ResNet, is a try to solve the overfitting prob-
lem because we doubt that the study capacity of ResNet is so large that the net
remembers all special features of train dataset, which results in over-fitting. There-
fore, we want to apply more naive convolution layers, which has a smaller study
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magni Image level Batch level
llc:t:o aagtgi:)g accura precisio recall F1 score ac:‘:;r confusion matrix
method ey (%) () ¢al (%) (%)
sum 81.58 87.85 84.97 86.39 .
40x vote 84.02 93.79 84.05 88.65 Al;f[ 81.81 predict
average | 84.02 93.79 84.05 88.65 82.94 malignant  benign
exist 81.77 99.15 78.88 §7.86 ] malignant 16469 1231
exist3 | 82.71 98.02 80.32 88.30 benign 3306 5594
sum 81.33 89.56 83.16 86.24
100x AUC( :
vote 84.92 97.80 82.41 89.45 %) 82.38 predict
average | 84.92 97.80 82.41 89.45 83.99 malignant  benign
exist 83.84 99.45 80.44 88.94 malignant 17626 603
exist3 | 8420 9945  80.80  89.16 Wl | penign | 3863 5808
sum 87.59 96.71 86.31 91.21
200x= AUC( >
vote 88.87 98.90 86.36 92.21 %) 87.02 predict
average | $8.87 98.90 86.36 92.21 88.08 malignant  benign
exist 85.40 100.0 82.02 90.12 ol malignant 17975 275
exist3 | 86.86 99.73 83.68 91.00 benign 2992 6158
sum 86.92 97.67 84.42 90.57
400= AUC( :
vole 87.66 99.42 84.24 91.20 %) 84.77 predict
average | 87.85 99.71 84.28 91.34 87.14 malignant  benign
exist 85.61 100.0 81.71 §9.93 et malignant 17064 163
exist3 | 86.36 100.0 82.49 90.41 benign 3284 6289

Table 9: The results of model with dropout

capacity than ResNet, and less Residual blocks.

The model diagram is shown in Figure middle, and the results can be found
in Table [9 We can see that almost all results have no difference from normal
architecture, which means that Residual blocks are not the reason for overfitting.

Normal Model with Dropout Dropout is well known to be an effective way
to solve over-fitting [58], therefore we also tried to apply dropout in our network.
The model architecture is same as the normal model (Fig left) , and we set up
an additional dropout before the final fc layer with dropout rate 0.5. The result
of normal model with dropout is in Table [0} The accuracy has a little improve
comparing with the result of normal model, but we can still regard it as an effective
method since almost all results are changing with a nice direction.

Overall Comparison among Different Model Structures This part com-

pares the results of different model architectures and the comparison is shown in
Table [10.

From the results shown in table [10, we can find that there are no huge differences
comparing with the input pre-process because we adopted ResNet as our fundamen-
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(a) 100x,the tumor is small (b) 400x%,the tumor is obvious

Figure 42: One example of 100x and 400x image

tal, which has a huge learning ability to instances features. no matter what little
changes we implemented in the model architecture while preprocess is changing the
sources: the features of the instances.

However, there are still some rules that can be found in the results, among all models,
we can conclude that dropout and feature maps doubled are helpful for classification
no matter what the magnification is, and stride 2 has a huge improvement on dataset
of magnification 40x and 100x. However, model with 2 pools, the contrast of
feature maps doubled model, which reduces the complexity of model, do not get a
performance boost. In comparison, we conclude that more complex structure can
still make learn the features better.

6.1.3 Results of Different Segmentation Methods

Different segmentation methods will produce inputs of different size, which will
absolutely be fed into different model architectures. Last section introduces the
results of different model architectures, and the difference between these two parts
is that the former one focused on the model architecture difference and kept input
size same, while this section will mainly discussion the influence of different image
segmentation methods.

When we study on the dataset, we found that tumor in low magnification images,
such as 100x, was too small to be obviously found (Figure . We guess that the
input size should be smaller when magnification is smaller to catch the local feature
of tumor. To verify our guess, we implement and test our methods. Figure [43|shows
the structure we used for different segmentation size and Table is the overall
comparison among different segmentation methods.

According to Table , 64x64 and 128x128 ranks top 2 on both 40x and 100x
test dataset while 256x256 and 512x512 dominates the results of 200x and 400x
dataset, which is keeping with our guess. Also, we found that random segmentation
method, which increases the variance of train dataset, is a little better than sliding
window method.
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magni Image level Batch level
llc:t:o aagtgi::]g accura precisio recall F1 score ac::;r confusion matrix
method ey (%) () ¢al (%) (%)
sum 81.58 87.85 84.97 86.39
40x vote 84.02 93.79 84.05 88.65 AI;TE( 81.81 predict
average | 84.02 93.79 84.05 88.65 82.94 malignant  benign
exist 81.77 99.15 78.88  87.86 malignant 16469 1231
exist3 | 8271 98.02 8032  §8.30 = | nic 3306 5594
sum 81.33 80.56  83.16  86.24
100 AUC( :
vote 84.92 97.80 82.41 89.45 %) 82.38 predict
average | 84.92 97.80 82.41 89.45 83.99 malignant  benign
exist 83.84 99.45 80.44 88.94 malignant 17626 603
exist3 | 8420 9945  30.80  §9.16 8l | benign | 3863 5808
sum 87.59 96.71 86.31 91.21
200x= AUC( >
vote 88.87 98.90 86.36 92.21 %) 87.02 predict
average | $8.87 98.90 86.36 92.21 88.08 malignant  benign
exist 85.40 100.0 82.02 90.12 — malignant 17975 275
exist3 | 86.86 99.73 83.68  91.00 benign 2992 6158
sum 86.92 97.67 84.42 90.57
400= AUC( :
volte 87.66 99.42 84.24  91.20 %) 84.77 predict
average | 87.85 99.71 84.28 91.34 87.14 malignant  benign
exist 85.61 100.0 81.71 §9.93 et malignant 17064 163
exist3 | 86.36 100.0 8249  90.41 benign 3284 6289

