

Intelligent Non-Player Character
with Deep Learning

Term 1

Meng Zhixiang
Zhang Haoze

Supervised by Prof. Michael Lyu

CSE FYP

CUHK

	 -	2	-	

This page is left blank intentionally.

	 -	3	-	

Table of Contents

Table	of	Contents	...	-	3	-	

1.	 Introduction	...	-	5	-	
1.1.	 Motivation	..	-	5	-	
1.2.	 Background	...	-	6	-	
1.2.1.	 Development	of	AI	in	Go	..	-	6	-	
1.2.2.	 Development	of	AI	in	chess	..	-	9	-	
1.2.3.	 Development	of	AI	in	Chinese	chess	..	-	10	-	

1.3.	 Difference	among	Chinese	Chess,	Chess	and	Go	..	-	11	-	
1.4.	 Objective	...	-	12	-	
1.5.	 Definition	of	Terms	..	-	13	-	
1.5.1.	 PGN	...	-	13	-	
1.5.2.	 FEN	..	-	13	-	

2.	 Literature	Review	...	-	16	-	
2.1.	 AlphaGo	..	-	16	-	
2.2.	 Predicting	Moves	in	Chess	using	Convolutional	Neural	Networks	..	-	20	-	
2.3.	 Giraffe:	Using	Deep	Reinforcement	Learning	to	Play	Chess	..	-	21	-	

3.	 Methodology	..	-	24	-	
3.1.	 Supervised	Learning	..	-	24	-	
3.2.	 Convolutional	Neural	Network	...	-	25	-	
3.3.	 Softmax	...	-	29	-	
3.4.	 TensorFlow	..	-	30	-	

4.	 Implementation	..	-	31	-	
4.1.	 Project	Workflow	..	-	31	-	
4.2.	 Structure	Overview	...	-	33	-	
4.3.	 User	Interface	...	-	34	-	
4.3.1.	 Game-Related	Functions	...	-	35	-	
4.3.2.	 Communication	Functions	...	-	36	-	

4.4.	 Game	AI	..	-	37	-	
4.4.1.	 Piece	Selector	and	Move	Selector	..	-	39	-	
4.4.2.	 Neural	Network	Structure	...	-	41	-	
4.4.3.	 Features	Extractor	...	-	43	-	
4.4.4.	 Decision	Maker	..	-	46	-	

4.5.	 Connection	between	Frontend	and	Backend	..	-	47	-	

5.	 Training	Process	...	-	49	-	
5.1.	 Training	Dataset	..	-	49	-	
5.2.	 Preprocessing	..	-	50	-	
5.3.	 Chessboard	Flipping	..	-	52	-	
5.4.	 Training	Strategy	...	-	53	-	

	 -	4	-	

6.	 Project	Progress	..	-	55	-	
6.1.	 Project	Schedule	...	-	55	-	
6.2.	 Simple	AI	with	Monte	Carlo	..	-	55	-	
6.3.	 Evaluation	Network	...	-	60	-	
6.4.	 Previous	Design	...	-	65	-	

7.	 Results	..	-	67	-	
7.1.	 Accuracy	Testing	..	-	67	-	
7.1.1.	 Piece	Selector	...	-	67	-	
7.1.2.	 Move	Selector	..	-	71	-	

7.2.	 Real	Performance	Testing	..	-	73	-	
7.2.1.	 Game-Playing	Case	1	...	-	74	-	
7.2.2.	 Game-Playing	Case	2	...	-	77	-	
7.2.3.	 Game-Playing	Case	3	...	-	80	-	
7.2.4.	 Game-Playing	Case	4	...	-	85	-	
7.2.5.	 Game-Playing	Case	5	...	-	87	-	
7.2.6.	 Game-Playing	Case	6	...	-	97	-	

8.	 Discussion	..	-	101	-	

9.	 Conclusion	...	-	104	-	

10.	 Plan	for	Second	Term	...	-	105	-	

11.	 Reference	...	-	107	-	
	

	

	

	 -	5	-	

1. Introduction

1.1. Motivation

Artificial Intelligence (AI), especially machine learning has been

experiencing a burst of evolution in recent years, as the computing

capability of computers has increased a lot so that the computations required

by machine learning approaches are achievable using much shorter time.

Among all, Google’s AlphaGo is a good example. AlphaGo is a game AI

that plays GO, and it beat Lee Sedol, one of the top-class professional

players, in a five-game match with the score of 4-1 in March 2016. It’s a

surprising but expected result, which shows the powerfulness of AlphaGo,

and more importantly, the great potential of machine learning. It uses a

method called deep learning, which uses Neural Network (NN) to search for

the best option for current situation.

	
Figure	1.1.	AlphaGo	Playing	against	Lee	Sedol	

	 -	6	-	

Currently, many people are trying to use deep learning to solve different

kinds of problems, including building game AI for different games. While

most of them focus on Go or chess, none has ever applied the approach of

deep learning to Chinese chess. Chinese chess is one traditional strategy

game, which is still very popular nowadays. Nowadays, the existing game

engines of Chinese chess are all based on searching approach without using

machine learning and primarily rely on hard-coded libraries of the initial

phases and the final phases of games to make move choice. As the approach

of deep learning has been used on many fields, like GO and chess, however,

the field of Chinese chess remains blank. Therefore, we tried to build a

game AI for Chinese chess, using deep learning.

1.2. Background
	

1.2.1. Development of AI in Go

In Go, the size of game board is 19*19=361, which is much larger than

other games. For example, there are 8*8=64 available positions in chess,

and there are 9*10=90 available positions in Chinese chess. In a recent

research, the number of legal positions on a game board of Go is

2.801682*10170. [18] The number is 1090 times larger than the number of

atoms in the universe. It means the complexity is much larger than other

chess games, like chess and Chinese chess. So, direct searching approach is

	 -	7	-	

not applicable for Go because searching is slow and limited in global area

where the depth of searching may be too large.

In the beginning process of development history of AI, however, there were

no better algorithms to search and evaluate the game board. All they could

do was to modify the evaluation function and pruning condition. As Go uses

a really big game board, players are required to have the ability to judge the

current situation (the difference of areas controlled by players). But in a

game, the ownership of one place may be fuzzy and hard to decide even for

human players, and for computer program at that time, it made lots of

mistakes and couldn’t be used for a high-level AI. So, for the scientist that

time, building an AI to overcome top-class human players seems

impossible.

To solve the problem, Monte Carlo Tree Search (MCTS) was introduced in

this field. To explain what MCTS is, imagine that a person who is absolutely

a beginner and knows nothing about Go, and let him choose a place

randomly. Then repeat the process and calculate the winning rate of every

possible move. However, simple randomization is not suitable for complex

board games. For instance, in Go, there exist situations where there may

exist many legal moves but only few among them are reasonable.

	 -	8	-	

	
Figure	1.2.	An	Example	of	"Ladder"	In	Go	

As shown in Figure 1.2. above, what the black side does is called “ladder”.

The black side forces those white stones to move like zigzag, and finally can

capture them all. During this period, the black side must put its stones in

correct points as indicated in Figure 1.2., or the white side can escape,

which is a common sense for Go players. This is easy for human players but

not for a computer program.

In 2006, the invention of UCT (Upper Confidence Bound 1 applied to trees),

an improved version of MCTS, changed this status. UCT would prefer a

known better move with higher winning rate other than select them

completely randomly. By this improvement, the efficiency of searching had

been growing fast. In 2006, the level of the best AI that time had only k

level, below the average level of amateurs. But in 2012, Zen, a Go engine

using MCTS, beat top-class professional player at four stones handicap,

which means it could win against nearly half of amateurs.

	 -	9	-	

However, MCTS also has its own limit in global view though it is good at

local battle. The level of program hardly improved until 27 January 2016,

the day when the paper about AlphaGo was published on Nature. AlphaGo

had beat Fan Hui, a 2-dan pro, in 5-0 complete victory, which is the first

victory between Go program and professional Go players in equal condition.

This revolutionary improvement could attribute to the use of neural network.

The detail of the algorithm of AlphaGo can be found in the literature review.

To be brief, neural network provides a faster way to evaluate the situation on

board and to generate a quick predicted move, like what human players will

do. Combining with the accurate calculation, distributed AlphaGo running

on Google’s cloud service wins all 500 games against “old” AI. And In

March 2016, AlphaGo beat Lee Sedol, one of the top class professional

players, in a five-game match with the score of 4-1 in March 2016. In an

ELO-ranking website GoRatings, it is the second-best player in the world.

The success of AlphaGo has proved that it is possible for computer

programs to beat human players in Go.

1.2.2. Development of AI in Chess

In chess, Deep Blue has done it long before. In May 1997, it beat Garry

Kasparov with 3½–2½. Nowadays, even top-level professional players have

little possibility to win against AI running on normal computers as current

	 -	10	-	

personal computers have higher computation ability than Deep Blue.

But the AI of Deep Blue is different from AlphaGo. In fact, the hardware of

Deep Blue consists of 30 paralleled CPUs and 480 specially made VLSI

chips, meaning that the computer could only run chess program. But

nowadays, the newest chess engine, Stockfish, can run on Windows

machines, and beat any other players or AIs on personal computer with

4-cores CPU.

Nowadays, a normal game engine of chess or Chinese chess will contain

searching part and libraries for opening and ending. In fact, though usage of

these libraries is not necessary, it can improve the performance of AI greatly.

This is because that the number of branches in searching will increase

greatly as the number of available moves increases. So, using hard-coding

libraries will be a good choice. But if we use Neural Network, this should

not be a problem. The best neural network AI, Giraffe, can reach the level of

an FIDE International Master though Stockfish is still stronger.

