
��� Department of Computer Science and Engineering
 The Chinese University of Hong Kong

�

Indoor location service with iBeacon

LYU 1402 Final Year Project Report
Spring 2015

Wan Ka Ki 1155030692

Supervised by Prof. Michael R.Lyu 

NOTICON V2.0 �1

This is a blank page.

NOTICON �2

Abstract

We are going to design and implement a library to achieve
notification pushing which triggered by iBeacon. Since there is no
similar product all over the world at this moment, it is hoped that our
final year project could provide a library for the app developers who
want to embed the iBeacon technologies into their app. In this project,
we have firstly studied the iBeacon technical specifications and the
ways to embed iBeacon into IOS and android app. Then, we decided to
do the notification in IOS platform with iBeacon to achieve the goal of
our project. We have through many creative ideas to introduce iBeacon
into an app. Lastly, we make use of the iBeacon and try to push some
advertisements to the devices in a perfect time and places.

NOTICON V2.0 �3

Table of Content

.
Chapter 1 Introduction 8

1.1 Motivation 8

1.2 Background 10

1.3 Objective 10

1.4 Runtime environment 11

chapter 2 iBeacon 12

2.1 Introduction 12

2.2 Specification 12

2.3 iBeacon Hardware 14

2.3.1Choosing a Beacon 14

 - Battery life 14

 - Beacon Encasing 15

 - Beacon management 15

2.4 iBeacon hardware and software support 15

2.5 Comparison between NFC and BLE 16

2.6 Pros and Cons of IOS iBeacon 17

 - Advantages 17

 - Disadvantages 17

Chapter 3 Study on IOS iBeacon framework 18

3.1 IOS iBeacon package 18

3.1.1 Location Manager trigger — didDetermineState 19

3.1.2 Location Manager trigger — didRangeBeacons 20

Chapter 4 User Experience 21

4.1 Latency and response time 21

4.1.1Foreground 21

4.1.2 Background 21

NOTICON V2.0 �4

Chapter 5 Demo application — Noticon 23

5.1 Scenario 23

5.2 Program Flow 24

5.3 User Interface 25

5.4 Classes 26

 - System Class 26

 - Region Class 26

 - ADs Class 27

 - ADs_type Class 27

 - Log Class 27

5.5 Functions 28

5.5.1 AppDelegate 28

 - didFinishLaunchingWithOptions 28

 - locationManager: didDetermineState 30

5.5.2 Menu 33

 - (void)To Save Ads 33

 - (void)To Display Ads (for debug) 33

 - (void)To Log 33

 - (void)Save Log 34

 - (void)Load Log 35

 - (string*)Get Current Time 35

5.5.3 Saved Ads 36

 - (void)Back to Menu 36

 - (void)Display Info 36

 - (void)Open an Ads 36

 - (void)Delete an Ads(int id) 37

 - (void)Show all Ads (for debug) 37

5.5.4 Display Ads 37

 - (void)Back to Menu 37

NOTICON V2.0 �5

 - (void)Display information 38

 - (void)Rank the Ads with stars 38

 - (void)Send Feedback 39

 - (void)Save for later 40

 - (void)Add to Calendar 40

5.5.5 Log 41

 - (void)Back to Menu 42

 - (void)Display log 42

 - (void)Reset log (for debug) 42

 - About action log 42

Chapter 6 Noticon version 2.0 44

6.1 Overview 44

6.2 Database implementation 46

6.2.1 Region 46

6.2.2 Ads 47

6.2.3 Type 48

6.2.4 Layout1 48

6.2.5 Layout2 49

6.2.6 Statistic 50

6.2.7 Feedback 50

6.3 New/enhanced Function of Noticon version 2.0 51

6.3.1 AppDelegate 52

6.3.2 Menu 53

6.3.3 Bookmark 58

6.3.4 View Noticon 59

6.3.5 History 61

6.3.6 Create - info 62

6.3.7 Create - layout 64

6.3.8 Dynamic layout 65

NOTICON V2.0 �6

6.3.9 Statistic 67

Chapter 7 Application of Noticon 2.0 68

7.1 E-noticeboard 68

7.2 Improve the medical services quality 69

7.3 E-advertising platform 69

Chapter 8 Contribution of Work 70

Chapter 9 Future Works 72

9.1 Create a library 72

9.2 Create a CMS 72

9.3 Deployment of ibeacon 72

9.4 Enrich the interactive components 72

9.5 Support different platform 72

Chapter 10 Conclusion 73

Chapter 11 Reference 74

Chapter 12 : Acknowledgement 76

Appendix 77

NOTICON V2.0 �7

Chapter 1 Introduction

1.1 Motivation

In this 21st century, smartphones have become a necessity for many people
throughout the world. Today's smart phones are capable of not only
receiving and placing phone calls, but also storing data, taking pictures, and
even being used as walkie talkies, to name just a few of the available options.
One of the key feature inside the phone is app. App is
a short term of “application software”, which is a computer program
designed to run on smartphone or tablet. Those innovative and creative app
redefined the abilities of the phone. We can almost do anything using an app.

It is not only the software development, the hardware of the smartphone also
getting more and more powerful. There are many sensors embedded into the
phone, for example gyroscope, accelerometer etc. The GPS location
technology also enrich the functionality
of the phone. We can get the location of
the phone using the GPS service.

When playing around the app, we have
found that there are some
advertisements at the bottom of the
screen as shown in Fig1.1. This case is
very common especially in those free
apps. Some of the advertisements
content are changing from time to time.

No doubt, this feature provide a good
opportunity to the commercial
organisation to reach their target
customers, but it may gives a bad user experience to them On the other hand,
this advertising model only work when the user is using the app. If the user
sends the app to the background, those advertisement would not be shown.

NOTICON V2.0 �8

Fig1.1 The advertisement banner is
placed at the bottom of the app.

Due to the limitations and bad user experience, what comes to our mind is
whether if we can implement some mechanism with some new technologies
to optimise the effect of promotion, while letting the businessmen reach their
target audience more easily, without compromising the user experience at the
same time. We are then inspired by the Apple iBeacon indoor location
technologies. We come up with the idea of using iBeacon to locate the devices
and try to push the advertising notification message instead of only showing
the message during the app is running. We think this project would be
interesting and it can brings us a new trend of advertising.  