Table 10: Overall results using slightly different model methods, the visualization version
of model structure is in Figure
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Figure 43: Structure for Different Segmentation Methods. From left to right: The input
size is 512 x 512,256 x 256,128 x 128,64 x 64 respectively
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image level batch level
magnif | Segmentation Input best

icatgion gmethod si';e aggreaation accu:ac F1 score | accuracy AUC
miethod y (%) (%0) (%) (%)

random 512x512 NA NA NA NA NA
Random 256%256 exist 81.20 89.59 82.93 82.19
40x% random 64%64 vote 85.71 90.13 83.20 78.90
sliding window | 128x128 average 87.41 91.15 84.56 82.69

sliding window | 64x64 sum 85.34 89.54 83.88 82.12

random 512%512 NA NA NA NA NA

Random 256x256 exist3 84.74 89.39 83.37 76.98

100 random 64x64 vote/average 87.61 91.34 84.80 81.61
sliding window | 128x128 | vote/average 86.36 90.45 83.66 86.65
sliding window | 64x64 vote 86.89 90.86 84.40 83.86

random 512x512 NA NA NA NA NA
Random 256x256 vote 88.87 92.87 88.33 85.02
200 random 64=64 sum 88.14 91.68 86.27 86.05
sliding window | 128x128 | vote/average 89.05 92.41 87.10 86.42
sliding window | 64x64 average 88.50 92.06 86.84 89.38
random 512%512 | vote/average 87.10 90.71 86.560 85.26

Random 256%256 existd 86.73 90.62 86.15 82.61
400 random 64x64 average 87.10 90.76 84.22 85.00
sliding window | 128x128 vote 86.91 90.72 84.37 85.78

sliding window | 64x64 vote/average 86.73 90.55 82.89 86.81

Table 11: Overall results using different image segmentation methods, segmentation
method has been introduced in section TODO: and 512 x 512 input size is too large
to run correctly in 40x,100x and 200x magnification factors.
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Figure 44: feature maps learned by first convolution layer. Right: the raw data,left: 16
feature maps the model learned

6.1.4 Analysis

In this section, unlike previous sections, which focus on results, specially, accuracy
of our work, we will discuss some more advanced analysis on our model such as
feature map analysis.

Feature maps One of the advantages using DNN are that we needn’t design a
feature extractor by a medical expert, but instead the model will learn it by itself.
Figure [44] displays the 16 feature maps learned on the first convolution layer of our
model. We can see that first convolution actually learned a edge detection rule by
itself.

Location prediction From the idea of [59], we are able to visualize the location
prediction of our model. We use the filter of last layer (shape 256x2) and the output
of penultimate layer (shape 8x8x256) and implement a tensor-multiplication, after
getting two feature maps with size 8 x8, we resize the 8 x8 image to input size, which
is 256 x256. Finally, we can use the resized image to visualize the local prediction
to input of our model. Figure [45shows an example of this kind of analysis, we can
see that our work have a potential to implement a rough model for localization.

Advanced Results Analysis According to former experiments we have done,
we can get a solid conclusion that datasets with different magnification factors need
different hyper-parameters considering features of tumor. Typically, in this part,
we implemented an “best” model combing former conclusions we got. We adapt
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(a) raw input (b) resized 256 x 256 prediction,
red means more likely, blue means
less likely.

Figure 45: One example of localization prediction.

the model architecture of Stride 2 (Fig right), and add a dropout layer before
the final fc layer. And CLAHE (section TODO:) is used to preprocess the data
when magnification factor is not 40x, otherwise the preprocess method is CLAHE
+ whiten (TODO:). Table[I2]shows the detailed results of “best” model and Fig[46]
indicates one example of its ROC curve.

We can obtain some general information about general result, aggregation methods
and AUC value from these results above (comparison of different methods has been
discussed above):

e Our model achieves really high precision on image level, which is very practical
because almost all malignant patients can be predicted as malignant.

e Five aggregation methods we apply above have slightly different influence on
results of image level, in summary, vote/average shows a better performance.

e Lower magnification results have a lower AUC value, which means that more
batches are labeled with not solid predictions. (Prediction of probabilities
are closer to [0.5,0.5]). Therefore, we can conclude that lower magnification
images have less information for learning.

6.1.5 Comparison with Previous Works

Table [13] shows the overall comparison between our results and past paper’s using
same dataset. Compared with accuracy and F1 score, which we defined earlier, our
methods out-performs pervious work in [50], [60], [61], [62] at both patient and
image level generally. Our work is better than other research using same dataset in
almost all of cases, only in the 40x zoom level our results are a little worse than
previous best work. In the remaining cases, the accuracy and F1 score achieved at
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magni ITmage level Batch level

fic:tm ﬂftgi:;:'g accura precisio recall F1 score at::yr Can i R
method | Y () n (%) (%) (%) (%)

40x sum 88.72 97.74 86.93 92.02 AUC(
vole 87.41 99.44  84.41 91.30 %) 82.82 : predict :
average | 87.78 99.44 84.82 91.55 86.80 malignant  benign
exist 81.58 100.0 78.32 87.84 malignant 17522 178
exist3 | 83.08 1000 7973 8872 Bl | i 3334 5566
sum 84.92 94.78 84.15 89.15

100x AUC( :
vote 85.46 97.90 82.38 89.89 %) §2.35 predict
average | B5.46 97.90 82.38 89.89 85.22 malignant  benign
exist | 82.94 100.0 7930 8846 S malignant 17959 273
exist3 84.38 100.0 80.71 89.33 benign 3850 SR18
sum 88.50 98.08  86.47 91.91

200= = AUC( ;
vote 89.05 99.73 86.05 92.39 %) 89.85 predict
average | 88.87 99.45 86.02 9225 88.50 malignant  benign
exist | 86.31 100.0 8295  90.68 id malignant 18043 207
exist3 87.77 100.0 84.49 91.59 benign 2945 6205

: sum 86.73 93.60 86.79  90.07

400x% AUC( =
vote 86.17 96.51 84.26 89.97 %) 89.94 predict
average | 86.35 96.80 84.30 90.12 90.43 malignant  benign
exist 85.61 99.13 82.17 89.86 malignant 16494 739
exis} | 8617 9855  83.09  90.16 sl | vesgn | 20% 6630

Table 12: The results of “best” model whose parameters are selected manually to get good
results
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ROC image at step1900
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Figure 46: one example of ROC in our model results

least 0.5% better, and the difference can be as large as 5% in most cases. Which
means that our method is much better than pervious methods.