1.2.3. Development of AI in Chinese Chess

However, those game engines in Chinese chess are still using traditional

methods. In National Computer Games Tournament of 2016, Chess Nade

(“象棋名手” in Chinese) won its fifth consecutive champion. And it is

recognized as the best Chinese engine in China. The detail algorithm of it

	 -	11	-	

remains secret as it is commercial software. But we can infer that it still uses

traditional method, including searching and pruning. Now, there is no any

software using Neural Network in Chinese Chess. So, it is a blank field for

us.

1.3. Difference among Chinese Chess, Chess and Go

The main difference between Chinese chess and Go is the way to make a

move. In Go, players should put one stone into an empty position every turn,

while in chess and Chinese chess, players should move a piece on the board

following a set of rules depending on the type of the piece selected. And in

chess and Chinese chess, pieces can be captured so that the number of

pieces on the board will become less and less, leaving the possible moves of

those remaining pieces become more and more. While in Go, the number of

stones on the board will generally become more and more and the available

positions to place a stone become less and less.

Besides, compared with chess, there are mainly two different points in

Chinese chess. First, there are two fortresses and one river on the chessboard,

restricting the move of certain types of pieces, like King, Bishop and

Advisor. Second, there is a special type of pieces, called Cannon, which can

capture only with exactly one piece in the middle but move like Rock.

Therefore, certain considerations are necessary for these difference,

	 -	12	-	

compared with the methodologies used in previous researches about GO and

chess.

1.4. Objective

Our objective is to implement a game AI which can play Chinese chess with

human users, and the whole game system should have following

components.

a) A user interface lets human players to play Chinese chess against our

AI. It should be able to communicate with our AI, like sending

information describing the chessboard status to the server and

receiving move choice of our AI from the server. It should be able to

judge whether every move is legal or not and decide if a player is

checkmated.

b) A game AI makes moves against the opposite player based on the

output of pre-trained NN model. It should be able to receive the

message sent from frontend, preprocess it, then feed it into NN model

to get a move choice, and at last send the choice back to frontend. It

would be better if it is able to play Chinese chess with multiple users

simultaneously and record game histories for further training usage.

c) A program trains NN model ahead to be used in our AI and saves the

trained model. For our AI, it only restores the previously saved model

	 -	13	-	

to do calculation.

1.5. Definition of Terms

1.5.1. PGN

PGN is short for Portable Game Notation, which is one popular string

format to record the game history for chess games. [1] The basic format for

recording moves is simple: [one character to represent the type of selected

piece] [the coordinates of the destination of this move]. Obviously, only a

complete sequence of PGN starting from an initial chessboard status will

make sense, as the original position of the selected piece in each move is not

recorded.

Besides, there is a Chinese version of PGN to record Chinese chess games.

The basic rationale is quite similar, with little difference. There are also

other formats in English or Chinese to record games. The common problem

of them, however, is as the same as stated above, which is that only the

whole sequence together will make sense.

1.5.2. FEN

FEN is short for Forsyth–Edwards Notation. Similarly, it is one standard

string format representation of the chessboard status, using one letter to

represent each type of chess pieces as shown in Figure 1.3. below.

	 -	14	-	

	
Figure	1.3.	Symbolic	Representation	for	Different	Pieces

We also made certain modifications for simplicity, like using ‘1’ to denote

an empty position. Lowercase letters are to represent the pieces of

upper-side player while uppercase letters are to represent the pieces of

lower-side player. FEN represents the whole chessboard row by row, with ‘/’

as delimiter. At last, the player to make the next move is also declared in

FEN, with ‘b’ for black side and ‘r’ for red side. The move is recorded using

four digits, by combining the coordinates of both the original position and

the new position of that piece. Clearly, FEN is much better then PGN for our

NN training usage, as it contains complete information for every

intermediate game status.

	 	 	
	 (a)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	

Figure	1.4.	An	Example	of	FEN	Format	

	 -	15	-	

Here is an example of FEN. Picture (a) in Figure 1.4. is a chessboard status

and Picture (b) is the chessboard after replacing real pieces with symbols.

And the next move is the turn of the red side. The corresponding FEN

representation of this chessboard status is:

“rnbakab1r/111111111/1c1111nc1/p1p1p1p1p/111111111/111111111/P1P1P

1P1P/1C11C1111/111111111/RNBAKABNR, r”

	 -	16	-	

2. Literature Review

2.1. AlphaGo

AlphaGo mainly contains four Neural Networks.

	

Figure	2.1.	Neural	Network	of	AlphaGo	

In Figure 2.1., the left two networks learned from human experts, which use

supervised learning to train.

Rollout policy network is a simple network that can deal with chessboard. It

is similar as first impression of human players. It has relatively low

accuracy about 24.2% in predicting human players’ moves, mainly used for

reducing the nearly impossible moves of searching tree. The mainly

advantage of this neural network is that it can run faster which needs only 2

nanoseconds to select a move while SL policy network needs 3 ms to do

that.

SL policy network also is used to predict the human player’s move.

	 -	17	-	

However, as it is more complex in structure which have 13 layer and

well-trained which uses 30 million positions to train, it has higher correct

rate. For normal chessboard, the accuracy can reach 57.0%. However, it is

not enough as it has only approximately 10% winning rate again traditional

AI using MCTS.

The two networks on the right side are using reinforcement learning. RL

policy network has same structure as SL policy network, but it continuously

plays with itself, and makes improvement based on the result. After

reinforcement learning, it has 80% winning ratio against previous version

using supervised learning. Even if it does nothing search at all, it performs

better than any other AI.

The last part is value network. Though the structure of this network is not

very different from policy network, it only output a value representing the

prediction of winning rate for one side. It uses the positions sampling from

the self-playing game from RL policy network in order to prevent

overfitting. Because if it uses normal games as training dataset, it would

trace every move in a specific game and then record the result of the game

instead of the stone distribution.

Besides Neural Networks, it also uses MCTS. Different from normal AI,

with the help of Neural Networks, the single searching used by AlphaGo

	 -	18	-	

will start with using SL policy network predicting a chain of moves, and

using the result from value network and rollout to improve it. The result will

be the score of next move. After repeating this procedure for enough time, it

will have a map of score for all possible next move and put next move

according to it.

	

Figure	2.2.	An	Example	of	AlphaGo	Making	a	Move	

Figure 2.2. shows an example for how AlphaGo makes next move. The

position is taken from the game with Fan Hui, and AlphaGo is on black side.

In all of these subgraphs, the point with red circle is the best move

according to the method it uses.

	 -	19	-	

Figure a is representing the evaluation after next move using valuation

network. Figure b is representing the result from searching where it uses

only value network without rollout network. Figure c is representing the

result from searching where it uses only rollout network without value

network. We can notice that the result form MCTS would be different if the

ratio between them are changed. In their practice, they discovered that a

mixed version would have best level. Figure d is the result from SL policy

network directly. The first move chose by it is a move of middle level.

Figure e shows the results from its search tree, and it will choose the move

with the highest value. Figure f shows AlphaGo’s principal variation from

search tree. The number of sequence number means a most possible

prediction about process of the game. Though Fan Hui’s move is not the

same as AlphaGo’s thought, he admitted that AlphaGo’s suggested move

would be better.

Due to the improvement above, AlphaGo has become the strongest AI in the

world. Consisting of 1,202 CPUs and 176 GPUs, the distributed version of

AlphaGo beat any other while a normal version using 48 CPUs, and 8 GPUs

only lose one game in 495 games in total. Even with handicaps, it still had

high winning rate against others.

Though the rules of Go and Chinese Chess are different, we can still learn

from the method and ideas of building AlphaGo.

	 -	20	-	

2.2. Predicting Moves in Chess using Convolutional Neural Networks

The work from Oshri, B., & Khandwala, N also uses convolutional neural

network. As it is design for chess, we think it more helpful for our project

because chess is a lot more similar from Chinese chess compared with paper

about AlphaGo.

In their work, they mainly build policy neural network. And in predicting

next move from human players, it reached the accuracy of 44.4%, which is

pretty high. The success of their work proves that it is possible to use CNN

to train an AI for playing chess.

In their thesis, the recognize reasoning of chess as kind of pattern

recognition while traditional method only consists of searching and

evaluation. And the way for the neural network to select a move is to

separate a move into two parts: select a piece and move it to other places.

And use piece selector and move selectors to solve the part respectively.

This is different from AlphaGo, because of the difference between moving a

piece in chess and putting a stone in Go.

However, the high accuracy in predicting next move doesn’t mean that the

program has high level of playing chess. In the 100 games with Sunfish, a

famous chess engine, it loses 74 games and draws in the rest of game. In

those draw games, this program play well in the middle game, and force

	 -	21	-	

opponents to make a draw. However, in the sparse ending game, it faces

many troubles because patterns can’t be found in that kind of position.

2.3. Giraffe: Using Deep Reinforcement Learning to Play Chess

In Matthew Lai’s work, he implemented evaluation function of game engine

based on neural network. We use his paper as reference on our evaluation

network.

The feature of the inputs of neural network has following features.

a) Side to Move – It is turn for black or for white.

b) Castling Rights - Presence or absence of castling rights. Castling is a

special rule for chess. In Chinese Chess, we don’t need to consider it

c) Material Configuration – Amount of each kind of pieces

d) Piece Lists – for every piece, note their position coordinate, existence

e) Sliding Pieces Mobility – for sliding piece, note how far they can move

along a direction, and liberty of them.

f) Attack and Defend Maps – for each square, note the attacker and

defender with lowest value.

After determining these features, the author did not mix them directly

because the connection between two features with long distance logically

	 -	22	-	

would have no benefits to the results. As a result, the last 2 layers are fully

connected, while the prior one was trained separately.

For their training dataset, instead of using that collected on Internet. They

added a random legal move to the board and used the processed one as

training data. The reason of this process is to increase the variety of dataset,

in order to help the neural network to evaluate the unseen situation.