NOTICON V2.0 �9

1.2 Background

When we are using the app, there are some small advertisements shown at
the bottom of the screen .The content of it will be changed from time to time.
It is not difficult to find out what it is. Actually, it is all caused by iAd. iAd is
a mobile advertising platform which invented by Apple Inc in 2010. One of
the major function is allowing the app developer to directly embed the
advertisements into their own applications on IOS platform. iAd will try to
group all the apple users by iTune accounts and divided them into around
400 target options. Although iAd is very effective and convenient, it
compromises the user experience very much.

1.3 Objective

In our final year project, we are going to study about iBeacon, and implement
a library for pushing notifications.

There are several objectives in our final year project.

• Study and compare the iBeacon or other location technologies
• Design and implement an algorithm to select the pushed advertisements
• Combine and make the library with coding

NOTICON V2.0 �10

1.4 Runtime environment

For our development, we have decided IOS as the platform. Since we believe
that iBeacon technology is invented by Apple Inc, the support of the iBeacon
will be the most completed.

In fact, Apple provides a framework called CoreLocation for the location
determination. Inside the framework, it contains some function calls for
monitoring the iBeacon signals.

We use objective-C as programming language with IDE Xcode 6.1, and
develop the program for IOS 8.1 platform.  

NOTICON V2.0 �11

chapter 2 iBeacon

2.1 Introduction

iBeacon was first introduced in 2013 for IOS 7. Actually iBeacon is just a
trademark for Apple. In fact, at the behind it uses Bluetooth Low Energy
(BLE) technology. This technology brings new possibilities for location
awareness for apps. By installing the iBeacon to the environment, the IOS
devices can determine if they have entered or left the region, or estimate the
proximity to an iBeacon to trigger some specific App functionalities.

2.2 Specification

Because iBeacon is a BLE standard technology, it can be operated with coin
cell batteries for a month or longer, depending on size of the battery used.
Moreover, an IOS device can also be configured to be a beacon and advertises
the signal when the app is running. It brings a flexibility to the app
developers when writing an iBeacon embedded app.

For all the iBeacon advertisement signal information via Bluetooth Low
Energy, it consists of three major fields as shown in the Table2.1.

NOTICON V2.0 �12

An iBeacon identifies itself using three customisable values: Proximity UUID
(16 bytes), Major and Minor (2 bytes each); there is also an additional Internal
Identifier for your own reference.

Therefore you have three levels to identify a micro-location: only Proximity
UUID, Proximity UUID and Major, Proximity UUID and Major and Minor.
These levels give a way for managing the iBeacons in a well-organised
manner. The app developer can make use of this feature to give some
meaning to those identifiers by a subdivision policy. For example, one
Proximity UUID represents a museum, a Major represents a specific gallery
within the museum and a Minor represents an exhibit within that gallery.  

Fields Size Description
UUID 16 Bytes Application developers

should define an UUID
specific for their app
and deployment use
case.

Major 2 Bytes Further specifies a
specific iBeacon and
use case. For example,
this could define a sub-
region within a larger
region defined by the
UUID.

Minor 2 Bytes Allows further
subdivision of region or
use case, specified by
the application
developer.

NOTICON V2.0 �13

Table 2.1 Specifications of iBeacon

2.3 iBeacon Hardware

iBeacon transmitters come in the form of hardware that run on Bluetooth 4.0
Low Energy (BLE). The BLE specification is used to create BLE chipsets,
which are then embedded into devices. These devices are other words known
as beacons, transmitters, or broadcasters coming in the form of any type of
hardware such as USB dongles, computers, small coin-cell powered gadgets,
etc.

2.3.1Choosing a Beacon

When we are planning to buy the beacons, we may need to consider the
following conditions:

 - Battery life

Since the beacons need to broadcast signals in a high frequency, the power
consumption will be the major consideration. In fact, beacons have the option
of being powered by cells or fixed power sources. One of the common and
convenient beacon is powered by coin-cell, the battery life of it can be as
short as 2 months. However, this type of beacon also gives an advantage of
smaller size so that it is easy to be deployed. On the other hand, for a fixed
power beacon, it can be powered by an USB port. This type of beacons needs
to be connected with a cable for power supply. Also the size of it is larger
than a coin-cell beacon. For reducing maintenance costs, using beacons
running on a fixed power source is the most ideal.

NOTICON V2.0 �14

 - Beacon Encasing

The beacons are placed indoor or outdoor, so the physical conditions of it
should be good. The challenge comes when beacons are deployed in
environments that are susceptible to weather conditions such as rain or
humidity. Fig 2.1 shown some transmitters with plastic covered.

 - Beacon management

Some ibeacon manufactures provide management systems to their customers
for dealing with the beacon identifying values such as UUID, major, minor
etc. Therefore they don’t need to process those data manually. If it is a large
scale beacons deployment, whether such management system is provided
may be a concern.

2.4 iBeacon hardware and software support

Actually, iBeacons technology is cross-platform. Both Apple(with IOS and OS
X) and Google(with Android) have committed to support the BLE standard.
Since there are many devices that support Bluetooth, the development of app
should not only focus on a single OS. For Microsoft, they have added support
BLE on Windows 8 and Windows Phone 8. Nokia’s Lumia WP8 also
announced to add the BLE hardware. Based on those observations, iBeacon
definitely has a broad availability and supports on different platforms.

NOTICON V2.0 �15

Fig 2.1 Example of iBeacon transmitter with
plastic covered.

2.5 Comparison between NFC and BLE

The below Table 2.2 shown the comparison of NFC and BLE technologies.

NFC BLE
Range 4 - 20 cm 20 - 35 m

Platform Not open supported by
Apple Devices

Cross Platform

Mode Active (Need to touch) Passive

NOTICON V2.0 �16

Table 2.2 Comparison of NFC and BLE

2.6 Pros and Cons of IOS iBeacon

 - Advantages

• Background search do not use much battery power as an Android phone
• Using the Passbook of iPhone

 - Disadvantages

• Can monitor up to 20 regions (20 UUID)
• Need to specify UUID of the beacon, cannot be triggered by a random

beacon (Android allows to do so)
• Cannot scan for unknown UUID in background
• No library for distance estimation between the device and the beacon

(Android has some)

NOTICON V2.0 �17

Chapter 3 Study on IOS iBeacon framework

3.1 IOS iBeacon package

In Xcode, all triggers related to iBeacon are handled by a Location Manager
of CoreLocation (refer to Fig 3.1).

Though the Location Manager can be declared anywhere, it is better to
initialise it at the beginning of the program. If we need it to monitor the
iBeacon in background, we have to declare it’s function in AppDelegate.m,
which exists in every apps and allows programmer to control the app when
the app finished launching, when entering background or when entering
foreground(refer to Fig 3.2).