One guess for the reason of low accuracy at 40x zoom level, may be that images
in low magnification factors, such as 40x and 100x, has a fewer information and
features for model to catch and learn, this is what we conclude in last section. How-
ever, the advantage of our applied model, learn capacity, cannot make contribution
to the result, which makes the results similar at 40x and 100X zoom level.

6.1.6 Limitation and Difficulties

Despite the result we get as mentioned, we are also facing some limitation and diffi-
culties. The following section will describe the problems and our proposed solutions.

Overfitting We faced serious overfitting problem since we adopted ResNet. As
we can see in Figure [47] the train accuracy can be easily up to 99% but the test
accuracy is not as good as we expected.

We have tried different technical to solve the problem, early stop, L2 regularization
and dropout, all of them did not make a huge improvement but early stop can get
an obvious increase, which can increase 2 to 3 percentage. We thought the reason
may be the poor dataset, the dataset we used contain only 82 patients although
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i Patient level Image level
magnlﬁc Approach accuracy - F1 score
ation accuracy (%) (%) (%)

[58] 83.00 NA
[40] 83.80 82.80 87.80
40x [47] 88.60 89.60 92.90
[56] 84.00 84.60 88.00
This work 88.26 88.72 92.02
[58] 83.10 NA
[40] §2.10 80.7 86.10
100 [47] 84.50 85.00 88.90
[56] 83.90 84.80 88.80
This work 88.17 85.46 89.89
[58] 84.60 NA
[40] 8§5.10 84.20 88.50
200x [47] 85.30 84.00 88.70
[56] 86.30 84.20 88.70
This work 92.27 89.05 92.39
[58] 82.10 NA
[40] 82.30 81.20 86.30
400x [47] 81.70 80.80 85.90
[56] 82.10 81.60 86.70
This work 90.34 86.73 90.12

Table 13: Accuracy and F1 score compared with those presented in [62], [50], [60] and
[61]

(a) train error, which is close to 0 (b) validation error, which main-
gradually. tains at 0.08 level.

Figure 47: Train and validation accuracy comparison.
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Figure 48: If red circle indicates a malignant tumor, then blue rectangle can be labeled as
malignant correctly while black rectangle will become noise because there is no malignant
tumor in it.

there are thousands of images. We thought overfitting may also be the reason why
past paper did not get a good-looking accuracy as well.

Out of Memory Another difficulty we are facing now is the well-known problem,
OOM. ResNet consumed plenty of GPU memory due to the deep layers. Bigger
input size will consume bigger memory and previous work of ResNet only fit an
input with size 64x64 or 32x32.

But current input size our model adopts is 256 x256, because malignant images can
contain normal cells. If the image is divided into small patches such as 32x32,; it
is not guaranteed that tumor appears in all patches. Malignant patches without
tumor become noise during training, and confused the network (Figure . For
higher magnification and bigger crop size, this problem is less severe, as tumor cells
will be larger and hence less likely to be missed.

This is, therefore, the reason we build a traditional CNN above ResNet, we need a
pool layer to implement down-sampling, which reduces the input size of ResNet to
reduce memory allocation.
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6.2 Mammogram Mass Detection Results

We evaluate our method using DDSM [29] dataset, the introduction of evaluation
method and dataset we use to train and evaluate is in Section 4.2l We train a
ResNet-101 model that shares features among RPN, fully connected layers and mask
generation layers. The model runs at 3.35s per image on an Nvidia Geforce Titan X
GPU (including two parts: preprocess and inference). Training with ResNet-101 on
DDSM dataset takes 8 hours to achieve 12k steps using one Nvidia Geforce Titan
X GPU. In this section, we firstly discuss the fundamental experimental results
including the comparison of results of previous papers [32] [33] [30]. Secondly, some
further discussions are proposed based on the results. Finally, we conclude our
results of mammogram mass detection task.

6.2.1 Experimental Results

In this section, we simply show the experimental results using three kinds of tech-
nics and compare our results with previous works. Firstly kinds of experiments we
perform are explained:

Original Results Original baseline result is obtained using same hyper parame-
ters with [47] such as IOU threshold and anchor ratio, which is applied in common
object detection such as COCO dataset [63].

New Preprocess The only difference between this kind of experiment setting and
the original setting above is that we use a preprocess method, CLAHE, which we
also adopt when do histopathological image classification task and introduced in
Section while original results do not adopt any image preprocessing method.
Image [49| shows an example of mammogram after such preprocess method.

New Positive Decision Method In MaskRCNN [47], they treated an proposals
as positive samples if its Intersection of Union is bigger than one threshold, in
our experiment, we try to define proposals as positive if its Overlapping Ratio is
bigger than one threshold(Both terms are introduced in Section [£.2.5). The reason
for this change is the new evaluation method in mammogram, which is based on

OR, instead of IOU.

New Loss Function We replaced the loss function of bounding box regression,
the detail of the new loss function is introduced in Section 4.2.5

We compare our method to previous works in Table[I4l Our model benefits a lot from
preprocess procedure, which makes our model highly competitive compared with
other works. After considering preprocess, our model outperforms other works using
RCNN [32] and Genetic System [33] both in mean sensitive and FPPI introduced in
Section [4.2.5] Although our mean sensitive is lower than [30], we achieved a best
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Preprocessed Image

(a) Original mammogram (b) Mammogram proprocessed by CLAHE

Figure 49: Comparison between original mammogram and preprocessed mammogram.