Then the author used reinforcement learning to the neural network, and use

TD-leaf algorithm. In each time of iteration, they use the network to move

12 moves, and trace on the move to see when the score of board will change,

weighted by the distance from the beginning position.

	
Figure	2.3.	An	Example	of	TD-leaf	Searching	Results	

In the sample graph as shown in Figure 2.3., the network used a discount

parameter 0.7. The second move changed the score by 10, then its effect on

Total Error is 10 * 0.7 ^ 1 = 7. We can see that in this algorithm, if a move

which will change the board is far away from now, it would have lower

	 -	23	-	

contribution. The algorithm is consistent with our common senses about

chess.

The result of their Neural Network is remarkable. Their program, named

Giraffe, have an evaluation function comparable to those of best chess

engines worldwide, though evaluation functions of those engines are all

designed and tuned by human over many years.

	

	 -	24	-	

3. Methodology

3.1. Supervised Learning

Supervised learning is one of deep learning approaches, through which the

NN model is trained by dataset with target labels. In supervised learning,

examples in the training dataset are composed of inputs, usually

representing features of objects to be learned, and target outputs. Generally

speaking, the goal of supervised learning is to learn a function, classifying

objects into different labels depending on the values of certain features, out

of the training data. An acceptable function should be able to deal with

unseen instances correctly, which requires the function to classify the data in

a learned reasonable way. In supervised learning, there are several tradeoff

issues, which would affect the training results, as stated hereinafter. [2]

Bias-variance Tradeoff: The tradeoff between bias and variance is the first

issue to be considered. [3] An algorithm with high bias will ignore the

relevant relations between features and expected outputs and give incorrect

answers. And an algorithm with high variance will record the random noise

rather than expected labels and perform bad in unseen inputs, which is also

called overfitting. An algorithm should have flexibility to retain low bias. If

we try to increase its flexibility, the variance of the algorithm would

increase as well. Also, the similar tradeoff issue happens between the

complexity of regression function and the size of training data. [4] A

	 -	25	-	

complex function will require a large amount of data for the model to learn

correctly and the function may have low bias and high variance. On the

opposite, a simple function only needs a small size of data, but it may

become inflexible, and have high bias and low variance. To handle the

tradeoff issues, a good model should adjust between bias and variance and

make a balance.

Dimensionality of Input Space: If there are lots of features in inputs, it will

be difficult for the model to learn, because redundant unrelated features will

confuse the model. To solve this problem and increase the accuracy, a

reduction of features should be done.

Noise in Output Values: In reality, the desired outputs in a dataset may not

be always correct or optimal due to many reasons, such as human errors. For

instance, in our project, human players may make faults and choose a bad

move sometime. It’s also possible that different players may apply different

strategies based on personal reasoning, and choose different moves in one

same situation. If the learning algorithm wants to make perfect matches, it

will overly fit into a specific training dataset and perform quite bad for other

datasets.

3.2. Convolutional Neural Network

In machine learning, a Convolutional Neural Network (CNN) is a special

	 -	26	-	

type of NN and its connection pattern between neurons imitates the structure

of cat’s visual system. The main difference of CNN and normal Neural

Network is that CNN makes assumption that inputs are pictures. And it has

following features. [5]

Local Receptive Fields：In a fully-connected Neural Network, the input is

connected to every hidden neuron. In CNN, however, neurons in the first

hidden layer will only be connected to small region of inputs. The values of

the first layer will be the results of a convolution between the input layer

and filters. [5]

	
Figure	3.1.	Local	Receptive	Fields	

As shown in Figure 3.1., it applies a 5*5 filter to a 28*28 input image, and

will get a 24*24 hidden layer. Usually the filter is moved for one pixel at a

time, but sometime a larger stride will be used. For instance, sometime we

may use a stride of 2, which means that each time we move the filter by 2

	 -	27	-	

pixels to the right or down.

Shared Weights and Biases: For a given feature, the weight and bias of every

neuron are same, resulting in the identical feature being detected by all

neurons. The advantage of using this method is that it can reduce the total

number of parameters and computations in the network. [5]

	

Figure	3.2.	Shared	Weights	and	Biases	

In Figure 3.2., there exist 3 feature maps in the network. In every feature

map, a 5*5 filter is used, and the whole image shares the identical weights

and bias. This network can detect 3 different kinds of features across the

whole image.

Pooling Layers: Pooling layers are used to condense the output from

convolutional layers and simplify the information. For example,

max-pooling, a most-used method for pooling will pick the maximum value

in a region of specific size, and then the number of neurons in the output of

	 -	28	-	

pooling layer will decrease greatly. [5]

	
Figure	3.3.	Pooling	Layer	

In Figure 3.3., a 2*2 max-pooling is used. In every 2*2 region, the pooling

unit will find the maximum value in the region and use it as the output.

After the pooling process, the size of the output layer will become half of

the hidden layer.

The final layer of CNN is usually a fully connected layer, connecting every

neuron in its previous layer to every neuron in this layer, and uses a logistic

function to output result.

With all these features, CNN will have better performance in some

appropriate problems than traditional NN. The reason that we choose CNN

will be mentioned afterwards.

In our project, we choose the rectifier as the activation function used in

CNN.

	 -	29	-	

	
Figure	3.4.	Plot	of	ReLU	Function	

The graph above is the plot of the rectifier function. In NN, any unit

employing the rectifier is called a rectified linear unit (ReLU). Compared

with normal logistic functions like sigmoid function, it has higher efficiency

in computation because it only contains comparison and addition, and

avoids the problem of vanishing or exploding gradient. [6]

3.3. Softmax

The softmax function is a generalization of logistic regression when we

need to classify among multiple classes. [7] After softmax, the highest input

value will have highest probability and other values will be depressed.

Every element in the output vector has a value in [0,1] represents the

probability of the label is correct. For a K-dimension vector z, the softmax

function can be represented as:

	

σ is the output vector with sum equal to 1.

	 -	30	-	

3.4. TensorFlow

As an open-source project, TensorFlow is a software library designed to do

numerical computation. It can support different platforms, including desktop,

server and mobile platform, and can run on both CPU and GPU. TensorFlow

provides developers using deep learning with an easy way to handle

underlying layer computation. They just need to define the architecture of

their own Neural Network model, select the objective function they want to

use, and then feed the training data into the model. TensorFlow makes their

work much easier and clearer. As TensorFlow is built to support threads,

queues, and asynchronous computation, it can make the best of the

computation ability of hardware including both CPU and GPU. [8]

	
Figure	3.5.	Data	Flow	Graph	

	 -	31	-	

4. Implementation

4.1. Project Workflow

Our project development process could be roughly divided into the

following four steps: Model Design, Model Building, Model Training and

Model Testing. These four steps were repeated until we found that the final

performance of the game AI was reasonable, or satisfying to certain extent.

First, based on previous works of other game engines in Chinese chess,

chess and Go, our own model was designed, like the structure of NN, the

component of our AI, the algorithms to make move choices, and so on,

considering the special aspects of Chinese chess. Secondly, an AI model was

built based on our previous design, and functions were implemented

accordingly. Next, the AI model was to be trained, using training datasets

collected previously, by certain training strategies.

At last, the trained AI model was to be tested so that its performance could

be quantified or directly demonstrated. Here, it was firstly tested by a testing

dataset, which was in the same format with the training dataset, and its

prediction accuracy was calculated, which was a quantitative measurement

of the AI model. Besides that, the AI model was also tested against real

human players, to see whether its performance appeared to be reasonable in

actual games. Basically, only after a satisfying accuracy was achieved in

	 -	32	-	

that simple Accuracy Testing, the AI model would be tested in real games.

After testing, the results were analyzed to find the reasons behind, and then

certain modifications would be made. If the design was determined to be

ineffective, a new model would be designed, after more researches, and

analysis and reasoning. But if errors were found in the procedures of Model

Building or Model Training, or those steps could be changed to improve the

training results, according modifications would also be made and the

re-trained AI would be tested again.

	
Figure	4.1.	Project	Workflow	

	

	 -	33	-	

4.2. Structure Overview

	
Figure	4.2.	Structure	Overview	

Our game engine mainly consists of three parts: frontend, backend and the

connection between them. The frontend is the User Interface, which

self-evidently serves as the interface for players to play Chinese chess

against our game AI. The backend is basically the AI model, with several

minor functions. This is the most important and difficult part of our whole

project.

At last, a connection between frontend and backend is necessary,

considering the fact that our model cannot directly run on the browser, as

the library provided by TensorFlow is required but may not be supported by

	 -	34	-	

the frontend. This is also a tricky part, as our frontend is written in

JavaScript while our backend is written in Python. Conventionally,

JavaScript programs and work well together with PHP programs.

TensorFlow, however, does not provide libraries for PHP. Therefore, this

connection needs to be established by special techniques.

4.3. User Interface

Our game User Interface (UI) was written in JavaScript, using the

cocos2d-html5 engine, so that it can support different types of platforms,

like PC, iOS and Android. This UI was primarily based on an open-source

project in GitHub [9], and certain modifications were made per the special

requirements of our project.

Self-evidently, the main function of UI is to convey messages between

human players and backend programs. But it also needs to ensure the rules

of the game, i.e. Chinese chess, to be obeyed and the game can continue

smoothly. Therefore, our UI can be divided roughly into two parts:

Game-Related Functions and Communication Functions.

	 -	35	-	

	
Figure	4.3.	User	Interface	Structure	

4.3.1. Game-Related Functions

Following basic game-related functions were implemented:

a) Move Choosing – to let players make moves alternately

b) Move Validation – to ensure only valid moves per rules of Chinese chess

can be made

c) Move Execution – to make the move per players’ choice and update the

	 -	36	-	

chess board status accordingly

d) Checkmate Checking – to check whether one of the players is in check

and whether one side is wining

These basic functions ensured our game engine could function correctly and

legally.