NOTICON V2.0 �18

Fig 3.1 Code of CoreLocation

Fig 3.2 Code for declaration in AppDelegate.m

After that, we need to specify regions to be monitor. A region contains UUID,
major and minor (optional), identifier. Only those iBeacons match the UUID,
major and minor(if any) can trigger the Location Manager(refer to Fig 3.3).
Those variables’ contents can be changed during runtime.

Then we can use LM’s triggers to do whatever we want. There are two
triggers can be used:

3.1.1 Location Manager trigger — didDetermineState

The first is didDetermineState, which triggers every time the device enters or
leaves the region (refer to Fig 3.4).

state will contain the value of CLRegionStateInside, CLRegionStateOutside
or other. CLRegionStateInside appears when it is the first iBeacon of that
region enters. CLRegionStateOutside appears when it is the last iBeacon of
that region leaves. Other values appear for other cases, for example, the
second iBeacon of that region enters.

region is the CLRegion object related to the trigger. We can use
region.identifier to determine which region we enter or leave.

NOTICON V2.0 �19

Fig 3.3 Code for setting a beaconRegion

Fig 3.4 Code for didDetermineState

3.1.2 Location Manager trigger — didRangeBeacons

The second one is didRangeBeacons, which triggers once every second (refer to
Fig 3.5).

The beacons array contains all CLBeacon objects about all iBeacon in the
region. Since we get the CLBeacon objects, we can get more information than
using didDetermineState. We can get the UUID, major, minor, accuracy,
proximity and rssi of the iBeacon. However, the order of objects in beacons is
quite random, and we cannot determine the order of entry of those iBeacons.
(However, we can writing a log explicitly to achieve this.)  

NOTICON V2.0 �20

Fig 3.5 Code for didRangeBeacons

Chapter 4 User Experience

4.1 Latency and response time

To investigate the amount of time delay for the device detects a beacon
enters and leaves with the app in both foreground and background, we have
conducted a test for that. We turn on and off a beacon and measure the time
delay before the app notices the beacon appears and disappears. We have 5
trials for each case and below are the records of the response time. The results
of the experiment have been shown in Table 4.1 and Table 4.2 respectively.

4.1.1Foreground

4.1.2 Background

Enter
time/s

4.1 2.3 2.7 5.2 2.4

Leave
time/s

34 31.5 32.8 28.6 30.7

Enter
time/s

2.2 3.8 2.3 2.2 2.1

Leave
time/s

31.2 28.4 26.6 30.8 33.0

NOTICON V2.0 �21

Table 4.1 Response time of entering and leaving the beacon when the app is running at
foreground

Table 4.2 Response time of entering and leaving the beacon when the app is running at
background

After the investigation, we found that the reaction times are quite similar for
foreground and background. For the beacons entering, it takes around 2 to 4
seconds, while for the beacons leaving, it takes around 30 seconds.

Since we are now doing the notification, we are more concerning the time for
noticing entry of a beacon. It is reasonable and acceptable that the entering
time is quite responsive so that the notifying messages can be shown within a
few seconds when getting near to the beacon.

NOTICON V2.0 �22

Chapter 5 Demo application — Noticon

In order to demonstrate the features we would include in the library, we
wrote an app called Noticon, which means Notification with iBeacon. Every
time the user get near to the iBeacon, the app will push a notification about
the users current location and an advertisement.

5.1 Scenario

When we enter a lift, we can see many
advertising posters inside the lift as shown in
Fig 5.1. Imagine if now we install an iBeacon
inside the lift. Every time we enter the lift, the
iBeacon will trigger the phone to push a
notification for an ads(short for
advertisement), and we can use our phone to
view the advertising posters.

With an electronic ads, we can interact with
the poster more easily. We can add the event
to calendar quickly, get coupons, or giving
feedbacks to the poster. For the organization
giving the ads, their ads can access to phone
users more easily. They can also give coupons
to attract people and get statistics and
feedbacks about their ads for improvements.

NOTICON V2.0 �23

Fig 5.1 Posters are placed inside the lift.

5.2 Program Flow

The above Fig 5.2 shows the program flow when the user get near to an
iBeacon.

1. The app notices an iBeacon belongs to the monitoring region.
2. The app chooses an ads to push the notification.
3. User may respond or ignore the notification.
4. If user is interested and clicks on the notification bar, the app will

display the details of the ads.
5. User can do several actions with the ads.
6. If the ads is saved, the user can view the ads again later.

NOTICON V2.0 �24

Fig 5.2 Program flow of Noticon ver 1.0

5.3 User Interface

Above Fig 5.3 shows all the UI for user to use. The details will be discussed
in 5.5 Function.

NOTICON V2.0 �25

Fig 5.3 User interface of the Noticon ver 1.0

5.4 Classes

The following shows the classes and functions in Noticon, which can be
included in the library we develop later.

 - System Class

The class keeps some variables used around the app.
class System{

int NUM_Region: total number of region to be monitored
int NUM_ADs: total number of Ads
int NUM_Type: total number of types of Ads
CLLocationManager *LM: the LocationManager to handle all ibeacon monitoring
int current_regionIndex: index of current region
int ADs_id index of current displaying Ads

}

 - Region Class

The class keeps the identifying values for one region. It also keeps the ids of
ads to be shown when entering this region.
class Region{

int id: id of the region
String Name: name of the region
String UUID: uuid of beacon to be monitor,

e.g. "E2C56DB5-DFFB-48D2-B060-D0F5A71096E1"
int major: major of beacon to be monitor (optional). Range from 0 to 216-1,

with -1 as wildcard
int minor: minor of beacon to be monitor (optional). Range from 0 to 216-1,

with -1 as wildcard
boolean DisplayADs[i]: if enter this region, whether the i-th ads is available or not

e.g. (regionDisplayADs[2] == true) means the ads #2 is
available.