FPPI among all related works, which means that the users (mostly doctors) won’t
get confused by the result of our system easily. The most impressive achievement
of our work, compared with other works, is that we achieve 5x speedup compared
with previous quickest work and outperform it, at the same time, we achieve a 150x
speedup compared with most accurate work. When new positive decision method
is performed, the mean sensitive is decreased while both mean AP and FPPI are
moving in the right direction. More impressive result is obtained by considering both
new positive decision method and loss function method, which achieves a nearly 90%
mean AP, which is highly practical, which means 90% masks our model reported
are right.

6.2.2 Results Analysis and Further Discussion

Besides performance results we discussed earlier, we also propose some trials and
analysis. In this section, we will discuss and analysis our results in different views
and topics.

Confidence Threshold in Test A confidence threshold T means that all pre-
dicted masks with confidence less than T' are dropped, it is obvious that higher T
causes less masks, which means lower mean sensitive and FPPI. Figure |50|illustrates
the effect of threshold. When the threshold T is below 0.4, all values are almost
not changed, this indicates that almost all predicted masks (actually generated by
RPN) have a confidence larger than 0.3. At the same time, FPPI has a upper bound-
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Method Mean Mean Sen- | FPPI Inference
AP (%) sitive(%) Time(s)

Our Work-0O 45.1 57.9 2.37 1.32

Our Work-O+P 60.3 72.6 3.14 3.31

Our Work-O+P+E | 63.0 65.3 0.72 3.26

Our Work-O+P+E+L | 89.2 45.6 1.11 3.14

Our Work-O+P+L 67.6 62.5 1.4 3.35

Random Forest [30] | - 7 3.93 472
RCNN [32] . 70 4 20

Genetic System [33] | - 70 8 108

Table 14: Comparison among kinds of technics we adopt and previous works. O: original
results. P: preprocessed results.

ing with close to 1.2, which means that the RPN is too strict to generate enough
proposals when we only consider preprocessing.
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Figure 50: The effect of confidence threshold. x axis: 10 x T. The experiment is imple-
mented only considering preprocessing and only train heads for 30 epochs.

Training Strategy Train strategy can also influence the performance seriously.
We use the ImageNet [64] pretrained model for our initialized model, but mammo-
gram has its special property so that the feature maps for common image is not
appropriate, which means that we should figure out which part/stage in our model
need to be re-trained. Figure |[51|is our preliminary trial on training strategy, which
is commonly used in other object detection tasks. We can get some general ideas
from the figure:

e For each stage, 15 epochs x 500 steps/epoch is the most suitable options to
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avoid overfitting.
e Mean Sensitive can benefit a lot from fine-tuning of the backbone.

e With the development of training, the FPPI decreases quickly, indicating that
our model does work because the number of mark per image is quite small.

T
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- Mean Sensitive
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n
c
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= 0.60
2
]
o
2

0.55

0.50
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10 20 30 40 50 60 70
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Figure 51: The effect of train strategy. 0-30 epochs:train the heads(RPN,fc layers
and mask generation layers).30-60 epochs:train the heads and part of backbone.60-70
epochs:train all layers

Besides the commonly used training strategy, we also adopt different training strate-
gies from two perspectives. (1) Training sequence: the order of different training
stages. (2) Multi-task training: the comparison of multi-stage-train and single-
train-stage. Multi-stage-train means that train multiple stages simultaneously and
the loss is accumulated, commonly multi-stage-training is beneficial for the collab-
oration of different stages [46]. However, things changed when the data becomes
mammogram, when noticed that training multi-stages simultaneously is harmful for
some stages’ regression including FC layer for classification and bounding box re-
gression. The overall comparison of different training strategy is shown in [15] We
can see that the training sequence has no obvious influence on the final results while
Single-stage-training is better than multi-stage-train as we expect. Also, four of six
experiments are trained without long time training(15000k per stage), which may
has a huge influence on our final decision, therefore more sufficient training must be
implemented in future works.

6.2.3 Limitations

During our research on this topic, we gradually realize that our work still exists
many limitations, some are unavoidable while some can be solved in future works.
Following is the details of these limitations one by one:
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Train sequence Min Long | Mean | Mean | FPPI
An- Train | AP(%)| Sensi-
chor tive(%)
Scale
Head,4+,all 32 v 60.3 72.6 3.14
(RPN,Mask,Backbone)x3,4+,all | 16 v 61.6 76.5 4.88
(RPN,Mask) x 3,4+ ,all 16 v 61.6 76.5 4.88
(Mask,RPN),44x2,allx 2 16 56.8 68.1 4.09
(RPN, Mask),4+4 % 2,all x 2 16 54.7 62.4 3.84
(Mask,RPN),44x2,all x 2 32 57.5 68.9 3.91
(RPN,Mask),4+4 x2,all x 2 32 58.9 72.1 3.59

Table 15: Overall comparison of different training strategy and minimal anchor size.
RPN: Train RPN individually.Mask Train FC layers and mask generation layers. Back-
bone: Train the backbone above 4th ResNet blocks.head: Train RPN and Mask simul-
taneously. 4+ Train the backbone above 4th ResNet block and the head simultaneously.
all Train all layers simultaneously.

Low representation power of small feature maps Though [47] claims that
they achieve a good results on small object detection using Feature Pyramid Net-
works [65], which translate small proposals in image to proposals in feature maps us-
ing multi-scale feature maps. But we noticed that the networks using features maps
extracted by FPN did not get a good performance, typically, almost all experiments
we have done based on FPN gained a high validation loss on final classification and
bounding box regression, on the other hand, the validation bounding box regression
loss of RPN is even better than the final bounding box regression. We guess the
reason is that the feature maps of small proposals have no enough repre-
sentation information. Therefore one direct idea is that using another network,
which adopts proposals in image as input, instead of the feature maps, to get the
final classification and regression score.