	 	 	

Figure	4.4.	Examples	of	User	Interface	

In Figure 4.4., the left picture is the beginning of UI and users need to click

the button to start the game. The middle picture shows the initial chessboard.

The right picture shows when the user is trying to make a move for the red

Cannon and the purple cycles indicates the legal moves for it.

4.3.2. Communication Functions

Apart from the basic functions mentioned above, several more functions

were implemented as well, allowing our UI to communicate with our AI.

	 -	37	-	

a) Chessboard Translation - to represent the chessboard status in FEN

format

b) Message Sender - to send the FEN of chessboard status to the server via

socket

c) Message Receiver - to receive the message of move choice of our AI

from the server via socket

d) Message Interpreter - to interpret the received message and allow our UI

to update the chessboard correctly

4.4. Game AI

Our game AI consists of several Neural Network (NN) models, written in

Python, with some other minor functions. Theoretically, there should be

mainly two NN modules, Policy Network, to predict the most possible next

move and Evaluation Network, to evaluate the winning rate, given certain

chessboard status. Combine the results of these two modules and do some

searching, the AI will make a move choice.

	
Figure	4.5.	Design	of	AI	Structure	

	 -	38	-	

For Policy Network, it can be further divided into two NN models, Piece

Selector and Move Selector, which will be explained in detail later. Simply

speaking, Piece Selector decides which piece to be moved and Move

Selector decides where that piece to be moved to. For both the two NN

models, a probability distribution over the all 90 positions of a chessboard

will be output, indicating the possibility to choose each position.

This term, we mainly focus this module, and basically our current AI will

make move choices only based on the results of Policy Network. Next term,

the Evaluation Network will also be implemented and a new move selection

strategy will be designed.

As shown in Figure 4.6., the detail structure of our current game AI, it

mainly consists of these components: Message Receiver, Format Converter,

Feature Exactor, Decision Maker, Message Sender, and most importantly,

Piece Selector and Move Selector. The overall flow is: Message Receiver

receives the FEN information from frontend via socket, and Format

Converter preprocesses the information so that Feature Exactor can identify

it and extract according features out. After that, Piece Selector and Move

Selector together outputs the probability distributions of possible moves. At

last, Decision Maker makes a move choice and Message Sender sends the

choice back to frontend.

	 -	39	-	

	
Figure	4.6.	Structure	of	Game	AI	

4.4.1. Piece Selector and Move Selector

To make a move, the player needs to choose a self-side piece first and then

choose a destination for that piece. Accordingly, our AI consists of two parts,

Piece Selector and Move Selector, either of which is a NN model itself. [10]

Evidently, Piece Selector is to choose a piece per the chessboard information

	 -	40	-	

and Move Selector is to choose a destination for that piece chosen by Piece

Selector. So, firstly Piece Selector will decide which piece to move and pass

this information to Move Selector as well. Next, Move Selector will decide

where that piece to be moved to. Combining the outputs of two NN models

together, our game AI would output a four-element array to denote the move

choice, decided by certain selection strategy, and send it back to frontend.

As different kinds of pieces should obey different rules when making moves,

different Move Selectors were trained and used for each kind of pieces. So,

Move Selector itself actually consists of 7 different NN models, and will use

different ones to generate output accordingly, while Piece Selector consists

of only one NN model.

 	
Figure	4.7.	An	example	of	Piece	Selector	and	Move	Selector

As shown in Figure 4.7. above, the first picture is a real screen capture of

our UI. The second and third ones represent the digital information that our

AI receives. In the second one, the Knight piece in the red cycle indicates

	 -	41	-	

that our Piece Selector decides to choose this piece to move by certain

selection strategy, like choosing the one with the highest probability. Then

with the chessboard information and the output of Piece Selector, Move

Selector uses the NN model for Knight pieces, and decides a destination for

that piece, i.e. the other red cycle in the third picture. And the two red

arrows indicate the legal moves for that Knight piece.

4.4.2. Neural Network Structure

The general structure of Piece Selector and Move Selector is basically the

same, as shown in Figure 4.8.. Both them accepts several same features of

the chessboard status as input while Move Selector needs one more feature

indicating valid moves for the piece selected by Piece Selector. Several

convolutional layers were used first to do convolution among different

feature channels. At last, one softmax layer would process the results of

convolutional layers and output a probability distribution over all the 90

positions in a chessboard.

The first and second convolutional layers were designed to have 32 and 128

feature channels respectively. And the size of filters was set as 3*3*depth.

The reason for us to choose CNN is that there exist many common patterns

in realistic Chinese chess games, similar with joseki in Go. Given a certain

pattern, players will have relatively fixed solutions based on previous

	 -	42	-	

experience, which are usually considered as optimal. Undoubtedly, CNN

works well in recognizing patterns seen from previous research results. Also,

CNN can greatly reduce the number of parameters and accelerate training

speed, compared with fully connected NN. That is why CNN is chosen to

build our model, instead of fully connected NN.

	
Figure	4.8.	Structure	of	Piece/Move	Selector	

In our final model, pooling layer was not used because the information in

the chessboard was already quite sparse and it would be better for all

information to be preserved. Since the size of input is small and every value

in the input represent a piece, a pooling layer may greatly influence the

	 -	43	-	

result. For the same reason, dropout was not used as well.

4.4.3. Features Extractor

As mentioned above, several feature channels would be extracted as input

feeding into the NN models, after converting the FEN string format into a

10*9 matrix representing the chessboard and getting the current player.

	
Figure	4.9.	Feature	Channels	

First channel was to use ‘1’ and ‘-1’ to respectively denote the positions of

self-side pieces and opponent-side pieces, and ‘0’ to denote empty positions.

For example, as shown in Figure 4.10. below, for the red side, all pieces

represented by lowercase letters are of the opponent, so they are represented

by ‘-1’ in this feature channel, while the other pieces, which belongs to the

red side, are represented by ‘1’.

	 -	44	-	

	 	 	

Figure	4.10.	An	Example	of	First	Feature	Channel

For each type of pieces, there was a feature channel to denote the positions

of pieces of that type. Still, use ‘1’ and ‘-1’ to respectively denote self-side

pieces and opponent-side pieces, and ‘0’ to denote empty positions. The

reason for separating them into seven channels is that the values of different

kinds of pieces are difficult to assign and they may vary in different

situations, but we still need to find a way to tell our model that they belong

to different categories, which is neither ordinal nor cardinal. Therefore,

using 7 channels, one for each type, would be a good choice to distinguish

different types of pieces.

	 -	45	-	

	 	 	

Figure	4.11.	An	Example	of	Feature	Channels	2	~	8	

For example, as shown in Figure 4.11. above, for the feature channel to

represent pieces of Cannon type, we can find ‘1’ and ‘-1’ for Cannon pieces

of two sides respectively in corresponding positions.

For Move Selector, there was one more feature channel. In that feature

channel, the position of chosen piece was denoted by ‘1’, and all possible

valid destinations for that piece were denoted by ‘2’ while all possible

invalid destinations were denoted by ‘-1’.

For example, as shown in Figure 4.12. below, assuming that the Cannon

piece in red cycle is chosen, all the possible valid moves for it are

represented by ‘1’, while the invalid moves are represented by ‘-1’ and its

own position is indicated by’2’.

	 -	46	-	

	 	 	

Figure	4.12.	An	Example	of	Ninth	Feature	Channel	

In total, 8 feature channels for Piece Selector and 9 feature channels for

Move Selector would be extracted accordingly.

4.4.4. Decision Maker

After getting outputs from Piece Selector and Move Selector, an algorithm

is needed to make the final decision about move choice. After all, they only

output probability distributions over all 90 positions. We designed several

selection strategies and tested them respectively.

The simplest way to select a move is to select the piece with highest

possibility given by Piece Selector and then select the destination of that

piece with highest possibility given by Move Selector.

Considering the fact that the probabilities given by Move Selector are

	 -	47	-	

essentially conditional probabilities, we designed another selection strategy,

maybe appearing to be more reasonable. Here, we don’t separately consider

the probabilities given by Piece Selector and Move Selector, but we

multiply them respectively, i.e. the probability of moving a piece * the

probability of a destination of that piece, and then select the combination

with highest probability. In cases where there is one piece with relatively

much higher probability given by Piece Selector, this strategy will much

likely give the same result as the previous one. In other cases, however,

where there are several pieces with all high but quite close probabilities

given by Piece Selector, this strategy may perform better, as there is no

clearly better piece to move and this strategy will consider more options.

At last, these two selection strategies both can be modified by increasing the

randomness. Previously, the decision is made by picking the one with the

highest value, and every time met with the same situation, the AI model will

make the same decision. To encourage exploration, a random number

between 0 and 1 will be generated, and the move will be chosen treating the

outputs of Piece Selector and Move Selector in statistical way.

4.5. Connection between Frontend and Backend

We used Node.js to build the connection between server and frontend, and

used socket.io to support the communication between our UI in JavaScript

	 -	48	-	

and our AI in Python.

Figure	4.13.	The	Connection	between	Frontend	and	Backend	

The game AI, running on the server and connecting to Node.js as a user,

waits for the message from the frontend and sends move choice back, via

socket supported by Node.js. To be more precise, after the server starts,

every time a user opens the UI, it will connect to Node.js on the server

through socket.io. After the player makes a move, the UI will generate the

current FEN and send it to server via socket. The server receives FEN and

transfers the message to the game AI. For the AI in python, we used the

library socketIO-client to read the message because the socket in python

cannot read message. After the AI generates the next move, it will send the

coordinates in the form of four numbers back to frontend. And then UI will

make a move to update the chessboard after receiving the coordinates.

The reason we choose socket.io is that the JavaScript program cannot

invoke our python program directly. So, socket is our solution because it can

communicate between server and client in real-time and support programs

written in different programming language.