}

NOTICON V2.0 �26

 - ADs Class

The class keeps the data for an ads.
class ADs{

int id id of the Ads
string title title of the Ads, e.g. “Career Talk”
string poster filename of the poster of the Ads, e.g. “poster3.jpeg”
string date date of the event, in format “dd/MM/yyyy”, e.g. “03/12/2014”
string startTime start time of the event, in format “HH:mm” in 24 hour time

 format, e.g. “15:00”
string endTime end time of the event, no earlier than startTime
string venue venue of the event, e.g. “LSB LT3”
int type id of the type of the Ads belongs to

}

 - ADs_type Class

The class defines the ads type, which is used for determining interested areas
of the users.
class ADs_type{

int id id of the type
string name name of the type

}

 - Log Class

The class keeps the statistics and action log of a user.
class Log{

NSUUID *UserID id to distinguish users, get by UIDevice.identifierForVendor
int RegionEnterCount[i] Count for number of time of entering the region id i
int ADsShown[i] Count for number of time of choosing the i-th ads to show

 and notify the user
int ADsClick[i] Count for number of time of clicking the i-th ads, both from

 notification bar and view from saved ads
int ADsAddedToCalendar[i] Count for number of time of adding the i-th event to

 calendar
int Rank[i] the rank of the i-th ads given by user. For unrank, 0 for

 storage and ‘?’ for displaying in log page
int Action_NUM total number of action taken
String Action[i] time and action details of the i-th action
int saveForLater[i] if the i-th ads is saved for later view. 1 is true and 0 is false.
int typeScore[i] the score of i-th type, used for choosing ads to display

}

NOTICON V2.0 �27

5.5 Functions
5.5.1 AppDelegate

This interface exists in every apps. It allows programmer to control the app
when the app finished launching, when entering background or when
entering foreground. Core Location manager should also be setup in this
interface.

 - didFinishLaunchingWithOptions

This function is triggered when the app is started

1.Ask for authority of notification

The above Fig 5.4 shown IOS asks the permission of sending notifications.

NOTICON V2.0 �28

Fig 5.4 Screen capture of an iPad ask user to
give authority to send notifications

2.Set Location Manager

Initialize the Location Manager

3.Ask for authority of location service

The above Fig 5.5 shows IOS asks user to give authority for always access
location for the location manager to scan beacon when the app is in
background.

NOTICON V2.0 �29

Fig 5.5 Screen capture of an iPad ask user to
give authority to obtain user location information

4.Set Region

The above Fig 5.6 shows how to create regions with the Region class objects
and let the Location Manager to start monitoring the regions.

 - locationManager: didDetermineState

This function is triggered when the device get inside to a region or get
outside from a region.

1.Determine state and regionIndex

Determine if the device is entering or leaving the region and determine the
region index

2.Create notification

If the device enter a region, we choose one ads to notify the user. Below is the
algorithm.
If (enter a region)

give each Ads a score
choose one of the highScore Ads to display
create notification

NOTICON V2.0 �30

Fig 5.6 code for creating regions

Code for simple algorithm for choosing a ads:

NOTICON V2.0 �31

The idea is to choose one of the highest score ads with equal probability in
O(n). The calculation of score will make sure that those already shown ads
have a lower chance to display, while those ads of the type that user would
be interested have a higher chance to display.

Proof for those highest ads have equal probability to be chosen:
Suppose 5 ads have the same score,
then P(5th is chosen) is 1/5 (when sameScore = 5)
P(4th is chosen) = 1/4 (when sameScore = 4) * P(5th is not chosen)

= 1/4 * 4/5
= 1/5

P(3rd is chosen) = 1/3 (when sameScore = 3) * P(4th is not chosen) * P(5th is not
chosen)

= 1/3 * 3/4 * 4/5
= 1/5

and so on…

Code for create notification:

After created an notification, a message will be created as shown as Fig 5.7.  

NOTICON V2.0 �32

Fig 5.7 Screen capture for the notification message

5.5.2 Menu

The above Fig 5.8 shows the main menu of the app.

 - (void)To Save Ads

When user press “Saved Ads”, it goes to 5.5.3 Saved Ads.
 - (void)To Display Ads (for debug)

When user enters a region and an ads is given to user, user may click on the
notification bar. Then this function will be called and redirect the user to 5)
Display Ads automatically. For debug purpose, we can press on “New Ads”
to call this function too.
 - (void)To Log

When user press “Log”, it goes to 5.5.5 Log.

NOTICON V2.0 �33

Fig 5.8 The main menu of Noticon ver 1.0

 - (void)Save Log

The function to save the data of Log class variables with the function
NSUserDefaults.setObject, which can store data in non-volatile memory. This
is called every time a change is made to the Log. The following Fig 5.9 shows
the code of saveLog.

NOTICON V2.0 �34

Fig 5.9 Code of saveLog

 - (void)Load Log

The function to read the data of Log class variables from memory using the
function NSUserDefaults.objectForKey. This is called every time the app is
launched. The following Fig 5.10 shows the code of loadLog.

 - (string*)Get Current Time

Get the current time in the format “yyyy-MM-dd HH:mm:ss” from NSDate
and return it as a string, see Fig 5.11.

NOTICON V2.0 �35

Fig 5.10 Code of loadLog

Fig 5.11 Code of getCurrentTime

5.5.3 Saved Ads

The above Fig 5.12 shows the saved Ads page of Noticon ver 1.0
 - (void)Back to Menu

Press “Back” and it goes to 5.5.2 main menu.

 - (void)Display Info

For rendering the view. It displays the titles and posters of the saved ads. It is
called when the view is entered or by the function Delete an Ads.

 - (void)Open an Ads

When user click on the title or poster, it sets the ADs_ID to the clicked ads ID
and goes to 5.5.4 Display Ads to view the ads.

NOTICON V2.0 �36

Fig 5.12 Screen capture of saved Ads page

 - (void)Delete an Ads(int id)

When the corresponding “Delete” is clicked, the ADs will be deleted from the
saved ads and Log.saveForLater[id] changes back to false. Then the function
Display info will be called to refresh the view.

 - (void)Show all Ads (for debug)

For debug purpose, press “Show All” and all ads will be displayed in this
page. (whole Log.saveForLater[] array is set to true.)

5.5.4 Display Ads

In this view, user can view the detail information of the ads. User can also
interact with the ads in different ways. The over view of this page has been
shown in Fig 5.13.

 - (void)Back to Menu

Press “Close” and it goes to 5.5.2 main menu.

NOTICON V2.0 �37

Fig 5.13 Screen capture of Ads page

 - (void)Display information

For rendering the view. It displays the name of the current region and the
chosen Ads informations with the ADs Class object.

 - (void)Rank the Ads with stars

User can click on the stars and the stars will change between empty and gold
according to which star is clicked. The leftmost is 1 star and the rightmost is 5
stars. Then the user can click on the “Rank” button to send the ranking as
shown in Fig 5.14. Notice that every ads can only be ranked once by a user. It
is fixed and cannot be changed after the user ranked.