Few training data size With the study and understanding of the application
of deep learning in CAD (computer aided diagnosis) field, we gradually realized
that the key point of a successful work in CAD is not the power of model, but the
power of dataset, which includes the quantity and quality of dataset. We achieved
a satisfied results compared with other works using same dataset, but the results
are still not impressive compared with other works using private dataset stored in
hospital or university. Although we did many exploration on the development of
model, we are confident that we are able to get more impressive results if we have
more data.
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6.2.4 Conclusion

A mass detection and segmentation system based on Mask RCNN was proposed and
evaluated on public datasets. By the powerful representation ability of feature maps
and development of GPU speed, we achieve 5x speedup compared with previous
quickest work and outperform it, at the same time, we achieve a 150x speedup
compared with most accurate work. Also, we proposed a new loss function and got
a result with high precision. But our work still exists many potentials, the future
work is discussed in Section

96



6.3 User Interface

In this section, we will demonstrate the appearance of our webapp front end. The
user interface is designed for general users, so we have it as simple and clear as
possible. The initial look of our project main page is shown in figure

[ Breast Cancer Diagnos %

« C O 127.00.1:4898/index himl ov ¥r

Breast Cancer Diagnosis

Username

Password | )

PNG file RS SRS
- - - Submit

Figure 52: Overview of User Interface
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6.3.1 Authentication

A valid GPU cluster account is required to use our program. Therefore, the user is
expected to input credential on the webpage. Password text is obscured so that it
cannot be read. In production, we will use HT'TPS to encrypt the password. User
agent will determine whether the credential should be saved or not. The appearance
of this module is illustrated in figure [53|

Breast Cancer Diagnosis

Username qli5
Password
PNG file R | SRR

Submit

Figure 53: Input Credential
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6.3.2 Image Submission

Once a valid credential is provided, the user can pick PNG image files from local
disk. This input accepts only PNG image files, and the file picker will display only
files with an extension name of png. The appearance of this module is illustrated in

figure p4]

A1032 LIEFT_  C_D195_LRIGH
CC.png T_CC.png

T |PNGImage =
[ imag

Figure 54: Pick a PNG File from the prompt
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After selection, the png image file will be displayed on the page so that the user can
preview the image to be uploaded. The appearance of this functionality is illustrated
in figure [55|

Breast Cancer Diagnosis

Username olis
Password e
PNG file IEEENHE (©_0195 1.RIGHT_CC.png

Submit

Figure 55: Preview the Selected Image
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6.3.3 Progress Indicator

There are three steps in the program: uploading image, processing and generating
report. The user can click the “submit” button to initiate a diagnosis request,
which will upload the image and invoke the deep learning model on server. The
user interface will display the estimated process time after submission. Since the
diagnosis typically will take about two minutes, visual hints of the current status
will be helpful. Three progress bars will be used to monitor of the program. The
appearance of this module is illustrated in figure [56|

It may take up to 120s to process an image. Please wait...
1. Upload Image

2. Process

3. Generate Report

Report:

Figure 56: Indicate Progress of Each Step
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The progress bar provides another convenience. If the program fails, we can eas-
ily know where the error occurs. This provide more details for debugging. The
appearance of this functionality is illustrated in figure [57]

Figure 57: Indicate Error at Specific Step
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6.3.4 Report Generator

If everything in the diagnosis system goes fine, a human readable report will be
generated and displayed. The report will show the bounding box, the detailed range
and the confidence level of the suspicious region. If an image contains multiple kinds
of regions, they will be marked with different color. The appearance of a sample
report is illustrated in figure [58|

Report:

result

Figure 58: Generate a Human Readable Report
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7

Conclusion

7.1 Project Review

When we started our final year project, we knew little about Tensorflow and im-
age preprocess method or even some practical techniques in machine learning. We
therefore regarded this project as a good chance for us to enhance our knowledge
about deep learning and machine learning.

After continuous research and study from the related paper and trials of model
constructions, we think we have achieved our basic goal, learning and understanding
deep learning. The key effort and contributions we make in our final year project is
listed below:

e We successfully reimplemented ResNet in histopathological image classifica-

tion tasks and tuned the model structure using the knowledge of histopatho-
logical image features. Finally, we achieved pretty high accuracy which was
up to 90% average comparing with 86% average in [50], [60], [61], [62] using
same dataset.

We used Mask RCNN as the base model and also modified the model structure
to do a rough rumor detection, we also modified the loss function and positive
sample decision method, which makes improves the precision significantly from

60% level to 90%.

We built an efficient, user-friendly and reliable computer-aid diagnosis system
using a web-site as the Ul to help pathologist do breast cancer diagnosis faster,
easier and more accurate.

7.2 Future Work

Despite the achievements we gain, there are still some directions which deserve a

try:

Meta-information(age, height and so on). One simple idea is to feed these
normalized data into the fully connected layers in our model directly.

Pre-trained base model using mammogram as train data instead of
imageNet [64], which is misleading for model regression when training.

New network using proposals in image as input stead of proposals in feature
maps to solve the small feature maps problem we mentioned earlier.

We have successfully demonstrated the feasibility of MaskRCNN in mammo-
gram mass detection, therefore we are able to look for cooperation opportunity
with other universities and hospitals to get more data, making our model more
solid and compatible.
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magni Image level Batch level
ﬁc:tm a;ggzzg accura precisio recall F1 score nc::; confusion matrix
method | ¥ ¢A) n%) %4 (%) (%)
sum 81.77 89.83 83.91 86.76
A0% vote 82.33 96.61 80.66 87.92 A:/,l(;( 83.03 predict
average | 81.33 96.61 80.66 §7.92 81.91 malignant  benign
exist 81.95 99.44 78.92 88.00 malignant 17013 687
exist3 | 8214 9887 7937 _ 88.05 sottel | penign | 4126 474
sum 81.15 88.74 83.46 86.02
100x AUC( :
vote 83.84 9451 83.09 88.43 %) 84.91 predict
average | 83.84 9451 83.09 88.43 83.57 malignant  benign
exist 84.02 98.90 80.90 89.00 malignant 17147 1087
exist3 | 8402 9752 8161  88.86 sl | pentan 3496 6170
sum 86.86 95.89 86.00 90.67
200x AUC( :
vote 88.87 99.18 R6.19 9223 %) 80.78 predict
average | 89.05 99.18 86.40 92.34 88.31 malignant  benign
exist 86.86 100.0 83.52 91.02 malignant 17996 254
exist3 | 8796 1000 84.69 9171 Sl | 2949 6201
sum 86.54 96.22 84.87 90.19
400x AUC( >
vote 87.10 98.84 83.95 90.79 %) 89.84 predict
average | 87.29 99.13 83.99 90.93 86.82 malignant  benign
exist 86.36 100.0 82.49 90.41 malignant 16989 244
exist3 | 8636 9971  82.65  90.38 st | i 3287 6280