	 -	49	-	

5. Training Process

5.1. Training Dataset

We collected records of over 30000 Chinese chess games and about

2,000,000 moves in total, including games in professional competitions,

classical ancient games, and online games between high-ELO players. As it

was unable to determine an optimal or good enough move given certain

chessboard status, the moves in collected were recognized as reasonable

good moves and used as the supervised labels in training process. The

objective of our supervised learning process was to train the model to

predict the choice of professional experts given certain chessboard status.

	

Figure	5.1.	Generation	of	Training	Data	

The source records downloaded from online libraries are in PGN format,

which cannot be directly read by program. The PGN source data were firstly

preprocessed and converted into FEN format. Then, the training dataset was

generated by extracting the features of chessboard from FEN representation.

The position from which a piece is moved is used as supervised label for

Piece Selector and the position to which a piece is moved is used as

	 -	50	-	

supervised label for Move Selector. And for Move Selector, we need to

classify the moves by the types of pieces moved. Though the total number

of moves with chariot, cannon and horse is obviously greater than the moves

with other types, the possible moves of these pieces are also greater than

king and advisor, so training samples are enough for Move Selector of

different types of pieces.

5.2. Preprocessing

After collecting source data of game records of Chinese chess, they cannot

be directly used for training NN models, without being preprocessed.

For chess, we can find game records in PGN format which is easy to read

and interpret for computers, and every move is represented by the type of

the moved piece and the position where it is moved to. However, for

Chinese chess, the game records are stored in Chinese version of PGN

format, like “炮二平五”, and the place the piece will move to is only

represented by its X coordinate while the coordinates of black and white are

adverse, which is much harder for computer to directly process. Besides,

PGN is not preferred for training usage, as only the whole PGN records

sequence recording a game from start to end can make sense, each of which

records only one move but not the status of the whole chessboard. However,

our model is designed to be trained by each move, not each game.

	 -	51	-	

Considering this, FEN is a much better record format, as one FEN record

contains quite complete information, of both the move and the chessboard

status, for training usage.

To solve this problem, certain preprocessing is necessary to generate the

training dataset. Firstly, we wrote a program to convert the records in

Chinese into symbolic representations using only English letters and

numbers, avoiding potential problems in coding. And then, we created an

initial chessboard, followed the PGN records to make moves step by step

and recorded every chessboard status in FEN format, which could be

conveniently used for future NN model training.

	
Figure	5.2.	Format	Conversion	

There are many special cases to be considered. For example, the phase “进

五” will have different meaning for different types of piece. For chariot and

cannon, it represents move to five blocks forward. But for other pieces like

knight or bishop, it will mean move to a block with X-coordinate 5. Another

situation to be dealt with is when moving a piece with multiple this kind of

piece in a row, for normal piece, the character “前”(front) or “后”(back)

should be used. But for bishops and advisors, it won’t do that because the

available blocks for them are limited.

	 -	52	-	

	
Figure	5.3.	A	Special	Case	in	PGN	

In Figure 5.3. above, two advisors are all in row 6, but if the next move is

“仕六退五”, only the upper advisor can move backward. So, the upper

advisor will be moved.

5.3. Chessboard Flipping

When preprocessing the source game records, a small trick was used, called

flipping. Since there are two players in the game, to diminish the effect of

different sides and accelerate the training speed, the chessboard would be

flipped when generating the FEN information to ensure that the player to

make next move is always the lower side.

	

Figure	5.4.	An	Example	of	Chessboard	Flipping	

	 -	53	-	

For example, as shown in Figure 5.4., now it is the turn for the black side,

i.e. the upper side to make next move, then the chessboard will be flipped so

that our model can treat it as a turn of the red side.

5.4. Training Strategy

Piece Selector and Move Selector were trained separately. Piece Selector

was trained first, and after the accuracy of Piece Selector was over 40%, we

started to train Move Selector. For Piece Selector, the training target was the

position of the piece selected by the expert players under each chessboard

status. For Move Selector, as mentioned above, seven different NN models

were trained separately, one for each type of pieces. The training dataset

only contained the moves where the expert players selected pieces of that

particular type, and the training target was the destination of that move.

The training dataset was divided into batches of size 1000. The models were

trained batch by batch, and every 50 batches they would be tested based on

the next batch to be trained and the accuracy would be records. Also, a

testing dataset was prepared containing about 1,000 games, near 100,000

moves and the trained models would be tested using this dataset at last. If

the models also perform well in these unseen situations, we can safely

conclude that the models are not overfitted.

The collected source data were game-based, i.e. the records were ordered

	 -	54	-	

game by game. If such an order is kept, however, the training results may

not be good, as the chessboard statuses in first several turns or last several

turns could be very similar in different games, making the whole dataset too

regular and not random enough. To increase the randomness, the records

were shuffled first, to break the order, before being used to train the NN

models.

	 -	55	-	

6. Project Progress

6.1. Project Schedule

	

Figure	6.1.	Project	Schedule	

At first, we planned to build evaluation network first. However, we faced a

trouble in setting the label for training dataset. So, we changed our plan and

built policy network first.

6.2. Simple AI with Monte Carlo

First of all, we planned to build a simple AI use MCTS. There two main

reason for us to build these simple AI as stated following.

	 -	56	-	

One reason is that, after we finish the AI model by using Neural Network

method, we can compare the performance between two kinds of AI. If our

AI based on Neural Network has better performance, our AI has obtained

good capability. The other reason is that in our evaluation network, we may

need to calculate the winning rate of a chessboard using our AI.

To build these simple AI, first we shall build chess board that can move the

piece per our input instructions. However, we must make sure that the input

is legal. So, we have implemented move generator and validator to examine

the inputs.

The move generator and validator works similarly in some aspects. First, we

should define what kind of movement is allowed. Among all kinds of pieces,

cannons are hardest to implement. For cannons, they are only allowed to

capture an enemy by jumping over exactly one piece in a straight line no

matter how many empty blocks exist among the line. Also, the knights of

Chinese chess are slightly different from them on chess. If there exists a

piece adjacent to it, it can’t move to that direction. After that, the move

generator will apply these move patterns to the piece and use validator to

determine whether the move is legal.

	 -	57	-	

	

Figure	6.2.	An	Example	of	Move	Generator	and	Validator	

In Figure 6.2., all the circles are generated by move generator. And the

validator will examine all these eight moves. The blue circles represent legal

move of the knight. Black circles represent that there is piece of red side on

the point. And red circles represent that a pawn blocks the way for the

knight to move upside.

After we have these components, we should apply MCTS to Chinese chess

by following steps below. For a given situation, first we find all the possible

valid moves use our move generator. Then we shall traverse all of those

moves. For every possible move, move forward and randomly select

possible move until an end condition, usually when it reaches the maximum

iteration depth and return the evaluation about the status. The evaluation of

the chessboard mainly bases on the number of pieces exist, and different

	 -	58	-	

kinds of pieces have different scores, as shown in Figure 6.3..

	
Figure	6.3.	Values	of	Different	Pieces	

Repeat the search for 10 times and use their average as the score of the

move and choose the move with highest score. After this move, check if the

current side is being checked. If the side to move will still be checked after

the move, try to select a new move. Or we use this move as final output.

By this method, we have a basic AI which responses to easy game board.

However, since the basic AI is very simple, it has some major

disadvantages.

First, as the evaluation function of it is completely based on the value of

weight. The highest priority of the AI is always trying to capture enemy’s

piece. For example, most probably, the first step of red side will be shown as

Figure 6.4.. The red side uses its cannon to capture black knight.

	 -	59	-	

	
Figure	6.4.	Choice	of	the	Simple	AI	

And the response of black will be like in Figure 6.5., using its rock to

capture red cannon.

	
Figure	6.5.	Choice	of	the	Simple	AI	

The reason for this phenomenon is very simple. The algorithm only searches

	 -	60	-	

for one layer, and finds that it can capture enemy’s piece. If it uses red

cannon to capture the black knight and stay live, this move will have higher

score. It doesn’t see that the rock can capture red cannon as response

because it is out of search boundary.

To solve this problem, we must add the amounts of layers of search tree

before starting random search and use minimax to reduce possible search

time. But this will reduce the speed of the program greatly.

6.3. Evaluation Network

Between evaluation network and policy network, what we chose first is

evaluation network rather than policy network. In evaluation network, for

training dataset, we decide to use the feature below:

a) Side to Move – Red or black. Indicating the current side to move next.

b) Number of each type of pieces 7*2=14. Indicating the number of each

type of piece. Different color of pieces should be counted separately.

c) The existence and the current position of pieces 16*2*2=64 The features

consist of pairs. One is the existence of the special kind of piece. If a kind

of pieces may exist more than one on the board, for example pawns, we

will note them from p1 to p5 accord to the relative position. As we didn’t

track every piece on the board, the piece searched first (has lowest

x-coordinate value) would be p1, the other one is the position of piece.

	 -	61	-	

d) The number of possible moves of each piece 16*2 = 32. Normally if a

piece has more liberty or more possible moves, its effect will be larger.

Oppositely, if the piece has no legal move, it means it has nearly no effect

on the chessboard. So, we decided to add it as a feature.

e) Whether the block is under attack or protection 90. This feature

represents if there exist some pieces can reach the specific block. If the

amount of our pieces can move to the block is greater than the amount of

enemy’s pieces can move to the block, then we can say the block is under

attack, otherwise the block is under protection which means our piece

will be captured if move to the block.

In total, there are 1 + 14 + 64 + 32 + 90 =201 features. And we can separate

them into three groups.

The first group is global feature including some feature directing to the

overall situation including Side to Move and Number of each type of pieces.

The second group is piece-centric feature including information about

pieces. The existence, the current position of pieces and the number of

possible moves of each piece would be needed. The last group is

square-centric features about the status of each block. In our project, that

would be attack or protection map.