NOTICON V2.0 �38

Fig 5.14 Screen capture of ranking an Ads

 - (void)Send Feedback

The user can also give a feedback about the ads. The user can choose an item
from the picker view and type the detail comment in the text field as shown
in Fig 5.15. Then the user can press “send” to send the feedback. After
pressing the “send”, a message will be returned, see Fig 5.16. For the coding
part of this function, refer to Fig 5.17.
 

NOTICON V2.0 �39

Fig 5.15 Screen capture of the feedback Fig 5.16 Screen capture of the successful
send feedback message

Fig 5.17 Code of sendFeedback

 - (void)Save for later

If the users want to view this ads later, they can press “Save for Later” and
later to view this again in 5.5.3 Saved Ads.

 - (void)Add to Calendar

If the users want to join the event in the ads, they
can press “Add to Calendar” to add the event into
their calendars so that they will remember to join
this event as shown in Fig 5.18. We use <eventKit>
to do this, refer to Fig 5.19.

NOTICON V2.0 �40

Fig 5.19 Code of event Kit

Fig 5.18 Screen capture of adding to calendar

5.5.5 Log

In this view, it displays the contents of the Log class variables as shown in Fig
5.20. We may analyse the user habits or preferences so that we can give more
useful ads to the user. The use of this view may not be use for displaying to
the user, but to make a log file send to server for analysis in the future. We
may need to give a warning to users to tell them we log their actions though,
as there may be a privacy issue.

NOTICON V2.0 �41

Fig 5.20 Screen capture of Log page

 - (void)Back to Menu

Press “Back” and it goes to 5.5.2 main menu.

 - (void)Display log

List the content of Log class variables into a single string and display it.

 - (void)Reset log (for debug)

For debug purpose, press “Reset Log” can initialize the log again. This
should not be available to users as we don’t want users to wash away their
logs.

 - About action log

NOTICON V2.0 �42

Fig 5.21 The content of action log

The above log(refer to Fig 5.21) shows all the current possible action to be
logged. Below lists the corresponding actions:

1. When the user enters a region
[from 5.5.1 AppDelegate, locationManager: didDetermineState]

2. When the user clicks on a notification bar to view the ads
(refer to Fig 5.22)

3. When the user presses “Save for later”
[from 5.5.4 Display Ads, Save for later]

4. When the user views the ads from the saved ads
[from 5.5.3 Saved Ads, Open an Ads]

5. When the user presses “Rank” with the stars clicked
[from 5.5.4 Display Ads, Rank the Ads with stars]

6. When the user presses “Send” the feedback
[from 5.5.4 Display Ads, Send feedback]

7. When the user presses “Add to Calendar”
[from 5.5.4 Display Ads, Add to calendar]

8. When the user presses “Delete” for a saved ads
[from 5.5.3 Saved Ads, Delete an Ads]

NOTICON V2.0 �43

Fig 5.22 Screen capture of IOS Notification bar

Chapter 6 Noticon version 2.0

6.1 Overview

In this semester, we enhanced the function in Noticon(refer to Fig 6.1).
Moreover, we implemented new function (in red). We allow the
administrator to create new “Noticon”(An advertisement) in <6. Create -
info>. After that, if the administrator do not like the default layout of the
“Noticon”, a dynamic layout can be created specially for that “Noticon” in
<7. Create - layout>. As dynamic layouts are created, when user open the
“Noticon” in <4. Display>, the app will check if a dynamic layout is created.
If yes, the app will display the information accordingly in <8. Dynamic
layout>. Administrator can also view statistics of all “Noticon” in <9.
Statistic>.

NOTICON V2.0 �44

Fig 6.1 Overview of Noticon ver 2.0

Also, we are no longer hardcoding the data. We are now connecting to
database to download “Noticon”, a piece of information that will be sent to
the user, as well as uploading the log and new “Noticon”. Since Xcode does
not allow to directly connect to a database, we need to access to php file and
“POST” inputs in json format <Step 1>. Then in php files, we do SQL <Step
2> in database and get data <Step 3>. Then in the php we echo the data in
json format. The app will decode json and save data in memory <Step 4>, the
details have been shown in above Fig 6.2.

NOTICON V2.0 �45

Fig 6.2 Data flow of Noticon ver 2.0

6.2 Database implementation

Different schemas have been created to facilitate the Noticon’s features.

6.2.1 Region

Store the region for ibeacon (refer to Fig 6.3)
• id: id of region
• name: name of region
• ssid: SSID of iBeacon to be monitored
• major: Major of iBeacon to be monitored, with -1 as wildcard
• minor: Minor of iBeacon to be monitored, with -1 as wildcard.
• zone: Group different regions together as a zone for selecting “Noticon” to

display
• coolDown: If the user stay in the same zone, the coolDown time(in minute)

for not displaying new “Noticon” so that the user will not be overwhelmed
by notifications

NOTICON V2.0 �46

Fig 6.3 Schema of Region

6.2.2 Ads

Store the “Noticon” information (refer to Fig 6.4)
• id: id of “Noticon”
• title: title of “Noticon”
• poster: URL of downloading the poster
• date: date of event for adding to calendar
• startTime: Start time of event for adding to calendar
• endTime: End Time of event for adding to calendar
• venue: Venue of event for adding to calendar
• type: id of type of the “Noticon” (see <3. Type>)
• constraintStartTime, constraintEndTime: The “Noticon” will only be chosen

to display in this time period of a day. Empty for no constraint.
• constraintZone: The “Noticon” will only be chosen to display if the user get

into that zone. Empty for no constraint.

NOTICON V2.0 �47

Fig 6.4 Schema of Ads

6.2.3 Type

Store the type of “Noticon”, which is used to identify the favors of users and
selecting “Noticon” to be displayed (refer to Fig 6.5).
• id: id of type
• name: name of the type

6.2.4 Layout1

Store the dynamic layout information of “Noticon” (refer to Fig 6.6).
• id: id of “Noticon”. If the id have no record, the “Noticon” uses default

layout.
• text_num: Number of text added except the title
• pic_num: Number of picture added except the main poster image
• ATC: If “add to calendar” function is added
• Rank: If “Ranking” function is added
• FB: If “feedback” function is added

NOTICON V2.0 �48

Fig 6.5 Schema of Type

Fig 6.6 Schema of Layout1

6.2.5 Layout2

Store the dynamic layout tags information of “Noticon” (refer to Fig 6.7).
• id: id of “Noticon”.
• tag: Representation id of an object.