Table 16: The results of model with first convolution layer’s kernel size as 3 x 3, the
visualization version of model structure is in (Middle-Right,Figure

8 Appendix
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magni Image level Batch level
ficati
'L: & aftgil'flg accura precisio recall F1 score ac:culr confusion matrix
method | ¥ (%) BCA) (%) (6 | G ‘
L]
sum 85.15 91.53 86.86 89.13
x C
% vole 86.65 96.61 85.29 90.60 A;(;( 86.97 predict
average | 86.28 96.33 85.04 90.33 85.16 i malignant  benign
exist 81.01 99.15 78.17 87.42 i malignant 16932 768
exist3 | 83.08 99.15 80.14 88.63 W benign 3179 5721
sum 82.22 90.38 83.72 86.92
100= AUC( :
vote 85.82 97.25 83.69 89.96 %) 79.13 predict
(1]
average | 86.00 97.53 83.73 90.10 84.66 malignant  benign
exist 84.02 99.45 80.62 89.05 S— malignant 17494 746
exist3 | 84.92 99.45 81.53 89.60 ] benign 3534 6126
sum 87.41 95.89 86.63 91.03
200= AUC( ;
vote 87.59 98.36 85.27 91.35 %) 85.07 predict
average | 87.77 98.36 85.48 91.46 87.19 malignant  benign
exist 85.40 100.0 82.02  90.12 ackizal malignant 17857 393
exist3 | 86.50 100.0 83.14 90.80 i benign 3116 6034
sum 85.05 92.73 85.29 88.86 _
400 AUC( .
vote 85.98 96.80 83.88 89.88 %) : §7.09 predict
L]
average | 86.36 97.09 84.13 90.15 85.68 malignant  benign
8 gn g
exist 84.07 98.84 §1.34 89.24 e malignant 16563 672
exist3 85.23 98.84 81.93 89.59 benign 3165 6400

Table 17: The results of model with first convolution’s stride as 2, the visualization version
of model structure is in (Right,Figure [41])
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magni Image level Batch level
ﬁc:"n nag:a;;lg accura precisio recall F1 score “:cl;r Gl
mseibod.| < (%a) n(%) (%) (%) (%)
sum 82.89 90.40 84.88 87.55 .
40 | Jote | 8628 9746 8435 90.43 A,:] (]" 84.15 predict
average | 86.09 97.46 84.15 90.31 84.91 malignant  benign
exist 83.83 99.44 80.73 89.11 el malignant 16962 738
exist3 84.59 99.15 81.62 89.54 benign 3275 5625
sum 81.87 90.11 83.46 86.66
100x ALC( =
vote 83.30 95.05 82.19 88.15 %) 82.91 predict
average | 83.12 95.05 81.99 88.04 81.93 malignant  benign
exist 79.17 99.18 76.16 86.16 malignant 17080 1156
exist3 | 8043  98.63 77.54 8616 wiml | pesign 3885 5779
200x sum 88.87 99.18 86.19 92.03 AUC( '
vote 88.69 100.0 85.48 92.17 %) 91.21 predict
average | 88.50 100.0 85.28 92.06 88.14 malignant  benign
exist 85.58 100.0 8221 90.23 malignant 18218 32
exist3 | 8613 1000 8277 9057 Wl | penign | 3217 5933
400 sum 87.85 95.64 806.81 91.01 AUC(
vote 86.73 98.55 83.70 90.52 "/-i:) 89.53 predict
average | 86.54 98.55 83.50 90.40 86.56 malignant  benign
exist 84.67 99.71 80.90 89.32 malignant 16833 396
exist3 | 8561 9971 8186 8991 sl | beritin 3207 6364

Table 18: The results of model with feature maps doubled, the visualization version of

model structure is in (Middle-Left,Figure
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magni Image level Batch level

ﬁc:tw af‘gi::g accura  precisio  reeall F1 score ac:;r T
Gy | ¥ (%) n(%) (%) (%e) ("/?:l
sum §1.20 86.72 85.28 85.99

40X vote | 83.65 9322 8397 8835 ‘5?( 79.76 predict
average | 83.65 93.22 83.97 88.35 83.03 malignant  benign
exist 83.46 99.44 80.37 88.89 malignant 16313 1387
exist3 | 8421 9887 8140  89.29 sotmal | g 3128 5772
sum 80.79 §9.29 82.70 85.87

100x o AUC( :
vote 8438 96.15 82.74 88.95 %) 79.99 predict
average | 84.02 95.60 82.66 88.66 83.40 malignant  benign
exist 84.56 99.73 79.08 88.21 malignant 17386 843
exist3 | 84.56 99.73 81.03 89.41 tptl benign 3788 5883
sum 88.87 98.36 86.71 92.17

200x AUC( :
vote 88.69 100.0 85.48 92.17 %) 8B.06 predict
average | 88.87 100.0 85.68 92.29 88.15 malignant  benign
exist 84.67 100.0 §1.29 89.68 malignant 18181 69
exist3 | 8577 1000 8239  90.35 Al | penign | 3178 s9m
sum 88.04 97.38 85.90 91.28

400x AUC( ;
vote 86.17 99.13 82.77 90.21 %) 86.47 predict
average | £6.36 99.42 ¥2.81 90.36 86.10 malignant  benign
exist 83.36 100.0 79.45 88.55 malignant 16971 256
exist3 | 8430 1000 8037  89.12 ol | g 3470 6103

Table 19: The results of model with 2 pool layers before Residual blocks, the visualization
version of model structure is in (Middle,Figure

114



Image level Batch level
magnification | a ation accuracy  precision recall F1 score | accuracy . .