For each group, we’ll arrange a hidden layer for them and conclude them to

	 -	62	-	

the second hidden layer like the figure below because the information of

each group is distinct and the connections between each group are usually

useless. By this separation, the efficiency of training will increase.

	
Figure	6.6.	Structure	of	Evaluation	Network	

Besides training dataset, we need to give them a label representing the

current winning rate or the advantage. If we look at the status and score

them one by one, that would be inaccurate and inefficient. So, we want to

use MCTS to calculate the winning accuracy of the chessboard.

However, in our practice, the random game was really slow and nearly

impossible to end. It is very obvious that a complete stochastic game has

	 -	63	-	

little chance to end. So, we tried different ending condition.

First, we tried to end the search by the time a check happened and calculate

the amount of which side suffered a check. However, even if the number of

pieces between two sizes was extremely large, the result was still neutral.

Tracing the exactly branches of the search, we found that the side who had

less piece would have less possible move, meaning the possibility of a

suicide check would increase which never happened in a game between

humans, but would cheat the evaluation progress. On the other hand, for the

dominant side, as his piece was more than the opposite, a random choosing

may select invariant bad move.

	
Figure	6.7.	An	Example	of	Extreme	Cases	

As shown in Figure 6.7., the black side has only two rocks remained. In this

situation, the winning rate for red is nearly 100%. But in this method, the

	 -	64	-	

liberty of rocks means that they have freedom to move everywhere， where

equally random selection make the move of red side awakward. In this case,

the times of both sides are checked first are nearly equal. That’s not good

obviously.

Another way is not to use random selection, and use our MCTS AI instead.

Though it may have good result, the speed of it is a disaster because the

depth is too high and need too much instruction for next move. Dealing with

a chessboard need more than 5 minutes. If we want to give the label to all

data in the dataset, this may cost more than a year. So, this is also not a good

way.

The last method is to regulate a maximum depth and return the final status

after counting the live pieces of each side. However, besides problem from

the first method, this evaluation method overemphasizes the importance of

capturing enemy’s pieces. The policy trained would be like simply

calculating the live pieces with weight.

As long as the three methods are all unworkable, we decide to use result

from policy network to replace random selection. As a result, the

implementation of value network will be postponed until we finish policy

network.

	 -	65	-	

6.4. Previous Design

At first, we did not come up with the idea to use Piece Selector and Move

Selectors separately. Instead, we had some different designs.

One of the ideas is to use a vector to map all possible move for pieces. For

example, a rock will have maximum of 17 moves in total (9 horizontal and 8

vertical) and a knight will have 8. And then serialize them according the

order of relative moves. For example, for a knight, the move to front left

would be k1, and the move to front right would be k2. Using this method,

we would have 122 possible moves in total. And use it as the label. As the

relative order of all moves would not change, we can restore the move from

the vector. If the 75th label is correct, we can find the corresponding move.

This method transforms the high-dimension move into a one-dimension

vector suitable for neural network training.

However, this method is not very intuitive. The corresponding relations are

hard to find even for humans. And for neural network, the training

efficiency would be low for the same reasons. Another disadvantage is that

the same relative move will have different value in distinct situation.

Usually moving a pawn upside is a good move. However, moving it into the

top line is not a good idea because it cannot return backward.

Because we had a better model later, this method has not been implemented.

	 -	66	-	

Another model we used to implement is adding high-level information into

the neural network. For example, the liberty of a piece would be

considerable information for human chess player because a piece that has

higher liberty would affect more space on the chessboard. We think that this

kind of information can speed up the training process and make it faster to

converge.

However, the result was not satisfying from our expect. The accuracy even

dropped compared to the version without high-level information. The reason

may be the meaning of this map is different from other channel, which

confuses the neural network to make false prediction.

In fact, Neural Network can extract information internally and interferes of

human are not always necessary. In our project, the feature channel of valid

moves helped in training Piece Selector, because the meaning of the channel

is clear and consistence with other channels. But a bad channel will cause

overfitting or sheer drop in accuracy. So, we should take care of this kind of

additional information.

	

	 -	67	-	

7. Results

7.1. Accuracy Testing

In Accuracy Testing, the AI model was simply tested based one a testing

dataset in the same format with the training dataset, recording the moves

made by professional expert players in realistic top-class competitions. This

testing is to test the accuracy of our trained NN models predicting the choice

of an expert player given a chessboard status. And this testing was done

separately for Piece Selector and Move selector.

7.1.1. Piece Selector

	

Figure	7.1.	Piece	Selector	Accuracy

The accuracy of Piece Selector was recorded along the training process, as

shown in Figure 7.1.. Evidently, the accuracy is generally increasing over

the process, with reasonable oscillations. At last, for our testing dataset,

	 -	68	-	

Piece Selector has achieved an accuracy of 44.7%, which is quite high.

For the initial chessboard status, the output from our Piece Selector when

the AI plays the red side is as shown below. Figure 7.2. (a) shows the real

chessboard, and Figure 7.2. (b) shown the corresponding output of Piece

Selector with eliminating values less than 0.1% while Figure 7.2. (c) shows

the source output from Piece Selector. The most suggested piece is the right

red cannon in the blue cycle with 57.8% probability in the red cycle, which

is a popular opening way. The second highest suggested piece is the middle

red pawn with 22.1% probability, which is also a good choice. Note that at

positions with probability larger than 0.1% there always exists a red piece,

indicating that our Piece Selector has learned to select pieces of its own side.

	 	 	
	 	 	 Figure	7.2.	(a)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Figure	7.2.	(b)	

	 -	69	-	

	
Figure	7.2.	(c)	

The testing dataset used here were collected independently from training

dataset. The opening turns of different games, however, are quite similar

because players tend to follow some fixed opening move sequences, which

is considered to be optimal or at least good enough according to previous

experiences, also called joseki in Go. In other word, there may hardly exist

two same games, but they may very probably exist several same opening

moves between games. Similarly, for middlegame moves and ending moves,

there also exists such a phenomenon, more or less. This phenomenon would

probably alter the testing accuracy because there may exist many duplicate

testing examples, if comparing those records move by move but not game

by game. If those duplicate moves were removed, the testing accuracy of

Piece Selector was 40.2%, 4.5% less than before. However, we cannot

certainly say which accuracy is correct.

On the one hand, it is consistent with reality because the frequency of every

	 -	70	-	

board may not be equal, not only in our collected records but also in realistic

games. In fact, the frequency of every situation in the dataset may reflect the

realistic frequency of the situation. In this sense, the duplicate items do not

need to be removed, as the accuracy can better measure the performance of

Piece Selector in reality.

On the other hand, it is expected to have ability to deal with any situation,

not only those very frequent situations but also the less frequent situations.

In fact, the accuracy of predicting more frequent moves is higher than less

seen moves because they are trained with more times, as they may also

appear more frequently in our training dataset, indicating that the learning

process would be better with larger dataset. Even worse, it can be treated as

our model being overfitted into the training data.

Above all, we prefer to think that it’s both OK whether to eliminate the

duplicate records in testing dataset or not, but it’s necessary to keep those

duplicates in training dataset. More frequent moves in real games represent

that more professional players think they are better moves, which is

necessary in current phase.

Except for the issue discussed above, Piece Selector still needs to be further

improved in other aspects. For example, in a case that a player is checked,

the Piece Selector sometimes selects piece far away, which mean no matter

	 -	71	-	

how the selected piece moves, it can’t save the king. The problem may

attribute to lack of negative feedback. In the beginning phase of our training,

we planned to set the moves of winner a positive weight and that of losers a

negative way. But there are two reasons for us to abandon this idea. One is

that many records are not complete, precisely not including the final result.

The other reason is that it’s hard to judge which move is the bad move. As

most of our records were played by professional players, only one small

mistake would lead to failure despite other moves were good. If we set them

all negative, lots of good moves will be depressed.

7.1.2. Move Selector

	
Figure	7.3.	Move	Selector	Accuracy	

Similar with Piece Selector, the accuracy of Move Selector was records

along the training process, as shown above. After training, Move Selector

was also tested busing the testing dataset and the results are as shown below.

	 -	72	-	

For Move Selector, the models of some types of pieces have achieved

clearly better performance. For example, the Move Selectors of Advisor,

Bishop and Pawn have achieved accuracies of near 90%, while the Move

Selectors of Cannon and Rock have achieved accuracies of only around

50%. One possible reason may be that the possible moves of former pieces

are relatively limited. Bishops have at most two legal moves in general,

Advisors usually have only one possible move, and Pawns also only have

few choices before they cross the river. So, Move Selectors of them are

easier to train. But for Cannons and Rocks, the number of move choices is

usually more than 10, and every move can be reasonable in some view,

which means no absolute best move, and Move Selectors of them are more

difficult to train.

Move Selector Accuracy Accuracy After Eliminating Duplicates

Advisor 89.8% 89.0%

Bishop 91.2% 89.8%

Cannon 54.1% 48.5%

King 79.8% 79.2%

Knight 70.1% 63.8%

Pawn 90.4% 88.5%

Rock 53.6% 48.1%

Figure	7.4.	Move	Selector	Accuracy	for	Different	Piece	Types	

The duplicates issue also exists for Move Selector. As shown in the table

	 -	73	-	

below, the accuracies of Move Selector models for different types all

decreased, more or less, as expected. The discuss and conclusion is also

similar, that we think it is fine, or even necessary, to keep those duplicates.

7.2. Real Performance Testing

As mentioned before, except for Accuracy Testing, the AI model was also

tested in real games, playing against human players. In this section, several

real game-playing samples are analyzed in detail and the performance of our

AI is judged by some evident criteria, such as the responsiveness to being

checked, the responsiveness when one piece is to be attacked and so on.

	

	 -	74	-	

7.2.1. Game-Playing Case 1

	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (a)	Initial	Status	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	Status	after	one	move	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 (d)	Output	of	Move	Selector	

Figure	7.5.	