• 1: title
• 2-10: text
• 11: main poster image
• 12-15: image
• 16: ATC
• 17: Rank
• 18: FB

• x: relative x-coordinate of location to screen size
• y: relative y-coordinate of location to screen size
• w: relative width to screen size
• h: relative height to screen size
• c: Content of object.

NOTICON V2.0 �49

Fig 6.7 Schema of Layout2

6.2.6 Statistic

Store some log of users uploaded (refer to Fig 6.8).
• adID: id of “Noticon”.
• userID: Device id of uploading the log
• view: If opened to view the “Noticon”
• rank: Number of stars ranked(1-5), with 0 of unranked
• bookmark: If added to bookmark
• atc: If added to Calendar

6.2.7 Feedback

Store feedback of users uploaded (refer to Fig 6.9).
• adID: id of “Noticon”.
• userID: Device id of uploading the log
• type: Type of feedback
• detail: detail of feedback

NOTICON V2.0 �50

Fig 6.8 Schema of statistic

Fig 6.9 Schema of Feedback

6.3 New/enhanced Function of Noticon version 2.0
Below Fig 6.10 shows the program flow of Noticon:

1. AppDelegate
Control the background flow.

2. Menu
Main Menu.

3. Bookmark
Bookmark for user to review those seen “Noticon”.

4. View Noticon
View and interact with the “Noticon” with default layout.

5. History
Statistics and log of the user

6. Create - info
(Administrator only) Create a new “Noticon”.

7. Create - layout
(Administrator only) Create the layout of “Noticon”.

8. Dynamic layout

NOTICON V2.0 �51

Fig 6.10 Program flow of Noticon ver 2.0

View and interact with the “Noticon” with dynamic layout created by <7.
Create - layout>.

9. Statistic
(Administrator only) View statistic of all “Noticon”.

6.3.1 AppDelegate

Function done in semester 1:
A. didFinishLaunchingWithOptions

1. Ask for authority of notification
2. Set Location Manager
3. Ask for authority of location service
4. Set Region

• Now we set region according to database

B. locationManager:didDetermineState
1. Determine state and regionIndex
2. Create notification

• Now we select the “Noticon” to be displayed with the
consideration of the zone, the cool down time, the constraint of
time and zone

• Below is the algorithm:
——————————————————————————————————
if (enter a region)

if (zone != pervious zone & current time - pervious time > cool down)
give each Ads a score
if (the Ads belongs to other zone or current time do not belong to
the display time zone)

score = -9999
choose one of the highScore Ads to display
create notification

——————————————————————————————————
The change for
1. Do not want to overwhelm users with too much notifications
2. Give better and more relevant advertisement

There are a lot of ibeacon installed in HSH building. If we use the original
algorithm, each time the user go pass a ibeacon, a notification will pop. As a
result, the user may get over ten notification within a minute, which may

NOTICON V2.0 �52

annoy the user. With the new algorithm, the user will only get 1 notification
when he/she just get in HSH and get out within several minutes.

In HSH engineering building, we may expect viewing posters about
academic, while when we pass a canteen, we may expect seeing information
about the food provided. Therefore, we have the “zone” concept that binding
the “Noticon” with the region.

Also, the canteen provide different food at different period of time. With the
method of binding the “Noticon” with time, we can achieve that.

6.3.2 Menu

The above Fig 6.11 shows the interface of iPad version and Fig 6.12 shows the
interface of iPhone version of Noticon.

NOTICON V2.0 �53

Fig 6.11 Main menu of iPad/Administrator version

Fig 6.12 Main menu of iPhone/User
version

Function done in semester 1:
A. to different pages
B. (void)Save Log
C. (void)Load Log
D. (string*)Get Current Time
Function done in this semester:
E. download data

We get the data of region, “Noticon”, type from database.
The procedure of getting data from database is:

• In Xcode
i. Create json element to post to php (refer to Fig 6.13)

ii. Mark a url request to connect to php(refer to Fig 6.14)

NOTICON V2.0 �54

Fig 6.13 Code for creating json element

Fig 6.14 Code for marking a url request

• In corresponding PHP
iii. make a query with posted data (refer to Fig 6.15)

iv. echo the result in json format (refer to Fig 6.16)

NOTICON V2.0 �55

Fig 6.15 Code for making a query

Fig 6.16 Code for echo the results in json format

• In Xcode
v. Wait for result, decode json and store in memory

*Note: All the connection result call the same function when finished. So we
need an extra variable(self.updateStep) to remember which php is connected
and dual with the result accordingly(refer to Fig 6.17).
In this function, we connected to “getRegion2.php”, “getType.php” and
“getAds.php”, as well as download image if not exist (<F. download
image>).

An icon ! is displayed at the bottom-left to indicate the app is
updating(refer to Fig 6.18)

NOTICON V2.0 �56

Fig 6.17 Code for decoding json

Fig 6.18 Screen capture showing “updating” message

F. download image
This function is for downloading image with a url and store to memory.

The above Fig 6.19 shows 3 functions, they are:
getImageFromURL: download the image from fileURL
saveImage: save the image into directory
loadImage: get the image from directory

The sample usage has been shown in Fig 6.20

NOTICON V2.0 �57

Fig 6.19 Code for downloading image with url

Fig 6.20 Sample usage of Fig 6.19 codes

6.3.3 Bookmark

Improved UI as shown in Fig 6.21 and Fig 6.22

 

NOTICON V2.0 �58

Fig 6.21 Screen capture of iPad version

Fig 6.22 Screen capture of iPhone version

6.3.4 View Noticon

Improved UI as shown in Fig 6.23 and Fig 6.24.

NOTICON V2.0 �59

Fig 6.23 Screen capture of iPad version

Fig 6.24 Screen capture of iPhone version

The app now send a log to the server after the user viewed the app. The app
insert the log as a record to Table Statistic through “upStat.php”(refer to Fig
6.25).

Also, if the user press “send” in feedback function, the app will insert a
record to Table Feedback by “upFeedback.php”(refer to Fig 6.26).

NOTICON V2.0 �60

Fig 6.25 Record samples in Statistic schema

Fig 6.26 Record sample in Feedback schema

6.3.5 History

Improved UI as shown in Fig 6.27 and Fig 6.28.