& glf;;?md (%) ¥ P (%) (%) (%) (%)‘ confusion matrix
sLm 79.51 84.46 84.70 8458
vote 81.95 89.55 84.31 86.85 AUC(Y) R0.68 predict

40 average 81.77 89.27 84.27 86.69 80.03 malignant benign

exist 77.63 93.79 77.34 8480 malignant 15594 2106
exist 78.95 9237 79.37 85.38 scal | o oign | 3205 5695
Sum 77.56 8242 83.10 82.76
vote 77.56 87.91 79.80 83.66 AUC(%) 79.42 predict

100 average 71.56 §7.91 79.80 83.66 79.09 malignant _benign
exist 78.28 98.35 75.69 85.54 malignant | 16097 2131
exist3 78.64 96.98 76.57 85.58 scal | owien | 3981 5691
sum 88.32 95.89 87.72 91.62
vote 88.87 97.81 87.07 92.13 AUC(%) B8.36 predict

200 average 88.87 9781 87.07 92.13 87.84 malignant benign
exist H4.67 99.45 81.57 89.63 malignant 17699 551
existd 86.13 99.18 83.22 90.50 actual | o | 2782 6368
sum 77.94 86.92 80.38 83.52
vote §2.24 95.06 80.74 87.32 AUC{%) | B85.73 predict

400x average 8242 95.35 80.79 87.47 81.09 malignant benign
exist §2.99 99.13 79.49 88.22 malignant | 16016 1219
exist3 82.99 97.97 80.05 88.10 somel | G | 3800 575

Table 20: The results using RAW image as input (no preprocess method) in both batch
level and image level

Image level Batch level
magnification a rwation accuracy recision recall Fl score | accuracy p -
& gir:tiud (%) Yy B (%) (%) (%) (%) ki confusion matrix

sum 62.40 65.54 74.83 69.87
vote 65.22 84.75 69.61 76.43 AUC(%) 68.89 predict

40= average 65.79 85.59 69.82 76.90 65.09 malignant benign
exisl 68.42 97.18 68.52 80.37 malignant | 14944 2756
exist 67.48 95.20 68.37 79.57 aotual |y oen | 6520 1371
SuIm 59.42 49.73 A0.80 61.56
vote 69.12 96.98 68.68 80.41 AUC(%) 70.39 predict

100% average 68.76 96.98 68.41 80.23 69.28 malignant benign
exist 67.50 98.90 67.04 79.91 malignant 17400 833
exist3 67.68  98.63 6723 79.95 actual |y nien | 7739 1928
sum 75.18 74.79 86.12 80.06
vote 76.64 87.67 79.40 83.33 AUC(%) | 81.52 predict

200= average 77.19 88.77 79.41 83.83 75.90 malignant benign
exist 73.91 96.99 72.84 83.20 malignant 15872 2378
exist3 74.45 96.44 73.49 83.41 Sopul benign 4225 4925
sum 77.76 81.40 83.58 H42.47
vote 80.37 90.99 80.88 85.64 AUC(%) 8215 Eredict

400 average 80.18 91.28 80.51 85.56 78.26 malignant benign
exist 71.78 98.26 69.98 81.74 malignant | 15433 796
exist3 7421 97.38 72.20 82.92 aowml | omien | 4031 5540

Table 21: The results whose images are preprocessed by subtracting Gaussian image and
applying CLAHE
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Image level Batch level
magnification | g ation accuracy recision recall F1 score | accurac " i
& gﬁ?’:‘(i“d (%) ¥ (%) (%) (%) (%) ¥ confusion matrix
sum 85.90 95.48 85.14 90.01
vote 87.03 99.15 84.17 91.05 ALC(%) 82.80 predict
40 average 86.84 99.15 83.97 90.93 86.17 malignant _benig]
exist 82.89 100.0 79.55 B8.61 - malignant | 17374 326
exist3 8421 100.0 80.82 89.40 benign 3352 5548
sum 78.64 86.54 81.82 84.11
vote 81.87 93.68 81.38 87.10 AUC(%) | 7942 predict
100> average 82.05 93.96 81.43 87.24 81.44 malignant _benign
exist 81.15 98.90 78.09 87.27 malignant 17085 1142
exist3 81.69 98.08 78,98 7.50 act8l | pemign | 4035 5638
sum 81.39 88.49 84.33 86.36
vote 85.77 97.81 83.61 20.15 AUC(%) 85.41 predict
200x average 85.40 97.26 §3.53 8987 84.96 malignant benign
exist 8248 99,73 79.30 88.35 s malignant | 17691 559
exist3 §3.58 99.45 80.49 88.97 benign 3562 5588
sum 77.94 86.63 80.54 83.47
vote 80.75 95.06 79.18 86.39 AUC(%) 82.05 predict
400% average 80.56 94.77 79.13 86.24 80.15 malignant benign
exist 78.09 99.13 75.44 B5.48 malignant | 16182 1047
existd 80.56 98.84 77.27 86.73 i benign 4273 5295

Table 22: The results using both CLAHE and whiten methods (keep the function order)
in both batch and image level

Image level Batch level
magnification | a ation accuracy  precision recall F1 score | accuracy 5 .
% g]f::;";md (%) ¥ P (%) (%) (%) (%) x confusion matrix

sum 31.58 86.72 85.75 56.23
vote 532.89 93.50 82.96 87.92 AUC(%) 82.19 El’cdict

40x average 83.08 93.50 83.17 88.03 82.93 malignant benign
exist 51.20 99.72 T8.10 89.59 malignant 16542 1158
exist3 8289 9905 7995 8852 acwal | enign | 3382 5518
sum 80.07 87.09 83.20 85.10
vote 84.20 94.51 83.50 B8.66 AUC(%) 76.98 predict