This started from the initial game chessboard status, as shown in Figure 7.5.

	 -	75	-	

(a). AI played black side, and we played red side. In first turn, we moved the

right cannon to the middle. This is one of the most popular opening moves,

and after this step, the black pawn in the middle was under attack. The black

side, i.e. our AI, chose to move the knight forward, as shown in Figure 7.5.

(b), with 75.1% possibility given by Piece Selector and 99.4% possibility

given by Move Selector, which is quite high, as shown in Figure 7.5. (c) &

(d). This is also one of the most popular opening moves, and after that, the

middle black pawn was protected by this knight.

	 	 	

	 	 	 	 	 	 Figure	7.6.	(a)	Status	after	two	moves	 	 	 	 	 	 Figure	7.6.	(b)	Status	after	three	moves	

	 -	76	-	

	 	 	
	 	 	 	 	 Figure	7.6.	(c)	Output	of	Piece	Selector	 	 	 	 	 	 	 Figure	7.6.	(d)	Output	of	Move	Selector	

In second turn, we chose to move the right red knight forward and our AI

chose to move the right black rock left, as shown in Figure 7.6. (a), with

95.4% possibility given by Piece Selector and 99.8% possibility given by

Move Selector, which is even higher, as shown in Figure 7.6. (c) & (d).

Actually, it’s a good move, as our next move was to move the right red rock

out so that the right black cannon would be under attack, as shown in Figure

7.6. (b). In this step, our AI predicted what the opponent would do and

reacted effectively. As shown in these steps, our AI learned well in opening

moves and reacted responsively. Generally speaking, the result is satisfying.

	 -	77	-	

7.2.2. Game-Playing Case 2

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (a)	Initial	Status	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	Status	after	one	move	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 (d)	Output	of	Move	Selector	

Figure	7.7.	

This is an interesting turn where AI again plays the black side. The initial

status is as shown in Figure 7.7. (a). We moved the right rock forward, and

	 -	78	-	

our AI chose to move the cannon to the right, which is a good move, as

shown in Figure 7.7. (b). First, it left our rock to be attacked by the black

rock. Secondly, it left the right pawn to be protected by the black knight, as

before this move, that knight can’t protect that pawn because that will be an

illegal move. Third, the middle black pawn is still protected by two knights.

Actually, this move left us few choices to save our rock.

	
	 (a)	Status	after	two	moves	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.8.	

	 -	79	-	

So, we chose to move rock one block left. And our AI chose to move the

cannon downward, as shown in Figure 7.8. (a), which turned out to be a

good move but we did not realize that in the first place due to our limited

skill in Chinese chess.

Two turns later, the AI chose to move the right black cannon from the

position of green cycle to the position of the red cycle, as shown in Figure

7.9. (a), leaving the red rock under attack, with 84.6% possibility given by

Piece Selector and 99.0% possibility given by Move Selector, as shown in

Figure 7.9. (b) & (c).

	

Figure	7.9.	(a)	Status	after	four	moves	

	 -	80	-	

	 	 	
	 	 	 	 	 	 	 	 	 Figure	7.9.	(b)	Output	of	Piece	Selector	 	 	 	 	 Figure	7.9.	(c)	Output	of	Move	Selector	

	

7.2.3. Game-Playing Case 3

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 Figure	7.10.	(a)	Initial	Status	 	 	 	 	 	 	 	 	 	 Figure	7.10.	(b)	Status	after	one	move	

	 -	81	-	

	 	 	
	 	 	 	 	 	 Figure	7.10.	(c)	Output	of	Piece	Selector	 	 	 	 	 Figure	7.10.	(d)	Output	of	Move	Selector	

And here is an example of bad performance of our AI. The initial status is as

shown in Figure 7.10. (a). After we moved the red rock forward, the AI

chose to move the black rock forward, from the green cycle to the red cycle,

as shown in Figure 7.10. (b), so that it could attack the red knight in next

turn and it also protected the black bishop in fifth column from being

attacked by that red knight because that move would be illegal by the

moving rules of knight, which appeared to be good in the first place but

turned out to be a bad move later.

	 -	82	-	

	
	 (a)	Status	after	two	moves	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.11.	

In next turn, however, we chose to move the red pawn forward, from the

purple cycle to the blue cycle. And unbelievably, our AI chose to move the

rock forward again, leaving it under attack by the left red cannon, as shown

in Figure 7.11. (a). As shown in Figure 7.11. (b) & (c), especially the Piece

	 -	83	-	

Selector prediction results, this choice was not a clearly good one. Piece

selector gave only 27.9% possibility to choose this rock piece, while it also

gave 23.8% and 16.5% possibility to move the knight and pawn respectively.

Similarly, Move Selector gave only 27.7% possibility for the rock piece to

move to the position of red cycle, while it also gave 23.8% and 13.5%

possibility for other two choices respectively, which could be a little bit

better.

Seen from the example above, we can find that always selecting the piece

with highest possibility given by Piece Selector and then selecting a move

for it doesn’t work well in some situations, especially when the possibilities

of several pieces, given by Piece Selector, are quite close, which also means

that none of them is much better than others.

	
Figure	7.12.	(a)	New	Status	after	two	moves	

	 -	84	-	

	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	for	The	Rock	

	 	 	
	 	 	 	 	 (d)	Output	of	Move	Selector	for	the	Knight	 	 	 	 	 (e)	Output	of	Move	Selector	for	the	Pawn	

Figure	7.12.	

Then, we modified the selection strategy of our AI as: select the best three

choices, i.e. pieces with the highest three possibilities, then generate the

move possibilities for each of them by our Move Selector, multiply the piece

	 -	85	-	

possibilities and move possibilities respectively, and at last pick the move

with highest possibilities. As a result, the AI would choose to move the

black pawn this time, from the green cycle to the red cycle, as shown in

Figure 7.12. (a). The output of Piece Selector is as shown in Figure 7.12. (b).

And the outputs from Move Selector for three different pieces, which are

highlighted in Figure 7.12. (b), are as shown in Figure 7.12. (c) & (d) & (e)

respectively. This is a good, or much better move. First of all, the left black

rock wouldn’t be under attack. Secondly, no matter whether this black pawn

captured the red pawn in front of it or that red pawn captured it, the right red

knight would be under attack by the right black cannon, or even better, by

that black pawn as well.

7.2.4. Game-Playing Case 4

	
	 Figure	7.13.	(a)	Chessboard	Status	

	 -	86	-	

	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.13.	

In this turn, we chose to move the red pawn forward, from purple cycle to

blue cycle. Then, the AI chose to move the black rock left, from green cycle

to red cycle, as shown in Figure 7.13. (a), which was a definitely bad move.

First of all, that black rock was under attack by the left red rock. We did not

choose to capture it and wanted to see how the AI would react. The expected

move is that the AI would choose to move that black rock to capture the red

rock and could check the red side as well. Or at least, the AI would move the

black rock away to avoid being attacked by red rock. However, the AI

moved the black rock to the red cycle, leaving it under attack by both red

rocks, not checking the red side and even did not save the middle black

pawn which was under attack by the middle red pawn.

In a word, this is an example where the AI performed quite bad.

	 -	87	-	

7.2.5. Game-Playing Case 5

	

	 (a)	Chessboard	Status	

	 	 	
	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.14.	

After several turns, pieces left on the chessboard became much less. And

	 -	88	-	

after we chose to move the red rock from purple cycle to blue cycle, the

black side was under check by the red cannon. However, the AI chose to

move the black cannon from green cycle to red cycle to capture a red pawn,

as shown in Figure 7.14. (a), with 55.6% possibility given by Piece Selector

and 70.9% possibility given by Move Selector, as shown in Figure 7.14. (b)

& (c).

Obviously, this was a terrible move. After all, in next turn, we could use the

red cannon to capture the black king and the AI would lose the game. This

shows that our AI are not very responsive to the situation of being checked,

which is a vital problem.

To further test its responsiveness to being checked, we did not capture the

black king directly, but moved the red rock forward, from purple cycle to

blue cycle, to check the black side again, as shown in Figure 7.15. (a). This

time, the AI appeared to a little smarter and chose to move the advisor down

to protect its king, with 82.2% possibility given by Piece Selector and 84.4%

possibility given by Move Selector, as shown in Figure 7.15. (b) & (c),

which was quite high, indicating that the AI was quite sure about this move.

Even though it was still being checked by the red cannon, it performed

better in this situation. And this actually leads us to think why the AI

responded effectively to being checked by rock but responded terribly to

	 -	89	-	

being checked by cannon. And more testing moves were made.

	

(a)	Chessboard	Status	

	 	 	
	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.15.	

	

	 -	90	-	

(a)	Chessboard	Status	

	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.16.	

In this turn, we chose to use the red knight to check the black side, moving

it from purple cycle to blue cycle. Surprisingly, the AI chose to move the

	 -	91	-	

black king forward to avoid being attacked by the red knight, as shown in

Figure 7.16. (a), with 91.1% possibility given by Piece Selector and 98.5%

possibility given by Move Selector, as shown in Figure 7.16. (b) & (c),

which indicated that the AI was almost 100% sure about this move. So, in

this move, the AI also performed quite good.

However, the AI still did not respond to being checked by the red cannon.

After all, it could choose to move the black knight downward, to protect the

king from being attacked by both the red knight and the red cannon.

Again, we continued to use the red knight to check the black side, and the

AI also responded well and moved the black king left, with 75.7%

possibility given by Piece Selector and 45.4% possibility given by Move

Selector, as shown in Figure 7.17.. Eventually, it escaped from being

checked by the red cannon. But obviously, it was not due to that the AI

realized it was checked by the red cannon. It was just a coincidence.

	 -	92	-	

(a)	Chessboard	Status	

	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.17.	

	 -	93	-	

(a)	Chessboard	Status	

	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.18.	