NOTICON V2.0 �61

Fig 6.27 Screen capture of iPad version

Fig 6.28 Screen capture of iPhone version

6.3.6 Create - info
The Fig 6.29 shows the create page of Noticon(Administrator only).

In the page, it provides a form for entering the basic info of a new “Noticon”.
After clicking save button.

NOTICON V2.0 �62

Fig 6.29 Create page in iPad version

The app will insert a new record in Table Ads using “create2.php”. The id of
the newly created “Noticon” will be returned.

Then two option appears:

“Create layout” go to <7. Create - layout> while “use default layout” goes
back to main menu (refer to Fig 6.30).

NOTICON V2.0 �63

Fig 6.30 Two options for creating a new ads

6.3.7 Create - layout
(Administrator only)

After entering the page, only the title and main poster image are provided in
the layout(refer to Fig 6.31).

The user can customize the layout with the following action:
1. Add text - Add a new text object (maximum of 9)
2. Add pic - Add a new pic object (maximum of 4)
3. Add “Add to Calendar” - Add a “ATC” object
4. Add “Ranking” - Add a ‘Ranking” object
5. Add “Feedback” - Add a “Feedback“ object
6. Move mode - Touch on an object and move it
7. Resize mode - Touch on an object and resize it
8. Change content - Touch an object, type the content and press “Change

content”
text object will change the display text
pic object will change to the image in images.xcassets (see appendix)

9. Remove - Remove the last added text/pic/ATC/Ranking/Feedback
10. Save - Insert records into Table Layout1, Layout2 with “Noticon” ID to

“CreateLayout1.php”, “CreateLayout2.php”
11. Cancel - Return to main menu without saving  

NOTICON V2.0 �64

Fig 6.31 Default layout of the ads

6.3.8 Dynamic layout

We use currently display ID to “getLayout1.php” to check if there is a
dynamic layout provided. If so, we enter this page. We use

“getLayout1.php” and “getLayout2.php” to get data in Table Layout1,
Layout2. We will then render the layout according to the coordination, with
respect to the screen size. Fig 6.31 shows an example of created layout in <7.
Create - layout> and Fig 6.32 and 6.33 shows the display in iPad and iPhone:

NOTICON V2.0 �65

Fig 6.31 Page in create mode
Fig 6.32 Page in iPad display mode

Fig 6.33 Page in iPhone display mode

Moreover, functional objects (Ranking, add to calendar, feedback) will be
created. It does the same function as in default view as shown in Fig 6.34.

NOTICON V2.0 �66

Fig 6.34 Create mode page

6.3.9 Statistic

We provide a way for the administrator to view the statistic in app. The app
get data in Table Statistic by “getStat.php” and display in the view (refer to
Fig 6.35).

For each “Noticon”, it shows the id, title and main poster image.
The six statistics have the following meanings:

! Total View: Total number of time of opening the “Noticon”
! Distinct User: Number of distinct users (determined by device ID) have
viewed the “Noticon”

! Average rank: Average number of stars all users ranked (Range of
1-5stars)

! Rank by: Number of users who have ranked the “Noticon”, with
percentage of number of distinct users

! Bookmark: Number of users who have bookmark the “Noticon”, with
percentage of number of distinct users

! Add to Calendar: Number of users who have add the “Noticon” to
calendar, with percentage of number of distinct users

NOTICON V2.0 �67

Fig 6.35 Screen capture of Statistic page

Chapter 7 Application of Noticon 2.0

Since Noticon is a powerful notifying platform using ibeacon technology, it
can be proposed to apply in different innovative applications.

7.1 E-noticeboard

Noticon can be introduced to the E-noticeboard application. Some ibeacon
transmitters can be installed to the physical notice board, when people walk
near the board, they will be notified with the relevant poster. The lifetime of
the poster and the available board areas can be defined. In other words, the
staff can specify a poster to the particular notice board within a particular
time. Apart from the basic information of the poster, the staff also can create
some interactive actions to the poster and collect the corresponding
feedbacks and statistics.

Using Noticon as an E-noticeboard application brings us a lot of advantages.
First, the poster can be shown to more people. Since nowadays most of
people will miss or skip the poster that posted on the board, Noticon helps to
poster message delivery. Even someone miss the board, his device still being
notified when he walk near the board. As a result, he can view the poster
after he passed the board and obtain the poster information.

Second, the E-noticeboard allows posters change dynamically from time to
time. Since we can set the lifetime of the posters, we can create different
posters with different content and lifetime to enhance the promoting effect.

Third, the interactive components such as “add to calendar” feature enrich
the user experience. Since we can add some interactive components to the
poster, for example, user can just click the add to calendar button to add the
event’s details to his own calendar. They also can give ranking to the
particular noticon, this action will be recorded to the system for the statistics
and further noticon selecting process use.

NOTICON V2.0 �68

7.2 Improve the medical services quality

Due to the demand of medical getting higher, the workload of a doctor
increase drastically. Sometimes a doctor may miss or forget which patient
should follow up. Noticon can be used to improve this situation. We can
install ibeacon to every bed, while the doctor walk near the bed , he will be
notified and get the updated information of the patient, given that one
noticon represent one patient. The nurse will take control of the Noticon
management portal, they can update the content of the noticon, and schedule
of the noticon. Using Noticon instead of the traditional flows help to protect
the information of patient. In the old day, all the patient information are
placed at the end of the bed. It can be easily accessed by everybody. Since
only doctor and nurse installed the Noticon app, so it can restrict people to
access those information. Moreover, reminder can be set to remind doctor
when to visit the patient.

7.3 E-advertising platform

Noticon can be used to act as an advertising platform.When a person
approach the shop or some locations, we can push them a message with the
content of the advertisement. We also can combine with the scheduler and
the statistics analysis to do the promotion such as issue a coupon to
customers. In this case, the ranking component also helps the business to
understand what their target customer thought.

NOTICON V2.0 �69

Chapter 8 Contribution of Work

Summer

During the summer break, I have done some research on ibeacon in order to
start the final year project. I searched some application of ibeacon in the
market and try to think of the probability of ibeacon. Moreover, I am a
beginner of IOS programming, so i buy a Macbook, install Xcode, and try to
feel the IOS program. At the same time, due to Xcode simulator cannot test
the ibeacon features, I spend time on configure the IOS developer account
and try to perform device build.

Fall 2014

Starting of the semester, every week we have a meeting with our supervisor
and Mr. Edward Yau of ViewLab. Therefore, my partner and I stayed
together to work for the project for at least one day per week. We discussed
about new ideas, different scenario we may encounter. In this semester, we
have already implemented an IOS app called Noticon. I am responsible to the
IOS programming.