100= average 84.20 9451 83.50 88.66 83.37 malignant _benign
exist 83.30 98.90 20.18 BE.56 malignant 17051 1185
existd 8474 923 81.92 89.39 sotual |\ nign | 3456 6208
sum 87.77 96.99 86.34 91.35
vote 88.87 99.73 B5.85 92,27 AUC(%) 85.02 predict

200 average 58.69 99.73 B5.65 92.15 88.33 malignant benign
exist 86.31 100.0 82.95 90.68 e malignant | 18128 122
exist3 87.22 100.0 #3.91 0125 benign 3075 6075
sum 83.18 91.86 £3.60 87.53
vote 86.73 97.67 84.21 90.44 AUC(%) 82.61 predict

400 average 86.73 97.67 84.21 90 44 8615 malig benign
exist 86.17 99.71 82.45 90.26 malignant | 16743 487
exist3 8673 9971 83.05 90.62 semal | onign | 3225 6345

Table 23: The results using CLAHE in both batch level and image level
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Image level Batch level
magnification aggregation accuracy recision recall F1 score accurac . .
& gfnet‘;wd ) v (%) (%) ) (%) ¥ confusion matrix
sum 84.40 91.24 86.13 88.61
vole 86.09 98.02 8382 90.36 AUC(%) 80.97 predict
40x average 86.28 98.02 84.02 90.48 85.84 malignant _benign
exist 84.40 100.0 8101 #9.51 malignant | 17278 422
exist3 84.02 99.44 80.92 89.23 actual |\ omign | 3345 5555
sum 79.17 88.46 81.31 84.74
Sk 8223 9753 7977 8776 AUC(%) | 8223 predict
100 average 81.69 96.70 79.64 87.34 81.42 malignant benign
exist 5043 100.0 79.64 #6.98 malignant 17614 617
i3 8151 99.73 78.06 87.58 o8l | penign | 4566 5103
sum 82.66 §9.32 85.34 87.28
vote B5.22 97.53 83.18 §9.79 AUC(%) 57.63 predict
200= average 85.22 9753 83.18 89.79 84.65 malignant benign
exist 81.39 99.73 7828 87.71 malignant 17731 519
exist3 82.85 99.18 79.91 §8.51 actus] benign 3686 5464
sum 79.81 90.41 80.57 85.21
vole 82.80 97.97 79.86 87.99 AUC(%) 83.38 predict
400 average 82.62 97.97 79.67 87.87 81.75 malignant benign
exist 79.07 99.42 75.66 §5.93 malignant 16668 565
exist3 R0.19 9942 7668 8658 actal | nign | 4325 5242

Table 24: The results using both whiten and CLAHE methods (keep the function order)
in both batch and image level

Image level Batch level
magnification | aggregation | accuracy precision  recall Fl score | accuracy . .
adttiod (%) (%) (%) (%) (%) confusion matrix
sum 85.15 94.07 85.17 £9.40
vote 86.84 99 .44 83.81 90.96 AUC(%) 78.65 predict
40x average 86.65 99.44 83.61 9().84 85.82 malignant _benign
exist 82.14 100.0 T8.84 #8.17 malignant | 17444 256
exist3 83.46 100.0 £0.09 88.94 el | 3516 5384
sum 81.69 92.31 81.95 8682
vote 83.12 96.98 80.96 88.25 AUC(%) 82.19 predict
100= average 82.94 96.70 80.92 8811 82.32 malignant _benign
exist 81.33 99.73 77.90 87.47 malignant | 17590 Ha4
exist3 8205 9890 7895 87.80 actal | ponign | 4288 5378
sum 80.66 87.67 83.99 85.79
vote #5.04 96.71 83.45 #9.59 AUC(%) 86.22 predict
200 average 85.22 96.99 83.49 89.73 84.31 malignant benign
exist 82.30 99.73 79.13 88.24 il malignant | 17516 734
existd 83.58 99.45 80.49 88.97 benign 3564 3586
sum 79.25 89.24 80.58 84.69
vote §1.31 97.38 T8.64 §7.01 AUC(%) §3.11 predict
400 average 81.31 97.38 78.64 87.01 80.49 malignant benign
exist 77.57 99.13 74.45 #5.04 malignant 16616 616
exist3 78.69 98.84 75.56 85.64 mctial | emign | 4613 4955

Table 25: The results using whiten method in both batch level and image level
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Image level

Batch level

magnification |  aggregation accuracy  precision recall Flscore | accuracy confusion matrix
method (%a) (%) (%) (%) (%)
Surm 79.32 8446 84.40 84.46
vote 79.51 91.81 80.25 85.64 AUC(%) | 8241 predict
40 average 79.51 91.81 80.25 85.64 79.42 malignant _benign
exist T6.88 96.33 75.61 84.72 i malignant 16256 1444
existd 77.07 94.63 76.48 84,60 benign 4031 4869
sum 72.35 75.27 81.07 78.06
vote 78.10 87.64 80.56 83.95 AUC(%) | 81.54 predict
100:= average 78.54 R7.64 81.17 84.28 78.01 malignanl__benign
exist 78.99 95.70 77.02 85.75 malignant | 15927 2311
existd 79.89 95.33 78.51 86.10 actual |\ omign | 3823 5839
sum 80.47 R8.22 83.42 85.75
vote 84.67 97.53 82.60 89.45 AUC(%) 82.62 predict
200= average 84.67 97.53 82.60 89.45 8391 malignant  benign
exist 53.94 98.90 81.12 8914 malignant 17520 730
exist 84.12 098.63 §1.45 89.22 actual |\ wign | 3680 5470
sum 80.75 88,08 83.01 85.47
vote 83.55 93.60 82.99 H£7.98 AUC(%) 82.97 Ercdict
400x average 83.74 93.90 83.03 §8.13 82.96 malignant benign
exist 84.67 98.84 81.34 89.24 malignant | 16002 1237
existd 84.49 97.38 8191 88.98 actual |\ omien | 3320 6232

Table 26: The results using preprocess method in past papers, simply demean the images
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