After that, we moved the red rock backward, from the purple cycle to the

blue cycle, and checked the black side again. This time, the AI chose to

move the black king forward again, as shown in Figure 7.18. (a), to escape

	 -	94	-	

from being attacked by the red rock and avoid from being attacked by the

red knight at the same time, with 86.1% possibility given by Piece Selector

and 73.3% possibility given by Move Selector, as shown in Figure 7.18. (b)

& (c). Up to this point, the AI had responded well to being checked by the

red rock and the red knight, twice for each. So, we came up with a

hypothesis that the AI could respond well if it is checked in a shorter

distance, but cannot perform reasonably if it is checked in a longer distance.

Figure	7.19.	(a)	Chessboard	Status	

	 -	95	-	

	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	for	the	Cannon	

Figure	7.19.	

To prove our own hypothesis, we chose to move the red cannon to check the

black side again, from purple cycle to the blue cycle. As expected, the AI

did not perform well and did realize that it was being checked. It chose to

move the black cannon from the green cycle to the red cycle, as shown in

Figure 7.19. (a). But we noted that the possibility of this move was not

clearly better than other choices, as Piece Selector only gave it 32.7%

possibility but also gave other pieces 26.0% and 15.7% possibilities

respectively, as shown in Figure 7.19. (b).

Therefore, we decided to apply the other selection strategy again, which

would consider the possibilities given by Piece Selector and Move Selector

together. By this selection strategy, the AI chose to move the black king

right, from the green cycle to the red cycle, as shown in Figure 7.20. (a), so

	 -	96	-	

that it successfully escaped from being checked by the red cannon and avoid

from being attacked by the red rock and red knight at the same time. Using

this selection strategy, the AI performed much better in this situation and

even responded well to being checked by the cannon in longer distance.

	
(a)	Chessboard	Status	

	 	 	
	 	 	 	 (b)	Output	of	Move	Selector	for	the	Knight	 	 (c)	Output	of	Move	Selector	for	the	King	

Figure	7.20.	

	 -	97	-	

7.2.6. Game-Playing Case 6

(a)	Chessboard	Status	

	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.21.	

This is another example where AI performed bad. We noted that in the game

records we collected for model training and testing, the most common

	 -	98	-	

opening moves were roughly always to move one cannon to the middle,

move one knight forward and then move one rock out. So, we used another

very common opening way which was seldom used in professional

competitions since it was not that effective actually.

Here, we moved one red cannon to the middle and then moved anther

cannon forward, from the purple cycle to the blue cycle. And the AI seemed

still to follow the fixed opening way, move the black knight first, with 48.3%

possibility given by Piece Selector and 97.4% possibility given by Move

Selector, as shown in Figure 7.21.. It is still fine up to this point.

In next turn, we moved the another red cannon to the middle as well, from

purple cycle to the blue cycle, also known as “双炮将”. However, the AI

chose to move the black rock out, from the green cycle to the red cycle, with

67.5% possibility given by Piece Selector and 99.6% possibility given by

Move Selector, as shown in Figure 7.22..

Indeed, the AI still stuck to the most common fixed opening moves, but did

not respond well to being checked by the cannon again. This time, even

after we used the second selection strategy, the AI still made the same

choice.

	 -	99	-	

	 (a)	Chessboard	Status	

	 	 	 	 	 	 	 	 	 (b)	Output	of	Piece	Selector	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (c)	Output	of	Move	Selector	

Figure	7.22.	

One important reason is that this situation has never appeared in our training

dataset as it has seldom happened in realistic professional Chinese chess

competitions. So, in this aspect, the result is acceptable but still not

	 -	100	-	

satisfying.

Another issue is that the AI could not respond well to being checked by

cannon, or more generally, being checked by pieces in long distance. This

may be due to that the training dataset is not larger enough, or more likely,

due to that the CNN in Piece Selector and Move Selector is not deep

enough.

	

	 -	101	-	

8. Discussion

In the beginning, there were two more feature channels to be extracted from

the chessboard status and fed into the NN model as input, which represented

some high-level information like attack-defend map and liberties of each

piece. The training results, however, were not very satisfying. One possible

reason would be that the values in these two feature channels could be much

different from the values of other feature channels which mainly contained

-1’s, 0’s and 1’s. So, in our final model design, these channels were not

included.

Although our trained models have achieved quite good accuracy, there is

one issue to be further discussed. Given one certain chessboard status, there

may exist different move choices even in our training dataset, as different

people would apply different strategies which may all be quite good. It

would affect our training results, and more importantly inspired us to

encourage exploration of different choices and add randomness when

deciding the move per the output of our models.

Despite the high accuracies, after we played against with our game AI to test

its real behavior, it could hardly make effective responses when it was in

check or it could capture the opposite King. It may be due to that in our

training dataset, there is no training example where a King is captured, as

	 -	102	-	

our training dataset is extracted from realistic Chinese chess matches where

the games would always end before that move is made. Besides, there are

some cases where one player resigned in the middle of the game.

Another problem is the reaction to rarely seen chessboard statuses. The

Piece selector performs well in a situation with large number of appearances

in the training dataset like initial chessboard position. And it can deal with

normal unseen situation if player think normally that the Neural Network

can recognize those features learned from datasets. However, in some

special cases that a player did a new move which never happened before, it

would be a challenge to the game AI. In fact, in the 4th game of AlphaGo VS

Lee Sedol, Lee’s 78th move is out of AlphaGo’s mind. Neither its Neural

Network nor search tree had considered this move, which led to its failure.

In our plan, the policy network trained by supervised learning cannot deal

with the problem, which is reserved for next semester. Figure 8.1. below

shows the decisive move 78 by Lee Sedol.

	
Figure	8.1.	The	Decisive	Move	78	by	Lee	Sedol	

	 -	103	-	

In our project, the parameters of Neural Network must be carefully treated

because a tiny change in these parameters can lead to different result. For

instance, the size of filter is a key parameter. Applying 3*3 filters, the

Neural Network had relative poor performance to detect long-distance

threats from cannons and rocks. When we changed the size of fields to 5*5,

the result is improved. Based on this phenomenon, we suppose that larger

filters can read the global situation better because it can detect features with

large size, which means it can do better in detecting long-distance moves of

cannons and rocks.

	

	 -	104	-	

9. Conclusion

As discussed in the section above, we can safely conclude that the current

results of our project, i.e. the behavior of our current game AI, are within

our expectation. It has learned the basic rules of Chinese chess and achieved

quite high accuracy when predicting possible move choices of professional

players in Chinese chess given certain chessboard statuses. And for normal

situation, the move made by it is reasonable.

However, though it has high accuracy, its performance on real game is not

such satisfying. For some specific situation like long-distance check from

cannon, the AI may have no reaction and move some pieces irrelevantly.

Also, the selection strategy will also affect the performance. A strategy

combining the possibility of Piece Selector and Move Selectors would make

more reasonable move when there is more than one move with close

probability, while a simple strategy would choose a worse one.

In conclusion, our game engine performs well in common situation and

needs to be improved to deal with special cases.

	 -	105	-	

10. Plan for Second Term

In next semester, our object is to improve the performance of our game

engine. And we have three major approaches to do that.

The first way is to use reinforcement learning to improve the performance of

policy network. In the development of AlphaGo, the policy network with

reinforcement learning played much better than previous one. We hope that

by using the same method, the new network will have a good winning rate

on online Chinese chess playing platform against human and cannot be

distinguished as AI.

The second method is training a value network for evaluation. It will

improve the speed and accuracy of searching. In this phase, we want the

network to predict the winning rate of the situation on the game board

correctly and consistence with humans’ judgement, and it should outperform

humans in situation with little difference.

Also, we need to implement a searching strategy combining the result from

both neuron networks. In our plan, MCTS may be a better choice rather than

minimax. And use it to find the best move as final output.

With these improvements, we will test our game engine against free and

commercial Chinese chess engine, and use the winning rate to calculate the

level of it. We hope that our AI can achieve a high-level competency in

	 -	106	-	

Chinese chess. In our expectation, our game engine should have better

performance on opening phase comparing to those AI without opening

libraries. And for whole game, if the searching depths are same, it should

play slightly better because the evaluation of neural network is more flexible

than hard-code evaluation function.

	 -	107	-	

11. Reference
[1] Edwards, S. J. (1994). Portable Game Notation Specification and Implementation
Guide.
[2] Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine
learning. MIT press.
[3] Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural computation, 4(1), 1-58.
[4] James, G. M. (2003). Variance and bias for general loss functions. Machine Learning,
51(2), 115-135.
[5] Nielsen, M. (2016). Neural Networks and Deep Learning
[6] Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S.
(2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature, 405(6789), 947-951.
[7] Anzai, Y. (2012). Pattern Recognition & Machine Learning. Elsevier.
[8] [Online]. Available: https://www.tensorflow.org
[9] [Online]. Available: https://github.com/leenmie/chinese-chess
[10] Oshri, B., & Khandwala, N. Predicting Moves in Chess Using Convolutional Neural
Networks.
[11] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ...
& Dieleman, S. (2016). Mastering the Game of Go with Deep Neural Networks and Tree
Search. Nature, 529(7587), 484-489.
[12] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. Nature, 521(7553),
436-444.
[13] Lai, M. (2015). Giraffe: Using Deep Reinforcement Learning to Play Chess. arXiv
preprint arXiv:1509.01549.
[14] O'Shea, K., & Nash, R. (2015). An Introduction to Convolutional Neural Networks.
arXiv preprint arXiv:1511.08458.
[15] Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
Networks, 61, 85-117.
[16] [Online]. Available: https://en.wikipedia.org/wiki/Convolutional_neural_network
[17] [Online]. Available: https://en.wikipedia.org/wiki/Supervised_learning
[18] Tromp, J. (2016). Number of legal Go positions. preprint http://homepages
cwi.nl/tromp/go/legal. html.