Spring 2015

At the beginning of spring 2015, we have evaluated the work done in last
semester. For improve the app, I am trying to connect external database.
During the implementation, i have spent time on the ways to store data and
get data through the database, the algorithm to search for data. On the other
hand, i have changed the User interface in a clear manner. We also though
that using iPad as a administration management app and iPhone as a client
app. The reason is that most of the people won’t bring a tablet all the time, if
we choose using iPad, the ibeacon notifying effect will be diminished. Finally,
a Noticon version 2.0 app has been implemented in this semester.

NOTICON V2.0 �70

The below Fig 7.1 shows the work divisions details.

 

NOTICON V2.0 �71

Fig 7.1 Work divisions details

Chapter 9 Future Works
9.1 Create a library

Since it is hard to motivate people to install our app, so building a library for
developers to build their own apps is a suitable way to use ibeacon
technology.

9.2 Create a CMS

For every noticon creation, we can create a CMS system to the administrator
to manage their contents via a website instead of iPad.

9.3 Deployment of ibeacon

We can make a management system for the administrator to manage the
beacon information, not only the UUID, but also the location and the signal
strength etc. Also we can think of a effective way for how to set the UUID of
a beacon.

9.4 Enrich the interactive components

Currently we provided few interactive components for creating an noticon,
we can provide more creative and useful interactive plugin to enrich the user
experience.

9.5 Support different platform

Currently Noticon only support IOS, for future work we can also support
different such as android or Windows phone.

NOTICON V2.0 �72

Chapter 10 Conclusion
iBeacon is a new technology that will be more common in the market. This is
a good chance for us to do a project using iBeacon. In this project, we have
done many study or research on iBeacon. During the research, we have
learned the use of iBeacon and how does it works.

This is our first time to develop a mobile app on IOS. We have learned a lot of
techniques on writing an IOS application and the development environment.
We get used of Xcode, Objective-C or even mac OS. During the development,
we have faced many problems. For example, we could not get started and do
the device build of the application because the apple developer account
cannot link with our macbook. As a beginner of IOS app development from
2014, we are now able to write an app with iBeacon technology. Moreover,
our problem-solving skills and self-learning skills have also been improved.

Finally, we have tried to design and plan a whole project. From thinking the
topic, researching, implementing, and testing. We have understood the
software development life cycle (SDLC). Beside, during the project, we know
more about each other and understand the importance of time management.
We believe that this is a very valuable experience to us.

NOTICON V2.0 �73

Chapter 11 Reference
[1]. Location and Maps Programming Guide [Online]. Available:

https://developer.apple.com/library/Mac/documentation/UserExperience/
Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html#//
apple_ref/doc/uid/TP40009497-CH9-SW1

[2]. Get Started with iBeacons [Online] Available:

https://developer.apple.com/ibeacon/Getting-Started-with-iBeacon.pdf

[3]. Apple iBeacon developer page [Online] Available:

https://developer.apple.com/ibeacon/

[4]. News about apple’s policy of restricting uuid/ need information
available without beacon [Online] Available:

http://beekn.net/2014/05/apple-closed-system-apple-slowly-locking-ibeacon/

[5]. Some people’s discussion about the policy [Online] Available:

 http://apple.stackexchange.com/questions/134696/does-apple-have-a-policy-
restricting-generic-uuid-with-ibeacon-apps-in-the-app-s

[6]. Awwapps’s website: they have to remove the manually input uuid
feature [Online] Available:

 http://blog.awwapps.com/blog/2014/05/20/manual-ibeacon-entry-to-be-removed/

[7]. Beecon on iTune [Online] Available:

https://itunes.apple.com/app/beecon/id822251888

NOTICON V2.0 �74

https://developer.apple.com/library/Mac/documentation/UserExperience/Conceptual/LocationAwarenessPG/RegionMonitoring/RegionMonitoring.html
https://developer.apple.com/ibeacon/Getting-St
https://developer.apple.com/ibeacon/
http://beekn.net/2014/05/apple-closed-system-apple-slowly-locking-ibeacon/
http://apple.stackexchange.com/questions/134696/does-apple-have-a-policy-restricting-generic-uuid-with-ibeacon-apps-in-the-app-s
http://blog.awwapps.com/blog/2014/05/20/manual-ibeacon-entry-to-be-removed/
https://itunes.apple.com/app/beecon/id822251888

[8]. Estimote(One of beacon manufacturer) website [Online] Available:

 https://community.estimote.com/hc/en-us/articles/200868188-How-do-I-modify-
UUID-major-and-minor-values-

[9]. Limitations for scan for beacon in background [Online] Available:

 http://indoo.rs/insights-from-product-ibeacon-in-the-background/

[10]. Background scanning 1- apple developer forum [Online] Available:

 https://devforums.apple.com/message/1027403#1027403

[11]. Background scanning 2- apple developer forum [Online] Available:

 https://devforums.apple.com/message/1006867#1006867

[12]. iOS 8 uses M7 chip and motion sensors for accurate indoor positioning
[Online] Available:

http://www.idownloadblog.com/2014/06/05/ios-8-indoor-positioning-m7/

NOTICON V2.0 �75

https://community.estimote.com
http://indoo
https://devforums.apple.com/message/1027403
https://devforums.apple.com/message/1006867
http://www.idownloadblog.com/2014/06/05/ios-8-indoor-positioning-m7/

Chapter 12 : Acknowledgement

We would like to take this chance to thank our supervisor, Professor Michael
Lyu. He gives us many supports and advices for this project. He also reminds
us the importance of documentation.

In addition, we also want to express our appreciation to Mr. Edward Yau and
Tsz Lung in VIEW Lab. Edward always gives us many valuable advices and
ideas while Tsz Lung provides us some technical supports when we faced
problems.

NOTICON V2.0 �76

Appendix

We can change the image in the layout by changing the content to a
following “name” (refer to Table 12.1):
Icon Name

add

ATC

back

bookmart

building

button

cross

date

download

history

image

line

nokey

save

send

star0

star1

stat

tick

time

time2

user

venue

view

vote

write

Icon

NOTICON V2.0 �77

We can add more custom png images by adding the png image to
images.xcassets (refer to Fig 12.2):

XXXX

noticon

database

php

json

NameIcon

NOTICON V2.0 �78

Table 12.1 png icons and the corresponding
name

Fig 12.2 Directories of images.xcassets

